xref: /dragonfly/sys/net/if.c (revision d4ef6694)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet6.h"
35 #include "opt_inet.h"
36 #include "opt_ifpoll.h"
37 
38 #include <sys/param.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/socketops.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/mutex.h>
51 #include <sys/sockio.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/domain.h>
55 #include <sys/thread.h>
56 #include <sys/serialize.h>
57 #include <sys/bus.h>
58 
59 #include <sys/thread2.h>
60 #include <sys/msgport2.h>
61 #include <sys/mutex2.h>
62 
63 #include <net/if.h>
64 #include <net/if_arp.h>
65 #include <net/if_dl.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/ifq_var.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/if_clone.h>
72 #include <net/netisr2.h>
73 #include <net/netmsg2.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/stdarg.h>
77 #include <machine/smp.h>
78 
79 #if defined(INET) || defined(INET6)
80 /*XXX*/
81 #include <netinet/in.h>
82 #include <netinet/in_var.h>
83 #include <netinet/if_ether.h>
84 #ifdef INET6
85 #include <netinet6/in6_var.h>
86 #include <netinet6/in6_ifattach.h>
87 #endif
88 #endif
89 
90 #if defined(COMPAT_43)
91 #include <emulation/43bsd/43bsd_socket.h>
92 #endif /* COMPAT_43 */
93 
94 struct netmsg_ifaddr {
95 	struct netmsg_base base;
96 	struct ifaddr	*ifa;
97 	struct ifnet	*ifp;
98 	int		tail;
99 };
100 
101 struct ifsubq_stage_head {
102 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
103 } __cachealign;
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *);
115 static int	if_rtdel(struct radix_node *, void *);
116 
117 /* Helper functions */
118 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
119 static int	if_delmulti_serialized(struct ifnet *, struct sockaddr *);
120 
121 #ifdef INET6
122 /*
123  * XXX: declare here to avoid to include many inet6 related files..
124  * should be more generalized?
125  */
126 extern void	nd6_setmtu(struct ifnet *);
127 #endif
128 
129 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
130 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
131 
132 static int ifsq_stage_cntmax = 4;
133 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
134 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
135     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
136 
137 static int if_stats_compat = 0;
138 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
139     &if_stats_compat, 0, "Compat the old ifnet stats");
140 
141 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
142 /* Must be after netisr_init */
143 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
144 
145 static  if_com_alloc_t *if_com_alloc[256];
146 static  if_com_free_t *if_com_free[256];
147 
148 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
149 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
150 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
151 
152 int			ifqmaxlen = IFQ_MAXLEN;
153 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
154 
155 struct callout		if_slowtimo_timer;
156 
157 int			if_index = 0;
158 struct ifnet		**ifindex2ifnet = NULL;
159 static struct thread	ifnet_threads[MAXCPU];
160 
161 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
162 
163 #ifdef notyet
164 #define IFQ_KTR_STRING		"ifq=%p"
165 #define IFQ_KTR_ARGS	struct ifaltq *ifq
166 #ifndef KTR_IFQ
167 #define KTR_IFQ			KTR_ALL
168 #endif
169 KTR_INFO_MASTER(ifq);
170 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
171 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
172 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
173 
174 #define IF_START_KTR_STRING	"ifp=%p"
175 #define IF_START_KTR_ARGS	struct ifnet *ifp
176 #ifndef KTR_IF_START
177 #define KTR_IF_START		KTR_ALL
178 #endif
179 KTR_INFO_MASTER(if_start);
180 KTR_INFO(KTR_IF_START, if_start, run, 0,
181 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
182 KTR_INFO(KTR_IF_START, if_start, sched, 1,
183 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
184 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
185 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
186 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
187 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
188 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
189 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
190 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
191 #endif
192 
193 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
194 
195 /*
196  * Network interface utility routines.
197  *
198  * Routines with ifa_ifwith* names take sockaddr *'s as
199  * parameters.
200  */
201 /* ARGSUSED*/
202 void
203 ifinit(void *dummy)
204 {
205 	struct ifnet *ifp;
206 
207 	callout_init(&if_slowtimo_timer);
208 
209 	crit_enter();
210 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
211 		if (ifp->if_snd.altq_maxlen == 0) {
212 			if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
213 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
214 		}
215 	}
216 	crit_exit();
217 
218 	if_slowtimo(0);
219 }
220 
221 static void
222 ifsq_ifstart_ipifunc(void *arg)
223 {
224 	struct ifaltq_subque *ifsq = arg;
225 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
226 
227 	crit_enter();
228 	if (lmsg->ms_flags & MSGF_DONE)
229 		lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
230 	crit_exit();
231 }
232 
233 static __inline void
234 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
235 {
236 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
237 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
238 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
239 	stage->stg_cnt = 0;
240 	stage->stg_len = 0;
241 }
242 
243 static __inline void
244 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
245 {
246 	KKASSERT((stage->stg_flags &
247 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
248 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
249 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
250 }
251 
252 /*
253  * Schedule ifnet.if_start on the subqueue owner CPU
254  */
255 static void
256 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
257 {
258 	int cpu;
259 
260 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
261 	    ifsq_stage_cntmax > 0) {
262 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
263 
264 		stage->stg_cnt = 0;
265 		stage->stg_len = 0;
266 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
267 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
268 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
269 		return;
270 	}
271 
272 	cpu = ifsq_get_cpuid(ifsq);
273 	if (cpu != mycpuid)
274 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
275 	else
276 		ifsq_ifstart_ipifunc(ifsq);
277 }
278 
279 /*
280  * NOTE:
281  * This function will release ifnet.if_start subqueue interlock,
282  * if ifnet.if_start for the subqueue does not need to be scheduled
283  */
284 static __inline int
285 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
286 {
287 	if (!running || ifsq_is_empty(ifsq)
288 #ifdef ALTQ
289 	    || ifsq->ifsq_altq->altq_tbr != NULL
290 #endif
291 	) {
292 		ALTQ_SQ_LOCK(ifsq);
293 		/*
294 		 * ifnet.if_start subqueue interlock is released, if:
295 		 * 1) Hardware can not take any packets, due to
296 		 *    o  interface is marked down
297 		 *    o  hardware queue is full (ifsq_is_oactive)
298 		 *    Under the second situation, hardware interrupt
299 		 *    or polling(4) will call/schedule ifnet.if_start
300 		 *    on the subqueue when hardware queue is ready
301 		 * 2) There is no packet in the subqueue.
302 		 *    Further ifq_dispatch or ifq_handoff will call/
303 		 *    schedule ifnet.if_start on the subqueue.
304 		 * 3) TBR is used and it does not allow further
305 		 *    dequeueing.
306 		 *    TBR callout will call ifnet.if_start on the
307 		 *    subqueue.
308 		 */
309 		if (!running || !ifsq_data_ready(ifsq)) {
310 			ifsq_clr_started(ifsq);
311 			ALTQ_SQ_UNLOCK(ifsq);
312 			return 0;
313 		}
314 		ALTQ_SQ_UNLOCK(ifsq);
315 	}
316 	return 1;
317 }
318 
319 static void
320 ifsq_ifstart_dispatch(netmsg_t msg)
321 {
322 	struct lwkt_msg *lmsg = &msg->base.lmsg;
323 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
324 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
325 	struct globaldata *gd = mycpu;
326 	int running = 0, need_sched;
327 
328 	crit_enter_gd(gd);
329 
330 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
331 
332 	if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
333 		/*
334 		 * We need to chase the subqueue owner CPU change.
335 		 */
336 		ifsq_ifstart_schedule(ifsq, 1);
337 		crit_exit_gd(gd);
338 		return;
339 	}
340 
341 	ifsq_serialize_hw(ifsq);
342 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
343 		ifp->if_start(ifp, ifsq);
344 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
345 			running = 1;
346 	}
347 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
348 	ifsq_deserialize_hw(ifsq);
349 
350 	if (need_sched) {
351 		/*
352 		 * More data need to be transmitted, ifnet.if_start is
353 		 * scheduled on the subqueue owner CPU, and we keep going.
354 		 * NOTE: ifnet.if_start subqueue interlock is not released.
355 		 */
356 		ifsq_ifstart_schedule(ifsq, 0);
357 	}
358 
359 	crit_exit_gd(gd);
360 }
361 
362 /* Device driver ifnet.if_start helper function */
363 void
364 ifsq_devstart(struct ifaltq_subque *ifsq)
365 {
366 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
367 	int running = 0;
368 
369 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
370 
371 	ALTQ_SQ_LOCK(ifsq);
372 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
373 		ALTQ_SQ_UNLOCK(ifsq);
374 		return;
375 	}
376 	ifsq_set_started(ifsq);
377 	ALTQ_SQ_UNLOCK(ifsq);
378 
379 	ifp->if_start(ifp, ifsq);
380 
381 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
382 		running = 1;
383 
384 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
385 		/*
386 		 * More data need to be transmitted, ifnet.if_start is
387 		 * scheduled on ifnet's CPU, and we keep going.
388 		 * NOTE: ifnet.if_start interlock is not released.
389 		 */
390 		ifsq_ifstart_schedule(ifsq, 0);
391 	}
392 }
393 
394 void
395 if_devstart(struct ifnet *ifp)
396 {
397 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
398 }
399 
400 /* Device driver ifnet.if_start schedule helper function */
401 void
402 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
403 {
404 	ifsq_ifstart_schedule(ifsq, 1);
405 }
406 
407 void
408 if_devstart_sched(struct ifnet *ifp)
409 {
410 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
411 }
412 
413 static void
414 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
415 {
416 	lwkt_serialize_enter(ifp->if_serializer);
417 }
418 
419 static void
420 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
421 {
422 	lwkt_serialize_exit(ifp->if_serializer);
423 }
424 
425 static int
426 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
427 {
428 	return lwkt_serialize_try(ifp->if_serializer);
429 }
430 
431 #ifdef INVARIANTS
432 static void
433 if_default_serialize_assert(struct ifnet *ifp,
434 			    enum ifnet_serialize slz __unused,
435 			    boolean_t serialized)
436 {
437 	if (serialized)
438 		ASSERT_SERIALIZED(ifp->if_serializer);
439 	else
440 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
441 }
442 #endif
443 
444 /*
445  * Attach an interface to the list of "active" interfaces.
446  *
447  * The serializer is optional.
448  */
449 void
450 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
451 {
452 	unsigned socksize, ifasize;
453 	int namelen, masklen;
454 	struct sockaddr_dl *sdl;
455 	struct ifaddr *ifa;
456 	struct ifaltq *ifq;
457 	int i, q;
458 
459 	static int if_indexlim = 8;
460 
461 	if (ifp->if_serialize != NULL) {
462 		KASSERT(ifp->if_deserialize != NULL &&
463 			ifp->if_tryserialize != NULL &&
464 			ifp->if_serialize_assert != NULL,
465 			("serialize functions are partially setup"));
466 
467 		/*
468 		 * If the device supplies serialize functions,
469 		 * then clear if_serializer to catch any invalid
470 		 * usage of this field.
471 		 */
472 		KASSERT(serializer == NULL,
473 			("both serialize functions and default serializer "
474 			 "are supplied"));
475 		ifp->if_serializer = NULL;
476 	} else {
477 		KASSERT(ifp->if_deserialize == NULL &&
478 			ifp->if_tryserialize == NULL &&
479 			ifp->if_serialize_assert == NULL,
480 			("serialize functions are partially setup"));
481 		ifp->if_serialize = if_default_serialize;
482 		ifp->if_deserialize = if_default_deserialize;
483 		ifp->if_tryserialize = if_default_tryserialize;
484 #ifdef INVARIANTS
485 		ifp->if_serialize_assert = if_default_serialize_assert;
486 #endif
487 
488 		/*
489 		 * The serializer can be passed in from the device,
490 		 * allowing the same serializer to be used for both
491 		 * the interrupt interlock and the device queue.
