xref: /dragonfly/sys/net/if.c (revision db299a73)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet6.h"
35 #include "opt_inet.h"
36 #include "opt_ifpoll.h"
37 
38 #include <sys/param.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/socketops.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/mutex.h>
51 #include <sys/sockio.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/domain.h>
55 #include <sys/thread.h>
56 #include <sys/serialize.h>
57 #include <sys/bus.h>
58 
59 #include <sys/thread2.h>
60 #include <sys/msgport2.h>
61 #include <sys/mutex2.h>
62 
63 #include <net/if.h>
64 #include <net/if_arp.h>
65 #include <net/if_dl.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/ifq_var.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/if_clone.h>
72 #include <net/netisr2.h>
73 #include <net/netmsg2.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/stdarg.h>
77 #include <machine/smp.h>
78 
79 #if defined(INET) || defined(INET6)
80 /*XXX*/
81 #include <netinet/in.h>
82 #include <netinet/in_var.h>
83 #include <netinet/if_ether.h>
84 #ifdef INET6
85 #include <netinet6/in6_var.h>
86 #include <netinet6/in6_ifattach.h>
87 #endif
88 #endif
89 
90 #if defined(COMPAT_43)
91 #include <emulation/43bsd/43bsd_socket.h>
92 #endif /* COMPAT_43 */
93 
94 struct netmsg_ifaddr {
95 	struct netmsg_base base;
96 	struct ifaddr	*ifa;
97 	struct ifnet	*ifp;
98 	int		tail;
99 };
100 
101 struct ifsubq_stage_head {
102 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
103 } __cachealign;
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *);
115 static int	if_rtdel(struct radix_node *, void *);
116 
117 /* Helper functions */
118 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
119 static int	if_delmulti_serialized(struct ifnet *, struct sockaddr *);
120 
121 #ifdef INET6
122 /*
123  * XXX: declare here to avoid to include many inet6 related files..
124  * should be more generalized?
125  */
126 extern void	nd6_setmtu(struct ifnet *);
127 #endif
128 
129 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
130 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
131 
132 static int ifsq_stage_cntmax = 4;
133 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
134 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
135     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
136 
137 static int if_stats_compat = 0;
138 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
139     &if_stats_compat, 0, "Compat the old ifnet stats");
140 
141 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
142 /* Must be after netisr_init */
143 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
144 
145 static  if_com_alloc_t *if_com_alloc[256];
146 static  if_com_free_t *if_com_free[256];
147 
148 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
149 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
150 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
151 
152 int			ifqmaxlen = IFQ_MAXLEN;
153 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
154 
155 struct callout		if_slowtimo_timer;
156 
157 int			if_index = 0;
158 struct ifnet		**ifindex2ifnet = NULL;
159 static struct thread	ifnet_threads[MAXCPU];
160 
161 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
162 
163 #ifdef notyet
164 #define IFQ_KTR_STRING		"ifq=%p"
165 #define IFQ_KTR_ARGS	struct ifaltq *ifq
166 #ifndef KTR_IFQ
167 #define KTR_IFQ			KTR_ALL
168 #endif
169 KTR_INFO_MASTER(ifq);
170 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
171 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
172 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
173 
174 #define IF_START_KTR_STRING	"ifp=%p"
175 #define IF_START_KTR_ARGS	struct ifnet *ifp
176 #ifndef KTR_IF_START
177 #define KTR_IF_START		KTR_ALL
178 #endif
179 KTR_INFO_MASTER(if_start);
180 KTR_INFO(KTR_IF_START, if_start, run, 0,
181 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
182 KTR_INFO(KTR_IF_START, if_start, sched, 1,
183 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
184 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
185 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
186 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
187 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
188 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
189 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
190 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
191 #endif
192 
193 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
194 
195 /*
196  * Network interface utility routines.
197  *
198  * Routines with ifa_ifwith* names take sockaddr *'s as
199  * parameters.
200  */
201 /* ARGSUSED*/
202 void
203 ifinit(void *dummy)
204 {
205 	struct ifnet *ifp;
206 
207 	callout_init(&if_slowtimo_timer);
208 
209 	crit_enter();
210 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
211 		if (ifp->if_snd.altq_maxlen == 0) {
212 			if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
213 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
214 		}
215 	}
216 	crit_exit();
217 
218 	if_slowtimo(0);
219 }
220 
221 static void
222 ifsq_ifstart_ipifunc(void *arg)
223 {
224 	struct ifaltq_subque *ifsq = arg;
225 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
226 
227 	crit_enter();
228 	if (lmsg->ms_flags & MSGF_DONE)
229 		lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
230 	crit_exit();
231 }
232 
233 static __inline void
234 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
235 {
236 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
237 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
238 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
239 	stage->stg_cnt = 0;
240 	stage->stg_len = 0;
241 }
242 
243 static __inline void
244 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
245 {
246 	KKASSERT((stage->stg_flags &
247 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
248 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
249 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
250 }
251 
252 /*
253  * Schedule ifnet.if_start on the subqueue owner CPU
254  */
255 static void
256 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
257 {
258 	int cpu;
259 
260 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
261 	    ifsq_stage_cntmax > 0) {
262 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
263 
264 		stage->stg_cnt = 0;
265 		stage->stg_len = 0;
266 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
267 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
268 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
269 		return;
270 	}
271 
272 	cpu = ifsq_get_cpuid(ifsq);
273 	if (cpu != mycpuid)
274 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
275 	else
276 		ifsq_ifstart_ipifunc(ifsq);
277 }
278 
279 /*
280  * NOTE:
281  * This function will release ifnet.if_start subqueue interlock,
282  * if ifnet.if_start for the subqueue does not need to be scheduled
283  */
284 static __inline int
285 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
286 {
287 	if (!running || ifsq_is_empty(ifsq)
288 #ifdef ALTQ
289 	    || ifsq->ifsq_altq->altq_tbr != NULL
290 #endif
291 	) {
292 		ALTQ_SQ_LOCK(ifsq);
293 		/*
294 		 * ifnet.if_start subqueue interlock is released, if:
295 		 * 1) Hardware can not take any packets, due to
296 		 *    o  interface is marked down
297 		 *    o  hardware queue is full (ifsq_is_oactive)
298 		 *    Under the second situation, hardware interrupt
299 		 *    or polling(4) will call/schedule ifnet.if_start
300 		 *    on the subqueue when hardware queue is ready
301 		 * 2) There is no packet in the subqueue.
302 		 *    Further ifq_dispatch or ifq_handoff will call/
303 		 *    schedule ifnet.if_start on the subqueue.
304 		 * 3) TBR is used and it does not allow further
305 		 *    dequeueing.
306 		 *    TBR callout will call ifnet.if_start on the
307 		 *    subqueue.
308 		 */
309 		if (!running || !ifsq_data_ready(ifsq)) {
310 			ifsq_clr_started(ifsq);
311 			ALTQ_SQ_UNLOCK(ifsq);
312 			return 0;
313 		}
314 		ALTQ_SQ_UNLOCK(ifsq);
315 	}
316 	return 1;
317 }
318 
319 static void
320 ifsq_ifstart_dispatch(netmsg_t msg)
321 {
322 	struct lwkt_msg *lmsg = &msg->base.lmsg;
323 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
324 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
325 	struct globaldata *gd = mycpu;
326 	int running = 0, need_sched;
327 
328 	crit_enter_gd(gd);
329 
330 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
331 
332 	if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
333 		/*
334 		 * We need to chase the subqueue owner CPU change.
335 		 */
336 		ifsq_ifstart_schedule(ifsq, 1);
337 		crit_exit_gd(gd);
338 		return;
339 	}
340 
341 	ifsq_serialize_hw(ifsq);
342 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
343 		ifp->if_start(ifp, ifsq);
344 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
345 			running = 1;
346 	}
347 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
348 	ifsq_deserialize_hw(ifsq);
349 
350 	if (need_sched) {
351 		/*
352 		 * More data need to be transmitted, ifnet.if_start is
353 		 * scheduled on the subqueue owner CPU, and we keep going.
354 		 * NOTE: ifnet.if_start subqueue interlock is not released.
355 		 */
356 		ifsq_ifstart_schedule(ifsq, 0);
357 	}
358 
359 	crit_exit_gd(gd);
360 }
361 
362 /* Device driver ifnet.if_start helper function */
363 void
364 ifsq_devstart(struct ifaltq_subque *ifsq)
365 {
366 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
367 	int running = 0;
368 
369 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
370 
371 	ALTQ_SQ_LOCK(ifsq);
372 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
373 		ALTQ_SQ_UNLOCK(ifsq);
374 		return;
375 	}
376 	ifsq_set_started(ifsq);
377 	ALTQ_SQ_UNLOCK(ifsq);
378 
379 	ifp->if_start(ifp, ifsq);
380 
381 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
382 		running = 1;
383 
384 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
385 		/*
386 		 * More data need to be transmitted, ifnet.if_start is
387 		 * scheduled on ifnet's CPU, and we keep going.
388 		 * NOTE: ifnet.if_start interlock is not released.
389 		 */
390 		ifsq_ifstart_schedule(ifsq, 0);
391 	}
392 }
393 
394 void
395 if_devstart(struct ifnet *ifp)
396 {
397 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
398 }
399 
400 /* Device driver ifnet.if_start schedule helper function */
401 void
402 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
403 {
404 	ifsq_ifstart_schedule(ifsq, 1);
405 }
406 
407 void
408 if_devstart_sched(struct ifnet *ifp)
409 {
410 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
411 }
412 
413 static void
414 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
415 {
416 	lwkt_serialize_enter(ifp->if_serializer);
417 }
418 
419 static void
420 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
421 {
422 	lwkt_serialize_exit(ifp->if_serializer);
423 }
424 
425 static int
426 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
427 {
428 	return lwkt_serialize_try(ifp->if_serializer);
429 }
430 
431 #ifdef INVARIANTS
432 static void
433 if_default_serialize_assert(struct ifnet *ifp,
434 			    enum ifnet_serialize slz __unused,
435 			    boolean_t serialized)
436 {
437 	if (serialized)
438 		ASSERT_SERIALIZED(ifp->if_serializer);
439 	else
440 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
441 }
442 #endif
443 
444 /*
445  * Attach an interface to the list of "active" interfaces.
446  *
447  * The serializer is optional.
448  */
449 void
450 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
451 {
452 	unsigned socksize, ifasize;
453 	int namelen, masklen;
454 	struct sockaddr_dl *sdl;
455 	struct ifaddr *ifa;
456 	struct ifaltq *ifq;
457 	int i, q;
458 
459 	static int if_indexlim = 8;
460 
461 	if (ifp->if_serialize != NULL) {
462 		KASSERT(ifp->if_deserialize != NULL &&
463 			ifp->if_tryserialize != NULL &&
464 			ifp->if_serialize_assert != NULL,
465 			("serialize functions are partially setup"));
466 
467 		/*
468 		 * If the device supplies serialize functions,
469 		 * then clear if_serializer to catch any invalid
470 		 * usage of this field.
471 		 */
472 		KASSERT(serializer == NULL,
473 			("both serialize functions and default serializer "
474 			 "are supplied"));
475 		ifp->if_serializer = NULL;
476 	} else {
477 		KASSERT(ifp->if_deserialize == NULL &&
478 			ifp->if_tryserialize == NULL &&
479 			ifp->if_serialize_assert == NULL,
480 			("serialize functions are partially setup"));
481 		ifp->if_serialize = if_default_serialize;
482 		ifp->if_deserialize = if_default_deserialize;
483 		ifp->if_tryserialize = if_default_tryserialize;
484 #ifdef INVARIANTS
485 		ifp->if_serialize_assert = if_default_serialize_assert;
486 #endif
487 
488 		/*
489 		 * The serializer can be passed in from the device,
490 		 * allowing the same serializer to be used for both
491 		 * the interrupt interlock and the device queue.
