xref: /dragonfly/sys/net/if.c (revision fb151170)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_inet.h"
40 #include "opt_polling.h"
41 #include "opt_ifpoll.h"
42 
43 #include <sys/param.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/priv.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/socketops.h>
53 #include <sys/protosw.h>
54 #include <sys/kernel.h>
55 #include <sys/ktr.h>
56 #include <sys/mutex.h>
57 #include <sys/sockio.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 #include <sys/domain.h>
61 #include <sys/thread.h>
62 #include <sys/serialize.h>
63 #include <sys/bus.h>
64 
65 #include <sys/thread2.h>
66 #include <sys/msgport2.h>
67 #include <sys/mutex2.h>
68 
69 #include <net/if.h>
70 #include <net/if_arp.h>
71 #include <net/if_dl.h>
72 #include <net/if_types.h>
73 #include <net/if_var.h>
74 #include <net/ifq_var.h>
75 #include <net/radix.h>
76 #include <net/route.h>
77 #include <net/if_clone.h>
78 #include <net/netisr.h>
79 #include <net/netmsg2.h>
80 
81 #include <machine/atomic.h>
82 #include <machine/stdarg.h>
83 #include <machine/smp.h>
84 
85 #if defined(INET) || defined(INET6)
86 /*XXX*/
87 #include <netinet/in.h>
88 #include <netinet/in_var.h>
89 #include <netinet/if_ether.h>
90 #ifdef INET6
91 #include <netinet6/in6_var.h>
92 #include <netinet6/in6_ifattach.h>
93 #endif
94 #endif
95 
96 #if defined(COMPAT_43)
97 #include <emulation/43bsd/43bsd_socket.h>
98 #endif /* COMPAT_43 */
99 
100 struct netmsg_ifaddr {
101 	struct netmsg_base base;
102 	struct ifaddr	*ifa;
103 	struct ifnet	*ifp;
104 	int		tail;
105 };
106 
107 /*
108  * System initialization
109  */
110 static void	if_attachdomain(void *);
111 static void	if_attachdomain1(struct ifnet *);
112 static int	ifconf(u_long, caddr_t, struct ucred *);
113 static void	ifinit(void *);
114 static void	ifnetinit(void *);
115 static void	if_slowtimo(void *);
116 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
117 static int	if_rtdel(struct radix_node *, void *);
118 
119 #ifdef INET6
120 /*
121  * XXX: declare here to avoid to include many inet6 related files..
122  * should be more generalized?
123  */
124 extern void	nd6_setmtu(struct ifnet *);
125 #endif
126 
127 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
128 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
129 
130 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
131 /* Must be after netisr_init */
132 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
133 
134 static  if_com_alloc_t *if_com_alloc[256];
135 static  if_com_free_t *if_com_free[256];
136 
137 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
138 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
139 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
140 
141 int			ifqmaxlen = IFQ_MAXLEN;
142 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
143 
144 /* In ifq_dispatch(), try to do direct ifnet.if_start first */
145 static int		ifq_dispatch_schedonly = 0;
146 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schedonly, CTLFLAG_RW,
147            &ifq_dispatch_schedonly, 0, "");
148 
149 /* In ifq_dispatch(), schedule ifnet.if_start without checking ifnet.if_snd */
150 static int		ifq_dispatch_schednochk = 0;
151 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schednochk, CTLFLAG_RW,
152            &ifq_dispatch_schednochk, 0, "");
153 
154 /* In if_devstart(), try to do direct ifnet.if_start first */
155 static int		if_devstart_schedonly = 0;
156 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schedonly, CTLFLAG_RW,
157            &if_devstart_schedonly, 0, "");
158 
159 /* In if_devstart(), schedule ifnet.if_start without checking ifnet.if_snd */
160 static int		if_devstart_schednochk = 0;
161 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schednochk, CTLFLAG_RW,
162            &if_devstart_schednochk, 0, "");
163 
164 #ifdef SMP
165 /* Schedule ifnet.if_start on the current CPU */
166 static int		if_start_oncpu_sched = 0;
167 SYSCTL_INT(_net_link_generic, OID_AUTO, if_start_oncpu_sched, CTLFLAG_RW,
168            &if_start_oncpu_sched, 0, "");
169 #endif
170 
171 struct callout		if_slowtimo_timer;
172 
173 int			if_index = 0;
174 struct ifnet		**ifindex2ifnet = NULL;
175 static struct thread	ifnet_threads[MAXCPU];
176 
177 #define IFQ_KTR_STRING		"ifq=%p"
178 #define IFQ_KTR_ARGS	struct ifaltq *ifq
179 #ifndef KTR_IFQ
180 #define KTR_IFQ			KTR_ALL
181 #endif
182 KTR_INFO_MASTER(ifq);
183 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
184 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
185 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
186 
187 #define IF_START_KTR_STRING	"ifp=%p"
188 #define IF_START_KTR_ARGS	struct ifnet *ifp
189 #ifndef KTR_IF_START
190 #define KTR_IF_START		KTR_ALL
191 #endif
192 KTR_INFO_MASTER(if_start);
193 KTR_INFO(KTR_IF_START, if_start, run, 0,
194 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
195 KTR_INFO(KTR_IF_START, if_start, sched, 1,
196 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
197 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
198 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
199 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
200 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
201 #ifdef SMP
202 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
203 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
204 #endif
205 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
206 
207 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
208 
209 /*
210  * Network interface utility routines.
211  *
212  * Routines with ifa_ifwith* names take sockaddr *'s as
213  * parameters.
214  */
215 /* ARGSUSED*/
216 void
217 ifinit(void *dummy)
218 {
219 	struct ifnet *ifp;
220 
221 	callout_init(&if_slowtimo_timer);
222 
223 	crit_enter();
224 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
225 		if (ifp->if_snd.ifq_maxlen == 0) {
226 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
227 			ifp->if_snd.ifq_maxlen = ifqmaxlen;
228 		}
229 	}
230 	crit_exit();
231 
232 	if_slowtimo(0);
233 }
234 
235 static int
236 if_start_cpuid(struct ifnet *ifp)
237 {
238 	return ifp->if_cpuid;
239 }
240 
241 #ifdef DEVICE_POLLING
242 static int
243 if_start_cpuid_poll(struct ifnet *ifp)
244 {
245 	int poll_cpuid = ifp->if_poll_cpuid;
246 
247 	if (poll_cpuid >= 0)
248 		return poll_cpuid;
249 	else
250 		return ifp->if_cpuid;
251 }
252 #endif
253 
254 static void
255 if_start_ipifunc(void *arg)
256 {
257 	struct ifnet *ifp = arg;
258 	struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].lmsg;
259 
260 	crit_enter();
261 	if (lmsg->ms_flags & MSGF_DONE)
262 		lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
263 	crit_exit();
264 }
265 
266 /*
267  * Schedule ifnet.if_start on ifnet's CPU
268  */
269 static void
270 if_start_schedule(struct ifnet *ifp)
271 {
272 #ifdef SMP
273 	int cpu;
274 
275 	if (if_start_oncpu_sched)
276 		cpu = mycpuid;
277 	else
278 		cpu = ifp->if_start_cpuid(ifp);
279 
280 	if (cpu != mycpuid)
281 		lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp);
282 	else
283 #endif
284 	if_start_ipifunc(ifp);
285 }
286 
287 /*
288  * NOTE:
289  * This function will release ifnet.if_start interlock,
290  * if ifnet.if_start does not need to be scheduled
291  */
292 static __inline int
293 if_start_need_schedule(struct ifaltq *ifq, int running)
294 {
295 	if (!running || ifq_is_empty(ifq)
296 #ifdef ALTQ
297 	    || ifq->altq_tbr != NULL
298 #endif
299 	) {
300 		ALTQ_LOCK(ifq);
301 		/*
302 		 * ifnet.if_start interlock is released, if:
303 		 * 1) Hardware can not take any packets, due to
304 		 *    o  interface is marked down
305 		 *    o  hardware queue is full (IFF_OACTIVE)
306 		 *    Under the second situation, hardware interrupt
307 		 *    or polling(4) will call/schedule ifnet.if_start
308 		 *    when hardware queue is ready
309 		 * 2) There is not packet in the ifnet.if_snd.
310 		 *    Further ifq_dispatch or ifq_handoff will call/
311 		 *    schedule ifnet.if_start
312 		 * 3) TBR is used and it does not allow further
313 		 *    dequeueing.
314 		 *    TBR callout will call ifnet.if_start
315 		 */
316 		if (!running || !ifq_data_ready(ifq)) {
317 			ifq->altq_started = 0;
318 			ALTQ_UNLOCK(ifq);
319 			return 0;
320 		}
321 		ALTQ_UNLOCK(ifq);
322 	}
323 	return 1;
324 }
325 
326 static void
327 if_start_dispatch(netmsg_t msg)
328 {
329 	struct lwkt_msg *lmsg = &msg->base.lmsg;
330 	struct ifnet *ifp = lmsg->u.ms_resultp;
331 	struct ifaltq *ifq = &ifp->if_snd;
332 	int running = 0;
333 
334 	crit_enter();
335 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
336 	crit_exit();
337 
338 #ifdef SMP
339 	if (!if_start_oncpu_sched && mycpuid != ifp->if_start_cpuid(ifp)) {
340 		/*
341 		 * If the ifnet is still up, we need to
342 		 * chase its CPU change.