492 		 * If not specified, the netif structure will use an
493 		 * embedded serializer.
494 		 */
495 		if (serializer == NULL) {
496 			serializer = &ifp->if_default_serializer;
497 			lwkt_serialize_init(serializer);
498 		}
499 		ifp->if_serializer = serializer;
500 	}
501 
502 	mtx_init(&ifp->if_ioctl_mtx);
503 	mtx_lock(&ifp->if_ioctl_mtx);
504 
505 	lwkt_gettoken(&ifnet_token);	/* protect if_index and ifnet tailq */
506 	ifp->if_index = ++if_index;
507 
508 	/*
509 	 * XXX -
510 	 * The old code would work if the interface passed a pre-existing
511 	 * chain of ifaddrs to this code.  We don't trust our callers to
512 	 * properly initialize the tailq, however, so we no longer allow
513 	 * this unlikely case.
514 	 */
515 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
516 				    M_IFADDR, M_WAITOK | M_ZERO);
517 	for (i = 0; i < ncpus; ++i)
518 		TAILQ_INIT(&ifp->if_addrheads[i]);
519 
520 	TAILQ_INIT(&ifp->if_prefixhead);
521 	TAILQ_INIT(&ifp->if_multiaddrs);
522 	TAILQ_INIT(&ifp->if_groups);
523 	getmicrotime(&ifp->if_lastchange);
524 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
525 		unsigned int n;
526 		struct ifnet **q;
527 
528 		if_indexlim <<= 1;
529 
530 		/* grow ifindex2ifnet */
531 		n = if_indexlim * sizeof(*q);
532 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
533 		if (ifindex2ifnet) {
534 			bcopy(ifindex2ifnet, q, n/2);
535 			kfree(ifindex2ifnet, M_IFADDR);
536 		}
537 		ifindex2ifnet = q;
538 	}
539 
540 	ifindex2ifnet[if_index] = ifp;
541 
542 	/*
543 	 * create a Link Level name for this device
544 	 */
545 	namelen = strlen(ifp->if_xname);
546 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
547 	socksize = masklen + ifp->if_addrlen;
548 	if (socksize < sizeof(*sdl))
549 		socksize = sizeof(*sdl);
550 	socksize = RT_ROUNDUP(socksize);
551 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
552 	ifa = ifa_create(ifasize, M_WAITOK);
553 	sdl = (struct sockaddr_dl *)(ifa + 1);
554 	sdl->sdl_len = socksize;
555 	sdl->sdl_family = AF_LINK;
556 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
557 	sdl->sdl_nlen = namelen;
558 	sdl->sdl_index = ifp->if_index;
559 	sdl->sdl_type = ifp->if_type;
560 	ifp->if_lladdr = ifa;
561 	ifa->ifa_ifp = ifp;
562 	ifa->ifa_rtrequest = link_rtrequest;
563 	ifa->ifa_addr = (struct sockaddr *)sdl;
564 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
565 	ifa->ifa_netmask = (struct sockaddr *)sdl;
566 	sdl->sdl_len = masklen;
567 	while (namelen != 0)
568 		sdl->sdl_data[--namelen] = 0xff;
569 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
570 
571 	ifp->if_data_pcpu = kmalloc_cachealign(
572 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
573 
574 	if (ifp->if_mapsubq == NULL)
575 		ifp->if_mapsubq = ifq_mapsubq_default;
576 
577 	ifq = &ifp->if_snd;
578 	ifq->altq_type = 0;
579 	ifq->altq_disc = NULL;
580 	ifq->altq_flags &= ALTQF_CANTCHANGE;
581 	ifq->altq_tbr = NULL;
582 	ifq->altq_ifp = ifp;
583 
584 	if (ifq->altq_subq_cnt <= 0)
585 		ifq->altq_subq_cnt = 1;
586 	ifq->altq_subq = kmalloc_cachealign(
587 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
588 	    M_DEVBUF, M_WAITOK | M_ZERO);
589 
590 	if (ifq->altq_maxlen == 0) {
591 		if_printf(ifp, "driver didn't set altq_maxlen\n");
592 		ifq_set_maxlen(ifq, ifqmaxlen);
593 	}
594 
595 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
596 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
597 
598 		ALTQ_SQ_LOCK_INIT(ifsq);
599 		ifsq->ifsq_index = q;
600 
601 		ifsq->ifsq_altq = ifq;
602 		ifsq->ifsq_ifp = ifp;
603 
604 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
605 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
606 		ifsq->ifsq_prepended = NULL;
607 		ifsq->ifsq_started = 0;
608 		ifsq->ifsq_hw_oactive = 0;
609 		ifsq_set_cpuid(ifsq, 0);
610 		if (ifp->if_serializer != NULL)
611 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
612 
613 		ifsq->ifsq_stage =
614 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
615 		    M_DEVBUF, M_WAITOK | M_ZERO);
616 		for (i = 0; i < ncpus; ++i)
617 			ifsq->ifsq_stage[i].stg_subq = ifsq;
618 
619 		ifsq->ifsq_ifstart_nmsg =
620 		    kmalloc(ncpus * sizeof(struct netmsg_base),
621 		    M_LWKTMSG, M_WAITOK);
622 		for (i = 0; i < ncpus; ++i) {
623 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
624 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
625 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
626 		}
627 	}
628 	ifq_set_classic(ifq);
629 
630 	if (!SLIST_EMPTY(&domains))
631 		if_attachdomain1(ifp);
632 
633 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
634 	lwkt_reltoken(&ifnet_token);
635 
636 	/* Announce the interface. */
637 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
638 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
639 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
640 
641 	mtx_unlock(&ifp->if_ioctl_mtx);
642 }
643 
644 static void
645 if_attachdomain(void *dummy)
646 {
647 	struct ifnet *ifp;
648 
649 	crit_enter();
650 	TAILQ_FOREACH(ifp, &ifnet, if_list)
651 		if_attachdomain1(ifp);
652 	crit_exit();
653 }
654 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
655 	if_attachdomain, NULL);
656 
657 static void
658 if_attachdomain1(struct ifnet *ifp)
659 {
660 	struct domain *dp;
661 
662 	crit_enter();
663 
664 	/* address family dependent data region */
665 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
666 	SLIST_FOREACH(dp, &domains, dom_next)
667 		if (dp->dom_ifattach)
668 			ifp->if_afdata[dp->dom_family] =
669 				(*dp->dom_ifattach)(ifp);
670 	crit_exit();
671 }
672 
673 /*
674  * Purge all addresses whose type is _not_ AF_LINK
675  */
676 void
677 if_purgeaddrs_nolink(struct ifnet *ifp)
678 {
679 	struct ifaddr_container *ifac, *next;
680 
681 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
682 			      ifa_link, next) {
683 		struct ifaddr *ifa = ifac->ifa;
684 
685 		/* Leave link ifaddr as it is */
686 		if (ifa->ifa_addr->sa_family == AF_LINK)
687 			continue;
688 #ifdef INET
689 		/* XXX: Ugly!! ad hoc just for INET */
690 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
691 			struct ifaliasreq ifr;
692 #ifdef IFADDR_DEBUG_VERBOSE
693 			int i;
694 
695 			kprintf("purge in4 addr %p: ", ifa);
696 			for (i = 0; i < ncpus; ++i)
697 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
698 			kprintf("\n");
699 #endif
700 
701 			bzero(&ifr, sizeof ifr);
702 			ifr.ifra_addr = *ifa->ifa_addr;
703 			if (ifa->ifa_dstaddr)
704 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
705 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
706 				       NULL) == 0)
707 				continue;
708 		}
709 #endif /* INET */
710 #ifdef INET6
711 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
712 #ifdef IFADDR_DEBUG_VERBOSE
713 			int i;
714 
715 			kprintf("purge in6 addr %p: ", ifa);
716 			for (i = 0; i < ncpus; ++i)
717 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
718 			kprintf("\n");
719 #endif
720 
721 			in6_purgeaddr(ifa);
722 			/* ifp_addrhead is already updated */
723 			continue;
724 		}
725 #endif /* INET6 */
726 		ifa_ifunlink(ifa, ifp);
727 		ifa_destroy(ifa);
728 	}
729 }
730 
731 static void
732 ifq_stage_detach_handler(netmsg_t nmsg)
733 {
734 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
735 	int q;
736 
737 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
738 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
739 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
740 
741 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
742 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
743 	}
744 	lwkt_replymsg(&nmsg->lmsg, 0);
745 }
746 
747 static void
748 ifq_stage_detach(struct ifaltq *ifq)
749 {
750 	struct netmsg_base base;
751 	int cpu;
752 
753 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
754 	    ifq_stage_detach_handler);
755 	base.lmsg.u.ms_resultp = ifq;
756 
757 	for (cpu = 0; cpu < ncpus; ++cpu)
758 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
759 }
760 
761 struct netmsg_if_rtdel {
762 	struct netmsg_base	base;
763 	struct ifnet		*ifp;
764 };
765 
766 static void
767 if_rtdel_dispatch(netmsg_t msg)
768 {
769 	struct netmsg_if_rtdel *rmsg = (void *)msg;
770 	int i, nextcpu, cpu;
771 
772 	cpu = mycpuid;
773 	for (i = 1; i <= AF_MAX; i++) {
774 		struct radix_node_head	*rnh;
775 
776 		if ((rnh = rt_tables[cpu][i]) == NULL)
777 			continue;
778 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
779 	}
780 
781 	nextcpu = cpu + 1;
782 	if (nextcpu < ncpus)
783 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
784 	else
785 		lwkt_replymsg(&rmsg->base.lmsg, 0);
786 }
787 
788 /*
789  * Detach an interface, removing it from the
790  * list of "active" interfaces.
791  */
792 void
793 if_detach(struct ifnet *ifp)
794 {
795 	struct netmsg_if_rtdel msg;
796 	struct domain *dp;
797 	int q;
798 
799 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
800 
801 	/*
802 	 * Remove routes and flush queues.
803 	 */
804 	crit_enter();
805 #ifdef IFPOLL_ENABLE
806 	if (ifp->if_flags & IFF_NPOLLING)
807 		ifpoll_deregister(ifp);
808 #endif
809 	if_down(ifp);
810 
811 #ifdef ALTQ
812 	if (ifq_is_enabled(&ifp->if_snd))
813 		altq_disable(&ifp->if_snd);
814 	if (ifq_is_attached(&ifp->if_snd))
815 		altq_detach(&ifp->if_snd);
816 #endif
817 
818 	/*
819 	 * Clean up all addresses.
820 	 */
821 	ifp->if_lladdr = NULL;
822 
823 	if_purgeaddrs_nolink(ifp);
824 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
825 		struct ifaddr *ifa;
826 
827 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
828 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
829 			("non-link ifaddr is left on if_addrheads"));
830 
831 		ifa_ifunlink(ifa, ifp);
832 		ifa_destroy(ifa);
833 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
834 			("there are still ifaddrs left on if_addrheads"));
835 	}
836 
837 #ifdef INET
838 	/*
839 	 * Remove all IPv4 kernel structures related to ifp.
840 	 */
841 	in_ifdetach(ifp);
842 #endif
843 
844 #ifdef INET6
845 	/*
846 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
847 	 * before removing routing entries below, since IPv6 interface direct
848 	 * routes are expected to be removed by the IPv6-specific kernel API.
849 	 * Otherwise, the kernel will detect some inconsistency and bark it.