492 		 * If not specified, the netif structure will use an
493 		 * embedded serializer.
494 		 */
495 		if (serializer == NULL) {
496 			serializer = &ifp->if_default_serializer;
497 			lwkt_serialize_init(serializer);
498 		}
499 		ifp->if_serializer = serializer;
500 	}
501 
502 	mtx_init(&ifp->if_ioctl_mtx);
503 	mtx_lock(&ifp->if_ioctl_mtx);
504 
505 	lwkt_gettoken(&ifnet_token);	/* protect if_index and ifnet tailq */
506 	ifp->if_index = ++if_index;
507 
508 	/*
509 	 * XXX -
510 	 * The old code would work if the interface passed a pre-existing
511 	 * chain of ifaddrs to this code.  We don't trust our callers to
512 	 * properly initialize the tailq, however, so we no longer allow
513 	 * this unlikely case.
514 	 */
515 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
516 				    M_IFADDR, M_WAITOK | M_ZERO);
517 	for (i = 0; i < ncpus; ++i)
518 		TAILQ_INIT(&ifp->if_addrheads[i]);
519 
520 	TAILQ_INIT(&ifp->if_prefixhead);
521 	TAILQ_INIT(&ifp->if_multiaddrs);
522 	TAILQ_INIT(&ifp->if_groups);
523 	getmicrotime(&ifp->if_lastchange);
524 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
525 		unsigned int n;
526 		struct ifnet **q;
527 
528 		if_indexlim <<= 1;
529 
530 		/* grow ifindex2ifnet */
531 		n = if_indexlim * sizeof(*q);
532 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
533 		if (ifindex2ifnet) {
534 			bcopy(ifindex2ifnet, q, n/2);
535 			kfree(ifindex2ifnet, M_IFADDR);
536 		}
537 		ifindex2ifnet = q;
538 	}
539 
540 	ifindex2ifnet[if_index] = ifp;
541 
542 	/*
543 	 * create a Link Level name for this device
544 	 */
545 	namelen = strlen(ifp->if_xname);
546 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
547 	socksize = masklen + ifp->if_addrlen;
548 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
549 	if (socksize < sizeof(*sdl))
550 		socksize = sizeof(*sdl);
551 	socksize = ROUNDUP(socksize);
552 #undef ROUNDUP
553 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
554 	ifa = ifa_create(ifasize, M_WAITOK);
555 	sdl = (struct sockaddr_dl *)(ifa + 1);
556 	sdl->sdl_len = socksize;
557 	sdl->sdl_family = AF_LINK;
558 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
559 	sdl->sdl_nlen = namelen;
560 	sdl->sdl_index = ifp->if_index;
561 	sdl->sdl_type = ifp->if_type;
562 	ifp->if_lladdr = ifa;
563 	ifa->ifa_ifp = ifp;
564 	ifa->ifa_rtrequest = link_rtrequest;
565 	ifa->ifa_addr = (struct sockaddr *)sdl;
566 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
567 	ifa->ifa_netmask = (struct sockaddr *)sdl;
568 	sdl->sdl_len = masklen;
569 	while (namelen != 0)
570 		sdl->sdl_data[--namelen] = 0xff;
571 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
572 
573 	ifp->if_data_pcpu = kmalloc_cachealign(
574 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
575 
576 	if (ifp->if_mapsubq == NULL)
577 		ifp->if_mapsubq = ifq_mapsubq_default;
578 
579 	ifq = &ifp->if_snd;
580 	ifq->altq_type = 0;
581 	ifq->altq_disc = NULL;
582 	ifq->altq_flags &= ALTQF_CANTCHANGE;
583 	ifq->altq_tbr = NULL;
584 	ifq->altq_ifp = ifp;
585 
586 	if (ifq->altq_subq_cnt <= 0)
587 		ifq->altq_subq_cnt = 1;
588 	ifq->altq_subq = kmalloc_cachealign(
589 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
590 	    M_DEVBUF, M_WAITOK | M_ZERO);
591 
592 	if (ifq->altq_maxlen == 0) {
593 		if_printf(ifp, "driver didn't set altq_maxlen\n");
594 		ifq_set_maxlen(ifq, ifqmaxlen);
595 	}
596 
597 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
598 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
599 
600 		ALTQ_SQ_LOCK_INIT(ifsq);
601 		ifsq->ifsq_index = q;
602 
603 		ifsq->ifsq_altq = ifq;
604 		ifsq->ifsq_ifp = ifp;
605 
606 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
607 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
608 		ifsq->ifsq_prepended = NULL;
609 		ifsq->ifsq_started = 0;
610 		ifsq->ifsq_hw_oactive = 0;
611 		ifsq_set_cpuid(ifsq, 0);
612 		if (ifp->if_serializer != NULL)
613 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
614 
615 		ifsq->ifsq_stage =
616 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
617 		    M_DEVBUF, M_WAITOK | M_ZERO);
618 		for (i = 0; i < ncpus; ++i)
619 			ifsq->ifsq_stage[i].stg_subq = ifsq;
620 
621 		ifsq->ifsq_ifstart_nmsg =
622 		    kmalloc(ncpus * sizeof(struct netmsg_base),
623 		    M_LWKTMSG, M_WAITOK);
624 		for (i = 0; i < ncpus; ++i) {
625 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
626 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
627 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
628 		}
629 	}
630 	ifq_set_classic(ifq);
631 
632 	if (!SLIST_EMPTY(&domains))
633 		if_attachdomain1(ifp);
634 
635 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
636 	lwkt_reltoken(&ifnet_token);
637 
638 	/* Announce the interface. */
639 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
640 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
641 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
642 
643 	mtx_unlock(&ifp->if_ioctl_mtx);
644 }
645 
646 static void
647 if_attachdomain(void *dummy)
648 {
649 	struct ifnet *ifp;
650 
651 	crit_enter();
652 	TAILQ_FOREACH(ifp, &ifnet, if_list)
653 		if_attachdomain1(ifp);
654 	crit_exit();
655 }
656 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
657 	if_attachdomain, NULL);
658 
659 static void
660 if_attachdomain1(struct ifnet *ifp)
661 {
662 	struct domain *dp;
663 
664 	crit_enter();
665 
666 	/* address family dependent data region */
667 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
668 	SLIST_FOREACH(dp, &domains, dom_next)
669 		if (dp->dom_ifattach)
670 			ifp->if_afdata[dp->dom_family] =
671 				(*dp->dom_ifattach)(ifp);
672 	crit_exit();
673 }
674 
675 /*
676  * Purge all addresses whose type is _not_ AF_LINK
677  */
678 void
679 if_purgeaddrs_nolink(struct ifnet *ifp)
680 {
681 	struct ifaddr_container *ifac, *next;
682 
683 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
684 			      ifa_link, next) {
685 		struct ifaddr *ifa = ifac->ifa;
686 
687 		/* Leave link ifaddr as it is */
688 		if (ifa->ifa_addr->sa_family == AF_LINK)
689 			continue;
690 #ifdef INET
691 		/* XXX: Ugly!! ad hoc just for INET */
692 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
693 			struct ifaliasreq ifr;
694 #ifdef IFADDR_DEBUG_VERBOSE
695 			int i;
696 
697 			kprintf("purge in4 addr %p: ", ifa);
698 			for (i = 0; i < ncpus; ++i)
699 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
700 			kprintf("\n");
701 #endif
702 
703 			bzero(&ifr, sizeof ifr);
704 			ifr.ifra_addr = *ifa->ifa_addr;
705 			if (ifa->ifa_dstaddr)
706 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
707 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
708 				       NULL) == 0)
709 				continue;
710 		}
711 #endif /* INET */
712 #ifdef INET6
713 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
714 #ifdef IFADDR_DEBUG_VERBOSE
715 			int i;
716 
717 			kprintf("purge in6 addr %p: ", ifa);
718 			for (i = 0; i < ncpus; ++i)
719 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
720 			kprintf("\n");
721 #endif
722 
723 			in6_purgeaddr(ifa);
724 			/* ifp_addrhead is already updated */
725 			continue;
726 		}
727 #endif /* INET6 */
728 		ifa_ifunlink(ifa, ifp);
729 		ifa_destroy(ifa);
730 	}
731 }
732 
733 static void
734 ifq_stage_detach_handler(netmsg_t nmsg)
735 {
736 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
737 	int q;
738 
739 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
740 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
741 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
742 
743 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
744 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
745 	}
746 	lwkt_replymsg(&nmsg->lmsg, 0);
747 }
748 
749 static void
750 ifq_stage_detach(struct ifaltq *ifq)
751 {
752 	struct netmsg_base base;
753 	int cpu;
754 
755 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
756 	    ifq_stage_detach_handler);
757 	base.lmsg.u.ms_resultp = ifq;
758 
759 	for (cpu = 0; cpu < ncpus; ++cpu)
760 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
761 }
762 
763 struct netmsg_if_rtdel {
764 	struct netmsg_base	base;
765 	struct ifnet		*ifp;
766 };
767 
768 static void
769 if_rtdel_dispatch(netmsg_t msg)
770 {
771 	struct netmsg_if_rtdel *rmsg = (void *)msg;
772 	int i, nextcpu, cpu;
773 
774 	cpu = mycpuid;
775 	for (i = 1; i <= AF_MAX; i++) {
776 		struct radix_node_head	*rnh;
777 
778 		if ((rnh = rt_tables[cpu][i]) == NULL)
779 			continue;
780 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
781 	}
782 
783 	nextcpu = cpu + 1;
784 	if (nextcpu < ncpus)
785 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
786 	else
787 		lwkt_replymsg(&rmsg->base.lmsg, 0);
788 }
789 
790 /*
791  * Detach an interface, removing it from the
792  * list of "active" interfaces.
793  */
794 void
795 if_detach(struct ifnet *ifp)
796 {
797 	struct netmsg_if_rtdel msg;
798 	struct domain *dp;
799 	int q;
800 
801 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
802 
803 	/*
804 	 * Remove routes and flush queues.
805 	 */
806 	crit_enter();
807 #ifdef IFPOLL_ENABLE
808 	if (ifp->if_flags & IFF_NPOLLING)
809 		ifpoll_deregister(ifp);
810 #endif
811 	if_down(ifp);
812 
813 #ifdef ALTQ
814 	if (ifq_is_enabled(&ifp->if_snd))
815 		altq_disable(&ifp->if_snd);
816 	if (ifq_is_attached(&ifp->if_snd))
817 		altq_detach(&ifp->if_snd);
818 #endif
819 
820 	/*
821 	 * Clean up all addresses.
822 	 */
823 	ifp->if_lladdr = NULL;
824 
825 	if_purgeaddrs_nolink(ifp);
826 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
827 		struct ifaddr *ifa;
828 
829 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
830 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
831 			("non-link ifaddr is left on if_addrheads"));
832 
833 		ifa_ifunlink(ifa, ifp);
834 		ifa_destroy(ifa);
835 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
836 			("there are still ifaddrs left on if_addrheads"));
837 	}
838 
839 #ifdef INET
840 	/*
841 	 * Remove all IPv4 kernel structures related to ifp.
842 	 */
843 	in_ifdetach(ifp);
844 #endif
845 
846 #ifdef INET6
847 	/*
848 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
849 	 * before removing routing entries below, since IPv6 interface direct
850 	 * routes are expected to be removed by the IPv6-specific kernel API.
851 	 * Otherwise, the kernel will detect some inconsistency and bark it.