343 		 */
344 		if (ifp->if_flags & IFF_UP) {
345 			logifstart(chase_sched, ifp);
346 			if_start_schedule(ifp);
347 			return;
348 		} else {
349 			goto check;
350 		}
351 	}
352 #endif
353 
354 	if (ifp->if_flags & IFF_UP) {
355 		ifnet_serialize_tx(ifp); /* XXX try? */
356 		if ((ifp->if_flags & IFF_OACTIVE) == 0) {
357 			logifstart(run, ifp);
358 			ifp->if_start(ifp);
359 			if ((ifp->if_flags &
360 			(IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
361 				running = 1;
362 		}
363 		ifnet_deserialize_tx(ifp);
364 	}
365 #ifdef SMP
366 check:
367 #endif
368 	if (if_start_need_schedule(ifq, running)) {
369 		crit_enter();
370 		if (lmsg->ms_flags & MSGF_DONE)	{ /* XXX necessary? */
371 			logifstart(sched, ifp);
372 			lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
373 		}
374 		crit_exit();
375 	}
376 }
377 
378 /* Device driver ifnet.if_start helper function */
379 void
380 if_devstart(struct ifnet *ifp)
381 {
382 	struct ifaltq *ifq = &ifp->if_snd;
383 	int running = 0;
384 
385 	ASSERT_IFNET_SERIALIZED_TX(ifp);
386 
387 	ALTQ_LOCK(ifq);
388 	if (ifq->altq_started || !ifq_data_ready(ifq)) {
389 		logifstart(avoid, ifp);
390 		ALTQ_UNLOCK(ifq);
391 		return;
392 	}
393 	ifq->altq_started = 1;
394 	ALTQ_UNLOCK(ifq);
395 
396 	if (if_devstart_schedonly) {
397 		/*
398 		 * Always schedule ifnet.if_start on ifnet's CPU,
399 		 * short circuit the rest of this function.
400 		 */
401 		logifstart(sched, ifp);
402 		if_start_schedule(ifp);
403 		return;
404 	}
405 
406 	logifstart(run, ifp);
407 	ifp->if_start(ifp);
408 
409 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
410 		running = 1;
411 
412 	if (if_devstart_schednochk || if_start_need_schedule(ifq, running)) {
413 		/*
414 		 * More data need to be transmitted, ifnet.if_start is
415 		 * scheduled on ifnet's CPU, and we keep going.
416 		 * NOTE: ifnet.if_start interlock is not released.
417 		 */
418 		logifstart(sched, ifp);
419 		if_start_schedule(ifp);
420 	}
421 }
422 
423 static void
424 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
425 {
426 	lwkt_serialize_enter(ifp->if_serializer);
427 }
428 
429 static void
430 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
431 {
432 	lwkt_serialize_exit(ifp->if_serializer);
433 }
434 
435 static int
436 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
437 {
438 	return lwkt_serialize_try(ifp->if_serializer);
439 }
440 
441 #ifdef INVARIANTS
442 static void
443 if_default_serialize_assert(struct ifnet *ifp,
444 			    enum ifnet_serialize slz __unused,
445 			    boolean_t serialized)
446 {
447 	if (serialized)
448 		ASSERT_SERIALIZED(ifp->if_serializer);
449 	else
450 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
451 }
452 #endif
453 
454 /*
455  * Attach an interface to the list of "active" interfaces.
456  *
457  * The serializer is optional.  If non-NULL access to the interface
458  * may be MPSAFE.
459  */
460 void
461 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
462 {
463 	unsigned socksize, ifasize;
464 	int namelen, masklen;
465 	struct sockaddr_dl *sdl;
466 	struct ifaddr *ifa;
467 	struct ifaltq *ifq;
468 	int i;
469 
470 	static int if_indexlim = 8;
471 
472 	if (ifp->if_serialize != NULL) {
473 		KASSERT(ifp->if_deserialize != NULL &&
474 			ifp->if_tryserialize != NULL &&
475 			ifp->if_serialize_assert != NULL,
476 			("serialize functions are partially setup\n"));
477 
478 		/*
479 		 * If the device supplies serialize functions,
480 		 * then clear if_serializer to catch any invalid
481 		 * usage of this field.
482 		 */
483 		KASSERT(serializer == NULL,
484 			("both serialize functions and default serializer "
485 			 "are supplied\n"));
486 		ifp->if_serializer = NULL;
487 	} else {
488 		KASSERT(ifp->if_deserialize == NULL &&
489 			ifp->if_tryserialize == NULL &&
490 			ifp->if_serialize_assert == NULL,
491 			("serialize functions are partially setup\n"));
492 		ifp->if_serialize = if_default_serialize;
493 		ifp->if_deserialize = if_default_deserialize;
494 		ifp->if_tryserialize = if_default_tryserialize;
495 #ifdef INVARIANTS
496 		ifp->if_serialize_assert = if_default_serialize_assert;
497 #endif
498 
499 		/*
500 		 * The serializer can be passed in from the device,
501 		 * allowing the same serializer to be used for both
502 		 * the interrupt interlock and the device queue.
503 		 * If not specified, the netif structure will use an
504 		 * embedded serializer.
505 		 */
506 		if (serializer == NULL) {
507 			serializer = &ifp->if_default_serializer;
508 			lwkt_serialize_init(serializer);
509 		}
510 		ifp->if_serializer = serializer;
511 	}
512 
513 	ifp->if_start_cpuid = if_start_cpuid;
514 	ifp->if_cpuid = 0;
515 
516 #ifdef DEVICE_POLLING
517 	/* Device is not in polling mode by default */
518 	ifp->if_poll_cpuid = -1;
519 	if (ifp->if_poll != NULL)
520 		ifp->if_start_cpuid = if_start_cpuid_poll;
521 #endif
522 
523 	ifp->if_start_nmsg = kmalloc(ncpus * sizeof(*ifp->if_start_nmsg),
524 				     M_LWKTMSG, M_WAITOK);
525 	for (i = 0; i < ncpus; ++i) {
526 		netmsg_init(&ifp->if_start_nmsg[i], NULL, &netisr_adone_rport,
527 			    0, if_start_dispatch);
528 		ifp->if_start_nmsg[i].lmsg.u.ms_resultp = ifp;
529 	}
530 
531 	mtx_init(&ifp->if_ioctl_mtx);
532 	mtx_lock(&ifp->if_ioctl_mtx);
533 
534 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
535 	ifp->if_index = ++if_index;
536 
537 	/*
538 	 * XXX -
539 	 * The old code would work if the interface passed a pre-existing
540 	 * chain of ifaddrs to this code.  We don't trust our callers to
541 	 * properly initialize the tailq, however, so we no longer allow
542 	 * this unlikely case.
543 	 */
544 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
545 				    M_IFADDR, M_WAITOK | M_ZERO);
546 	for (i = 0; i < ncpus; ++i)
547 		TAILQ_INIT(&ifp->if_addrheads[i]);
548 
549 	TAILQ_INIT(&ifp->if_prefixhead);
550 	TAILQ_INIT(&ifp->if_multiaddrs);
551 	TAILQ_INIT(&ifp->if_groups);
552 	getmicrotime(&ifp->if_lastchange);
553 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
554 		unsigned int n;
555 		struct ifnet **q;
556 
557 		if_indexlim <<= 1;
558 
559 		/* grow ifindex2ifnet */
560 		n = if_indexlim * sizeof(*q);
561 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
562 		if (ifindex2ifnet) {
563 			bcopy(ifindex2ifnet, q, n/2);
564 			kfree(ifindex2ifnet, M_IFADDR);
565 		}
566 		ifindex2ifnet = q;
567 	}
568 
569 	ifindex2ifnet[if_index] = ifp;
570 
571 	/*
572 	 * create a Link Level name for this device
573 	 */
574 	namelen = strlen(ifp->if_xname);
575 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
576 	socksize = masklen + ifp->if_addrlen;
577 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
578 	if (socksize < sizeof(*sdl))
579 		socksize = sizeof(*sdl);
580 	socksize = ROUNDUP(socksize);
581 #undef ROUNDUP
582 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
583 	ifa = ifa_create(ifasize, M_WAITOK);
584 	sdl = (struct sockaddr_dl *)(ifa + 1);
585 	sdl->sdl_len = socksize;
586 	sdl->sdl_family = AF_LINK;
587 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
588 	sdl->sdl_nlen = namelen;
589 	sdl->sdl_index = ifp->if_index;
590 	sdl->sdl_type = ifp->if_type;
591 	ifp->if_lladdr = ifa;
592 	ifa->ifa_ifp = ifp;
593 	ifa->ifa_rtrequest = link_rtrequest;
594 	ifa->ifa_addr = (struct sockaddr *)sdl;
595 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
596 	ifa->ifa_netmask = (struct sockaddr *)sdl;
597 	sdl->sdl_len = masklen;
598 	while (namelen != 0)
599 		sdl->sdl_data[--namelen] = 0xff;
600 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
601 
602 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
603 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
604 
605 	ifq = &ifp->if_snd;
606 	ifq->altq_type = 0;
607 	ifq->altq_disc = NULL;
608 	ifq->altq_flags &= ALTQF_CANTCHANGE;
609 	ifq->altq_tbr = NULL;
610 	ifq->altq_ifp = ifp;
611 	ifq->altq_started = 0;
612 	ifq->altq_prepended = NULL;
613 	ALTQ_LOCK_INIT(ifq);
614 	ifq_set_classic(ifq);
615 
616 	if (!SLIST_EMPTY(&domains))
617 		if_attachdomain1(ifp);
618 
619 	/* Announce the interface. */
620 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
621 
622 	mtx_unlock(&ifp->if_ioctl_mtx);
623 }
624 
625 static void
626 if_attachdomain(void *dummy)
627 {
628 	struct ifnet *ifp;
629 
630 	crit_enter();
631 	TAILQ_FOREACH(ifp, &ifnet, if_list)
632 		if_attachdomain1(ifp);
633 	crit_exit();
634 }
635 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
636 	if_attachdomain, NULL);
637 
638 static void
639 if_attachdomain1(struct ifnet *ifp)
640 {
641 	struct domain *dp;
642 
643 	crit_enter();
644 
645 	/* address family dependent data region */
646 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
647 	SLIST_FOREACH(dp, &domains, dom_next)
648 		if (dp->dom_ifattach)
649 			ifp->if_afdata[dp->dom_family] =
650 				(*dp->dom_ifattach)(ifp);
651 	crit_exit();
652 }
653 
654 /*
655  * Purge all addresses whose type is _not_ AF_LINK
656  */
657 void
658 if_purgeaddrs_nolink(struct ifnet *ifp)
659 {
660 	struct ifaddr_container *ifac, *next;
661 
662 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
663 			      ifa_link, next) {
664 		struct ifaddr *ifa = ifac->ifa;
665 
666 		/* Leave link ifaddr as it is */
667 		if (ifa->ifa_addr->sa_family == AF_LINK)
668 			continue;
669 #ifdef INET
670 		/* XXX: Ugly!! ad hoc just for INET */
671 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
672 			struct ifaliasreq ifr;
673 #ifdef IFADDR_DEBUG_VERBOSE
674 			int i;
675 
676 			kprintf("purge in4 addr %p: ", ifa);
677 			for (i = 0; i < ncpus; ++i)
678 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
679 			kprintf("\n");
680 #endif
681 
682 			bzero(&ifr, sizeof ifr);
683 			ifr.ifra_addr = *ifa->ifa_addr;
684 			if (ifa->ifa_dstaddr)
685 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
686 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
687 				       NULL) == 0)
688 				continue;
689 		}
690 #endif /* INET */
691 #ifdef INET6
692 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
693 #ifdef IFADDR_DEBUG_VERBOSE
694 			int i;
695 
696 			kprintf("purge in6 addr %p: ", ifa);
697 			for (i = 0; i < ncpus; ++i)
698 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
699 			kprintf("\n");
700 #endif
701 
702 			in6_purgeaddr(ifa);
703 			/* ifp_addrhead is already updated */
704 			continue;
705 		}
706 #endif /* INET6 */
707 		ifa_ifunlink(ifa, ifp);
708 		ifa_destroy(ifa);
709 	}
710 }
711 
712 /*
713  * Detach an interface, removing it from the
714  * list of "active" interfaces.