850 	 */
851 	in6_ifdetach(ifp);
852 #endif
853 
854 	/*
855 	 * Delete all remaining routes using this interface
856 	 */
857 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
858 	    if_rtdel_dispatch);
859 	msg.ifp = ifp;
860 	rt_domsg_global(&msg.base);
861 
862 	/* Announce that the interface is gone. */
863 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
864 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
865 
866 	SLIST_FOREACH(dp, &domains, dom_next)
867 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
868 			(*dp->dom_ifdetach)(ifp,
869 				ifp->if_afdata[dp->dom_family]);
870 
871 	/*
872 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
873 	 */
874 	lwkt_gettoken(&ifnet_token);
875 	ifindex2ifnet[ifp->if_index] = NULL;
876 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
877 		if_index--;
878 	TAILQ_REMOVE(&ifnet, ifp, if_link);
879 	lwkt_reltoken(&ifnet_token);
880 
881 	kfree(ifp->if_addrheads, M_IFADDR);
882 
883 	lwkt_synchronize_ipiqs("if_detach");
884 	ifq_stage_detach(&ifp->if_snd);
885 
886 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
887 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
888 
889 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
890 		kfree(ifsq->ifsq_stage, M_DEVBUF);
891 	}
892 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
893 
894 	kfree(ifp->if_data_pcpu, M_DEVBUF);
895 
896 	crit_exit();
897 }
898 
899 /*
900  * Create interface group without members
901  */
902 struct ifg_group *
903 if_creategroup(const char *groupname)
904 {
905         struct ifg_group        *ifg = NULL;
906 
907         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
908             M_TEMP, M_NOWAIT)) == NULL)
909                 return (NULL);
910 
911         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
912         ifg->ifg_refcnt = 0;
913         ifg->ifg_carp_demoted = 0;
914         TAILQ_INIT(&ifg->ifg_members);
915 #if NPF > 0
916         pfi_attach_ifgroup(ifg);
917 #endif
918         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
919 
920         return (ifg);
921 }
922 
923 /*
924  * Add a group to an interface
925  */
926 int
927 if_addgroup(struct ifnet *ifp, const char *groupname)
928 {
929 	struct ifg_list		*ifgl;
930 	struct ifg_group	*ifg = NULL;
931 	struct ifg_member	*ifgm;
932 
933 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
934 	    groupname[strlen(groupname) - 1] <= '9')
935 		return (EINVAL);
936 
937 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
938 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
939 			return (EEXIST);
940 
941 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
942 		return (ENOMEM);
943 
944 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
945 		kfree(ifgl, M_TEMP);
946 		return (ENOMEM);
947 	}
948 
949 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
950 		if (!strcmp(ifg->ifg_group, groupname))
951 			break;
952 
953 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
954 		kfree(ifgl, M_TEMP);
955 		kfree(ifgm, M_TEMP);
956 		return (ENOMEM);
957 	}
958 
959 	ifg->ifg_refcnt++;
960 	ifgl->ifgl_group = ifg;
961 	ifgm->ifgm_ifp = ifp;
962 
963 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
964 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
965 
966 #if NPF > 0
967 	pfi_group_change(groupname);
968 #endif
969 
970 	return (0);
971 }
972 
973 /*
974  * Remove a group from an interface
975  */
976 int
977 if_delgroup(struct ifnet *ifp, const char *groupname)
978 {
979 	struct ifg_list		*ifgl;
980 	struct ifg_member	*ifgm;
981 
982 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
983 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
984 			break;
985 	if (ifgl == NULL)
986 		return (ENOENT);
987 
988 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
989 
990 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
991 		if (ifgm->ifgm_ifp == ifp)
992 			break;
993 
994 	if (ifgm != NULL) {
995 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
996 		kfree(ifgm, M_TEMP);
997 	}
998 
999 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1000 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
1001 #if NPF > 0
1002 		pfi_detach_ifgroup(ifgl->ifgl_group);
1003 #endif
1004 		kfree(ifgl->ifgl_group, M_TEMP);
1005 	}
1006 
1007 	kfree(ifgl, M_TEMP);
1008 
1009 #if NPF > 0
1010 	pfi_group_change(groupname);
1011 #endif
1012 
1013 	return (0);
1014 }
1015 
1016 /*
1017  * Stores all groups from an interface in memory pointed
1018  * to by data
1019  */
1020 int
1021 if_getgroup(caddr_t data, struct ifnet *ifp)
1022 {
1023 	int			 len, error;
1024 	struct ifg_list		*ifgl;
1025 	struct ifg_req		 ifgrq, *ifgp;
1026 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1027 
1028 	if (ifgr->ifgr_len == 0) {
1029 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1030 			ifgr->ifgr_len += sizeof(struct ifg_req);
1031 		return (0);
1032 	}
1033 
1034 	len = ifgr->ifgr_len;
1035 	ifgp = ifgr->ifgr_groups;
1036 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1037 		if (len < sizeof(ifgrq))
1038 			return (EINVAL);
1039 		bzero(&ifgrq, sizeof ifgrq);
1040 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1041 		    sizeof(ifgrq.ifgrq_group));
1042 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1043 		    sizeof(struct ifg_req))))
1044 			return (error);
1045 		len -= sizeof(ifgrq);
1046 		ifgp++;
1047 	}
1048 
1049 	return (0);
1050 }
1051 
1052 /*
1053  * Stores all members of a group in memory pointed to by data
1054  */
1055 int
1056 if_getgroupmembers(caddr_t data)
1057 {
1058 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1059 	struct ifg_group	*ifg;
1060 	struct ifg_member	*ifgm;
1061 	struct ifg_req		 ifgrq, *ifgp;
1062 	int			 len, error;
1063 
1064 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1065 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1066 			break;
1067 	if (ifg == NULL)
1068 		return (ENOENT);
1069 
1070 	if (ifgr->ifgr_len == 0) {
1071 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1072 			ifgr->ifgr_len += sizeof(ifgrq);
1073 		return (0);
1074 	}
1075 
1076 	len = ifgr->ifgr_len;
1077 	ifgp = ifgr->ifgr_groups;
1078 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1079 		if (len < sizeof(ifgrq))
1080 			return (EINVAL);
1081 		bzero(&ifgrq, sizeof ifgrq);
1082 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1083 		    sizeof(ifgrq.ifgrq_member));
1084 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1085 		    sizeof(struct ifg_req))))
1086 			return (error);
1087 		len -= sizeof(ifgrq);
1088 		ifgp++;
1089 	}
1090 
1091 	return (0);
1092 }
1093 
1094 /*
1095  * Delete Routes for a Network Interface
1096  *
1097  * Called for each routing entry via the rnh->rnh_walktree() call above
1098  * to delete all route entries referencing a detaching network interface.
1099  *
1100  * Arguments:
1101  *	rn	pointer to node in the routing table
1102  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1103  *
1104  * Returns:
1105  *	0	successful
1106  *	errno	failed - reason indicated
1107  *
1108  */
1109 static int
1110 if_rtdel(struct radix_node *rn, void *arg)
1111 {
1112 	struct rtentry	*rt = (struct rtentry *)rn;
1113 	struct ifnet	*ifp = arg;
1114 	int		err;
1115 
1116 	if (rt->rt_ifp == ifp) {
1117 
1118 		/*
1119 		 * Protect (sorta) against walktree recursion problems
1120 		 * with cloned routes
1121 		 */
1122 		if (!(rt->rt_flags & RTF_UP))
1123 			return (0);
1124 
1125 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1126 				rt_mask(rt), rt->rt_flags,
1127 				NULL);
1128 		if (err) {
1129 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1130 		}
1131 	}
1132 
1133 	return (0);
1134 }
1135 
1136 /*
1137  * Locate an interface based on a complete address.
1138  */
1139 struct ifaddr *
1140 ifa_ifwithaddr(struct sockaddr *addr)
1141 {
1142 	struct ifnet *ifp;
1143 
1144 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1145 		struct ifaddr_container *ifac;
1146 
1147 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1148 			struct ifaddr *ifa = ifac->ifa;
1149 
1150 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1151 				continue;
1152 			if (sa_equal(addr, ifa->ifa_addr))
1153 				return (ifa);
1154 			if ((ifp->if_flags & IFF_BROADCAST) &&
1155 			    ifa->ifa_broadaddr &&
1156 			    /* IPv6 doesn't have broadcast */
1157 			    ifa->ifa_broadaddr->sa_len != 0 &&
1158 			    sa_equal(ifa->ifa_broadaddr, addr))
1159 				return (ifa);
1160 		}
1161 	}
1162 	return (NULL);
1163 }
1164 /*
1165  * Locate the point to point interface with a given destination address.
1166  */
1167 struct ifaddr *
1168 ifa_ifwithdstaddr(struct sockaddr *addr)
1169 {
1170 	struct ifnet *ifp;
1171 
1172 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1173 		struct ifaddr_container *ifac;
1174 
1175 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1176 			continue;
1177 
1178 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1179 			struct ifaddr *ifa = ifac->ifa;
1180 
1181 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1182 				continue;
1183 			if (ifa->ifa_dstaddr &&
1184 			    sa_equal(addr, ifa->ifa_dstaddr))
1185 				return (ifa);
1186 		}
1187 	}
1188 	return (NULL);
1189 }
1190 
1191 /*
1192  * Find an interface on a specific network.  If many, choice
1193  * is most specific found.
1194  */
1195 struct ifaddr *
1196 ifa_ifwithnet(struct sockaddr *addr)
1197 {
1198 	struct ifnet *ifp;
1199 	struct ifaddr *ifa_maybe = NULL;
1200 	u_int af = addr->sa_family;
1201 	char *addr_data = addr->sa_data, *cplim;
1202 
1203 	/*
1204 	 * AF_LINK addresses can be looked up directly by their index number,
1205 	 * so do that if we can.
1206 	 */
1207 	if (af == AF_LINK) {
1208 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1209 
1210 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1211 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1212 	}
1213 
1214 	/*
1215 	 * Scan though each interface, looking for ones that have
1216 	 * addresses in this address family.
1217 	 */
1218 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1219 		struct ifaddr_container *ifac;
1220 
1221 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1222 			struct ifaddr *ifa = ifac->ifa;
1223 			char *cp, *cp2, *cp3;
1224 
1225 			if (ifa->ifa_addr->sa_family != af)
1226 next:				continue;
1227 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1228 				/*
1229 				 * This is a bit broken as it doesn't
1230 				 * take into account that the remote end may
1231 				 * be a single node in the network we are
1232 				 * looking for.
1233 				 * The trouble is that we don't know the
1234 				 * netmask for the remote end.
1235 				 */
1236 				if (ifa->ifa_dstaddr != NULL &&
1237 				    sa_equal(addr, ifa->ifa_dstaddr))
1238 					return (ifa);
1239 			} else {
1240 				/*
1241 				 * if we have a special address handler,
1242 				 * then use it instead of the generic one.
1243 				 */
1244 				if (ifa->ifa_claim_addr) {
1245 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1246 						return (ifa);
1247 					} else {
1248 						continue;
1249 					}
1250 				}
1251 
1252 				/*
1253 				 * Scan all the bits in the ifa's address.
1254 				 * If a bit dissagrees with what we are
1255 				 * looking for, mask it with the netmask
1256 				 * to see if it really matters.
1257 				 * (A byte at a time)
1258 				 */
1259 				if (ifa->ifa_netmask == 0)
1260 					continue;
1261 				cp = addr_data;
1262 				cp2 = ifa->ifa_addr->sa_data;
1263 				cp3 = ifa->ifa_netmask->sa_data;
1264 				cplim = ifa->ifa_netmask->sa_len +
1265 					(char *)ifa->ifa_netmask;
1266 				while (cp3 < cplim)
1267 					if ((*cp++ ^ *cp2++) & *cp3++)
1268 						goto next; /* next address! */
1269 				/*
1270 				 * If the netmask of what we just found
1271 				 * is more specific than what we had before
1272 				 * (if we had one) then remember the new one
1273 				 * before continuing to search
1274 				 * for an even better one.
1275 				 */
1276 				if (ifa_maybe == NULL ||
1277 				    rn_refines((char *)ifa->ifa_netmask,
1278 					       (char *)ifa_maybe->ifa_netmask))
1279 					ifa_maybe = ifa;
1280 			}
1281 		}
1282 	}
1283 	return (ifa_maybe);
1284 }
1285 
1286 /*
1287  * Find an interface address specific to an interface best matching
1288  * a given address.