852 	 */
853 	in6_ifdetach(ifp);
854 #endif
855 
856 	/*
857 	 * Delete all remaining routes using this interface
858 	 */
859 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
860 	    if_rtdel_dispatch);
861 	msg.ifp = ifp;
862 	rt_domsg_global(&msg.base);
863 
864 	/* Announce that the interface is gone. */
865 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
866 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
867 
868 	SLIST_FOREACH(dp, &domains, dom_next)
869 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
870 			(*dp->dom_ifdetach)(ifp,
871 				ifp->if_afdata[dp->dom_family]);
872 
873 	/*
874 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
875 	 */
876 	lwkt_gettoken(&ifnet_token);
877 	ifindex2ifnet[ifp->if_index] = NULL;
878 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
879 		if_index--;
880 	TAILQ_REMOVE(&ifnet, ifp, if_link);
881 	lwkt_reltoken(&ifnet_token);
882 
883 	kfree(ifp->if_addrheads, M_IFADDR);
884 
885 	lwkt_synchronize_ipiqs("if_detach");
886 	ifq_stage_detach(&ifp->if_snd);
887 
888 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
889 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
890 
891 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
892 		kfree(ifsq->ifsq_stage, M_DEVBUF);
893 	}
894 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
895 
896 	kfree(ifp->if_data_pcpu, M_DEVBUF);
897 
898 	crit_exit();
899 }
900 
901 /*
902  * Create interface group without members
903  */
904 struct ifg_group *
905 if_creategroup(const char *groupname)
906 {
907         struct ifg_group        *ifg = NULL;
908 
909         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
910             M_TEMP, M_NOWAIT)) == NULL)
911                 return (NULL);
912 
913         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
914         ifg->ifg_refcnt = 0;
915         ifg->ifg_carp_demoted = 0;
916         TAILQ_INIT(&ifg->ifg_members);
917 #if NPF > 0
918         pfi_attach_ifgroup(ifg);
919 #endif
920         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
921 
922         return (ifg);
923 }
924 
925 /*
926  * Add a group to an interface
927  */
928 int
929 if_addgroup(struct ifnet *ifp, const char *groupname)
930 {
931 	struct ifg_list		*ifgl;
932 	struct ifg_group	*ifg = NULL;
933 	struct ifg_member	*ifgm;
934 
935 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
936 	    groupname[strlen(groupname) - 1] <= '9')
937 		return (EINVAL);
938 
939 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
940 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
941 			return (EEXIST);
942 
943 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
944 		return (ENOMEM);
945 
946 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
947 		kfree(ifgl, M_TEMP);
948 		return (ENOMEM);
949 	}
950 
951 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
952 		if (!strcmp(ifg->ifg_group, groupname))
953 			break;
954 
955 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
956 		kfree(ifgl, M_TEMP);
957 		kfree(ifgm, M_TEMP);
958 		return (ENOMEM);
959 	}
960 
961 	ifg->ifg_refcnt++;
962 	ifgl->ifgl_group = ifg;
963 	ifgm->ifgm_ifp = ifp;
964 
965 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
966 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
967 
968 #if NPF > 0
969 	pfi_group_change(groupname);
970 #endif
971 
972 	return (0);
973 }
974 
975 /*
976  * Remove a group from an interface
977  */
978 int
979 if_delgroup(struct ifnet *ifp, const char *groupname)
980 {
981 	struct ifg_list		*ifgl;
982 	struct ifg_member	*ifgm;
983 
984 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
985 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
986 			break;
987 	if (ifgl == NULL)
988 		return (ENOENT);
989 
990 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
991 
992 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
993 		if (ifgm->ifgm_ifp == ifp)
994 			break;
995 
996 	if (ifgm != NULL) {
997 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
998 		kfree(ifgm, M_TEMP);
999 	}
1000 
1001 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1002 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
1003 #if NPF > 0
1004 		pfi_detach_ifgroup(ifgl->ifgl_group);
1005 #endif
1006 		kfree(ifgl->ifgl_group, M_TEMP);
1007 	}
1008 
1009 	kfree(ifgl, M_TEMP);
1010 
1011 #if NPF > 0
1012 	pfi_group_change(groupname);
1013 #endif
1014 
1015 	return (0);
1016 }
1017 
1018 /*
1019  * Stores all groups from an interface in memory pointed
1020  * to by data
1021  */
1022 int
1023 if_getgroup(caddr_t data, struct ifnet *ifp)
1024 {
1025 	int			 len, error;
1026 	struct ifg_list		*ifgl;
1027 	struct ifg_req		 ifgrq, *ifgp;
1028 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1029 
1030 	if (ifgr->ifgr_len == 0) {
1031 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1032 			ifgr->ifgr_len += sizeof(struct ifg_req);
1033 		return (0);
1034 	}
1035 
1036 	len = ifgr->ifgr_len;
1037 	ifgp = ifgr->ifgr_groups;
1038 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1039 		if (len < sizeof(ifgrq))
1040 			return (EINVAL);
1041 		bzero(&ifgrq, sizeof ifgrq);
1042 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1043 		    sizeof(ifgrq.ifgrq_group));
1044 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1045 		    sizeof(struct ifg_req))))
1046 			return (error);
1047 		len -= sizeof(ifgrq);
1048 		ifgp++;
1049 	}
1050 
1051 	return (0);
1052 }
1053 
1054 /*
1055  * Stores all members of a group in memory pointed to by data
1056  */
1057 int
1058 if_getgroupmembers(caddr_t data)
1059 {
1060 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1061 	struct ifg_group	*ifg;
1062 	struct ifg_member	*ifgm;
1063 	struct ifg_req		 ifgrq, *ifgp;
1064 	int			 len, error;
1065 
1066 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1067 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1068 			break;
1069 	if (ifg == NULL)
1070 		return (ENOENT);
1071 
1072 	if (ifgr->ifgr_len == 0) {
1073 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1074 			ifgr->ifgr_len += sizeof(ifgrq);
1075 		return (0);
1076 	}
1077 
1078 	len = ifgr->ifgr_len;
1079 	ifgp = ifgr->ifgr_groups;
1080 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1081 		if (len < sizeof(ifgrq))
1082 			return (EINVAL);
1083 		bzero(&ifgrq, sizeof ifgrq);
1084 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1085 		    sizeof(ifgrq.ifgrq_member));
1086 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1087 		    sizeof(struct ifg_req))))
1088 			return (error);
1089 		len -= sizeof(ifgrq);
1090 		ifgp++;
1091 	}
1092 
1093 	return (0);
1094 }
1095 
1096 /*
1097  * Delete Routes for a Network Interface
1098  *
1099  * Called for each routing entry via the rnh->rnh_walktree() call above
1100  * to delete all route entries referencing a detaching network interface.
1101  *
1102  * Arguments:
1103  *	rn	pointer to node in the routing table
1104  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1105  *
1106  * Returns:
1107  *	0	successful
1108  *	errno	failed - reason indicated
1109  *
1110  */
1111 static int
1112 if_rtdel(struct radix_node *rn, void *arg)
1113 {
1114 	struct rtentry	*rt = (struct rtentry *)rn;
1115 	struct ifnet	*ifp = arg;
1116 	int		err;
1117 
1118 	if (rt->rt_ifp == ifp) {
1119 
1120 		/*
1121 		 * Protect (sorta) against walktree recursion problems
1122 		 * with cloned routes
1123 		 */
1124 		if (!(rt->rt_flags & RTF_UP))
1125 			return (0);
1126 
1127 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1128 				rt_mask(rt), rt->rt_flags,
1129 				NULL);
1130 		if (err) {
1131 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1132 		}
1133 	}
1134 
1135 	return (0);
1136 }
1137 
1138 /*
1139  * Locate an interface based on a complete address.
1140  */
1141 struct ifaddr *
1142 ifa_ifwithaddr(struct sockaddr *addr)
1143 {
1144 	struct ifnet *ifp;
1145 
1146 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1147 		struct ifaddr_container *ifac;
1148 
1149 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1150 			struct ifaddr *ifa = ifac->ifa;
1151 
1152 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1153 				continue;
1154 			if (sa_equal(addr, ifa->ifa_addr))
1155 				return (ifa);
1156 			if ((ifp->if_flags & IFF_BROADCAST) &&
1157 			    ifa->ifa_broadaddr &&
1158 			    /* IPv6 doesn't have broadcast */
1159 			    ifa->ifa_broadaddr->sa_len != 0 &&
1160 			    sa_equal(ifa->ifa_broadaddr, addr))
1161 				return (ifa);
1162 		}
1163 	}
1164 	return (NULL);
1165 }
1166 /*
1167  * Locate the point to point interface with a given destination address.
1168  */
1169 struct ifaddr *
1170 ifa_ifwithdstaddr(struct sockaddr *addr)
1171 {
1172 	struct ifnet *ifp;
1173 
1174 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1175 		struct ifaddr_container *ifac;
1176 
1177 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1178 			continue;
1179 
1180 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1181 			struct ifaddr *ifa = ifac->ifa;
1182 
1183 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1184 				continue;
1185 			if (ifa->ifa_dstaddr &&
1186 			    sa_equal(addr, ifa->ifa_dstaddr))
1187 				return (ifa);
1188 		}
1189 	}
1190 	return (NULL);
1191 }
1192 
1193 /*
1194  * Find an interface on a specific network.  If many, choice
1195  * is most specific found.
1196  */
1197 struct ifaddr *
1198 ifa_ifwithnet(struct sockaddr *addr)
1199 {
1200 	struct ifnet *ifp;
1201 	struct ifaddr *ifa_maybe = NULL;
1202 	u_int af = addr->sa_family;
1203 	char *addr_data = addr->sa_data, *cplim;
1204 
1205 	/*
1206 	 * AF_LINK addresses can be looked up directly by their index number,
1207 	 * so do that if we can.
1208 	 */
1209 	if (af == AF_LINK) {
1210 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1211 
1212 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1213 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1214 	}
1215 
1216 	/*
1217 	 * Scan though each interface, looking for ones that have
1218 	 * addresses in this address family.
1219 	 */
1220 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1221 		struct ifaddr_container *ifac;
1222 
1223 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1224 			struct ifaddr *ifa = ifac->ifa;
1225 			char *cp, *cp2, *cp3;
1226 
1227 			if (ifa->ifa_addr->sa_family != af)
1228 next:				continue;
1229 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1230 				/*
1231 				 * This is a bit broken as it doesn't
1232 				 * take into account that the remote end may
1233 				 * be a single node in the network we are
1234 				 * looking for.
1235 				 * The trouble is that we don't know the
1236 				 * netmask for the remote end.
1237 				 */
1238 				if (ifa->ifa_dstaddr != NULL &&
1239 				    sa_equal(addr, ifa->ifa_dstaddr))
1240 					return (ifa);
1241 			} else {
1242 				/*
1243 				 * if we have a special address handler,
1244 				 * then use it instead of the generic one.
1245 				 */
1246 				if (ifa->ifa_claim_addr) {
1247 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1248 						return (ifa);
1249 					} else {
1250 						continue;
1251 					}
1252 				}
1253 
1254 				/*
1255 				 * Scan all the bits in the ifa's address.
1256 				 * If a bit dissagrees with what we are
1257 				 * looking for, mask it with the netmask
1258 				 * to see if it really matters.
1259 				 * (A byte at a time)
1260 				 */
1261 				if (ifa->ifa_netmask == 0)
1262 					continue;
1263 				cp = addr_data;
1264 				cp2 = ifa->ifa_addr->sa_data;
1265 				cp3 = ifa->ifa_netmask->sa_data;
1266 				cplim = ifa->ifa_netmask->sa_len +
1267 					(char *)ifa->ifa_netmask;
1268 				while (cp3 < cplim)
1269 					if ((*cp++ ^ *cp2++) & *cp3++)
1270 						goto next; /* next address! */
1271 				/*
1272 				 * If the netmask of what we just found
1273 				 * is more specific than what we had before
1274 				 * (if we had one) then remember the new one
1275 				 * before continuing to search
1276 				 * for an even better one.
1277 				 */
1278 				if (ifa_maybe == NULL ||
1279 				    rn_refines((char *)ifa->ifa_netmask,
1280 					       (char *)ifa_maybe->ifa_netmask))
1281 					ifa_maybe = ifa;
1282 			}
1283 		}
1284 	}
1285 	return (ifa_maybe);
1286 }
1287 
1288 /*
1289  * Find an interface address specific to an interface best matching
1290  * a given address.