715  */
716 void
717 if_detach(struct ifnet *ifp)
718 {
719 	struct radix_node_head	*rnh;
720 	int i;
721 	int cpu, origcpu;
722 	struct domain *dp;
723 
724 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
725 
726 	/*
727 	 * Remove routes and flush queues.
728 	 */
729 	crit_enter();
730 #ifdef DEVICE_POLLING
731 	if (ifp->if_flags & IFF_POLLING)
732 		ether_poll_deregister(ifp);
733 #endif
734 #ifdef IFPOLL_ENABLE
735 	if (ifp->if_flags & IFF_NPOLLING)
736 		ifpoll_deregister(ifp);
737 #endif
738 	if_down(ifp);
739 
740 #ifdef ALTQ
741 	if (ifq_is_enabled(&ifp->if_snd))
742 		altq_disable(&ifp->if_snd);
743 	if (ifq_is_attached(&ifp->if_snd))
744 		altq_detach(&ifp->if_snd);
745 #endif
746 
747 	/*
748 	 * Clean up all addresses.
749 	 */
750 	ifp->if_lladdr = NULL;
751 
752 	if_purgeaddrs_nolink(ifp);
753 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
754 		struct ifaddr *ifa;
755 
756 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
757 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
758 			("non-link ifaddr is left on if_addrheads"));
759 
760 		ifa_ifunlink(ifa, ifp);
761 		ifa_destroy(ifa);
762 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
763 			("there are still ifaddrs left on if_addrheads"));
764 	}
765 
766 #ifdef INET
767 	/*
768 	 * Remove all IPv4 kernel structures related to ifp.
769 	 */
770 	in_ifdetach(ifp);
771 #endif
772 
773 #ifdef INET6
774 	/*
775 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
776 	 * before removing routing entries below, since IPv6 interface direct
777 	 * routes are expected to be removed by the IPv6-specific kernel API.
778 	 * Otherwise, the kernel will detect some inconsistency and bark it.
779 	 */
780 	in6_ifdetach(ifp);
781 #endif
782 
783 	/*
784 	 * Delete all remaining routes using this interface
785 	 * Unfortuneatly the only way to do this is to slog through
786 	 * the entire routing table looking for routes which point
787 	 * to this interface...oh well...
788 	 */
789 	origcpu = mycpuid;
790 	for (cpu = 0; cpu < ncpus2; cpu++) {
791 		lwkt_migratecpu(cpu);
792 		for (i = 1; i <= AF_MAX; i++) {
793 			if ((rnh = rt_tables[cpu][i]) == NULL)
794 				continue;
795 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
796 		}
797 	}
798 	lwkt_migratecpu(origcpu);
799 
800 	/* Announce that the interface is gone. */
801 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
802 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
803 
804 	SLIST_FOREACH(dp, &domains, dom_next)
805 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
806 			(*dp->dom_ifdetach)(ifp,
807 				ifp->if_afdata[dp->dom_family]);
808 
809 	/*
810 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
811 	 */
812 	ifindex2ifnet[ifp->if_index] = NULL;
813 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
814 		if_index--;
815 
816 	TAILQ_REMOVE(&ifnet, ifp, if_link);
817 	kfree(ifp->if_addrheads, M_IFADDR);
818 	kfree(ifp->if_start_nmsg, M_LWKTMSG);
819 	crit_exit();
820 }
821 
822 /*
823  * Create interface group without members
824  */
825 struct ifg_group *
826 if_creategroup(const char *groupname)
827 {
828         struct ifg_group        *ifg = NULL;
829 
830         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
831             M_TEMP, M_NOWAIT)) == NULL)
832                 return (NULL);
833 
834         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
835         ifg->ifg_refcnt = 0;
836         ifg->ifg_carp_demoted = 0;
837         TAILQ_INIT(&ifg->ifg_members);
838 #if NPF > 0
839         pfi_attach_ifgroup(ifg);
840 #endif
841         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
842 
843         return (ifg);
844 }
845 
846 /*
847  * Add a group to an interface
848  */
849 int
850 if_addgroup(struct ifnet *ifp, const char *groupname)
851 {
852 	struct ifg_list		*ifgl;
853 	struct ifg_group	*ifg = NULL;
854 	struct ifg_member	*ifgm;
855 
856 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
857 	    groupname[strlen(groupname) - 1] <= '9')
858 		return (EINVAL);
859 
860 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
861 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
862 			return (EEXIST);
863 
864 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
865 		return (ENOMEM);
866 
867 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
868 		kfree(ifgl, M_TEMP);
869 		return (ENOMEM);
870 	}
871 
872 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
873 		if (!strcmp(ifg->ifg_group, groupname))
874 			break;
875 
876 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
877 		kfree(ifgl, M_TEMP);
878 		kfree(ifgm, M_TEMP);
879 		return (ENOMEM);
880 	}
881 
882 	ifg->ifg_refcnt++;
883 	ifgl->ifgl_group = ifg;
884 	ifgm->ifgm_ifp = ifp;
885 
886 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
887 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
888 
889 #if NPF > 0
890 	pfi_group_change(groupname);
891 #endif
892 
893 	return (0);
894 }
895 
896 /*
897  * Remove a group from an interface
898  */
899 int
900 if_delgroup(struct ifnet *ifp, const char *groupname)
901 {
902 	struct ifg_list		*ifgl;
903 	struct ifg_member	*ifgm;
904 
905 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
906 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
907 			break;
908 	if (ifgl == NULL)
909 		return (ENOENT);
910 
911 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
912 
913 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
914 		if (ifgm->ifgm_ifp == ifp)
915 			break;
916 
917 	if (ifgm != NULL) {
918 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
919 		kfree(ifgm, M_TEMP);
920 	}
921 
922 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
923 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
924 #if NPF > 0
925 		pfi_detach_ifgroup(ifgl->ifgl_group);
926 #endif
927 		kfree(ifgl->ifgl_group, M_TEMP);
928 	}
929 
930 	kfree(ifgl, M_TEMP);
931 
932 #if NPF > 0
933 	pfi_group_change(groupname);
934 #endif
935 
936 	return (0);
937 }
938 
939 /*
940  * Stores all groups from an interface in memory pointed
941  * to by data
942  */
943 int
944 if_getgroup(caddr_t data, struct ifnet *ifp)
945 {
946 	int			 len, error;
947 	struct ifg_list		*ifgl;
948 	struct ifg_req		 ifgrq, *ifgp;
949 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
950 
951 	if (ifgr->ifgr_len == 0) {
952 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
953 			ifgr->ifgr_len += sizeof(struct ifg_req);
954 		return (0);
955 	}
956 
957 	len = ifgr->ifgr_len;
958 	ifgp = ifgr->ifgr_groups;
959 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
960 		if (len < sizeof(ifgrq))
961 			return (EINVAL);
962 		bzero(&ifgrq, sizeof ifgrq);
963 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
964 		    sizeof(ifgrq.ifgrq_group));
965 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
966 		    sizeof(struct ifg_req))))
967 			return (error);
968 		len -= sizeof(ifgrq);
969 		ifgp++;
970 	}
971 
972 	return (0);
973 }
974 
975 /*
976  * Stores all members of a group in memory pointed to by data
977  */
978 int
979 if_getgroupmembers(caddr_t data)
980 {
981 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
982 	struct ifg_group	*ifg;
983 	struct ifg_member	*ifgm;
984 	struct ifg_req		 ifgrq, *ifgp;
985 	int			 len, error;
986 
987 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
988 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
989 			break;
990 	if (ifg == NULL)
991 		return (ENOENT);
992 
993 	if (ifgr->ifgr_len == 0) {
994 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
995 			ifgr->ifgr_len += sizeof(ifgrq);
996 		return (0);
997 	}
998 
999 	len = ifgr->ifgr_len;
1000 	ifgp = ifgr->ifgr_groups;
1001 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1002 		if (len < sizeof(ifgrq))
1003 			return (EINVAL);
1004 		bzero(&ifgrq, sizeof ifgrq);
1005 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1006 		    sizeof(ifgrq.ifgrq_member));
1007 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1008 		    sizeof(struct ifg_req))))
1009 			return (error);
1010 		len -= sizeof(ifgrq);
1011 		ifgp++;
1012 	}
1013 
1014 	return (0);
1015 }
1016 
1017 /*
1018  * Delete Routes for a Network Interface
1019  *
1020  * Called for each routing entry via the rnh->rnh_walktree() call above
1021  * to delete all route entries referencing a detaching network interface.