1289  */
1290 struct ifaddr *
1291 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1292 {
1293 	struct ifaddr_container *ifac;
1294 	char *cp, *cp2, *cp3;
1295 	char *cplim;
1296 	struct ifaddr *ifa_maybe = NULL;
1297 	u_int af = addr->sa_family;
1298 
1299 	if (af >= AF_MAX)
1300 		return (0);
1301 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1302 		struct ifaddr *ifa = ifac->ifa;
1303 
1304 		if (ifa->ifa_addr->sa_family != af)
1305 			continue;
1306 		if (ifa_maybe == NULL)
1307 			ifa_maybe = ifa;
1308 		if (ifa->ifa_netmask == NULL) {
1309 			if (sa_equal(addr, ifa->ifa_addr) ||
1310 			    (ifa->ifa_dstaddr != NULL &&
1311 			     sa_equal(addr, ifa->ifa_dstaddr)))
1312 				return (ifa);
1313 			continue;
1314 		}
1315 		if (ifp->if_flags & IFF_POINTOPOINT) {
1316 			if (sa_equal(addr, ifa->ifa_dstaddr))
1317 				return (ifa);
1318 		} else {
1319 			cp = addr->sa_data;
1320 			cp2 = ifa->ifa_addr->sa_data;
1321 			cp3 = ifa->ifa_netmask->sa_data;
1322 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1323 			for (; cp3 < cplim; cp3++)
1324 				if ((*cp++ ^ *cp2++) & *cp3)
1325 					break;
1326 			if (cp3 == cplim)
1327 				return (ifa);
1328 		}
1329 	}
1330 	return (ifa_maybe);
1331 }
1332 
1333 /*
1334  * Default action when installing a route with a Link Level gateway.
1335  * Lookup an appropriate real ifa to point to.
1336  * This should be moved to /sys/net/link.c eventually.
1337  */
1338 static void
1339 link_rtrequest(int cmd, struct rtentry *rt)
1340 {
1341 	struct ifaddr *ifa;
1342 	struct sockaddr *dst;
1343 	struct ifnet *ifp;
1344 
1345 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1346 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1347 		return;
1348 	ifa = ifaof_ifpforaddr(dst, ifp);
1349 	if (ifa != NULL) {
1350 		IFAFREE(rt->rt_ifa);
1351 		IFAREF(ifa);
1352 		rt->rt_ifa = ifa;
1353 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1354 			ifa->ifa_rtrequest(cmd, rt);
1355 	}
1356 }
1357 
1358 /*
1359  * Mark an interface down and notify protocols of
1360  * the transition.
1361  * NOTE: must be called at splnet or eqivalent.
1362  */
1363 void
1364 if_unroute(struct ifnet *ifp, int flag, int fam)
1365 {
1366 	struct ifaddr_container *ifac;
1367 
1368 	ifp->if_flags &= ~flag;
1369 	getmicrotime(&ifp->if_lastchange);
1370 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1371 		struct ifaddr *ifa = ifac->ifa;
1372 
1373 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1374 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1375 	}
1376 	ifq_purge_all(&ifp->if_snd);
1377 	rt_ifmsg(ifp);
1378 }
1379 
1380 /*
1381  * Mark an interface up and notify protocols of
1382  * the transition.
1383  * NOTE: must be called at splnet or eqivalent.
1384  */
1385 void
1386 if_route(struct ifnet *ifp, int flag, int fam)
1387 {
1388 	struct ifaddr_container *ifac;
1389 
1390 	ifq_purge_all(&ifp->if_snd);
1391 	ifp->if_flags |= flag;
1392 	getmicrotime(&ifp->if_lastchange);
1393 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1394 		struct ifaddr *ifa = ifac->ifa;
1395 
1396 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1397 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1398 	}
1399 	rt_ifmsg(ifp);
1400 #ifdef INET6
1401 	in6_if_up(ifp);
1402 #endif
1403 }
1404 
1405 /*
1406  * Mark an interface down and notify protocols of the transition.  An
1407  * interface going down is also considered to be a synchronizing event.
1408  * We must ensure that all packet processing related to the interface
1409  * has completed before we return so e.g. the caller can free the ifnet
1410  * structure that the mbufs may be referencing.
1411  *
1412  * NOTE: must be called at splnet or eqivalent.
1413  */
1414 void
1415 if_down(struct ifnet *ifp)
1416 {
1417 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1418 	netmsg_service_sync();
1419 }
1420 
1421 /*
1422  * Mark an interface up and notify protocols of
1423  * the transition.
1424  * NOTE: must be called at splnet or eqivalent.
1425  */
1426 void
1427 if_up(struct ifnet *ifp)
1428 {
1429 	if_route(ifp, IFF_UP, AF_UNSPEC);
1430 }
1431 
1432 /*
1433  * Process a link state change.
1434  * NOTE: must be called at splsoftnet or equivalent.
1435  */
1436 void
1437 if_link_state_change(struct ifnet *ifp)
1438 {
1439 	int link_state = ifp->if_link_state;
1440 
1441 	rt_ifmsg(ifp);
1442 	devctl_notify("IFNET", ifp->if_xname,
1443 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1444 }
1445 
1446 /*
1447  * Handle interface watchdog timer routines.  Called
1448  * from softclock, we decrement timers (if set) and
1449  * call the appropriate interface routine on expiration.
1450  */
1451 static void
1452 if_slowtimo(void *arg)
1453 {
1454 	struct ifnet *ifp;
1455 
1456 	crit_enter();
1457 
1458 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1459 		if (if_stats_compat) {
1460 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1461 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1462 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1463 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1464 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1465 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1466 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1467 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1468 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1469 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1470 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1471 		}
1472 
1473 		if (ifp->if_timer == 0 || --ifp->if_timer)
1474 			continue;
1475 		if (ifp->if_watchdog) {
1476 			if (ifnet_tryserialize_all(ifp)) {
1477 				(*ifp->if_watchdog)(ifp);
1478 				ifnet_deserialize_all(ifp);
1479 			} else {
1480 				/* try again next timeout */
1481 				++ifp->if_timer;
1482 			}
1483 		}
1484 	}
1485 
1486 	crit_exit();
1487 
1488 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1489 }
1490 
1491 /*
1492  * Map interface name to
1493  * interface structure pointer.
1494  */
1495 struct ifnet *
1496 ifunit(const char *name)
1497 {
1498 	struct ifnet *ifp;
1499 
1500 	/*
1501 	 * Search all the interfaces for this name/number
1502 	 */
1503 
1504 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1505 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1506 			break;
1507 	}
1508 	return (ifp);
1509 }
1510 
1511 
1512 /*
1513  * Map interface name in a sockaddr_dl to
1514  * interface structure pointer.
1515  */
1516 struct ifnet *
1517 if_withname(struct sockaddr *sa)
1518 {
1519 	char ifname[IFNAMSIZ+1];
1520 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1521 
1522 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1523 	     (sdl->sdl_nlen > IFNAMSIZ) )
1524 		return NULL;
1525 
1526 	/*
1527 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1528 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1529 	 * and there might not be room to put the trailing null anyway, so we
1530 	 * make a local copy that we know we can null terminate safely.
1531 	 */
1532 
1533 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1534 	ifname[sdl->sdl_nlen] = '\0';
1535 	return ifunit(ifname);
1536 }
1537 
1538 
1539 /*
1540  * Interface ioctls.
1541  */
1542 int
1543 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1544 {
1545 	struct ifnet *ifp;
1546 	struct ifreq *ifr;
1547 	struct ifstat *ifs;
1548 	int error;
1549 	short oif_flags;
1550 	int new_flags;
1551 #ifdef COMPAT_43
1552 	int ocmd;
1553 #endif
1554 	size_t namelen, onamelen;
1555 	char new_name[IFNAMSIZ];
1556 	struct ifaddr *ifa;
1557 	struct sockaddr_dl *sdl;
1558 
1559 	switch (cmd) {
1560 	case SIOCGIFCONF:
1561 	case OSIOCGIFCONF:
1562 		return (ifconf(cmd, data, cred));
1563 	default:
1564 		break;
1565 	}
1566 
1567 	ifr = (struct ifreq *)data;
1568 
1569 	switch (cmd) {
1570 	case SIOCIFCREATE:
1571 	case SIOCIFCREATE2:
1572 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1573 			return (error);
1574 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1575 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1576 	case SIOCIFDESTROY:
1577 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1578 			return (error);
1579 		return (if_clone_destroy(ifr->ifr_name));
1580 	case SIOCIFGCLONERS:
1581 		return (if_clone_list((struct if_clonereq *)data));
1582 	default:
1583 		break;
1584 	}
1585 
1586 	/*
1587 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1588 	 * lock to serialize the ifconfig ioctl operation.
1589 	 */
1590 	ifp = ifunit(ifr->ifr_name);
1591 	if (ifp == NULL)
1592 		return (ENXIO);
1593 	error = 0;
1594 	mtx_lock(&ifp->if_ioctl_mtx);
1595 
1596 	switch (cmd) {
1597 	case SIOCGIFINDEX:
1598 		ifr->ifr_index = ifp->if_index;
1599 		break;
1600 
1601 	case SIOCGIFFLAGS:
1602 		ifr->ifr_flags = ifp->if_flags;
1603 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1604 		break;
1605 
1606 	case SIOCGIFCAP:
1607 		ifr->ifr_reqcap = ifp->if_capabilities;
1608 		ifr->ifr_curcap = ifp->if_capenable;
1609 		break;
1610 
1611 	case SIOCGIFMETRIC:
1612 		ifr->ifr_metric = ifp->if_metric;
1613 		break;
1614 
1615 	case SIOCGIFMTU:
1616 		ifr->ifr_mtu = ifp->if_mtu;
1617 		break;
1618 
1619 	case SIOCGIFTSOLEN:
1620 		ifr->ifr_tsolen = ifp->if_tsolen;
1621 		break;
1622 
1623 	case SIOCGIFDATA:
1624 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1625 				sizeof(ifp->if_data));
1626 		break;
1627 
1628 	case SIOCGIFPHYS:
1629 		ifr->ifr_phys = ifp->if_physical;
1630 		break;
1631 
1632 	case SIOCGIFPOLLCPU:
1633 		ifr->ifr_pollcpu = -1;
1634 		break;
1635 
1636 	case SIOCSIFPOLLCPU:
1637 		break;
1638 
1639 	case SIOCSIFFLAGS:
1640 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1641 		if (error)
1642 			break;
1643 		new_flags = (ifr->ifr_flags & 0xffff) |
1644 		    (ifr->ifr_flagshigh << 16);
1645 		if (ifp->if_flags & IFF_SMART) {
1646 			/* Smart drivers twiddle their own routes */
1647 		} else if (ifp->if_flags & IFF_UP &&
1648 		    (new_flags & IFF_UP) == 0) {
1649 			crit_enter();
1650 			if_down(ifp);
1651 			crit_exit();
1652 		} else if (new_flags & IFF_UP &&
1653 		    (ifp->if_flags & IFF_UP) == 0) {
1654 			crit_enter();
1655 			if_up(ifp);
1656 			crit_exit();
1657 		}
1658 
1659 #ifdef IFPOLL_ENABLE
1660 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1661 			if (new_flags & IFF_NPOLLING)
1662 				ifpoll_register(ifp);
1663 			else
1664 				ifpoll_deregister(ifp);
1665 		}
1666 #endif
1667 
1668 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1669 			(new_flags &~ IFF_CANTCHANGE);
1670 		if (new_flags & IFF_PPROMISC) {
1671 			/* Permanently promiscuous mode requested */
1672 			ifp->if_flags |= IFF_PROMISC;
1673 		} else if (ifp->if_pcount == 0) {
1674 			ifp->if_flags &= ~IFF_PROMISC;
1675 		}
1676 		if (ifp->if_ioctl) {
1677 			ifnet_serialize_all(ifp);
1678 			ifp->if_ioctl(ifp, cmd, data, cred);
1679 			ifnet_deserialize_all(ifp);
1680 		}
1681 		getmicrotime(&ifp->if_lastchange);
1682 		break;
1683 
1684 	case SIOCSIFCAP:
1685 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1686 		if (error)
1687 			break;
1688 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1689 			error = EINVAL;
1690 			break;
1691 		}
1692 		ifnet_serialize_all(ifp);
1693 		ifp->if_ioctl(ifp, cmd, data, cred);
1694 		ifnet_deserialize_all(ifp);
1695 		break;
1696 
1697 	case SIOCSIFNAME:
1698 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1699 		if (error)
1700 			break;
1701 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1702 		if (error)
1703 			break;
1704 		if (new_name[0] == '\0') {
1705 			error = EINVAL;
1706 			break;
1707 		}
1708 		if (ifunit(new_name) != NULL) {
1709 			error = EEXIST;
1710 			break;
1711 		}
1712 
1713 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1714 
1715 		/* Announce the departure of the interface. */
1716 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1717 
1718 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1719 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1720 		/* XXX IFA_LOCK(ifa); */
1721 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1722 		namelen = strlen(new_name);
1723 		onamelen = sdl->sdl_nlen;
1724 		/*
1725 		 * Move the address if needed.  This is safe because we
1726 		 * allocate space for a name of length IFNAMSIZ when we
1727 		 * create this in if_attach().