1291  */
1292 struct ifaddr *
1293 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1294 {
1295 	struct ifaddr_container *ifac;
1296 	char *cp, *cp2, *cp3;
1297 	char *cplim;
1298 	struct ifaddr *ifa_maybe = NULL;
1299 	u_int af = addr->sa_family;
1300 
1301 	if (af >= AF_MAX)
1302 		return (0);
1303 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1304 		struct ifaddr *ifa = ifac->ifa;
1305 
1306 		if (ifa->ifa_addr->sa_family != af)
1307 			continue;
1308 		if (ifa_maybe == NULL)
1309 			ifa_maybe = ifa;
1310 		if (ifa->ifa_netmask == NULL) {
1311 			if (sa_equal(addr, ifa->ifa_addr) ||
1312 			    (ifa->ifa_dstaddr != NULL &&
1313 			     sa_equal(addr, ifa->ifa_dstaddr)))
1314 				return (ifa);
1315 			continue;
1316 		}
1317 		if (ifp->if_flags & IFF_POINTOPOINT) {
1318 			if (sa_equal(addr, ifa->ifa_dstaddr))
1319 				return (ifa);
1320 		} else {
1321 			cp = addr->sa_data;
1322 			cp2 = ifa->ifa_addr->sa_data;
1323 			cp3 = ifa->ifa_netmask->sa_data;
1324 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1325 			for (; cp3 < cplim; cp3++)
1326 				if ((*cp++ ^ *cp2++) & *cp3)
1327 					break;
1328 			if (cp3 == cplim)
1329 				return (ifa);
1330 		}
1331 	}
1332 	return (ifa_maybe);
1333 }
1334 
1335 /*
1336  * Default action when installing a route with a Link Level gateway.
1337  * Lookup an appropriate real ifa to point to.
1338  * This should be moved to /sys/net/link.c eventually.
1339  */
1340 static void
1341 link_rtrequest(int cmd, struct rtentry *rt)
1342 {
1343 	struct ifaddr *ifa;
1344 	struct sockaddr *dst;
1345 	struct ifnet *ifp;
1346 
1347 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1348 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1349 		return;
1350 	ifa = ifaof_ifpforaddr(dst, ifp);
1351 	if (ifa != NULL) {
1352 		IFAFREE(rt->rt_ifa);
1353 		IFAREF(ifa);
1354 		rt->rt_ifa = ifa;
1355 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1356 			ifa->ifa_rtrequest(cmd, rt);
1357 	}
1358 }
1359 
1360 /*
1361  * Mark an interface down and notify protocols of
1362  * the transition.
1363  * NOTE: must be called at splnet or eqivalent.
1364  */
1365 void
1366 if_unroute(struct ifnet *ifp, int flag, int fam)
1367 {
1368 	struct ifaddr_container *ifac;
1369 
1370 	ifp->if_flags &= ~flag;
1371 	getmicrotime(&ifp->if_lastchange);
1372 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1373 		struct ifaddr *ifa = ifac->ifa;
1374 
1375 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1376 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1377 	}
1378 	ifq_purge_all(&ifp->if_snd);
1379 	rt_ifmsg(ifp);
1380 }
1381 
1382 /*
1383  * Mark an interface up and notify protocols of
1384  * the transition.
1385  * NOTE: must be called at splnet or eqivalent.
1386  */
1387 void
1388 if_route(struct ifnet *ifp, int flag, int fam)
1389 {
1390 	struct ifaddr_container *ifac;
1391 
1392 	ifq_purge_all(&ifp->if_snd);
1393 	ifp->if_flags |= flag;
1394 	getmicrotime(&ifp->if_lastchange);
1395 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1396 		struct ifaddr *ifa = ifac->ifa;
1397 
1398 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1399 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1400 	}
1401 	rt_ifmsg(ifp);
1402 #ifdef INET6
1403 	in6_if_up(ifp);
1404 #endif
1405 }
1406 
1407 /*
1408  * Mark an interface down and notify protocols of the transition.  An
1409  * interface going down is also considered to be a synchronizing event.
1410  * We must ensure that all packet processing related to the interface
1411  * has completed before we return so e.g. the caller can free the ifnet
1412  * structure that the mbufs may be referencing.
1413  *
1414  * NOTE: must be called at splnet or eqivalent.
1415  */
1416 void
1417 if_down(struct ifnet *ifp)
1418 {
1419 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1420 	netmsg_service_sync();
1421 }
1422 
1423 /*
1424  * Mark an interface up and notify protocols of
1425  * the transition.
1426  * NOTE: must be called at splnet or eqivalent.
1427  */
1428 void
1429 if_up(struct ifnet *ifp)
1430 {
1431 	if_route(ifp, IFF_UP, AF_UNSPEC);
1432 }
1433 
1434 /*
1435  * Process a link state change.
1436  * NOTE: must be called at splsoftnet or equivalent.
1437  */
1438 void
1439 if_link_state_change(struct ifnet *ifp)
1440 {
1441 	int link_state = ifp->if_link_state;
1442 
1443 	rt_ifmsg(ifp);
1444 	devctl_notify("IFNET", ifp->if_xname,
1445 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1446 }
1447 
1448 /*
1449  * Handle interface watchdog timer routines.  Called
1450  * from softclock, we decrement timers (if set) and
1451  * call the appropriate interface routine on expiration.
1452  */
1453 static void
1454 if_slowtimo(void *arg)
1455 {
1456 	struct ifnet *ifp;
1457 
1458 	crit_enter();
1459 
1460 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1461 		if (if_stats_compat) {
1462 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1463 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1464 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1465 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1466 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1467 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1468 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1469 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1470 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1471 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1472 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1473 		}
1474 
1475 		if (ifp->if_timer == 0 || --ifp->if_timer)
1476 			continue;
1477 		if (ifp->if_watchdog) {
1478 			if (ifnet_tryserialize_all(ifp)) {
1479 				(*ifp->if_watchdog)(ifp);
1480 				ifnet_deserialize_all(ifp);
1481 			} else {
1482 				/* try again next timeout */
1483 				++ifp->if_timer;
1484 			}
1485 		}
1486 	}
1487 
1488 	crit_exit();
1489 
1490 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1491 }
1492 
1493 /*
1494  * Map interface name to
1495  * interface structure pointer.
1496  */
1497 struct ifnet *
1498 ifunit(const char *name)
1499 {
1500 	struct ifnet *ifp;
1501 
1502 	/*
1503 	 * Search all the interfaces for this name/number
1504 	 */
1505 
1506 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1507 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1508 			break;
1509 	}
1510 	return (ifp);
1511 }
1512 
1513 
1514 /*
1515  * Map interface name in a sockaddr_dl to
1516  * interface structure pointer.
1517  */
1518 struct ifnet *
1519 if_withname(struct sockaddr *sa)
1520 {
1521 	char ifname[IFNAMSIZ+1];
1522 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1523 
1524 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1525 	     (sdl->sdl_nlen > IFNAMSIZ) )
1526 		return NULL;
1527 
1528 	/*
1529 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1530 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1531 	 * and there might not be room to put the trailing null anyway, so we
1532 	 * make a local copy that we know we can null terminate safely.
1533 	 */
1534 
1535 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1536 	ifname[sdl->sdl_nlen] = '\0';
1537 	return ifunit(ifname);
1538 }
1539 
1540 
1541 /*
1542  * Interface ioctls.
1543  */
1544 int
1545 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1546 {
1547 	struct ifnet *ifp;
1548 	struct ifreq *ifr;
1549 	struct ifstat *ifs;
1550 	int error;
1551 	short oif_flags;
1552 	int new_flags;
1553 #ifdef COMPAT_43
1554 	int ocmd;
1555 #endif
1556 	size_t namelen, onamelen;
1557 	char new_name[IFNAMSIZ];
1558 	struct ifaddr *ifa;
1559 	struct sockaddr_dl *sdl;
1560 
1561 	switch (cmd) {
1562 	case SIOCGIFCONF:
1563 	case OSIOCGIFCONF:
1564 		return (ifconf(cmd, data, cred));
1565 	default:
1566 		break;
1567 	}
1568 
1569 	ifr = (struct ifreq *)data;
1570 
1571 	switch (cmd) {
1572 	case SIOCIFCREATE:
1573 	case SIOCIFCREATE2:
1574 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1575 			return (error);
1576 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1577 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1578 	case SIOCIFDESTROY:
1579 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1580 			return (error);
1581 		return (if_clone_destroy(ifr->ifr_name));
1582 	case SIOCIFGCLONERS:
1583 		return (if_clone_list((struct if_clonereq *)data));
1584 	default:
1585 		break;
1586 	}
1587 
1588 	/*
1589 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1590 	 * lock to serialize the ifconfig ioctl operation.
1591 	 */
1592 	ifp = ifunit(ifr->ifr_name);
1593 	if (ifp == NULL)
1594 		return (ENXIO);
1595 	error = 0;
1596 	mtx_lock(&ifp->if_ioctl_mtx);
1597 
1598 	switch (cmd) {
1599 	case SIOCGIFINDEX:
1600 		ifr->ifr_index = ifp->if_index;
1601 		break;
1602 
1603 	case SIOCGIFFLAGS:
1604 		ifr->ifr_flags = ifp->if_flags;
1605 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1606 		break;
1607 
1608 	case SIOCGIFCAP:
1609 		ifr->ifr_reqcap = ifp->if_capabilities;
1610 		ifr->ifr_curcap = ifp->if_capenable;
1611 		break;
1612 
1613 	case SIOCGIFMETRIC:
1614 		ifr->ifr_metric = ifp->if_metric;
1615 		break;
1616 
1617 	case SIOCGIFMTU:
1618 		ifr->ifr_mtu = ifp->if_mtu;
1619 		break;
1620 
1621 	case SIOCGIFTSOLEN:
1622 		ifr->ifr_tsolen = ifp->if_tsolen;
1623 		break;
1624 
1625 	case SIOCGIFDATA:
1626 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1627 				sizeof(ifp->if_data));
1628 		break;
1629 
1630 	case SIOCGIFPHYS:
1631 		ifr->ifr_phys = ifp->if_physical;
1632 		break;
1633 
1634 	case SIOCGIFPOLLCPU:
1635 		ifr->ifr_pollcpu = -1;
1636 		break;
1637 
1638 	case SIOCSIFPOLLCPU:
1639 		break;
1640 
1641 	case SIOCSIFFLAGS:
1642 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1643 		if (error)
1644 			break;
1645 		new_flags = (ifr->ifr_flags & 0xffff) |
1646 		    (ifr->ifr_flagshigh << 16);
1647 		if (ifp->if_flags & IFF_SMART) {
1648 			/* Smart drivers twiddle their own routes */
1649 		} else if (ifp->if_flags & IFF_UP &&
1650 		    (new_flags & IFF_UP) == 0) {
1651 			crit_enter();
1652 			if_down(ifp);
1653 			crit_exit();
1654 		} else if (new_flags & IFF_UP &&
1655 		    (ifp->if_flags & IFF_UP) == 0) {
1656 			crit_enter();
1657 			if_up(ifp);
1658 			crit_exit();
1659 		}
1660 
1661 #ifdef IFPOLL_ENABLE
1662 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1663 			if (new_flags & IFF_NPOLLING)
1664 				ifpoll_register(ifp);
1665 			else
1666 				ifpoll_deregister(ifp);
1667 		}
1668 #endif
1669 
1670 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1671 			(new_flags &~ IFF_CANTCHANGE);
1672 		if (new_flags & IFF_PPROMISC) {
1673 			/* Permanently promiscuous mode requested */
1674 			ifp->if_flags |= IFF_PROMISC;
1675 		} else if (ifp->if_pcount == 0) {
1676 			ifp->if_flags &= ~IFF_PROMISC;
1677 		}
1678 		if (ifp->if_ioctl) {
1679 			ifnet_serialize_all(ifp);
1680 			ifp->if_ioctl(ifp, cmd, data, cred);
1681 			ifnet_deserialize_all(ifp);
1682 		}
1683 		getmicrotime(&ifp->if_lastchange);
1684 		break;
1685 
1686 	case SIOCSIFCAP:
1687 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1688 		if (error)
1689 			break;
1690 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1691 			error = EINVAL;
1692 			break;
1693 		}
1694 		ifnet_serialize_all(ifp);
1695 		ifp->if_ioctl(ifp, cmd, data, cred);
1696 		ifnet_deserialize_all(ifp);
1697 		break;
1698 
1699 	case SIOCSIFNAME:
1700 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1701 		if (error)
1702 			break;
1703 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1704 		if (error)
1705 			break;
1706 		if (new_name[0] == '\0') {
1707 			error = EINVAL;
1708 			break;
1709 		}
1710 		if (ifunit(new_name) != NULL) {
1711 			error = EEXIST;
1712 			break;
1713 		}
1714 
1715 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1716 
1717 		/* Announce the departure of the interface. */
1718 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1719 
1720 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1721 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1722 		/* XXX IFA_LOCK(ifa); */
1723 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1724 		namelen = strlen(new_name);
1725 		onamelen = sdl->sdl_nlen;
1726 		/*
1727 		 * Move the address if needed.  This is safe because we
1728 		 * allocate space for a name of length IFNAMSIZ when we
1729 		 * create this in if_attach().