1022  *
1023  * Arguments:
1024  *	rn	pointer to node in the routing table
1025  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1026  *
1027  * Returns:
1028  *	0	successful
1029  *	errno	failed - reason indicated
1030  *
1031  */
1032 static int
1033 if_rtdel(struct radix_node *rn, void *arg)
1034 {
1035 	struct rtentry	*rt = (struct rtentry *)rn;
1036 	struct ifnet	*ifp = arg;
1037 	int		err;
1038 
1039 	if (rt->rt_ifp == ifp) {
1040 
1041 		/*
1042 		 * Protect (sorta) against walktree recursion problems
1043 		 * with cloned routes
1044 		 */
1045 		if (!(rt->rt_flags & RTF_UP))
1046 			return (0);
1047 
1048 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1049 				rt_mask(rt), rt->rt_flags,
1050 				NULL);
1051 		if (err) {
1052 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1053 		}
1054 	}
1055 
1056 	return (0);
1057 }
1058 
1059 /*
1060  * Locate an interface based on a complete address.
1061  */
1062 struct ifaddr *
1063 ifa_ifwithaddr(struct sockaddr *addr)
1064 {
1065 	struct ifnet *ifp;
1066 
1067 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1068 		struct ifaddr_container *ifac;
1069 
1070 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1071 			struct ifaddr *ifa = ifac->ifa;
1072 
1073 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1074 				continue;
1075 			if (sa_equal(addr, ifa->ifa_addr))
1076 				return (ifa);
1077 			if ((ifp->if_flags & IFF_BROADCAST) &&
1078 			    ifa->ifa_broadaddr &&
1079 			    /* IPv6 doesn't have broadcast */
1080 			    ifa->ifa_broadaddr->sa_len != 0 &&
1081 			    sa_equal(ifa->ifa_broadaddr, addr))
1082 				return (ifa);
1083 		}
1084 	}
1085 	return (NULL);
1086 }
1087 /*
1088  * Locate the point to point interface with a given destination address.
1089  */
1090 struct ifaddr *
1091 ifa_ifwithdstaddr(struct sockaddr *addr)
1092 {
1093 	struct ifnet *ifp;
1094 
1095 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1096 		struct ifaddr_container *ifac;
1097 
1098 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1099 			continue;
1100 
1101 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1102 			struct ifaddr *ifa = ifac->ifa;
1103 
1104 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1105 				continue;
1106 			if (ifa->ifa_dstaddr &&
1107 			    sa_equal(addr, ifa->ifa_dstaddr))
1108 				return (ifa);
1109 		}
1110 	}
1111 	return (NULL);
1112 }
1113 
1114 /*
1115  * Find an interface on a specific network.  If many, choice
1116  * is most specific found.
1117  */
1118 struct ifaddr *
1119 ifa_ifwithnet(struct sockaddr *addr)
1120 {
1121 	struct ifnet *ifp;
1122 	struct ifaddr *ifa_maybe = NULL;
1123 	u_int af = addr->sa_family;
1124 	char *addr_data = addr->sa_data, *cplim;
1125 
1126 	/*
1127 	 * AF_LINK addresses can be looked up directly by their index number,
1128 	 * so do that if we can.
1129 	 */
1130 	if (af == AF_LINK) {
1131 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1132 
1133 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1134 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1135 	}
1136 
1137 	/*
1138 	 * Scan though each interface, looking for ones that have
1139 	 * addresses in this address family.
1140 	 */
1141 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1142 		struct ifaddr_container *ifac;
1143 
1144 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1145 			struct ifaddr *ifa = ifac->ifa;
1146 			char *cp, *cp2, *cp3;
1147 
1148 			if (ifa->ifa_addr->sa_family != af)
1149 next:				continue;
1150 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1151 				/*
1152 				 * This is a bit broken as it doesn't
1153 				 * take into account that the remote end may
1154 				 * be a single node in the network we are
1155 				 * looking for.
1156 				 * The trouble is that we don't know the
1157 				 * netmask for the remote end.
1158 				 */
1159 				if (ifa->ifa_dstaddr != NULL &&
1160 				    sa_equal(addr, ifa->ifa_dstaddr))
1161 					return (ifa);
1162 			} else {
1163 				/*
1164 				 * if we have a special address handler,
1165 				 * then use it instead of the generic one.
1166 				 */
1167 				if (ifa->ifa_claim_addr) {
1168 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1169 						return (ifa);
1170 					} else {
1171 						continue;
1172 					}
1173 				}
1174 
1175 				/*
1176 				 * Scan all the bits in the ifa's address.
1177 				 * If a bit dissagrees with what we are
1178 				 * looking for, mask it with the netmask
1179 				 * to see if it really matters.
1180 				 * (A byte at a time)
1181 				 */
1182 				if (ifa->ifa_netmask == 0)
1183 					continue;
1184 				cp = addr_data;
1185 				cp2 = ifa->ifa_addr->sa_data;
1186 				cp3 = ifa->ifa_netmask->sa_data;
1187 				cplim = ifa->ifa_netmask->sa_len +
1188 					(char *)ifa->ifa_netmask;
1189 				while (cp3 < cplim)
1190 					if ((*cp++ ^ *cp2++) & *cp3++)
1191 						goto next; /* next address! */
1192 				/*
1193 				 * If the netmask of what we just found
1194 				 * is more specific than what we had before
1195 				 * (if we had one) then remember the new one
1196 				 * before continuing to search
1197 				 * for an even better one.
1198 				 */
1199 				if (ifa_maybe == NULL ||
1200 				    rn_refines((char *)ifa->ifa_netmask,
1201 					       (char *)ifa_maybe->ifa_netmask))
1202 					ifa_maybe = ifa;
1203 			}
1204 		}
1205 	}
1206 	return (ifa_maybe);
1207 }
1208 
1209 /*
1210  * Find an interface address specific to an interface best matching
1211  * a given address.
1212  */
1213 struct ifaddr *
1214 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1215 {
1216 	struct ifaddr_container *ifac;
1217 	char *cp, *cp2, *cp3;
1218 	char *cplim;
1219 	struct ifaddr *ifa_maybe = NULL;
1220 	u_int af = addr->sa_family;
1221 
1222 	if (af >= AF_MAX)
1223 		return (0);
1224 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1225 		struct ifaddr *ifa = ifac->ifa;
1226 
1227 		if (ifa->ifa_addr->sa_family != af)
1228 			continue;
1229 		if (ifa_maybe == NULL)
1230 			ifa_maybe = ifa;
1231 		if (ifa->ifa_netmask == NULL) {
1232 			if (sa_equal(addr, ifa->ifa_addr) ||
1233 			    (ifa->ifa_dstaddr != NULL &&
1234 			     sa_equal(addr, ifa->ifa_dstaddr)))
1235 				return (ifa);
1236 			continue;
1237 		}
1238 		if (ifp->if_flags & IFF_POINTOPOINT) {
1239 			if (sa_equal(addr, ifa->ifa_dstaddr))
1240 				return (ifa);
1241 		} else {
1242 			cp = addr->sa_data;
1243 			cp2 = ifa->ifa_addr->sa_data;
1244 			cp3 = ifa->ifa_netmask->sa_data;
1245 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1246 			for (; cp3 < cplim; cp3++)
1247 				if ((*cp++ ^ *cp2++) & *cp3)
1248 					break;
1249 			if (cp3 == cplim)
1250 				return (ifa);
1251 		}
1252 	}
1253 	return (ifa_maybe);
1254 }
1255 
1256 /*
1257  * Default action when installing a route with a Link Level gateway.
1258  * Lookup an appropriate real ifa to point to.
1259  * This should be moved to /sys/net/link.c eventually.