1728 		 */
1729 		if (namelen != onamelen) {
1730 			bcopy(sdl->sdl_data + onamelen,
1731 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1732 		}
1733 		bcopy(new_name, sdl->sdl_data, namelen);
1734 		sdl->sdl_nlen = namelen;
1735 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1736 		bzero(sdl->sdl_data, onamelen);
1737 		while (namelen != 0)
1738 			sdl->sdl_data[--namelen] = 0xff;
1739 		/* XXX IFA_UNLOCK(ifa) */
1740 
1741 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1742 
1743 		/* Announce the return of the interface. */
1744 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1745 		break;
1746 
1747 	case SIOCSIFMETRIC:
1748 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1749 		if (error)
1750 			break;
1751 		ifp->if_metric = ifr->ifr_metric;
1752 		getmicrotime(&ifp->if_lastchange);
1753 		break;
1754 
1755 	case SIOCSIFPHYS:
1756 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1757 		if (error)
1758 			break;
1759 		if (ifp->if_ioctl == NULL) {
1760 		        error = EOPNOTSUPP;
1761 			break;
1762 		}
1763 		ifnet_serialize_all(ifp);
1764 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1765 		ifnet_deserialize_all(ifp);
1766 		if (error == 0)
1767 			getmicrotime(&ifp->if_lastchange);
1768 		break;
1769 
1770 	case SIOCSIFMTU:
1771 	{
1772 		u_long oldmtu = ifp->if_mtu;
1773 
1774 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1775 		if (error)
1776 			break;
1777 		if (ifp->if_ioctl == NULL) {
1778 			error = EOPNOTSUPP;
1779 			break;
1780 		}
1781 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
1782 			error = EINVAL;
1783 			break;
1784 		}
1785 		ifnet_serialize_all(ifp);
1786 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1787 		ifnet_deserialize_all(ifp);
1788 		if (error == 0) {
1789 			getmicrotime(&ifp->if_lastchange);
1790 			rt_ifmsg(ifp);
1791 		}
1792 		/*
1793 		 * If the link MTU changed, do network layer specific procedure.
1794 		 */
1795 		if (ifp->if_mtu != oldmtu) {
1796 #ifdef INET6
1797 			nd6_setmtu(ifp);
1798 #endif
1799 		}
1800 		break;
1801 	}
1802 
1803 	case SIOCSIFTSOLEN:
1804 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1805 		if (error)
1806 			break;
1807 
1808 		/* XXX need driver supplied upper limit */
1809 		if (ifr->ifr_tsolen <= 0) {
1810 			error = EINVAL;
1811 			break;
1812 		}
1813 		ifp->if_tsolen = ifr->ifr_tsolen;
1814 		break;
1815 
1816 	case SIOCADDMULTI:
1817 	case SIOCDELMULTI:
1818 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1819 		if (error)
1820 			break;
1821 
1822 		/* Don't allow group membership on non-multicast interfaces. */
1823 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1824 			error = EOPNOTSUPP;
1825 			break;
1826 		}
1827 
1828 		/* Don't let users screw up protocols' entries. */
1829 		if (ifr->ifr_addr.sa_family != AF_LINK) {
1830 			error = EINVAL;
1831 			break;
1832 		}
1833 
1834 		if (cmd == SIOCADDMULTI) {
1835 			struct ifmultiaddr *ifma;
1836 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1837 		} else {
1838 			error = if_delmulti(ifp, &ifr->ifr_addr);
1839 		}
1840 		if (error == 0)
1841 			getmicrotime(&ifp->if_lastchange);
1842 		break;
1843 
1844 	case SIOCSIFPHYADDR:
1845 	case SIOCDIFPHYADDR:
1846 #ifdef INET6
1847 	case SIOCSIFPHYADDR_IN6:
1848 #endif
1849 	case SIOCSLIFPHYADDR:
1850         case SIOCSIFMEDIA:
1851 	case SIOCSIFGENERIC:
1852 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1853 		if (error)
1854 			break;
1855 		if (ifp->if_ioctl == 0) {
1856 			error = EOPNOTSUPP;
1857 			break;
1858 		}
1859 		ifnet_serialize_all(ifp);
1860 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1861 		ifnet_deserialize_all(ifp);
1862 		if (error == 0)
1863 			getmicrotime(&ifp->if_lastchange);
1864 		break;
1865 
1866 	case SIOCGIFSTATUS:
1867 		ifs = (struct ifstat *)data;
1868 		ifs->ascii[0] = '\0';
1869 		/* fall through */
1870 	case SIOCGIFPSRCADDR:
1871 	case SIOCGIFPDSTADDR:
1872 	case SIOCGLIFPHYADDR:
1873 	case SIOCGIFMEDIA:
1874 	case SIOCGIFGENERIC:
1875 		if (ifp->if_ioctl == NULL) {
1876 			error = EOPNOTSUPP;
1877 			break;
1878 		}
1879 		ifnet_serialize_all(ifp);
1880 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1881 		ifnet_deserialize_all(ifp);
1882 		break;
1883 
1884 	case SIOCSIFLLADDR:
1885 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1886 		if (error)
1887 			break;
1888 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
1889 				     ifr->ifr_addr.sa_len);
1890 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1891 		break;
1892 
1893 	default:
1894 		oif_flags = ifp->if_flags;
1895 		if (so->so_proto == 0) {
1896 			error = EOPNOTSUPP;
1897 			break;
1898 		}
1899 #ifndef COMPAT_43
1900 		error = so_pru_control_direct(so, cmd, data, ifp);
1901 #else
1902 		ocmd = cmd;
1903 
1904 		switch (cmd) {
1905 		case SIOCSIFDSTADDR:
1906 		case SIOCSIFADDR:
1907 		case SIOCSIFBRDADDR:
1908 		case SIOCSIFNETMASK:
1909 #if BYTE_ORDER != BIG_ENDIAN
1910 			if (ifr->ifr_addr.sa_family == 0 &&
1911 			    ifr->ifr_addr.sa_len < 16) {
1912 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1913 				ifr->ifr_addr.sa_len = 16;
1914 			}
1915 #else
1916 			if (ifr->ifr_addr.sa_len == 0)
1917 				ifr->ifr_addr.sa_len = 16;
1918 #endif
1919 			break;
1920 		case OSIOCGIFADDR:
1921 			cmd = SIOCGIFADDR;
1922 			break;
1923 		case OSIOCGIFDSTADDR:
1924 			cmd = SIOCGIFDSTADDR;
1925 			break;
1926 		case OSIOCGIFBRDADDR:
1927 			cmd = SIOCGIFBRDADDR;
1928 			break;
1929 		case OSIOCGIFNETMASK:
1930 			cmd = SIOCGIFNETMASK;
1931 			break;
1932 		default:
1933 			break;
1934 		}
1935 
1936 		error = so_pru_control_direct(so, cmd, data, ifp);
1937 
1938 		switch (ocmd) {
1939 		case OSIOCGIFADDR:
1940 		case OSIOCGIFDSTADDR:
1941 		case OSIOCGIFBRDADDR:
1942 		case OSIOCGIFNETMASK:
1943 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1944 			break;
1945 		}
1946 #endif /* COMPAT_43 */
1947 
1948 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1949 #ifdef INET6
1950 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1951 			if (ifp->if_flags & IFF_UP) {
1952 				crit_enter();
1953 				in6_if_up(ifp);
1954 				crit_exit();
1955 			}
1956 #endif
1957 		}
1958 		break;
1959 	}
1960 
1961 	mtx_unlock(&ifp->if_ioctl_mtx);
1962 	return (error);
1963 }
1964 
1965 /*
1966  * Set/clear promiscuous mode on interface ifp based on the truth value
1967  * of pswitch.  The calls are reference counted so that only the first
1968  * "on" request actually has an effect, as does the final "off" request.
1969  * Results are undefined if the "off" and "on" requests are not matched.
1970  */
1971 int
1972 ifpromisc(struct ifnet *ifp, int pswitch)
1973 {
1974 	struct ifreq ifr;
1975 	int error;
1976 	int oldflags;
1977 
1978 	oldflags = ifp->if_flags;
1979 	if (ifp->if_flags & IFF_PPROMISC) {
1980 		/* Do nothing if device is in permanently promiscuous mode */
1981 		ifp->if_pcount += pswitch ? 1 : -1;
1982 		return (0);
1983 	}
1984 	if (pswitch) {
1985 		/*
1986 		 * If the device is not configured up, we cannot put it in
1987 		 * promiscuous mode.
1988 		 */
1989 		if ((ifp->if_flags & IFF_UP) == 0)
1990 			return (ENETDOWN);
1991 		if (ifp->if_pcount++ != 0)
1992 			return (0);
1993 		ifp->if_flags |= IFF_PROMISC;
1994 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1995 		    ifp->if_xname);
1996 	} else {
1997 		if (--ifp->if_pcount > 0)
1998 			return (0);
1999 		ifp->if_flags &= ~IFF_PROMISC;
2000 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
2001 		    ifp->if_xname);
2002 	}
2003 	ifr.ifr_flags = ifp->if_flags;
2004 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
2005 	ifnet_serialize_all(ifp);
2006 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2007 	ifnet_deserialize_all(ifp);
2008 	if (error == 0)
2009 		rt_ifmsg(ifp);
2010 	else
2011 		ifp->if_flags = oldflags;
2012 	return error;
2013 }
2014 
2015 /*
2016  * Return interface configuration
2017  * of system.  List may be used
2018  * in later ioctl's (above) to get
2019  * other information.
2020  */
2021 static int
2022 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2023 {
2024 	struct ifconf *ifc = (struct ifconf *)data;
2025 	struct ifnet *ifp;
2026 	struct sockaddr *sa;
2027 	struct ifreq ifr, *ifrp;
2028 	int space = ifc->ifc_len, error = 0;
2029 
2030 	ifrp = ifc->ifc_req;
2031 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2032 		struct ifaddr_container *ifac;
2033 		int addrs;
2034 
2035 		if (space <= sizeof ifr)
2036 			break;
2037 
2038 		/*
2039 		 * Zero the stack declared structure first to prevent
2040 		 * memory disclosure.