1730 		 */
1731 		if (namelen != onamelen) {
1732 			bcopy(sdl->sdl_data + onamelen,
1733 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1734 		}
1735 		bcopy(new_name, sdl->sdl_data, namelen);
1736 		sdl->sdl_nlen = namelen;
1737 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1738 		bzero(sdl->sdl_data, onamelen);
1739 		while (namelen != 0)
1740 			sdl->sdl_data[--namelen] = 0xff;
1741 		/* XXX IFA_UNLOCK(ifa) */
1742 
1743 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1744 
1745 		/* Announce the return of the interface. */
1746 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1747 		break;
1748 
1749 	case SIOCSIFMETRIC:
1750 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1751 		if (error)
1752 			break;
1753 		ifp->if_metric = ifr->ifr_metric;
1754 		getmicrotime(&ifp->if_lastchange);
1755 		break;
1756 
1757 	case SIOCSIFPHYS:
1758 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1759 		if (error)
1760 			break;
1761 		if (ifp->if_ioctl == NULL) {
1762 		        error = EOPNOTSUPP;
1763 			break;
1764 		}
1765 		ifnet_serialize_all(ifp);
1766 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1767 		ifnet_deserialize_all(ifp);
1768 		if (error == 0)
1769 			getmicrotime(&ifp->if_lastchange);
1770 		break;
1771 
1772 	case SIOCSIFMTU:
1773 	{
1774 		u_long oldmtu = ifp->if_mtu;
1775 
1776 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1777 		if (error)
1778 			break;
1779 		if (ifp->if_ioctl == NULL) {
1780 			error = EOPNOTSUPP;
1781 			break;
1782 		}
1783 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
1784 			error = EINVAL;
1785 			break;
1786 		}
1787 		ifnet_serialize_all(ifp);
1788 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1789 		ifnet_deserialize_all(ifp);
1790 		if (error == 0) {
1791 			getmicrotime(&ifp->if_lastchange);
1792 			rt_ifmsg(ifp);
1793 		}
1794 		/*
1795 		 * If the link MTU changed, do network layer specific procedure.
1796 		 */
1797 		if (ifp->if_mtu != oldmtu) {
1798 #ifdef INET6
1799 			nd6_setmtu(ifp);
1800 #endif
1801 		}
1802 		break;
1803 	}
1804 
1805 	case SIOCSIFTSOLEN:
1806 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1807 		if (error)
1808 			break;
1809 
1810 		/* XXX need driver supplied upper limit */
1811 		if (ifr->ifr_tsolen <= 0) {
1812 			error = EINVAL;
1813 			break;
1814 		}
1815 		ifp->if_tsolen = ifr->ifr_tsolen;
1816 		break;
1817 
1818 	case SIOCADDMULTI:
1819 	case SIOCDELMULTI:
1820 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1821 		if (error)
1822 			break;
1823 
1824 		/* Don't allow group membership on non-multicast interfaces. */
1825 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1826 			error = EOPNOTSUPP;
1827 			break;
1828 		}
1829 
1830 		/* Don't let users screw up protocols' entries. */
1831 		if (ifr->ifr_addr.sa_family != AF_LINK) {
1832 			error = EINVAL;
1833 			break;
1834 		}
1835 
1836 		if (cmd == SIOCADDMULTI) {
1837 			struct ifmultiaddr *ifma;
1838 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1839 		} else {
1840 			error = if_delmulti(ifp, &ifr->ifr_addr);
1841 		}
1842 		if (error == 0)
1843 			getmicrotime(&ifp->if_lastchange);
1844 		break;
1845 
1846 	case SIOCSIFPHYADDR:
1847 	case SIOCDIFPHYADDR:
1848 #ifdef INET6
1849 	case SIOCSIFPHYADDR_IN6:
1850 #endif
1851 	case SIOCSLIFPHYADDR:
1852         case SIOCSIFMEDIA:
1853 	case SIOCSIFGENERIC:
1854 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1855 		if (error)
1856 			break;
1857 		if (ifp->if_ioctl == 0) {
1858 			error = EOPNOTSUPP;
1859 			break;
1860 		}
1861 		ifnet_serialize_all(ifp);
1862 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1863 		ifnet_deserialize_all(ifp);
1864 		if (error == 0)
1865 			getmicrotime(&ifp->if_lastchange);
1866 		break;
1867 
1868 	case SIOCGIFSTATUS:
1869 		ifs = (struct ifstat *)data;
1870 		ifs->ascii[0] = '\0';
1871 		/* fall through */
1872 	case SIOCGIFPSRCADDR:
1873 	case SIOCGIFPDSTADDR:
1874 	case SIOCGLIFPHYADDR:
1875 	case SIOCGIFMEDIA:
1876 	case SIOCGIFGENERIC:
1877 		if (ifp->if_ioctl == NULL) {
1878 			error = EOPNOTSUPP;
1879 			break;
1880 		}
1881 		ifnet_serialize_all(ifp);
1882 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1883 		ifnet_deserialize_all(ifp);
1884 		break;
1885 
1886 	case SIOCSIFLLADDR:
1887 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1888 		if (error)
1889 			break;
1890 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
1891 				     ifr->ifr_addr.sa_len);
1892 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1893 		break;
1894 
1895 	default:
1896 		oif_flags = ifp->if_flags;
1897 		if (so->so_proto == 0) {
1898 			error = EOPNOTSUPP;
1899 			break;
1900 		}
1901 #ifndef COMPAT_43
1902 		error = so_pru_control_direct(so, cmd, data, ifp);
1903 #else
1904 		ocmd = cmd;
1905 
1906 		switch (cmd) {
1907 		case SIOCSIFDSTADDR:
1908 		case SIOCSIFADDR:
1909 		case SIOCSIFBRDADDR:
1910 		case SIOCSIFNETMASK:
1911 #if BYTE_ORDER != BIG_ENDIAN
1912 			if (ifr->ifr_addr.sa_family == 0 &&
1913 			    ifr->ifr_addr.sa_len < 16) {
1914 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1915 				ifr->ifr_addr.sa_len = 16;
1916 			}
1917 #else
1918 			if (ifr->ifr_addr.sa_len == 0)
1919 				ifr->ifr_addr.sa_len = 16;
1920 #endif
1921 			break;
1922 		case OSIOCGIFADDR:
1923 			cmd = SIOCGIFADDR;
1924 			break;
1925 		case OSIOCGIFDSTADDR:
1926 			cmd = SIOCGIFDSTADDR;
1927 			break;
1928 		case OSIOCGIFBRDADDR:
1929 			cmd = SIOCGIFBRDADDR;
1930 			break;
1931 		case OSIOCGIFNETMASK:
1932 			cmd = SIOCGIFNETMASK;
1933 			break;
1934 		default:
1935 			break;
1936 		}
1937 
1938 		error = so_pru_control_direct(so, cmd, data, ifp);
1939 
1940 		switch (ocmd) {
1941 		case OSIOCGIFADDR:
1942 		case OSIOCGIFDSTADDR:
1943 		case OSIOCGIFBRDADDR:
1944 		case OSIOCGIFNETMASK:
1945 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1946 			break;
1947 		}
1948 #endif /* COMPAT_43 */
1949 
1950 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1951 #ifdef INET6
1952 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1953 			if (ifp->if_flags & IFF_UP) {
1954 				crit_enter();
1955 				in6_if_up(ifp);
1956 				crit_exit();
1957 			}
1958 #endif
1959 		}
1960 		break;
1961 	}
1962 
1963 	mtx_unlock(&ifp->if_ioctl_mtx);
1964 	return (error);
1965 }
1966 
1967 /*
1968  * Set/clear promiscuous mode on interface ifp based on the truth value
1969  * of pswitch.  The calls are reference counted so that only the first
1970  * "on" request actually has an effect, as does the final "off" request.
1971  * Results are undefined if the "off" and "on" requests are not matched.
1972  */
1973 int
1974 ifpromisc(struct ifnet *ifp, int pswitch)
1975 {
1976 	struct ifreq ifr;
1977 	int error;
1978 	int oldflags;
1979 
1980 	oldflags = ifp->if_flags;
1981 	if (ifp->if_flags & IFF_PPROMISC) {
1982 		/* Do nothing if device is in permanently promiscuous mode */
1983 		ifp->if_pcount += pswitch ? 1 : -1;
1984 		return (0);
1985 	}
1986 	if (pswitch) {
1987 		/*
1988 		 * If the device is not configured up, we cannot put it in
1989 		 * promiscuous mode.
1990 		 */
1991 		if ((ifp->if_flags & IFF_UP) == 0)
1992 			return (ENETDOWN);
1993 		if (ifp->if_pcount++ != 0)
1994 			return (0);
1995 		ifp->if_flags |= IFF_PROMISC;
1996 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1997 		    ifp->if_xname);
1998 	} else {
1999 		if (--ifp->if_pcount > 0)
2000 			return (0);
2001 		ifp->if_flags &= ~IFF_PROMISC;
2002 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
2003 		    ifp->if_xname);
2004 	}
2005 	ifr.ifr_flags = ifp->if_flags;
2006 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
2007 	ifnet_serialize_all(ifp);
2008 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2009 	ifnet_deserialize_all(ifp);
2010 	if (error == 0)
2011 		rt_ifmsg(ifp);
2012 	else
2013 		ifp->if_flags = oldflags;
2014 	return error;
2015 }
2016 
2017 /*
2018  * Return interface configuration
2019  * of system.  List may be used
2020  * in later ioctl's (above) to get
2021  * other information.
2022  */
2023 static int
2024 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2025 {
2026 	struct ifconf *ifc = (struct ifconf *)data;
2027 	struct ifnet *ifp;
2028 	struct sockaddr *sa;
2029 	struct ifreq ifr, *ifrp;
2030 	int space = ifc->ifc_len, error = 0;
2031 
2032 	ifrp = ifc->ifc_req;
2033 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2034 		struct ifaddr_container *ifac;
2035 		int addrs;
2036 
2037 		if (space <= sizeof ifr)
2038 			break;
2039 
2040 		/*
2041 		 * Zero the stack declared structure first to prevent
2042 		 * memory disclosure.