1260  */
1261 static void
1262 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
1263 {
1264 	struct ifaddr *ifa;
1265 	struct sockaddr *dst;
1266 	struct ifnet *ifp;
1267 
1268 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1269 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1270 		return;
1271 	ifa = ifaof_ifpforaddr(dst, ifp);
1272 	if (ifa != NULL) {
1273 		IFAFREE(rt->rt_ifa);
1274 		IFAREF(ifa);
1275 		rt->rt_ifa = ifa;
1276 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1277 			ifa->ifa_rtrequest(cmd, rt, info);
1278 	}
1279 }
1280 
1281 /*
1282  * Mark an interface down and notify protocols of
1283  * the transition.
1284  * NOTE: must be called at splnet or eqivalent.
1285  */
1286 void
1287 if_unroute(struct ifnet *ifp, int flag, int fam)
1288 {
1289 	struct ifaddr_container *ifac;
1290 
1291 	ifp->if_flags &= ~flag;
1292 	getmicrotime(&ifp->if_lastchange);
1293 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1294 		struct ifaddr *ifa = ifac->ifa;
1295 
1296 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1297 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1298 	}
1299 	ifq_purge(&ifp->if_snd);
1300 	rt_ifmsg(ifp);
1301 }
1302 
1303 /*
1304  * Mark an interface up and notify protocols of
1305  * the transition.
1306  * NOTE: must be called at splnet or eqivalent.
1307  */
1308 void
1309 if_route(struct ifnet *ifp, int flag, int fam)
1310 {
1311 	struct ifaddr_container *ifac;
1312 
1313 	ifq_purge(&ifp->if_snd);
1314 	ifp->if_flags |= flag;
1315 	getmicrotime(&ifp->if_lastchange);
1316 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1317 		struct ifaddr *ifa = ifac->ifa;
1318 
1319 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1320 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1321 	}
1322 	rt_ifmsg(ifp);
1323 #ifdef INET6
1324 	in6_if_up(ifp);
1325 #endif
1326 }
1327 
1328 /*
1329  * Mark an interface down and notify protocols of the transition.  An
1330  * interface going down is also considered to be a synchronizing event.
1331  * We must ensure that all packet processing related to the interface
1332  * has completed before we return so e.g. the caller can free the ifnet
1333  * structure that the mbufs may be referencing.
1334  *
1335  * NOTE: must be called at splnet or eqivalent.
1336  */
1337 void
1338 if_down(struct ifnet *ifp)
1339 {
1340 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1341 	netmsg_service_sync();
1342 }
1343 
1344 /*
1345  * Mark an interface up and notify protocols of
1346  * the transition.
1347  * NOTE: must be called at splnet or eqivalent.
1348  */
1349 void
1350 if_up(struct ifnet *ifp)
1351 {
1352 	if_route(ifp, IFF_UP, AF_UNSPEC);
1353 }
1354 
1355 /*
1356  * Process a link state change.
1357  * NOTE: must be called at splsoftnet or equivalent.
1358  */
1359 void
1360 if_link_state_change(struct ifnet *ifp)
1361 {
1362 	int link_state = ifp->if_link_state;
1363 
1364 	rt_ifmsg(ifp);
1365 	devctl_notify("IFNET", ifp->if_xname,
1366 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1367 }
1368 
1369 /*
1370  * Handle interface watchdog timer routines.  Called
1371  * from softclock, we decrement timers (if set) and
1372  * call the appropriate interface routine on expiration.
1373  */
1374 static void
1375 if_slowtimo(void *arg)
1376 {
1377 	struct ifnet *ifp;
1378 
1379 	crit_enter();
1380 
1381 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1382 		if (ifp->if_timer == 0 || --ifp->if_timer)
1383 			continue;
1384 		if (ifp->if_watchdog) {
1385 			if (ifnet_tryserialize_all(ifp)) {
1386 				(*ifp->if_watchdog)(ifp);
1387 				ifnet_deserialize_all(ifp);
1388 			} else {
1389 				/* try again next timeout */
1390 				++ifp->if_timer;
1391 			}
1392 		}
1393 	}
1394 
1395 	crit_exit();
1396 
1397 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1398 }
1399 
1400 /*
1401  * Map interface name to
1402  * interface structure pointer.
1403  */
1404 struct ifnet *
1405 ifunit(const char *name)
1406 {
1407 	struct ifnet *ifp;
1408 
1409 	/*
1410 	 * Search all the interfaces for this name/number
1411 	 */
1412 
1413 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1414 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1415 			break;
1416 	}
1417 	return (ifp);
1418 }
1419 
1420 
1421 /*
1422  * Map interface name in a sockaddr_dl to
1423  * interface structure pointer.
1424  */
1425 struct ifnet *
1426 if_withname(struct sockaddr *sa)
1427 {
1428 	char ifname[IFNAMSIZ+1];
1429 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1430 
1431 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1432 	     (sdl->sdl_nlen > IFNAMSIZ) )
1433 		return NULL;
1434 
1435 	/*
1436 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1437 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1438 	 * and there might not be room to put the trailing null anyway, so we
1439 	 * make a local copy that we know we can null terminate safely.
1440 	 */
1441 
1442 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1443 	ifname[sdl->sdl_nlen] = '\0';
1444 	return ifunit(ifname);
1445 }
1446 
1447 
1448 /*
1449  * Interface ioctls.
1450  */
1451 int
1452 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1453 {
1454 	struct ifnet *ifp;
1455 	struct ifreq *ifr;
1456 	struct ifstat *ifs;
1457 	int error;
1458 	short oif_flags;
1459 	int new_flags;
1460 #ifdef COMPAT_43
1461 	int ocmd;
1462 #endif
1463 	size_t namelen, onamelen;
1464 	char new_name[IFNAMSIZ];
1465 	struct ifaddr *ifa;
1466 	struct sockaddr_dl *sdl;
1467 
1468 	switch (cmd) {
1469 	case SIOCGIFCONF:
1470 	case OSIOCGIFCONF:
1471 		return (ifconf(cmd, data, cred));
1472 	default:
1473 		break;
1474 	}
1475 
1476 	ifr = (struct ifreq *)data;
1477 
1478 	switch (cmd) {
1479 	case SIOCIFCREATE:
1480 	case SIOCIFCREATE2:
1481 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1482 			return (error);
1483 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1484 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1485 	case SIOCIFDESTROY:
1486 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1487 			return (error);
1488 		return (if_clone_destroy(ifr->ifr_name));
1489 	case SIOCIFGCLONERS:
1490 		return (if_clone_list((struct if_clonereq *)data));
1491 	default:
1492 		break;
1493 	}
1494 
1495 	/*
1496 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1497 	 * lock to serialize the ifconfig ioctl operation.
1498 	 */
1499 	ifp = ifunit(ifr->ifr_name);
1500 	if (ifp == NULL)
1501 		return (ENXIO);
1502 	error = 0;
1503 	mtx_lock(&ifp->if_ioctl_mtx);
1504 
1505 	switch (cmd) {
1506 	case SIOCGIFINDEX:
1507 		ifr->ifr_index = ifp->if_index;
1508 		break;
1509 
1510 	case SIOCGIFFLAGS:
1511 		ifr->ifr_flags = ifp->if_flags;
1512 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1513 		break;
1514 
1515 	case SIOCGIFCAP:
1516 		ifr->ifr_reqcap = ifp->if_capabilities;
1517 		ifr->ifr_curcap = ifp->if_capenable;
1518 		break;
1519 
1520 	case SIOCGIFMETRIC:
1521 		ifr->ifr_metric = ifp->if_metric;
1522 		break;
1523 
1524 	case SIOCGIFMTU:
1525 		ifr->ifr_mtu = ifp->if_mtu;
1526 		break;
1527 
1528 	case SIOCGIFDATA:
1529 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1530 				sizeof(ifp->if_data));
1531 		break;
1532 
1533 	case SIOCGIFPHYS:
1534 		ifr->ifr_phys = ifp->if_physical;
1535 		break;
1536 
1537 	case SIOCGIFPOLLCPU:
1538 #ifdef DEVICE_POLLING
1539 		ifr->ifr_pollcpu = ifp->if_poll_cpuid;
1540 #else
1541 		ifr->ifr_pollcpu = -1;
1542 #endif
1543 		break;
1544 
1545 	case SIOCSIFPOLLCPU:
1546 #ifdef DEVICE_POLLING
1547 		if ((ifp->if_flags & IFF_POLLING) == 0)
1548 			ether_pollcpu_register(ifp, ifr->ifr_pollcpu);
1549 #endif
1550 		break;
1551 
1552 	case SIOCSIFFLAGS:
1553 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1554 		if (error)
1555 			break;
1556 		new_flags = (ifr->ifr_flags & 0xffff) |
1557 		    (ifr->ifr_flagshigh << 16);
1558 		if (ifp->if_flags & IFF_SMART) {
1559 			/* Smart drivers twiddle their own routes */
1560 		} else if (ifp->if_flags & IFF_UP &&
1561 		    (new_flags & IFF_UP) == 0) {
1562 			crit_enter();
1563 			if_down(ifp);
1564 			crit_exit();
1565 		} else if (new_flags & IFF_UP &&
1566 		    (ifp->if_flags & IFF_UP) == 0) {
1567 			crit_enter();
1568 			if_up(ifp);
1569 			crit_exit();
1570 		}
1571 
1572 #ifdef DEVICE_POLLING
1573 		if ((new_flags ^ ifp->if_flags) & IFF_POLLING) {
1574 			if (new_flags & IFF_POLLING) {
1575 				ether_poll_register(ifp);
1576 			} else {
1577 				ether_poll_deregister(ifp);
1578 			}
1579 		}
1580 #endif
1581 #ifdef IFPOLL_ENABLE
1582 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1583 			if (new_flags & IFF_NPOLLING)
1584 				ifpoll_register(ifp);
1585 			else
1586 				ifpoll_deregister(ifp);
1587 		}
1588 #endif
1589 
1590 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1591 			(new_flags &~ IFF_CANTCHANGE);
1592 		if (new_flags & IFF_PPROMISC) {
1593 			/* Permanently promiscuous mode requested */
1594 			ifp->if_flags |= IFF_PROMISC;
1595 		} else if (ifp->if_pcount == 0) {
1596 			ifp->if_flags &= ~IFF_PROMISC;
1597 		}
1598 		if (ifp->if_ioctl) {
1599 			ifnet_serialize_all(ifp);
1600 			ifp->if_ioctl(ifp, cmd, data, cred);
1601 			ifnet_deserialize_all(ifp);
1602 		}
1603 		getmicrotime(&ifp->if_lastchange);
1604 		break;
1605 
1606 	case SIOCSIFCAP:
1607 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1608 		if (error)
1609 			break;
1610 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1611 			error = EINVAL;
1612 			break;
1613 		}
1614 		ifnet_serialize_all(ifp);
1615 		ifp->if_ioctl(ifp, cmd, data, cred);
1616 		ifnet_deserialize_all(ifp);
1617 		break;
1618 
1619 	case SIOCSIFNAME:
1620 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1621 		if (error)
1622 			break;
1623 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1624 		if (error)
1625 			break;
1626 		if (new_name[0] == '\0') {
1627 			error = EINVAL;
1628 			break;
1629 		}
1630 		if (ifunit(new_name) != NULL) {
1631 			error = EEXIST;
1632 			break;
1633 		}
1634 
1635 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1636 
1637 		/* Announce the departure of the interface. */
1638 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1639 
1640 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1641 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1642 		/* XXX IFA_LOCK(ifa); */
1643 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1644 		namelen = strlen(new_name);
1645 		onamelen = sdl->sdl_nlen;
1646 		/*
1647 		 * Move the address if needed.  This is safe because we
1648 		 * allocate space for a name of length IFNAMSIZ when we
1649 		 * create this in if_attach().