2041 		 */
2042 		bzero(&ifr, sizeof(ifr));
2043 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2044 		    >= sizeof(ifr.ifr_name)) {
2045 			error = ENAMETOOLONG;
2046 			break;
2047 		}
2048 
2049 		addrs = 0;
2050 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2051 			struct ifaddr *ifa = ifac->ifa;
2052 
2053 			if (space <= sizeof ifr)
2054 				break;
2055 			sa = ifa->ifa_addr;
2056 			if (cred->cr_prison &&
2057 			    prison_if(cred, sa))
2058 				continue;
2059 			addrs++;
2060 #ifdef COMPAT_43
2061 			if (cmd == OSIOCGIFCONF) {
2062 				struct osockaddr *osa =
2063 					 (struct osockaddr *)&ifr.ifr_addr;
2064 				ifr.ifr_addr = *sa;
2065 				osa->sa_family = sa->sa_family;
2066 				error = copyout(&ifr, ifrp, sizeof ifr);
2067 				ifrp++;
2068 			} else
2069 #endif
2070 			if (sa->sa_len <= sizeof(*sa)) {
2071 				ifr.ifr_addr = *sa;
2072 				error = copyout(&ifr, ifrp, sizeof ifr);
2073 				ifrp++;
2074 			} else {
2075 				if (space < (sizeof ifr) + sa->sa_len -
2076 					    sizeof(*sa))
2077 					break;
2078 				space -= sa->sa_len - sizeof(*sa);
2079 				error = copyout(&ifr, ifrp,
2080 						sizeof ifr.ifr_name);
2081 				if (error == 0)
2082 					error = copyout(sa, &ifrp->ifr_addr,
2083 							sa->sa_len);
2084 				ifrp = (struct ifreq *)
2085 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2086 			}
2087 			if (error)
2088 				break;
2089 			space -= sizeof ifr;
2090 		}
2091 		if (error)
2092 			break;
2093 		if (!addrs) {
2094 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2095 			error = copyout(&ifr, ifrp, sizeof ifr);
2096 			if (error)
2097 				break;
2098 			space -= sizeof ifr;
2099 			ifrp++;
2100 		}
2101 	}
2102 	ifc->ifc_len -= space;
2103 	return (error);
2104 }
2105 
2106 /*
2107  * Just like if_promisc(), but for all-multicast-reception mode.
2108  */
2109 int
2110 if_allmulti(struct ifnet *ifp, int onswitch)
2111 {
2112 	int error = 0;
2113 	struct ifreq ifr;
2114 
2115 	crit_enter();
2116 
2117 	if (onswitch) {
2118 		if (ifp->if_amcount++ == 0) {
2119 			ifp->if_flags |= IFF_ALLMULTI;
2120 			ifr.ifr_flags = ifp->if_flags;
2121 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2122 			ifnet_serialize_all(ifp);
2123 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2124 					      NULL);
2125 			ifnet_deserialize_all(ifp);
2126 		}
2127 	} else {
2128 		if (ifp->if_amcount > 1) {
2129 			ifp->if_amcount--;
2130 		} else {
2131 			ifp->if_amcount = 0;
2132 			ifp->if_flags &= ~IFF_ALLMULTI;
2133 			ifr.ifr_flags = ifp->if_flags;
2134 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2135 			ifnet_serialize_all(ifp);
2136 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2137 					      NULL);
2138 			ifnet_deserialize_all(ifp);
2139 		}
2140 	}
2141 
2142 	crit_exit();
2143 
2144 	if (error == 0)
2145 		rt_ifmsg(ifp);
2146 	return error;
2147 }
2148 
2149 /*
2150  * Add a multicast listenership to the interface in question.
2151  * The link layer provides a routine which converts
2152  */
2153 int
2154 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2155     struct ifmultiaddr **retifma)
2156 {
2157 	struct sockaddr *llsa, *dupsa;
2158 	int error;
2159 	struct ifmultiaddr *ifma;
2160 
2161 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2162 
2163 	/*
2164 	 * If the matching multicast address already exists
2165 	 * then don't add a new one, just add a reference
2166 	 */
2167 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2168 		if (sa_equal(sa, ifma->ifma_addr)) {
2169 			ifma->ifma_refcount++;
2170 			if (retifma)
2171 				*retifma = ifma;
2172 			return 0;
2173 		}
2174 	}
2175 
2176 	/*
2177 	 * Give the link layer a chance to accept/reject it, and also
2178 	 * find out which AF_LINK address this maps to, if it isn't one
2179 	 * already.
2180 	 */
2181 	if (ifp->if_resolvemulti) {
2182 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2183 		if (error)
2184 			return error;
2185 	} else {
2186 		llsa = NULL;
2187 	}
2188 
2189 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2190 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK);
2191 	bcopy(sa, dupsa, sa->sa_len);
2192 
2193 	ifma->ifma_addr = dupsa;
2194 	ifma->ifma_lladdr = llsa;
2195 	ifma->ifma_ifp = ifp;
2196 	ifma->ifma_refcount = 1;
2197 	ifma->ifma_protospec = NULL;
2198 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2199 
2200 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2201 	if (retifma)
2202 		*retifma = ifma;
2203 
2204 	if (llsa != NULL) {
2205 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2206 			if (sa_equal(ifma->ifma_addr, llsa))
2207 				break;
2208 		}
2209 		if (ifma) {
2210 			ifma->ifma_refcount++;
2211 		} else {
2212 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2213 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK);
2214 			bcopy(llsa, dupsa, llsa->sa_len);
2215 			ifma->ifma_addr = dupsa;
2216 			ifma->ifma_ifp = ifp;
2217 			ifma->ifma_refcount = 1;
2218 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2219 		}
2220 	}
2221 	/*
2222 	 * We are certain we have added something, so call down to the
2223 	 * interface to let them know about it.
2224 	 */
2225 	if (ifp->if_ioctl)
2226 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2227 
2228 	return 0;
2229 }
2230 
2231 int
2232 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2233     struct ifmultiaddr **retifma)
2234 {
2235 	int error;
2236 
2237 	ifnet_serialize_all(ifp);
2238 	error = if_addmulti_serialized(ifp, sa, retifma);
2239 	ifnet_deserialize_all(ifp);
2240 
2241 	return error;
2242 }
2243 
2244 /*
2245  * Remove a reference to a multicast address on this interface.  Yell
2246  * if the request does not match an existing membership.
2247  */
2248 static int
2249 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2250 {
2251 	struct ifmultiaddr *ifma;
2252 
2253 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2254 
2255 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2256 		if (sa_equal(sa, ifma->ifma_addr))
2257 			break;
2258 	if (ifma == NULL)
2259 		return ENOENT;
2260 
2261 	if (ifma->ifma_refcount > 1) {
2262 		ifma->ifma_refcount--;
2263 		return 0;
2264 	}
2265 
2266 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2267 	sa = ifma->ifma_lladdr;
2268 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2269 	/*
2270 	 * Make sure the interface driver is notified
2271 	 * in the case of a link layer mcast group being left.
2272 	 */
2273 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2274 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2275 	kfree(ifma->ifma_addr, M_IFMADDR);
2276 	kfree(ifma, M_IFMADDR);
2277 	if (sa == NULL)
2278 		return 0;
2279 
2280 	/*
2281 	 * Now look for the link-layer address which corresponds to
2282 	 * this network address.  It had been squirreled away in
2283 	 * ifma->ifma_lladdr for this purpose (so we don't have
2284 	 * to call ifp->if_resolvemulti() again), and we saved that
2285 	 * value in sa above.  If some nasty deleted the
2286 	 * link-layer address out from underneath us, we can deal because
2287 	 * the address we stored was is not the same as the one which was
2288 	 * in the record for the link-layer address.  (So we don't complain
2289 	 * in that case.)
2290 	 */
2291 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2292 		if (sa_equal(sa, ifma->ifma_addr))
2293 			break;
2294 	if (ifma == NULL)
2295 		return 0;
2296 
2297 	if (ifma->ifma_refcount > 1) {
2298 		ifma->ifma_refcount--;
2299 		return 0;
2300 	}
2301 
2302 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2303 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2304 	kfree(ifma->ifma_addr, M_IFMADDR);
2305 	kfree(sa, M_IFMADDR);
2306 	kfree(ifma, M_IFMADDR);
2307 
2308 	return 0;
2309 }
2310 
2311 int
2312 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2313 {
2314 	int error;
2315 
2316 	ifnet_serialize_all(ifp);
2317 	error = if_delmulti_serialized(ifp, sa);
2318 	ifnet_deserialize_all(ifp);
2319 
2320 	return error;
2321 }
2322 
2323 /*
2324  * Delete all multicast group membership for an interface.
2325  * Should be used to quickly flush all multicast filters.
2326  */
2327 void
2328 if_delallmulti_serialized(struct ifnet *ifp)
2329 {
2330 	struct ifmultiaddr *ifma, mark;
2331 	struct sockaddr sa;
2332 
2333 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2334 
2335 	bzero(&sa, sizeof(sa));
2336 	sa.sa_family = AF_UNSPEC;
2337 	sa.sa_len = sizeof(sa);
2338 
2339 	bzero(&mark, sizeof(mark));
2340 	mark.ifma_addr = &sa;
2341 
2342 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2343 	while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2344 		TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2345 		TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2346 		    ifma_link);
2347 
2348 		if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2349 			continue;
2350 
2351 		if_delmulti_serialized(ifp, ifma->ifma_addr);
2352 	}
2353 	TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2354 }
2355 
2356 
2357 /*
2358  * Set the link layer address on an interface.
2359  *
2360  * At this time we only support certain types of interfaces,
2361  * and we don't allow the length of the address to change.
2362  */
2363 int
2364 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2365 {
2366 	struct sockaddr_dl *sdl;
2367 	struct ifreq ifr;
2368 
2369 	sdl = IF_LLSOCKADDR(ifp);
2370 	if (sdl == NULL)
2371 		return (EINVAL);
2372 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2373 		return (EINVAL);
2374 	switch (ifp->if_type) {
2375 	case IFT_ETHER:			/* these types use struct arpcom */
2376 	case IFT_XETHER:
2377 	case IFT_L2VLAN:
2378 	case IFT_IEEE8023ADLAG:
2379 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2380 		bcopy(lladdr, LLADDR(sdl), len);
2381 		break;
2382 	default:
2383 		return (ENODEV);
2384 	}
2385 	/*
2386 	 * If the interface is already up, we need
2387 	 * to re-init it in order to reprogram its
2388 	 * address filter.
2389 	 */
2390 	ifnet_serialize_all(ifp);
2391 	if ((ifp->if_flags & IFF_UP) != 0) {
2392 #ifdef INET
2393 		struct ifaddr_container *ifac;
2394 #endif
2395 
2396 		ifp->if_flags &= ~IFF_UP;
2397 		ifr.ifr_flags = ifp->if_flags;
2398 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2399 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2400 			      NULL);
2401 		ifp->if_flags |= IFF_UP;
2402 		ifr.ifr_flags = ifp->if_flags;
2403 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2404 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2405 				 NULL);
2406 #ifdef INET
2407 		/*
2408 		 * Also send gratuitous ARPs to notify other nodes about
2409 		 * the address change.
2410 		 */
2411 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2412 			struct ifaddr *ifa = ifac->ifa;
2413 
2414 			if (ifa->ifa_addr != NULL &&
2415 			    ifa->ifa_addr->sa_family == AF_INET)
2416 				arp_gratuitous(ifp, ifa);
2417 		}
2418 #endif
2419 	}
2420 	ifnet_deserialize_all(ifp);
2421 	return (0);
2422 }
2423 
2424 struct ifmultiaddr *
2425 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2426 {
2427 	struct ifmultiaddr *ifma;
2428 
2429 	/* TODO: need ifnet_serialize_main */
2430 	ifnet_serialize_all(ifp);
2431 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2432 		if (sa_equal(ifma->ifma_addr, sa))
2433 			break;
2434 	ifnet_deserialize_all(ifp);
2435 
2436 	return ifma;
2437 }
2438 
2439 /*
2440  * This function locates the first real ethernet MAC from a network
2441  * card and loads it into node, returning 0 on success or ENOENT if
2442  * no suitable interfaces were found.  It is used by the uuid code to
2443  * generate a unique 6-byte number.