2043 		 */
2044 		bzero(&ifr, sizeof(ifr));
2045 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2046 		    >= sizeof(ifr.ifr_name)) {
2047 			error = ENAMETOOLONG;
2048 			break;
2049 		}
2050 
2051 		addrs = 0;
2052 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2053 			struct ifaddr *ifa = ifac->ifa;
2054 
2055 			if (space <= sizeof ifr)
2056 				break;
2057 			sa = ifa->ifa_addr;
2058 			if (cred->cr_prison &&
2059 			    prison_if(cred, sa))
2060 				continue;
2061 			addrs++;
2062 #ifdef COMPAT_43
2063 			if (cmd == OSIOCGIFCONF) {
2064 				struct osockaddr *osa =
2065 					 (struct osockaddr *)&ifr.ifr_addr;
2066 				ifr.ifr_addr = *sa;
2067 				osa->sa_family = sa->sa_family;
2068 				error = copyout(&ifr, ifrp, sizeof ifr);
2069 				ifrp++;
2070 			} else
2071 #endif
2072 			if (sa->sa_len <= sizeof(*sa)) {
2073 				ifr.ifr_addr = *sa;
2074 				error = copyout(&ifr, ifrp, sizeof ifr);
2075 				ifrp++;
2076 			} else {
2077 				if (space < (sizeof ifr) + sa->sa_len -
2078 					    sizeof(*sa))
2079 					break;
2080 				space -= sa->sa_len - sizeof(*sa);
2081 				error = copyout(&ifr, ifrp,
2082 						sizeof ifr.ifr_name);
2083 				if (error == 0)
2084 					error = copyout(sa, &ifrp->ifr_addr,
2085 							sa->sa_len);
2086 				ifrp = (struct ifreq *)
2087 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2088 			}
2089 			if (error)
2090 				break;
2091 			space -= sizeof ifr;
2092 		}
2093 		if (error)
2094 			break;
2095 		if (!addrs) {
2096 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2097 			error = copyout(&ifr, ifrp, sizeof ifr);
2098 			if (error)
2099 				break;
2100 			space -= sizeof ifr;
2101 			ifrp++;
2102 		}
2103 	}
2104 	ifc->ifc_len -= space;
2105 	return (error);
2106 }
2107 
2108 /*
2109  * Just like if_promisc(), but for all-multicast-reception mode.
2110  */
2111 int
2112 if_allmulti(struct ifnet *ifp, int onswitch)
2113 {
2114 	int error = 0;
2115 	struct ifreq ifr;
2116 
2117 	crit_enter();
2118 
2119 	if (onswitch) {
2120 		if (ifp->if_amcount++ == 0) {
2121 			ifp->if_flags |= IFF_ALLMULTI;
2122 			ifr.ifr_flags = ifp->if_flags;
2123 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2124 			ifnet_serialize_all(ifp);
2125 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2126 					      NULL);
2127 			ifnet_deserialize_all(ifp);
2128 		}
2129 	} else {
2130 		if (ifp->if_amcount > 1) {
2131 			ifp->if_amcount--;
2132 		} else {
2133 			ifp->if_amcount = 0;
2134 			ifp->if_flags &= ~IFF_ALLMULTI;
2135 			ifr.ifr_flags = ifp->if_flags;
2136 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2137 			ifnet_serialize_all(ifp);
2138 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2139 					      NULL);
2140 			ifnet_deserialize_all(ifp);
2141 		}
2142 	}
2143 
2144 	crit_exit();
2145 
2146 	if (error == 0)
2147 		rt_ifmsg(ifp);
2148 	return error;
2149 }
2150 
2151 /*
2152  * Add a multicast listenership to the interface in question.
2153  * The link layer provides a routine which converts
2154  */
2155 int
2156 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2157     struct ifmultiaddr **retifma)
2158 {
2159 	struct sockaddr *llsa, *dupsa;
2160 	int error;
2161 	struct ifmultiaddr *ifma;
2162 
2163 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2164 
2165 	/*
2166 	 * If the matching multicast address already exists
2167 	 * then don't add a new one, just add a reference
2168 	 */
2169 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2170 		if (sa_equal(sa, ifma->ifma_addr)) {
2171 			ifma->ifma_refcount++;
2172 			if (retifma)
2173 				*retifma = ifma;
2174 			return 0;
2175 		}
2176 	}
2177 
2178 	/*
2179 	 * Give the link layer a chance to accept/reject it, and also
2180 	 * find out which AF_LINK address this maps to, if it isn't one
2181 	 * already.
2182 	 */
2183 	if (ifp->if_resolvemulti) {
2184 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2185 		if (error)
2186 			return error;
2187 	} else {
2188 		llsa = NULL;
2189 	}
2190 
2191 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2192 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK);
2193 	bcopy(sa, dupsa, sa->sa_len);
2194 
2195 	ifma->ifma_addr = dupsa;
2196 	ifma->ifma_lladdr = llsa;
2197 	ifma->ifma_ifp = ifp;
2198 	ifma->ifma_refcount = 1;
2199 	ifma->ifma_protospec = NULL;
2200 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2201 
2202 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2203 	if (retifma)
2204 		*retifma = ifma;
2205 
2206 	if (llsa != NULL) {
2207 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2208 			if (sa_equal(ifma->ifma_addr, llsa))
2209 				break;
2210 		}
2211 		if (ifma) {
2212 			ifma->ifma_refcount++;
2213 		} else {
2214 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2215 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK);
2216 			bcopy(llsa, dupsa, llsa->sa_len);
2217 			ifma->ifma_addr = dupsa;
2218 			ifma->ifma_ifp = ifp;
2219 			ifma->ifma_refcount = 1;
2220 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2221 		}
2222 	}
2223 	/*
2224 	 * We are certain we have added something, so call down to the
2225 	 * interface to let them know about it.
2226 	 */
2227 	if (ifp->if_ioctl)
2228 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2229 
2230 	return 0;
2231 }
2232 
2233 int
2234 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2235     struct ifmultiaddr **retifma)
2236 {
2237 	int error;
2238 
2239 	ifnet_serialize_all(ifp);
2240 	error = if_addmulti_serialized(ifp, sa, retifma);
2241 	ifnet_deserialize_all(ifp);
2242 
2243 	return error;
2244 }
2245 
2246 /*
2247  * Remove a reference to a multicast address on this interface.  Yell
2248  * if the request does not match an existing membership.
2249  */
2250 static int
2251 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2252 {
2253 	struct ifmultiaddr *ifma;
2254 
2255 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2256 
2257 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2258 		if (sa_equal(sa, ifma->ifma_addr))
2259 			break;
2260 	if (ifma == NULL)
2261 		return ENOENT;
2262 
2263 	if (ifma->ifma_refcount > 1) {
2264 		ifma->ifma_refcount--;
2265 		return 0;
2266 	}
2267 
2268 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2269 	sa = ifma->ifma_lladdr;
2270 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2271 	/*
2272 	 * Make sure the interface driver is notified
2273 	 * in the case of a link layer mcast group being left.
2274 	 */
2275 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2276 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2277 	kfree(ifma->ifma_addr, M_IFMADDR);
2278 	kfree(ifma, M_IFMADDR);
2279 	if (sa == NULL)
2280 		return 0;
2281 
2282 	/*
2283 	 * Now look for the link-layer address which corresponds to
2284 	 * this network address.  It had been squirreled away in
2285 	 * ifma->ifma_lladdr for this purpose (so we don't have
2286 	 * to call ifp->if_resolvemulti() again), and we saved that
2287 	 * value in sa above.  If some nasty deleted the
2288 	 * link-layer address out from underneath us, we can deal because
2289 	 * the address we stored was is not the same as the one which was
2290 	 * in the record for the link-layer address.  (So we don't complain
2291 	 * in that case.)
2292 	 */
2293 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2294 		if (sa_equal(sa, ifma->ifma_addr))
2295 			break;
2296 	if (ifma == NULL)
2297 		return 0;
2298 
2299 	if (ifma->ifma_refcount > 1) {
2300 		ifma->ifma_refcount--;
2301 		return 0;
2302 	}
2303 
2304 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2305 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2306 	kfree(ifma->ifma_addr, M_IFMADDR);
2307 	kfree(sa, M_IFMADDR);
2308 	kfree(ifma, M_IFMADDR);
2309 
2310 	return 0;
2311 }
2312 
2313 int
2314 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2315 {
2316 	int error;
2317 
2318 	ifnet_serialize_all(ifp);
2319 	error = if_delmulti_serialized(ifp, sa);
2320 	ifnet_deserialize_all(ifp);
2321 
2322 	return error;
2323 }
2324 
2325 /*
2326  * Delete all multicast group membership for an interface.
2327  * Should be used to quickly flush all multicast filters.
2328  */
2329 void
2330 if_delallmulti_serialized(struct ifnet *ifp)
2331 {
2332 	struct ifmultiaddr *ifma, mark;
2333 	struct sockaddr sa;
2334 
2335 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2336 
2337 	bzero(&sa, sizeof(sa));
2338 	sa.sa_family = AF_UNSPEC;
2339 	sa.sa_len = sizeof(sa);
2340 
2341 	bzero(&mark, sizeof(mark));
2342 	mark.ifma_addr = &sa;
2343 
2344 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2345 	while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2346 		TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2347 		TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2348 		    ifma_link);
2349 
2350 		if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2351 			continue;
2352 
2353 		if_delmulti_serialized(ifp, ifma->ifma_addr);
2354 	}
2355 	TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2356 }
2357 
2358 
2359 /*
2360  * Set the link layer address on an interface.
2361  *
2362  * At this time we only support certain types of interfaces,
2363  * and we don't allow the length of the address to change.
2364  */
2365 int
2366 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2367 {
2368 	struct sockaddr_dl *sdl;
2369 	struct ifreq ifr;
2370 
2371 	sdl = IF_LLSOCKADDR(ifp);
2372 	if (sdl == NULL)
2373 		return (EINVAL);
2374 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2375 		return (EINVAL);
2376 	switch (ifp->if_type) {
2377 	case IFT_ETHER:			/* these types use struct arpcom */
2378 	case IFT_XETHER:
2379 	case IFT_L2VLAN:
2380 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2381 		bcopy(lladdr, LLADDR(sdl), len);
2382 		break;
2383 	default:
2384 		return (ENODEV);
2385 	}
2386 	/*
2387 	 * If the interface is already up, we need
2388 	 * to re-init it in order to reprogram its
2389 	 * address filter.
2390 	 */
2391 	ifnet_serialize_all(ifp);
2392 	if ((ifp->if_flags & IFF_UP) != 0) {
2393 #ifdef INET
2394 		struct ifaddr_container *ifac;
2395 #endif
2396 
2397 		ifp->if_flags &= ~IFF_UP;
2398 		ifr.ifr_flags = ifp->if_flags;
2399 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2400 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2401 			      NULL);
2402 		ifp->if_flags |= IFF_UP;
2403 		ifr.ifr_flags = ifp->if_flags;
2404 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2405 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2406 				 NULL);
2407 #ifdef INET
2408 		/*
2409 		 * Also send gratuitous ARPs to notify other nodes about
2410 		 * the address change.
2411 		 */
2412 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2413 			struct ifaddr *ifa = ifac->ifa;
2414 
2415 			if (ifa->ifa_addr != NULL &&
2416 			    ifa->ifa_addr->sa_family == AF_INET)
2417 				arp_gratuitous(ifp, ifa);
2418 		}
2419 #endif
2420 	}
2421 	ifnet_deserialize_all(ifp);
2422 	return (0);
2423 }
2424 
2425 struct ifmultiaddr *
2426 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2427 {
2428 	struct ifmultiaddr *ifma;
2429 
2430 	/* TODO: need ifnet_serialize_main */
2431 	ifnet_serialize_all(ifp);
2432 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2433 		if (sa_equal(ifma->ifma_addr, sa))
2434 			break;
2435 	ifnet_deserialize_all(ifp);
2436 
2437 	return ifma;
2438 }
2439 
2440 /*
2441  * This function locates the first real ethernet MAC from a network
2442  * card and loads it into node, returning 0 on success or ENOENT if
2443  * no suitable interfaces were found.  It is used by the uuid code to
2444  * generate a unique 6-byte number.