1650 		 */
1651 		if (namelen != onamelen) {
1652 			bcopy(sdl->sdl_data + onamelen,
1653 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1654 		}
1655 		bcopy(new_name, sdl->sdl_data, namelen);
1656 		sdl->sdl_nlen = namelen;
1657 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1658 		bzero(sdl->sdl_data, onamelen);
1659 		while (namelen != 0)
1660 			sdl->sdl_data[--namelen] = 0xff;
1661 		/* XXX IFA_UNLOCK(ifa) */
1662 
1663 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1664 
1665 		/* Announce the return of the interface. */
1666 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1667 		break;
1668 
1669 	case SIOCSIFMETRIC:
1670 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1671 		if (error)
1672 			break;
1673 		ifp->if_metric = ifr->ifr_metric;
1674 		getmicrotime(&ifp->if_lastchange);
1675 		break;
1676 
1677 	case SIOCSIFPHYS:
1678 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1679 		if (error)
1680 			break;
1681 		if (ifp->if_ioctl == NULL) {
1682 		        error = EOPNOTSUPP;
1683 			break;
1684 		}
1685 		ifnet_serialize_all(ifp);
1686 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1687 		ifnet_deserialize_all(ifp);
1688 		if (error == 0)
1689 			getmicrotime(&ifp->if_lastchange);
1690 		break;
1691 
1692 	case SIOCSIFMTU:
1693 	{
1694 		u_long oldmtu = ifp->if_mtu;
1695 
1696 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1697 		if (error)
1698 			break;
1699 		if (ifp->if_ioctl == NULL) {
1700 			error = EOPNOTSUPP;
1701 			break;
1702 		}
1703 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
1704 			error = EINVAL;
1705 			break;
1706 		}
1707 		ifnet_serialize_all(ifp);
1708 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1709 		ifnet_deserialize_all(ifp);
1710 		if (error == 0) {
1711 			getmicrotime(&ifp->if_lastchange);
1712 			rt_ifmsg(ifp);
1713 		}
1714 		/*
1715 		 * If the link MTU changed, do network layer specific procedure.
1716 		 */
1717 		if (ifp->if_mtu != oldmtu) {
1718 #ifdef INET6
1719 			nd6_setmtu(ifp);
1720 #endif
1721 		}
1722 		break;
1723 	}
1724 
1725 	case SIOCADDMULTI:
1726 	case SIOCDELMULTI:
1727 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1728 		if (error)
1729 			break;
1730 
1731 		/* Don't allow group membership on non-multicast interfaces. */
1732 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1733 			error = EOPNOTSUPP;
1734 			break;
1735 		}
1736 
1737 		/* Don't let users screw up protocols' entries. */
1738 		if (ifr->ifr_addr.sa_family != AF_LINK) {
1739 			error = EINVAL;
1740 			break;
1741 		}
1742 
1743 		if (cmd == SIOCADDMULTI) {
1744 			struct ifmultiaddr *ifma;
1745 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1746 		} else {
1747 			error = if_delmulti(ifp, &ifr->ifr_addr);
1748 		}
1749 		if (error == 0)
1750 			getmicrotime(&ifp->if_lastchange);
1751 		break;
1752 
1753 	case SIOCSIFPHYADDR:
1754 	case SIOCDIFPHYADDR:
1755 #ifdef INET6
1756 	case SIOCSIFPHYADDR_IN6:
1757 #endif
1758 	case SIOCSLIFPHYADDR:
1759         case SIOCSIFMEDIA:
1760 	case SIOCSIFGENERIC:
1761 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1762 		if (error)
1763 			break;
1764 		if (ifp->if_ioctl == 0) {
1765 			error = EOPNOTSUPP;
1766 			break;
1767 		}
1768 		ifnet_serialize_all(ifp);
1769 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1770 		ifnet_deserialize_all(ifp);
1771 		if (error == 0)
1772 			getmicrotime(&ifp->if_lastchange);
1773 		break;
1774 
1775 	case SIOCGIFSTATUS:
1776 		ifs = (struct ifstat *)data;
1777 		ifs->ascii[0] = '\0';
1778 		/* fall through */
1779 	case SIOCGIFPSRCADDR:
1780 	case SIOCGIFPDSTADDR:
1781 	case SIOCGLIFPHYADDR:
1782 	case SIOCGIFMEDIA:
1783 	case SIOCGIFGENERIC:
1784 		if (ifp->if_ioctl == NULL) {
1785 			error = EOPNOTSUPP;
1786 			break;
1787 		}
1788 		ifnet_serialize_all(ifp);
1789 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1790 		ifnet_deserialize_all(ifp);
1791 		break;
1792 
1793 	case SIOCSIFLLADDR:
1794 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1795 		if (error)
1796 			break;
1797 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
1798 				     ifr->ifr_addr.sa_len);
1799 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1800 		break;
1801 
1802 	default:
1803 		oif_flags = ifp->if_flags;
1804 		if (so->so_proto == 0) {
1805 			error = EOPNOTSUPP;
1806 			break;
1807 		}
1808 #ifndef COMPAT_43
1809 		error = so_pru_control_direct(so, cmd, data, ifp);
1810 #else
1811 		ocmd = cmd;
1812 
1813 		switch (cmd) {
1814 		case SIOCSIFDSTADDR:
1815 		case SIOCSIFADDR:
1816 		case SIOCSIFBRDADDR:
1817 		case SIOCSIFNETMASK:
1818 #if BYTE_ORDER != BIG_ENDIAN
1819 			if (ifr->ifr_addr.sa_family == 0 &&
1820 			    ifr->ifr_addr.sa_len < 16) {
1821 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1822 				ifr->ifr_addr.sa_len = 16;
1823 			}
1824 #else
1825 			if (ifr->ifr_addr.sa_len == 0)
1826 				ifr->ifr_addr.sa_len = 16;
1827 #endif
1828 			break;
1829 		case OSIOCGIFADDR:
1830 			cmd = SIOCGIFADDR;
1831 			break;
1832 		case OSIOCGIFDSTADDR:
1833 			cmd = SIOCGIFDSTADDR;
1834 			break;
1835 		case OSIOCGIFBRDADDR:
1836 			cmd = SIOCGIFBRDADDR;
1837 			break;
1838 		case OSIOCGIFNETMASK:
1839 			cmd = SIOCGIFNETMASK;
1840 			break;
1841 		default:
1842 			break;
1843 		}
1844 
1845 		error = so_pru_control_direct(so, cmd, data, ifp);
1846 
1847 		switch (ocmd) {
1848 		case OSIOCGIFADDR:
1849 		case OSIOCGIFDSTADDR:
1850 		case OSIOCGIFBRDADDR:
1851 		case OSIOCGIFNETMASK:
1852 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1853 			break;
1854 		}
1855 #endif /* COMPAT_43 */
1856 
1857 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1858 #ifdef INET6
1859 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1860 			if (ifp->if_flags & IFF_UP) {
1861 				crit_enter();
1862 				in6_if_up(ifp);
1863 				crit_exit();
1864 			}
1865 #endif
1866 		}
1867 		break;
1868 	}
1869 
1870 	mtx_unlock(&ifp->if_ioctl_mtx);
1871 	return (error);
1872 }
1873 
1874 /*
1875  * Set/clear promiscuous mode on interface ifp based on the truth value
1876  * of pswitch.  The calls are reference counted so that only the first
1877  * "on" request actually has an effect, as does the final "off" request.