2444  */
2445 int
2446 if_getanyethermac(uint16_t *node, int minlen)
2447 {
2448 	struct ifnet *ifp;
2449 	struct sockaddr_dl *sdl;
2450 
2451 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2452 		if (ifp->if_type != IFT_ETHER)
2453 			continue;
2454 		sdl = IF_LLSOCKADDR(ifp);
2455 		if (sdl->sdl_alen < minlen)
2456 			continue;
2457 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2458 		      minlen);
2459 		return(0);
2460 	}
2461 	return (ENOENT);
2462 }
2463 
2464 /*
2465  * The name argument must be a pointer to storage which will last as
2466  * long as the interface does.  For physical devices, the result of
2467  * device_get_name(dev) is a good choice and for pseudo-devices a
2468  * static string works well.
2469  */
2470 void
2471 if_initname(struct ifnet *ifp, const char *name, int unit)
2472 {
2473 	ifp->if_dname = name;
2474 	ifp->if_dunit = unit;
2475 	if (unit != IF_DUNIT_NONE)
2476 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2477 	else
2478 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2479 }
2480 
2481 int
2482 if_printf(struct ifnet *ifp, const char *fmt, ...)
2483 {
2484 	__va_list ap;
2485 	int retval;
2486 
2487 	retval = kprintf("%s: ", ifp->if_xname);
2488 	__va_start(ap, fmt);
2489 	retval += kvprintf(fmt, ap);
2490 	__va_end(ap);
2491 	return (retval);
2492 }
2493 
2494 struct ifnet *
2495 if_alloc(uint8_t type)
2496 {
2497         struct ifnet *ifp;
2498 	size_t size;
2499 
2500 	/*
2501 	 * XXX temporary hack until arpcom is setup in if_l2com
2502 	 */
2503 	if (type == IFT_ETHER)
2504 		size = sizeof(struct arpcom);
2505 	else
2506 		size = sizeof(struct ifnet);
2507 
2508 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2509 
2510 	ifp->if_type = type;
2511 
2512 	if (if_com_alloc[type] != NULL) {
2513 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2514 		if (ifp->if_l2com == NULL) {
2515 			kfree(ifp, M_IFNET);
2516 			return (NULL);
2517 		}
2518 	}
2519 	return (ifp);
2520 }
2521 
2522 void
2523 if_free(struct ifnet *ifp)
2524 {
2525 	kfree(ifp, M_IFNET);
2526 }
2527 
2528 void
2529 ifq_set_classic(struct ifaltq *ifq)
2530 {
2531 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2532 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2533 }
2534 
2535 void
2536 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2537     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2538 {
2539 	int q;
2540 
2541 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2542 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2543 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2544 	KASSERT(request != NULL, ("request is not specified"));
2545 
2546 	ifq->altq_mapsubq = mapsubq;
2547 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2548 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2549 
2550 		ifsq->ifsq_enqueue = enqueue;
2551 		ifsq->ifsq_dequeue = dequeue;
2552 		ifsq->ifsq_request = request;
2553 	}
2554 }
2555 
2556 static void
2557 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2558 {
2559 	m->m_nextpkt = NULL;
2560 	if (ifsq->ifsq_norm_tail == NULL)
2561 		ifsq->ifsq_norm_head = m;
2562 	else
2563 		ifsq->ifsq_norm_tail->m_nextpkt = m;
2564 	ifsq->ifsq_norm_tail = m;
2565 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2566 }
2567 
2568 static void
2569 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2570 {
2571 	m->m_nextpkt = NULL;
2572 	if (ifsq->ifsq_prio_tail == NULL)
2573 		ifsq->ifsq_prio_head = m;
2574 	else
2575 		ifsq->ifsq_prio_tail->m_nextpkt = m;
2576 	ifsq->ifsq_prio_tail = m;
2577 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2578 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2579 }
2580 
2581 static struct mbuf *
2582 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2583 {
2584 	struct mbuf *m;
2585 
2586 	m = ifsq->ifsq_norm_head;
2587 	if (m != NULL) {
2588 		if ((ifsq->ifsq_norm_head = m->m_nextpkt) == NULL)
2589 			ifsq->ifsq_norm_tail = NULL;
2590 		m->m_nextpkt = NULL;
2591 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2592 	}
2593 	return m;
2594 }
2595 
2596 static struct mbuf *
2597 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2598 {
2599 	struct mbuf *m;
2600 
2601 	m = ifsq->ifsq_prio_head;
2602 	if (m != NULL) {
2603 		if ((ifsq->ifsq_prio_head = m->m_nextpkt) == NULL)
2604 			ifsq->ifsq_prio_tail = NULL;
2605 		m->m_nextpkt = NULL;
2606 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2607 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2608 	}
2609 	return m;
2610 }
2611 
2612 int
2613 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2614     struct altq_pktattr *pa __unused)
2615 {
2616 	M_ASSERTPKTHDR(m);
2617 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2618 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2619 		if ((m->m_flags & M_PRIO) &&
2620 		    ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen / 2) &&
2621 		    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt / 2)) {
2622 			struct mbuf *m_drop;
2623 
2624 			/*
2625 			 * Perform drop-head on normal queue
2626 			 */
2627 			m_drop = ifsq_norm_dequeue(ifsq);
2628 			if (m_drop != NULL) {
2629 				m_freem(m_drop);
2630 				ifsq_prio_enqueue(ifsq, m);
2631 				return 0;
2632 			}
2633 			/* XXX nothing could be dropped? */
2634 		}
2635 		m_freem(m);
2636 		return ENOBUFS;
2637 	} else {
2638 		if (m->m_flags & M_PRIO)
2639 			ifsq_prio_enqueue(ifsq, m);
2640 		else
2641 			ifsq_norm_enqueue(ifsq, m);
2642 		return 0;
2643 	}
2644 }
2645 
2646 struct mbuf *
2647 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2648 {
2649 	struct mbuf *m;
2650 
2651 	switch (op) {
2652 	case ALTDQ_POLL:
2653 		m = ifsq->ifsq_prio_head;
2654 		if (m == NULL)
2655 			m = ifsq->ifsq_norm_head;
2656 		break;
2657 
2658 	case ALTDQ_REMOVE:
2659 		m = ifsq_prio_dequeue(ifsq);
2660 		if (m == NULL)
2661 			m = ifsq_norm_dequeue(ifsq);
2662 		break;
2663 
2664 	default:
2665 		panic("unsupported ALTQ dequeue op: %d", op);
2666 	}
2667 	return m;
2668 }
2669 
2670 int
2671 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2672 {
2673 	switch (req) {
2674 	case ALTRQ_PURGE:
2675 		for (;;) {
2676 			struct mbuf *m;
2677 
2678 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2679 			if (m == NULL)
2680 				break;
2681 			m_freem(m);
2682 		}
2683 		break;
2684 
2685 	default:
2686 		panic("unsupported ALTQ request: %d", req);
2687 	}
2688 	return 0;
2689 }
2690 
2691 static void
2692 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2693 {
2694 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2695 	int running = 0, need_sched;
2696 
2697 	/*
2698 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
2699 	 * contention on the subqueue hardware serializer, ifnet.if_start on
2700 	 * the subqueue will be scheduled on the subqueue owner CPU.
2701 	 */
2702 	if (!ifsq_tryserialize_hw(ifsq)) {
2703 		/*
2704 		 * Subqueue hardware serializer contention happened,
2705 		 * ifnet.if_start on the subqueue is scheduled on
2706 		 * the subqueue owner CPU, and we keep going.
2707 		 */
2708 		ifsq_ifstart_schedule(ifsq, 1);
2709 		return;
2710 	}
2711 
2712 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2713 		ifp->if_start(ifp, ifsq);
2714 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2715 			running = 1;
2716 	}
2717 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2718 
2719 	ifsq_deserialize_hw(ifsq);
2720 
2721 	if (need_sched) {
2722 		/*
2723 		 * More data need to be transmitted, ifnet.if_start on the
2724 		 * subqueue is scheduled on the subqueue owner CPU, and we
2725 		 * keep going.
2726 		 * NOTE: ifnet.if_start subqueue interlock is not released.
2727 		 */
2728 		ifsq_ifstart_schedule(ifsq, force_sched);
2729 	}
2730 }
2731 
2732 /*
2733  * Subqeue packets staging mechanism:
2734  *
2735  * The packets enqueued into the subqueue are staged to a certain amount
2736  * before the ifnet.if_start on the subqueue is called.  In this way, the
2737  * driver could avoid writing to hardware registers upon every packet,
2738  * instead, hardware registers could be written when certain amount of
2739  * packets are put onto hardware TX ring.  The measurement on several modern
2740  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2741  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2742  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
2743  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2744  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2745  *
2746  * Subqueue packets staging is performed for two entry points into drivers'
2747  * transmission function:
2748  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
2749  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
2750  *
2751  * Subqueue packets staging will be stopped upon any of the following
2752  * conditions:
2753  * - If the count of packets enqueued on the current CPU is great than or
2754  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2755  * - If the total length of packets enqueued on the current CPU is great
2756  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2757  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
2758  *   is usually less than hardware's MTU.
2759  * - ifsq_ifstart_schedule() is not pending on the current CPU and
2760  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
2761  *   released.
2762  * - The if_start_rollup(), which is registered as low priority netisr
2763  *   rollup function, is called; probably because no more work is pending
2764  *   for netisr.
2765  *
2766  * NOTE:
2767  * Currently subqueue packet staging is only performed in netisr threads.