2445  */
2446 int
2447 if_getanyethermac(uint16_t *node, int minlen)
2448 {
2449 	struct ifnet *ifp;
2450 	struct sockaddr_dl *sdl;
2451 
2452 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2453 		if (ifp->if_type != IFT_ETHER)
2454 			continue;
2455 		sdl = IF_LLSOCKADDR(ifp);
2456 		if (sdl->sdl_alen < minlen)
2457 			continue;
2458 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2459 		      minlen);
2460 		return(0);
2461 	}
2462 	return (ENOENT);
2463 }
2464 
2465 /*
2466  * The name argument must be a pointer to storage which will last as
2467  * long as the interface does.  For physical devices, the result of
2468  * device_get_name(dev) is a good choice and for pseudo-devices a
2469  * static string works well.
2470  */
2471 void
2472 if_initname(struct ifnet *ifp, const char *name, int unit)
2473 {
2474 	ifp->if_dname = name;
2475 	ifp->if_dunit = unit;
2476 	if (unit != IF_DUNIT_NONE)
2477 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2478 	else
2479 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2480 }
2481 
2482 int
2483 if_printf(struct ifnet *ifp, const char *fmt, ...)
2484 {
2485 	__va_list ap;
2486 	int retval;
2487 
2488 	retval = kprintf("%s: ", ifp->if_xname);
2489 	__va_start(ap, fmt);
2490 	retval += kvprintf(fmt, ap);
2491 	__va_end(ap);
2492 	return (retval);
2493 }
2494 
2495 struct ifnet *
2496 if_alloc(uint8_t type)
2497 {
2498         struct ifnet *ifp;
2499 	size_t size;
2500 
2501 	/*
2502 	 * XXX temporary hack until arpcom is setup in if_l2com
2503 	 */
2504 	if (type == IFT_ETHER)
2505 		size = sizeof(struct arpcom);
2506 	else
2507 		size = sizeof(struct ifnet);
2508 
2509 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2510 
2511 	ifp->if_type = type;
2512 
2513 	if (if_com_alloc[type] != NULL) {
2514 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2515 		if (ifp->if_l2com == NULL) {
2516 			kfree(ifp, M_IFNET);
2517 			return (NULL);
2518 		}
2519 	}
2520 	return (ifp);
2521 }
2522 
2523 void
2524 if_free(struct ifnet *ifp)
2525 {
2526 	kfree(ifp, M_IFNET);
2527 }
2528 
2529 void
2530 ifq_set_classic(struct ifaltq *ifq)
2531 {
2532 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2533 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2534 }
2535 
2536 void
2537 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2538     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2539 {
2540 	int q;
2541 
2542 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2543 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2544 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2545 	KASSERT(request != NULL, ("request is not specified"));
2546 
2547 	ifq->altq_mapsubq = mapsubq;
2548 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2549 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2550 
2551 		ifsq->ifsq_enqueue = enqueue;
2552 		ifsq->ifsq_dequeue = dequeue;
2553 		ifsq->ifsq_request = request;
2554 	}
2555 }
2556 
2557 static void
2558 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2559 {
2560 	m->m_nextpkt = NULL;
2561 	if (ifsq->ifsq_norm_tail == NULL)
2562 		ifsq->ifsq_norm_head = m;
2563 	else
2564 		ifsq->ifsq_norm_tail->m_nextpkt = m;
2565 	ifsq->ifsq_norm_tail = m;
2566 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2567 }
2568 
2569 static void
2570 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2571 {
2572 	m->m_nextpkt = NULL;
2573 	if (ifsq->ifsq_prio_tail == NULL)
2574 		ifsq->ifsq_prio_head = m;
2575 	else
2576 		ifsq->ifsq_prio_tail->m_nextpkt = m;
2577 	ifsq->ifsq_prio_tail = m;
2578 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2579 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2580 }
2581 
2582 static struct mbuf *
2583 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2584 {
2585 	struct mbuf *m;
2586 
2587 	m = ifsq->ifsq_norm_head;
2588 	if (m != NULL) {
2589 		if ((ifsq->ifsq_norm_head = m->m_nextpkt) == NULL)
2590 			ifsq->ifsq_norm_tail = NULL;
2591 		m->m_nextpkt = NULL;
2592 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2593 	}
2594 	return m;
2595 }
2596 
2597 static struct mbuf *
2598 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2599 {
2600 	struct mbuf *m;
2601 
2602 	m = ifsq->ifsq_prio_head;
2603 	if (m != NULL) {
2604 		if ((ifsq->ifsq_prio_head = m->m_nextpkt) == NULL)
2605 			ifsq->ifsq_prio_tail = NULL;
2606 		m->m_nextpkt = NULL;
2607 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2608 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2609 	}
2610 	return m;
2611 }
2612 
2613 int
2614 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2615     struct altq_pktattr *pa __unused)
2616 {
2617 	M_ASSERTPKTHDR(m);
2618 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2619 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2620 		if ((m->m_flags & M_PRIO) &&
2621 		    ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen / 2) &&
2622 		    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt / 2)) {
2623 			struct mbuf *m_drop;
2624 
2625 			/*
2626 			 * Perform drop-head on normal queue
2627 			 */
2628 			m_drop = ifsq_norm_dequeue(ifsq);
2629 			if (m_drop != NULL) {
2630 				m_freem(m_drop);
2631 				ifsq_prio_enqueue(ifsq, m);
2632 				return 0;
2633 			}
2634 			/* XXX nothing could be dropped? */
2635 		}
2636 		m_freem(m);
2637 		return ENOBUFS;
2638 	} else {
2639 		if (m->m_flags & M_PRIO)
2640 			ifsq_prio_enqueue(ifsq, m);
2641 		else
2642 			ifsq_norm_enqueue(ifsq, m);
2643 		return 0;
2644 	}
2645 }
2646 
2647 struct mbuf *
2648 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2649 {
2650 	struct mbuf *m;
2651 
2652 	switch (op) {
2653 	case ALTDQ_POLL:
2654 		m = ifsq->ifsq_prio_head;
2655 		if (m == NULL)
2656 			m = ifsq->ifsq_norm_head;
2657 		break;
2658 
2659 	case ALTDQ_REMOVE:
2660 		m = ifsq_prio_dequeue(ifsq);
2661 		if (m == NULL)
2662 			m = ifsq_norm_dequeue(ifsq);
2663 		break;
2664 
2665 	default:
2666 		panic("unsupported ALTQ dequeue op: %d", op);
2667 	}
2668 	return m;
2669 }
2670 
2671 int
2672 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2673 {
2674 	switch (req) {
2675 	case ALTRQ_PURGE:
2676 		for (;;) {
2677 			struct mbuf *m;
2678 
2679 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2680 			if (m == NULL)
2681 				break;
2682 			m_freem(m);
2683 		}
2684 		break;
2685 
2686 	default:
2687 		panic("unsupported ALTQ request: %d", req);
2688 	}
2689 	return 0;
2690 }
2691 
2692 static void
2693 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2694 {
2695 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2696 	int running = 0, need_sched;
2697 
2698 	/*
2699 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
2700 	 * contention on the subqueue hardware serializer, ifnet.if_start on
2701 	 * the subqueue will be scheduled on the subqueue owner CPU.
2702 	 */
2703 	if (!ifsq_tryserialize_hw(ifsq)) {
2704 		/*
2705 		 * Subqueue hardware serializer contention happened,
2706 		 * ifnet.if_start on the subqueue is scheduled on
2707 		 * the subqueue owner CPU, and we keep going.
2708 		 */
2709 		ifsq_ifstart_schedule(ifsq, 1);
2710 		return;
2711 	}
2712 
2713 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2714 		ifp->if_start(ifp, ifsq);
2715 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2716 			running = 1;
2717 	}
2718 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2719 
2720 	ifsq_deserialize_hw(ifsq);
2721 
2722 	if (need_sched) {
2723 		/*
2724 		 * More data need to be transmitted, ifnet.if_start on the
2725 		 * subqueue is scheduled on the subqueue owner CPU, and we
2726 		 * keep going.
2727 		 * NOTE: ifnet.if_start subqueue interlock is not released.
2728 		 */
2729 		ifsq_ifstart_schedule(ifsq, force_sched);
2730 	}
2731 }
2732 
2733 /*
2734  * Subqeue packets staging mechanism:
2735  *
2736  * The packets enqueued into the subqueue are staged to a certain amount
2737  * before the ifnet.if_start on the subqueue is called.  In this way, the
2738  * driver could avoid writing to hardware registers upon every packet,
2739  * instead, hardware registers could be written when certain amount of
2740  * packets are put onto hardware TX ring.  The measurement on several modern
2741  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2742  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2743  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
2744  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2745  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2746  *
2747  * Subqueue packets staging is performed for two entry points into drivers'
2748  * transmission function:
2749  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
2750  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
2751  *
2752  * Subqueue packets staging will be stopped upon any of the following
2753  * conditions:
2754  * - If the count of packets enqueued on the current CPU is great than or
2755  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2756  * - If the total length of packets enqueued on the current CPU is great
2757  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2758  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
2759  *   is usually less than hardware's MTU.
2760  * - ifsq_ifstart_schedule() is not pending on the current CPU and
2761  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
2762  *   released.
2763  * - The if_start_rollup(), which is registered as low priority netisr
2764  *   rollup function, is called; probably because no more work is pending
2765  *   for netisr.
2766  *
2767  * NOTE:
2768  * Currently subqueue packet staging is only performed in netisr threads.