1878  * Results are undefined if the "off" and "on" requests are not matched.
1879  */
1880 int
1881 ifpromisc(struct ifnet *ifp, int pswitch)
1882 {
1883 	struct ifreq ifr;
1884 	int error;
1885 	int oldflags;
1886 
1887 	oldflags = ifp->if_flags;
1888 	if (ifp->if_flags & IFF_PPROMISC) {
1889 		/* Do nothing if device is in permanently promiscuous mode */
1890 		ifp->if_pcount += pswitch ? 1 : -1;
1891 		return (0);
1892 	}
1893 	if (pswitch) {
1894 		/*
1895 		 * If the device is not configured up, we cannot put it in
1896 		 * promiscuous mode.
1897 		 */
1898 		if ((ifp->if_flags & IFF_UP) == 0)
1899 			return (ENETDOWN);
1900 		if (ifp->if_pcount++ != 0)
1901 			return (0);
1902 		ifp->if_flags |= IFF_PROMISC;
1903 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1904 		    ifp->if_xname);
1905 	} else {
1906 		if (--ifp->if_pcount > 0)
1907 			return (0);
1908 		ifp->if_flags &= ~IFF_PROMISC;
1909 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1910 		    ifp->if_xname);
1911 	}
1912 	ifr.ifr_flags = ifp->if_flags;
1913 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1914 	ifnet_serialize_all(ifp);
1915 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
1916 	ifnet_deserialize_all(ifp);
1917 	if (error == 0)
1918 		rt_ifmsg(ifp);
1919 	else
1920 		ifp->if_flags = oldflags;
1921 	return error;
1922 }
1923 
1924 /*
1925  * Return interface configuration
1926  * of system.  List may be used
1927  * in later ioctl's (above) to get
1928  * other information.
1929  */
1930 static int
1931 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
1932 {
1933 	struct ifconf *ifc = (struct ifconf *)data;
1934 	struct ifnet *ifp;
1935 	struct sockaddr *sa;
1936 	struct ifreq ifr, *ifrp;
1937 	int space = ifc->ifc_len, error = 0;
1938 
1939 	ifrp = ifc->ifc_req;
1940 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1941 		struct ifaddr_container *ifac;
1942 		int addrs;
1943 
1944 		if (space <= sizeof ifr)
1945 			break;
1946 
1947 		/*
1948 		 * Zero the stack declared structure first to prevent
1949 		 * memory disclosure.
1950 		 */
1951 		bzero(&ifr, sizeof(ifr));
1952 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
1953 		    >= sizeof(ifr.ifr_name)) {
1954 			error = ENAMETOOLONG;
1955 			break;
1956 		}
1957 
1958 		addrs = 0;
1959 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1960 			struct ifaddr *ifa = ifac->ifa;
1961 
1962 			if (space <= sizeof ifr)
1963 				break;
1964 			sa = ifa->ifa_addr;
1965 			if (cred->cr_prison &&
1966 			    prison_if(cred, sa))
1967 				continue;
1968 			addrs++;
1969 #ifdef COMPAT_43
1970 			if (cmd == OSIOCGIFCONF) {
1971 				struct osockaddr *osa =
1972 					 (struct osockaddr *)&ifr.ifr_addr;
1973 				ifr.ifr_addr = *sa;
1974 				osa->sa_family = sa->sa_family;
1975 				error = copyout(&ifr, ifrp, sizeof ifr);
1976 				ifrp++;
1977 			} else
1978 #endif
1979 			if (sa->sa_len <= sizeof(*sa)) {
1980 				ifr.ifr_addr = *sa;
1981 				error = copyout(&ifr, ifrp, sizeof ifr);
1982 				ifrp++;
1983 			} else {
1984 				if (space < (sizeof ifr) + sa->sa_len -
1985 					    sizeof(*sa))
1986 					break;
1987 				space -= sa->sa_len - sizeof(*sa);
1988 				error = copyout(&ifr, ifrp,
1989 						sizeof ifr.ifr_name);
1990 				if (error == 0)
1991 					error = copyout(sa, &ifrp->ifr_addr,
1992 							sa->sa_len);
1993 				ifrp = (struct ifreq *)
1994 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
1995 			}
1996 			if (error)
1997 				break;
1998 			space -= sizeof ifr;
1999 		}
2000 		if (error)
2001 			break;
2002 		if (!addrs) {
2003 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2004 			error = copyout(&ifr, ifrp, sizeof ifr);
2005 			if (error)
2006 				break;
2007 			space -= sizeof ifr;
2008 			ifrp++;
2009 		}
2010 	}
2011 	ifc->ifc_len -= space;
2012 	return (error);
2013 }
2014 
2015 /*
2016  * Just like if_promisc(), but for all-multicast-reception mode.
2017  */
2018 int
2019 if_allmulti(struct ifnet *ifp, int onswitch)
2020 {
2021 	int error = 0;
2022 	struct ifreq ifr;
2023 
2024 	crit_enter();
2025 
2026 	if (onswitch) {
2027 		if (ifp->if_amcount++ == 0) {
2028 			ifp->if_flags |= IFF_ALLMULTI;
2029 			ifr.ifr_flags = ifp->if_flags;
2030 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2031 			ifnet_serialize_all(ifp);
2032 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2033 					      NULL);
2034 			ifnet_deserialize_all(ifp);
2035 		}
2036 	} else {
2037 		if (ifp->if_amcount > 1) {
2038 			ifp->if_amcount--;
2039 		} else {
2040 			ifp->if_amcount = 0;
2041 			ifp->if_flags &= ~IFF_ALLMULTI;
2042 			ifr.ifr_flags = ifp->if_flags;
2043 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2044 			ifnet_serialize_all(ifp);
2045 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2046 					      NULL);
2047 			ifnet_deserialize_all(ifp);
2048 		}
2049 	}
2050 
2051 	crit_exit();
2052 
2053 	if (error == 0)
2054 		rt_ifmsg(ifp);
2055 	return error;
2056 }
2057 
2058 /*
2059  * Add a multicast listenership to the interface in question.
2060  * The link layer provides a routine which converts
2061  */
2062 int
2063 if_addmulti(
2064 	struct ifnet *ifp,	/* interface to manipulate */
2065 	struct sockaddr *sa,	/* address to add */
2066 	struct ifmultiaddr **retifma)
2067 {
2068 	struct sockaddr *llsa, *dupsa;
2069 	int error;
2070 	struct ifmultiaddr *ifma;
2071 
2072 	/*
2073 	 * If the matching multicast address already exists
2074 	 * then don't add a new one, just add a reference
2075 	 */
2076 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2077 		if (sa_equal(sa, ifma->ifma_addr)) {
2078 			ifma->ifma_refcount++;
2079 			if (retifma)
2080 				*retifma = ifma;
2081 			return 0;
2082 		}
2083 	}
2084 
2085 	/*
2086 	 * Give the link layer a chance to accept/reject it, and also
2087 	 * find out which AF_LINK address this maps to, if it isn't one
2088 	 * already.
2089 	 */
2090 	if (ifp->if_resolvemulti) {
2091 		ifnet_serialize_all(ifp);
2092 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2093 		ifnet_deserialize_all(ifp);
2094 		if (error)
2095 			return error;
2096 	} else {
2097 		llsa = NULL;
2098 	}
2099 
2100 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2101 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK);
2102 	bcopy(sa, dupsa, sa->sa_len);
2103 
2104 	ifma->ifma_addr = dupsa;
2105 	ifma->ifma_lladdr = llsa;
2106 	ifma->ifma_ifp = ifp;
2107 	ifma->ifma_refcount = 1;
2108 	ifma->ifma_protospec = 0;
2109 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2110 
2111 	/*
2112 	 * Some network interfaces can scan the address list at
2113 	 * interrupt time; lock them out.
2114 	 */
2115 	crit_enter();
2116 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2117 	crit_exit();
2118 	if (retifma)
2119 		*retifma = ifma;
2120 
2121 	if (llsa != NULL) {
2122 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2123 			if (sa_equal(ifma->ifma_addr, llsa))
2124 				break;
2125 		}
2126 		if (ifma) {
2127 			ifma->ifma_refcount++;
2128 		} else {
2129 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2130 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK);
2131 			bcopy(llsa, dupsa, llsa->sa_len);
2132 			ifma->ifma_addr = dupsa;
2133 			ifma->ifma_ifp = ifp;
2134 			ifma->ifma_refcount = 1;
2135 			crit_enter();
2136 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2137 			crit_exit();
2138 		}
2139 	}
2140 	/*
2141 	 * We are certain we have added something, so call down to the
2142 	 * interface to let them know about it.
2143 	 */
2144 	crit_enter();
2145 	ifnet_serialize_all(ifp);
2146 	if (ifp->if_ioctl)
2147 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2148 	ifnet_deserialize_all(ifp);
2149 	crit_exit();
2150 
2151 	return 0;
2152 }
2153 
2154 /*
2155  * Remove a reference to a multicast address on this interface.  Yell
2156  * if the request does not match an existing membership.
2157  */
2158 int
2159 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2160 {
2161 	struct ifmultiaddr *ifma;
2162 
2163 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2164 		if (sa_equal(sa, ifma->ifma_addr))
2165 			break;
2166 	if (ifma == NULL)
2167 		return ENOENT;
2168 
2169 	if (ifma->ifma_refcount > 1) {
2170 		ifma->ifma_refcount--;
2171 		return 0;
2172 	}
2173 
2174 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2175 	sa = ifma->ifma_lladdr;
2176 	crit_enter();
2177 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2178 	/*
2179 	 * Make sure the interface driver is notified
2180 	 * in the case of a link layer mcast group being left.