2768  */
2769 int
2770 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2771 {
2772 	struct ifaltq *ifq = &ifp->if_snd;
2773 	struct ifaltq_subque *ifsq;
2774 	int error, start = 0, len, mcast = 0, avoid_start = 0;
2775 	struct ifsubq_stage_head *head = NULL;
2776 	struct ifsubq_stage *stage = NULL;
2777 	struct globaldata *gd = mycpu;
2778 	struct thread *td = gd->gd_curthread;
2779 
2780 	crit_enter_quick(td);
2781 
2782 	ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
2783 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
2784 
2785 	len = m->m_pkthdr.len;
2786 	if (m->m_flags & M_MCAST)
2787 		mcast = 1;
2788 
2789 	if (td->td_type == TD_TYPE_NETISR) {
2790 		head = &ifsubq_stage_heads[mycpuid];
2791 		stage = ifsq_get_stage(ifsq, mycpuid);
2792 
2793 		stage->stg_cnt++;
2794 		stage->stg_len += len;
2795 		if (stage->stg_cnt < ifsq_stage_cntmax &&
2796 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
2797 			avoid_start = 1;
2798 	}
2799 
2800 	ALTQ_SQ_LOCK(ifsq);
2801 	error = ifsq_enqueue_locked(ifsq, m, pa);
2802 	if (error) {
2803 		if (!ifsq_data_ready(ifsq)) {
2804 			ALTQ_SQ_UNLOCK(ifsq);
2805 			crit_exit_quick(td);
2806 			return error;
2807 		}
2808 		avoid_start = 0;
2809 	}
2810 	if (!ifsq_is_started(ifsq)) {
2811 		if (avoid_start) {
2812 			ALTQ_SQ_UNLOCK(ifsq);
2813 
2814 			KKASSERT(!error);
2815 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
2816 				ifsq_stage_insert(head, stage);
2817 
2818 			IFNET_STAT_INC(ifp, obytes, len);
2819 			if (mcast)
2820 				IFNET_STAT_INC(ifp, omcasts, 1);
2821 			crit_exit_quick(td);
2822 			return error;
2823 		}
2824 
2825 		/*
2826 		 * Hold the subqueue interlock of ifnet.if_start
2827 		 */
2828 		ifsq_set_started(ifsq);
2829 		start = 1;
2830 	}
2831 	ALTQ_SQ_UNLOCK(ifsq);
2832 
2833 	if (!error) {
2834 		IFNET_STAT_INC(ifp, obytes, len);
2835 		if (mcast)
2836 			IFNET_STAT_INC(ifp, omcasts, 1);
2837 	}
2838 
2839 	if (stage != NULL) {
2840 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
2841 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
2842 			if (!avoid_start) {
2843 				ifsq_stage_remove(head, stage);
2844 				ifsq_ifstart_schedule(ifsq, 1);
2845 			}
2846 			crit_exit_quick(td);
2847 			return error;
2848 		}
2849 
2850 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
2851 			ifsq_stage_remove(head, stage);
2852 		} else {
2853 			stage->stg_cnt = 0;
2854 			stage->stg_len = 0;
2855 		}
2856 	}
2857 
2858 	if (!start) {
2859 		crit_exit_quick(td);
2860 		return error;
2861 	}
2862 
2863 	ifsq_ifstart_try(ifsq, 0);
2864 
2865 	crit_exit_quick(td);
2866 	return error;
2867 }
2868 
2869 void *
2870 ifa_create(int size, int flags)
2871 {
2872 	struct ifaddr *ifa;
2873 	int i;
2874 
2875 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
2876 
2877 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2878 	if (ifa == NULL)
2879 		return NULL;
2880 
2881 	ifa->ifa_containers =
2882 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
2883 	        M_IFADDR, M_WAITOK | M_ZERO);
2884 	ifa->ifa_ncnt = ncpus;
2885 	for (i = 0; i < ncpus; ++i) {
2886 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2887 
2888 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2889 		ifac->ifa = ifa;
2890 		ifac->ifa_refcnt = 1;
2891 	}
2892 #ifdef IFADDR_DEBUG
2893 	kprintf("alloc ifa %p %d\n", ifa, size);
2894 #endif
2895 	return ifa;
2896 }
2897 
2898 void
2899 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2900 {
2901 	struct ifaddr *ifa = ifac->ifa;
2902 
2903 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2904 	KKASSERT(ifac->ifa_refcnt == 0);
2905 	KASSERT(ifac->ifa_listmask == 0,
2906 		("ifa is still on %#x lists", ifac->ifa_listmask));
2907 
2908 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2909 
2910 #ifdef IFADDR_DEBUG_VERBOSE
2911 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2912 #endif
2913 
2914 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2915 		("invalid # of ifac, %d", ifa->ifa_ncnt));
2916 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2917 #ifdef IFADDR_DEBUG
2918 		kprintf("free ifa %p\n", ifa);
2919 #endif
2920 		kfree(ifa->ifa_containers, M_IFADDR);
2921 		kfree(ifa, M_IFADDR);
2922 	}
2923 }
2924 
2925 static void
2926 ifa_iflink_dispatch(netmsg_t nmsg)
2927 {
2928 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2929 	struct ifaddr *ifa = msg->ifa;
2930 	struct ifnet *ifp = msg->ifp;
2931 	int cpu = mycpuid;
2932 	struct ifaddr_container *ifac;
2933 
2934 	crit_enter();
2935 
2936 	ifac = &ifa->ifa_containers[cpu];
2937 	ASSERT_IFAC_VALID(ifac);
2938 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2939 		("ifaddr is on if_addrheads"));
2940 
2941 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2942 	if (msg->tail)
2943 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2944 	else
2945 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2946 
2947 	crit_exit();
2948 
2949 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2950 }
2951 
2952 void
2953 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2954 {
2955 	struct netmsg_ifaddr msg;
2956 
2957 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2958 		    0, ifa_iflink_dispatch);
2959 	msg.ifa = ifa;
2960 	msg.ifp = ifp;
2961 	msg.tail = tail;
2962 
2963 	ifa_domsg(&msg.base.lmsg, 0);
2964 }
2965 
2966 static void
2967 ifa_ifunlink_dispatch(netmsg_t nmsg)
2968 {
2969 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2970 	struct ifaddr *ifa = msg->ifa;
2971 	struct ifnet *ifp = msg->ifp;
2972 	int cpu = mycpuid;
2973 	struct ifaddr_container *ifac;
2974 
2975 	crit_enter();
2976 
2977 	ifac = &ifa->ifa_containers[cpu];
2978 	ASSERT_IFAC_VALID(ifac);
2979 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2980 		("ifaddr is not on if_addrhead"));
2981 
2982 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2983 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2984 
2985 	crit_exit();
2986 
2987 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2988 }
2989 
2990 void
2991 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2992 {
2993 	struct netmsg_ifaddr msg;
2994 
2995 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2996 		    0, ifa_ifunlink_dispatch);
2997 	msg.ifa = ifa;
2998 	msg.ifp = ifp;
2999 
3000 	ifa_domsg(&msg.base.lmsg, 0);
3001 }
3002 
3003 static void
3004 ifa_destroy_dispatch(netmsg_t nmsg)
3005 {
3006 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3007 
3008 	IFAFREE(msg->ifa);
3009 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
3010 }
3011 
3012 void
3013 ifa_destroy(struct ifaddr *ifa)
3014 {
3015 	struct netmsg_ifaddr msg;
3016 
3017 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3018 		    0, ifa_destroy_dispatch);
3019 	msg.ifa = ifa;
3020 
3021 	ifa_domsg(&msg.base.lmsg, 0);
3022 }
3023 
3024 struct lwkt_port *
3025 ifnet_portfn(int cpu)
3026 {
3027 	return &ifnet_threads[cpu].td_msgport;
3028 }
3029 
3030 void
3031 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
3032 {
3033 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
3034 
3035 	if (next_cpu < ncpus)
3036 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
3037 	else
3038 		lwkt_replymsg(lmsg, 0);
3039 }
3040 
3041 int
3042 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
3043 {
3044 	KKASSERT(cpu < ncpus);
3045 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
3046 }
3047 
3048 void
3049 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
3050 {
3051 	KKASSERT(cpu < ncpus);
3052 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
3053 }
3054 
3055 /*
3056  * Generic netmsg service loop.  Some protocols may roll their own but all
3057  * must do the basic command dispatch function call done here.
3058  */
3059 static void
3060 ifnet_service_loop(void *arg __unused)
3061 {
3062 	netmsg_t msg;
3063 
3064 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
3065 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
3066 		msg->base.nm_dispatch(msg);
3067 	}
3068 }
3069 
3070 static void
3071 if_start_rollup(void)
3072 {
3073 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3074 	struct ifsubq_stage *stage;
3075 
3076 	crit_enter();
3077 
3078 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3079 		struct ifaltq_subque *ifsq = stage->stg_subq;
3080 		int is_sched = 0;
3081 
3082 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3083 			is_sched = 1;
3084 		ifsq_stage_remove(head, stage);
3085 
3086 		if (is_sched) {
3087 			ifsq_ifstart_schedule(ifsq, 1);
3088 		} else {
3089 			int start = 0;
3090 
3091 			ALTQ_SQ_LOCK(ifsq);
3092 			if (!ifsq_is_started(ifsq)) {
3093 				/*
3094 				 * Hold the subqueue interlock of
3095 				 * ifnet.if_start
3096 				 */
3097 				ifsq_set_started(ifsq);
3098 				start = 1;
3099 			}
3100 			ALTQ_SQ_UNLOCK(ifsq);
3101 
3102 			if (start)
3103 				ifsq_ifstart_try(ifsq, 1);
3104 		}
3105 		KKASSERT((stage->stg_flags &
3106 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3107 	}
3108 
3109 	crit_exit();
3110 }
3111 
3112 static void
3113 ifnetinit(void *dummy __unused)
3114 {
3115 	int i;
3116 
3117 	for (i = 0; i < ncpus; ++i) {
3118 		struct thread *thr = &ifnet_threads[i];
3119 
3120 		lwkt_create(ifnet_service_loop, NULL, NULL,
3121 			    thr, TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
3122 			    i, "ifnet %d", i);
3123 		netmsg_service_port_init(&thr->td_msgport);
3124 		lwkt_schedule(thr);
3125 	}
3126 
3127 	for (i = 0; i < ncpus; ++i)
3128 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3129 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3130 }
3131 
3132 struct ifnet *
3133 ifnet_byindex(unsigned short idx)
3134 {
3135 	if (idx > if_index)
3136 		return NULL;
3137 	return ifindex2ifnet[idx];
3138 }
3139 
3140 struct ifaddr *
3141 ifaddr_byindex(unsigned short idx)
3142 {
3143 	struct ifnet *ifp;
3144 
3145 	ifp = ifnet_byindex(idx);
3146 	if (!ifp)
3147 		return NULL;
3148 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
3149 }
3150 
3151 void
3152 if_register_com_alloc(u_char type,
3153     if_com_alloc_t *a, if_com_free_t *f)
3154 {
3155 
3156         KASSERT(if_com_alloc[type] == NULL,
3157             ("if_register_com_alloc: %d already registered", type));
3158         KASSERT(if_com_free[type] == NULL,
3159             ("if_register_com_alloc: %d free already registered", type));
3160 
3161         if_com_alloc[type] = a;
3162         if_com_free[type] = f;
3163 }
3164 
3165 void
3166 if_deregister_com_alloc(u_char type)
3167 {
3168 
3169         KASSERT(if_com_alloc[type] != NULL,
3170             ("if_deregister_com_alloc: %d not registered", type));
3171         KASSERT(if_com_free[type] != NULL,
3172             ("if_deregister_com_alloc: %d free not registered", type));
3173         if_com_alloc[type] = NULL;
3174         if_com_free[type] = NULL;
3175 }
3176 
3177 int
3178 if_ring_count2(int cnt, int cnt_max)
3179 {
3180 	int shift = 0;
3181 
3182 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3183 	    ("invalid ring count max %d", cnt_max));
3184 
3185 	if (cnt <= 0)
3186 		cnt = cnt_max;
3187 	if (cnt > ncpus2)
3188 		cnt = ncpus2;
3189 	if (cnt > cnt_max)
3190 		cnt = cnt_max;
3191 
3192 	while ((1 << (shift + 1)) <= cnt)
3193 		++shift;
3194 	cnt = 1 << shift;
3195 
3196 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3197 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3198 	     cnt, ncpus2, cnt_max));
3199 	return cnt;
3200 }
3201 
3202 void
3203 ifq_set_maxlen(struct ifaltq *ifq, int len)
3204 {
3205 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3206 }
3207 
3208 int
3209 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3210 {
3211 	return ALTQ_SUBQ_INDEX_DEFAULT;
3212 }
3213 
3214 int
3215 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3216 {
3217 	return (cpuid & ifq->altq_subq_mask);
3218 }
3219 
3220 static void
3221 ifsq_watchdog(void *arg)
3222 {
3223 	struct ifsubq_watchdog *wd = arg;
3224 	struct ifnet *ifp;
3225 
3226 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3227 		goto done;
3228 
3229 	ifp = ifsq_get_ifp(wd->wd_subq);
3230 	if (ifnet_tryserialize_all(ifp)) {
3231 		wd->wd_watchdog(wd->wd_subq);
3232 		ifnet_deserialize_all(ifp);
3233 	} else {
3234 		/* try again next timeout */
3235 		wd->wd_timer = 1;
3236 	}
3237 done:
3238 	ifsq_watchdog_reset(wd);
3239 }
3240 
3241 static void
3242 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3243 {
3244 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3245 	    ifsq_get_cpuid(wd->wd_subq));
3246 }
3247 
3248 void
3249 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3250     ifsq_watchdog_t watchdog)
3251 {
3252 	callout_init_mp(&wd->wd_callout);
3253 	wd->wd_timer = 0;
3254 	wd->wd_subq = ifsq;
3255 	wd->wd_watchdog = watchdog;
3256 }
3257 
3258 void
3259 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3260 {
3261 	wd->wd_timer = 0;
3262 	ifsq_watchdog_reset(wd);
3263 }
3264 
3265 void
3266 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3267 {
3268 	wd->wd_timer = 0;
3269 	callout_stop(&wd->wd_callout);
3270 }
3271