2769  */
2770 int
2771 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2772 {
2773 	struct ifaltq *ifq = &ifp->if_snd;
2774 	struct ifaltq_subque *ifsq;
2775 	int error, start = 0, len, mcast = 0, avoid_start = 0;
2776 	struct ifsubq_stage_head *head = NULL;
2777 	struct ifsubq_stage *stage = NULL;
2778 	struct globaldata *gd = mycpu;
2779 	struct thread *td = gd->gd_curthread;
2780 
2781 	crit_enter_quick(td);
2782 
2783 	ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
2784 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
2785 
2786 	len = m->m_pkthdr.len;
2787 	if (m->m_flags & M_MCAST)
2788 		mcast = 1;
2789 
2790 	if (td->td_type == TD_TYPE_NETISR) {
2791 		head = &ifsubq_stage_heads[mycpuid];
2792 		stage = ifsq_get_stage(ifsq, mycpuid);
2793 
2794 		stage->stg_cnt++;
2795 		stage->stg_len += len;
2796 		if (stage->stg_cnt < ifsq_stage_cntmax &&
2797 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
2798 			avoid_start = 1;
2799 	}
2800 
2801 	ALTQ_SQ_LOCK(ifsq);
2802 	error = ifsq_enqueue_locked(ifsq, m, pa);
2803 	if (error) {
2804 		if (!ifsq_data_ready(ifsq)) {
2805 			ALTQ_SQ_UNLOCK(ifsq);
2806 			crit_exit_quick(td);
2807 			return error;
2808 		}
2809 		avoid_start = 0;
2810 	}
2811 	if (!ifsq_is_started(ifsq)) {
2812 		if (avoid_start) {
2813 			ALTQ_SQ_UNLOCK(ifsq);
2814 
2815 			KKASSERT(!error);
2816 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
2817 				ifsq_stage_insert(head, stage);
2818 
2819 			IFNET_STAT_INC(ifp, obytes, len);
2820 			if (mcast)
2821 				IFNET_STAT_INC(ifp, omcasts, 1);
2822 			crit_exit_quick(td);
2823 			return error;
2824 		}
2825 
2826 		/*
2827 		 * Hold the subqueue interlock of ifnet.if_start
2828 		 */
2829 		ifsq_set_started(ifsq);
2830 		start = 1;
2831 	}
2832 	ALTQ_SQ_UNLOCK(ifsq);
2833 
2834 	if (!error) {
2835 		IFNET_STAT_INC(ifp, obytes, len);
2836 		if (mcast)
2837 			IFNET_STAT_INC(ifp, omcasts, 1);
2838 	}
2839 
2840 	if (stage != NULL) {
2841 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
2842 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
2843 			if (!avoid_start) {
2844 				ifsq_stage_remove(head, stage);
2845 				ifsq_ifstart_schedule(ifsq, 1);
2846 			}
2847 			crit_exit_quick(td);
2848 			return error;
2849 		}
2850 
2851 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
2852 			ifsq_stage_remove(head, stage);
2853 		} else {
2854 			stage->stg_cnt = 0;
2855 			stage->stg_len = 0;
2856 		}
2857 	}
2858 
2859 	if (!start) {
2860 		crit_exit_quick(td);
2861 		return error;
2862 	}
2863 
2864 	ifsq_ifstart_try(ifsq, 0);
2865 
2866 	crit_exit_quick(td);
2867 	return error;
2868 }
2869 
2870 void *
2871 ifa_create(int size, int flags)
2872 {
2873 	struct ifaddr *ifa;
2874 	int i;
2875 
2876 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
2877 
2878 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2879 	if (ifa == NULL)
2880 		return NULL;
2881 
2882 	ifa->ifa_containers =
2883 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
2884 	        M_IFADDR, M_WAITOK | M_ZERO);
2885 	ifa->ifa_ncnt = ncpus;
2886 	for (i = 0; i < ncpus; ++i) {
2887 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2888 
2889 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2890 		ifac->ifa = ifa;
2891 		ifac->ifa_refcnt = 1;
2892 	}
2893 #ifdef IFADDR_DEBUG
2894 	kprintf("alloc ifa %p %d\n", ifa, size);
2895 #endif
2896 	return ifa;
2897 }
2898 
2899 void
2900 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2901 {
2902 	struct ifaddr *ifa = ifac->ifa;
2903 
2904 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2905 	KKASSERT(ifac->ifa_refcnt == 0);
2906 	KASSERT(ifac->ifa_listmask == 0,
2907 		("ifa is still on %#x lists", ifac->ifa_listmask));
2908 
2909 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2910 
2911 #ifdef IFADDR_DEBUG_VERBOSE
2912 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2913 #endif
2914 
2915 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2916 		("invalid # of ifac, %d", ifa->ifa_ncnt));
2917 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2918 #ifdef IFADDR_DEBUG
2919 		kprintf("free ifa %p\n", ifa);
2920 #endif
2921 		kfree(ifa->ifa_containers, M_IFADDR);
2922 		kfree(ifa, M_IFADDR);
2923 	}
2924 }
2925 
2926 static void
2927 ifa_iflink_dispatch(netmsg_t nmsg)
2928 {
2929 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2930 	struct ifaddr *ifa = msg->ifa;
2931 	struct ifnet *ifp = msg->ifp;
2932 	int cpu = mycpuid;
2933 	struct ifaddr_container *ifac;
2934 
2935 	crit_enter();
2936 
2937 	ifac = &ifa->ifa_containers[cpu];
2938 	ASSERT_IFAC_VALID(ifac);
2939 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2940 		("ifaddr is on if_addrheads"));
2941 
2942 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2943 	if (msg->tail)
2944 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2945 	else
2946 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2947 
2948 	crit_exit();
2949 
2950 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2951 }
2952 
2953 void
2954 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2955 {
2956 	struct netmsg_ifaddr msg;
2957 
2958 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2959 		    0, ifa_iflink_dispatch);
2960 	msg.ifa = ifa;
2961 	msg.ifp = ifp;
2962 	msg.tail = tail;
2963 
2964 	ifa_domsg(&msg.base.lmsg, 0);
2965 }
2966 
2967 static void
2968 ifa_ifunlink_dispatch(netmsg_t nmsg)
2969 {
2970 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2971 	struct ifaddr *ifa = msg->ifa;
2972 	struct ifnet *ifp = msg->ifp;
2973 	int cpu = mycpuid;
2974 	struct ifaddr_container *ifac;
2975 
2976 	crit_enter();
2977 
2978 	ifac = &ifa->ifa_containers[cpu];
2979 	ASSERT_IFAC_VALID(ifac);
2980 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2981 		("ifaddr is not on if_addrhead"));
2982 
2983 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2984 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2985 
2986 	crit_exit();
2987 
2988 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2989 }
2990 
2991 void
2992 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2993 {
2994 	struct netmsg_ifaddr msg;
2995 
2996 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2997 		    0, ifa_ifunlink_dispatch);
2998 	msg.ifa = ifa;
2999 	msg.ifp = ifp;
3000 
3001 	ifa_domsg(&msg.base.lmsg, 0);
3002 }
3003 
3004 static void
3005 ifa_destroy_dispatch(netmsg_t nmsg)
3006 {
3007 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3008 
3009 	IFAFREE(msg->ifa);
3010 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
3011 }
3012 
3013 void
3014 ifa_destroy(struct ifaddr *ifa)
3015 {
3016 	struct netmsg_ifaddr msg;
3017 
3018 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3019 		    0, ifa_destroy_dispatch);
3020 	msg.ifa = ifa;
3021 
3022 	ifa_domsg(&msg.base.lmsg, 0);
3023 }
3024 
3025 struct lwkt_port *
3026 ifnet_portfn(int cpu)
3027 {
3028 	return &ifnet_threads[cpu].td_msgport;
3029 }
3030 
3031 void
3032 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
3033 {
3034 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
3035 
3036 	if (next_cpu < ncpus)
3037 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
3038 	else
3039 		lwkt_replymsg(lmsg, 0);
3040 }
3041 
3042 int
3043 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
3044 {
3045 	KKASSERT(cpu < ncpus);
3046 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
3047 }
3048 
3049 void
3050 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
3051 {
3052 	KKASSERT(cpu < ncpus);
3053 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
3054 }
3055 
3056 /*
3057  * Generic netmsg service loop.  Some protocols may roll their own but all
3058  * must do the basic command dispatch function call done here.
3059  */
3060 static void
3061 ifnet_service_loop(void *arg __unused)
3062 {
3063 	netmsg_t msg;
3064 
3065 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
3066 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
3067 		msg->base.nm_dispatch(msg);
3068 	}
3069 }
3070 
3071 static void
3072 if_start_rollup(void)
3073 {
3074 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3075 	struct ifsubq_stage *stage;
3076 
3077 	crit_enter();
3078 
3079 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3080 		struct ifaltq_subque *ifsq = stage->stg_subq;
3081 		int is_sched = 0;
3082 
3083 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3084 			is_sched = 1;
3085 		ifsq_stage_remove(head, stage);
3086 
3087 		if (is_sched) {
3088 			ifsq_ifstart_schedule(ifsq, 1);
3089 		} else {
3090 			int start = 0;
3091 
3092 			ALTQ_SQ_LOCK(ifsq);
3093 			if (!ifsq_is_started(ifsq)) {
3094 				/*
3095 				 * Hold the subqueue interlock of
3096 				 * ifnet.if_start
3097 				 */
3098 				ifsq_set_started(ifsq);
3099 				start = 1;
3100 			}
3101 			ALTQ_SQ_UNLOCK(ifsq);
3102 
3103 			if (start)
3104 				ifsq_ifstart_try(ifsq, 1);
3105 		}
3106 		KKASSERT((stage->stg_flags &
3107 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3108 	}
3109 
3110 	crit_exit();
3111 }
3112 
3113 static void
3114 ifnetinit(void *dummy __unused)
3115 {
3116 	int i;
3117 
3118 	for (i = 0; i < ncpus; ++i) {
3119 		struct thread *thr = &ifnet_threads[i];
3120 
3121 		lwkt_create(ifnet_service_loop, NULL, NULL,
3122 			    thr, TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
3123 			    i, "ifnet %d", i);
3124 		netmsg_service_port_init(&thr->td_msgport);
3125 		lwkt_schedule(thr);
3126 	}
3127 
3128 	for (i = 0; i < ncpus; ++i)
3129 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3130 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3131 }
3132 
3133 struct ifnet *
3134 ifnet_byindex(unsigned short idx)
3135 {
3136 	if (idx > if_index)
3137 		return NULL;
3138 	return ifindex2ifnet[idx];
3139 }
3140 
3141 struct ifaddr *
3142 ifaddr_byindex(unsigned short idx)
3143 {
3144 	struct ifnet *ifp;
3145 
3146 	ifp = ifnet_byindex(idx);
3147 	if (!ifp)
3148 		return NULL;
3149 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
3150 }
3151 
3152 void
3153 if_register_com_alloc(u_char type,
3154     if_com_alloc_t *a, if_com_free_t *f)
3155 {
3156 
3157         KASSERT(if_com_alloc[type] == NULL,
3158             ("if_register_com_alloc: %d already registered", type));
3159         KASSERT(if_com_free[type] == NULL,
3160             ("if_register_com_alloc: %d free already registered", type));
3161 
3162         if_com_alloc[type] = a;
3163         if_com_free[type] = f;
3164 }
3165 
3166 void
3167 if_deregister_com_alloc(u_char type)
3168 {
3169 
3170         KASSERT(if_com_alloc[type] != NULL,
3171             ("if_deregister_com_alloc: %d not registered", type));
3172         KASSERT(if_com_free[type] != NULL,
3173             ("if_deregister_com_alloc: %d free not registered", type));
3174         if_com_alloc[type] = NULL;
3175         if_com_free[type] = NULL;
3176 }
3177 
3178 int
3179 if_ring_count2(int cnt, int cnt_max)
3180 {
3181 	int shift = 0;
3182 
3183 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3184 	    ("invalid ring count max %d", cnt_max));
3185 
3186 	if (cnt <= 0)
3187 		cnt = cnt_max;
3188 	if (cnt > ncpus2)
3189 		cnt = ncpus2;
3190 	if (cnt > cnt_max)
3191 		cnt = cnt_max;
3192 
3193 	while ((1 << (shift + 1)) <= cnt)
3194 		++shift;
3195 	cnt = 1 << shift;
3196 
3197 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3198 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3199 	     cnt, ncpus2, cnt_max));
3200 	return cnt;
3201 }
3202 
3203 void
3204 ifq_set_maxlen(struct ifaltq *ifq, int len)
3205 {
3206 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3207 }
3208 
3209 int
3210 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3211 {
3212 	return ALTQ_SUBQ_INDEX_DEFAULT;
3213 }
3214 
3215 int
3216 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3217 {
3218 	return (cpuid & ifq->altq_subq_mask);
3219 }
3220 
3221 static void
3222 ifsq_watchdog(void *arg)
3223 {
3224 	struct ifsubq_watchdog *wd = arg;
3225 	struct ifnet *ifp;
3226 
3227 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3228 		goto done;
3229 
3230 	ifp = ifsq_get_ifp(wd->wd_subq);
3231 	if (ifnet_tryserialize_all(ifp)) {
3232 		wd->wd_watchdog(wd->wd_subq);
3233 		ifnet_deserialize_all(ifp);
3234 	} else {
3235 		/* try again next timeout */
3236 		wd->wd_timer = 1;
3237 	}
3238 done:
3239 	ifsq_watchdog_reset(wd);
3240 }
3241 
3242 static void
3243 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3244 {
3245 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3246 	    ifsq_get_cpuid(wd->wd_subq));
3247 }
3248 
3249 void
3250 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3251     ifsq_watchdog_t watchdog)
3252 {
3253 	callout_init_mp(&wd->wd_callout);
3254 	wd->wd_timer = 0;
3255 	wd->wd_subq = ifsq;
3256 	wd->wd_watchdog = watchdog;
3257 }
3258 
3259 void
3260 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3261 {
3262 	wd->wd_timer = 0;
3263 	ifsq_watchdog_reset(wd);
3264 }
3265 
3266 void
3267 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3268 {
3269 	wd->wd_timer = 0;
3270 	callout_stop(&wd->wd_callout);
3271 }
3272