2181 	 */
2182 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) {
2183 		ifnet_serialize_all(ifp);
2184 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2185 		ifnet_deserialize_all(ifp);
2186 	}
2187 	crit_exit();
2188 	kfree(ifma->ifma_addr, M_IFMADDR);
2189 	kfree(ifma, M_IFMADDR);
2190 	if (sa == NULL)
2191 		return 0;
2192 
2193 	/*
2194 	 * Now look for the link-layer address which corresponds to
2195 	 * this network address.  It had been squirreled away in
2196 	 * ifma->ifma_lladdr for this purpose (so we don't have
2197 	 * to call ifp->if_resolvemulti() again), and we saved that
2198 	 * value in sa above.  If some nasty deleted the
2199 	 * link-layer address out from underneath us, we can deal because
2200 	 * the address we stored was is not the same as the one which was
2201 	 * in the record for the link-layer address.  (So we don't complain
2202 	 * in that case.)
2203 	 */
2204 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2205 		if (sa_equal(sa, ifma->ifma_addr))
2206 			break;
2207 	if (ifma == NULL)
2208 		return 0;
2209 
2210 	if (ifma->ifma_refcount > 1) {
2211 		ifma->ifma_refcount--;
2212 		return 0;
2213 	}
2214 
2215 	crit_enter();
2216 	ifnet_serialize_all(ifp);
2217 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2218 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2219 	ifnet_deserialize_all(ifp);
2220 	crit_exit();
2221 	kfree(ifma->ifma_addr, M_IFMADDR);
2222 	kfree(sa, M_IFMADDR);
2223 	kfree(ifma, M_IFMADDR);
2224 
2225 	return 0;
2226 }
2227 
2228 /*
2229  * Delete all multicast group membership for an interface.
2230  * Should be used to quickly flush all multicast filters.
2231  */
2232 void
2233 if_delallmulti(struct ifnet *ifp)
2234 {
2235 	struct ifmultiaddr *ifma;
2236 	struct ifmultiaddr *next;
2237 
2238 	TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next)
2239 		if_delmulti(ifp, ifma->ifma_addr);
2240 }
2241 
2242 
2243 /*
2244  * Set the link layer address on an interface.
2245  *
2246  * At this time we only support certain types of interfaces,
2247  * and we don't allow the length of the address to change.
2248  */
2249 int
2250 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2251 {
2252 	struct sockaddr_dl *sdl;
2253 	struct ifreq ifr;
2254 
2255 	sdl = IF_LLSOCKADDR(ifp);
2256 	if (sdl == NULL)
2257 		return (EINVAL);
2258 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2259 		return (EINVAL);
2260 	switch (ifp->if_type) {
2261 	case IFT_ETHER:			/* these types use struct arpcom */
2262 	case IFT_XETHER:
2263 	case IFT_L2VLAN:
2264 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2265 		bcopy(lladdr, LLADDR(sdl), len);
2266 		break;
2267 	default:
2268 		return (ENODEV);
2269 	}
2270 	/*
2271 	 * If the interface is already up, we need
2272 	 * to re-init it in order to reprogram its
2273 	 * address filter.
2274 	 */
2275 	ifnet_serialize_all(ifp);
2276 	if ((ifp->if_flags & IFF_UP) != 0) {
2277 #ifdef INET
2278 		struct ifaddr_container *ifac;
2279 #endif
2280 
2281 		ifp->if_flags &= ~IFF_UP;
2282 		ifr.ifr_flags = ifp->if_flags;
2283 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2284 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2285 			      NULL);
2286 		ifp->if_flags |= IFF_UP;
2287 		ifr.ifr_flags = ifp->if_flags;
2288 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2289 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2290 				 NULL);
2291 #ifdef INET
2292 		/*
2293 		 * Also send gratuitous ARPs to notify other nodes about
2294 		 * the address change.
2295 		 */
2296 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2297 			struct ifaddr *ifa = ifac->ifa;
2298 
2299 			if (ifa->ifa_addr != NULL &&
2300 			    ifa->ifa_addr->sa_family == AF_INET)
2301 				arp_ifinit(ifp, ifa);
2302 		}
2303 #endif
2304 	}
2305 	ifnet_deserialize_all(ifp);
2306 	return (0);
2307 }
2308 
2309 struct ifmultiaddr *
2310 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2311 {
2312 	struct ifmultiaddr *ifma;
2313 
2314 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2315 		if (sa_equal(ifma->ifma_addr, sa))
2316 			break;
2317 
2318 	return ifma;
2319 }
2320 
2321 /*
2322  * This function locates the first real ethernet MAC from a network
2323  * card and loads it into node, returning 0 on success or ENOENT if
2324  * no suitable interfaces were found.  It is used by the uuid code to
2325  * generate a unique 6-byte number.
2326  */
2327 int
2328 if_getanyethermac(uint16_t *node, int minlen)
2329 {
2330 	struct ifnet *ifp;
2331 	struct sockaddr_dl *sdl;
2332 
2333 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2334 		if (ifp->if_type != IFT_ETHER)
2335 			continue;
2336 		sdl = IF_LLSOCKADDR(ifp);
2337 		if (sdl->sdl_alen < minlen)
2338 			continue;
2339 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2340 		      minlen);
2341 		return(0);
2342 	}
2343 	return (ENOENT);
2344 }
2345 
2346 /*
2347  * The name argument must be a pointer to storage which will last as
2348  * long as the interface does.  For physical devices, the result of
2349  * device_get_name(dev) is a good choice and for pseudo-devices a
2350  * static string works well.
2351  */
2352 void
2353 if_initname(struct ifnet *ifp, const char *name, int unit)
2354 {
2355 	ifp->if_dname = name;
2356 	ifp->if_dunit = unit;
2357 	if (unit != IF_DUNIT_NONE)
2358 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2359 	else
2360 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2361 }
2362 
2363 int
2364 if_printf(struct ifnet *ifp, const char *fmt, ...)
2365 {
2366 	__va_list ap;
2367 	int retval;
2368 
2369 	retval = kprintf("%s: ", ifp->if_xname);
2370 	__va_start(ap, fmt);
2371 	retval += kvprintf(fmt, ap);
2372 	__va_end(ap);
2373 	return (retval);
2374 }
2375 
2376 struct ifnet *
2377 if_alloc(uint8_t type)
2378 {
2379         struct ifnet *ifp;
2380 	size_t size;
2381 
2382 	/*
2383 	 * XXX temporary hack until arpcom is setup in if_l2com
2384 	 */
2385 	if (type == IFT_ETHER)
2386 		size = sizeof(struct arpcom);
2387 	else
2388 		size = sizeof(struct ifnet);
2389 
2390 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2391 
2392 	ifp->if_type = type;
2393 
2394 	if (if_com_alloc[type] != NULL) {
2395 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2396 		if (ifp->if_l2com == NULL) {
2397 			kfree(ifp, M_IFNET);
2398 			return (NULL);
2399 		}
2400 	}
2401 	return (ifp);
2402 }
2403 
2404 void
2405 if_free(struct ifnet *ifp)
2406 {
2407 	kfree(ifp, M_IFNET);
2408 }
2409 
2410 void
2411 ifq_set_classic(struct ifaltq *ifq)
2412 {
2413 	ifq->altq_enqueue = ifq_classic_enqueue;
2414 	ifq->altq_dequeue = ifq_classic_dequeue;
2415 	ifq->altq_request = ifq_classic_request;
2416 }
2417 
2418 int
2419 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m,
2420 		    struct altq_pktattr *pa __unused)
2421 {
2422 	logifq(enqueue, ifq);
2423 	if (IF_QFULL(ifq)) {
2424 		m_freem(m);
2425 		return(ENOBUFS);
2426 	} else {
2427 		IF_ENQUEUE(ifq, m);
2428 		return(0);
2429 	}
2430 }
2431 
2432 struct mbuf *
2433 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op)
2434 {
2435 	struct mbuf *m;
2436 
2437 	switch (op) {
2438 	case ALTDQ_POLL:
2439 		IF_POLL(ifq, m);
2440 		break;
2441 	case ALTDQ_REMOVE:
2442 		logifq(dequeue, ifq);
2443 		IF_DEQUEUE(ifq, m);
2444 		break;
2445 	default:
2446 		panic("unsupported ALTQ dequeue op: %d", op);
2447 	}
2448 	KKASSERT(mpolled == NULL || mpolled == m);
2449 	return(m);
2450 }
2451 
2452 int
2453 ifq_classic_request(struct ifaltq *ifq, int req, void *arg)
2454 {
2455 	switch (req) {
2456 	case ALTRQ_PURGE:
2457 		IF_DRAIN(ifq);
2458 		break;
2459 	default:
2460 		panic("unsupported ALTQ request: %d", req);
2461 	}
2462 	return(0);
2463 }
2464 
2465 int
2466 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2467 {
2468 	struct ifaltq *ifq = &ifp->if_snd;
2469 	int running = 0, error, start = 0;
2470 
2471 	ASSERT_IFNET_NOT_SERIALIZED_TX(ifp);
2472 
2473 	ALTQ_LOCK(ifq);
2474 	error = ifq_enqueue_locked(ifq, m, pa);
2475 	if (error) {
2476 		ALTQ_UNLOCK(ifq);
2477 		return error;
2478 	}
2479 	if (!ifq->altq_started) {
2480 		/*
2481 		 * Hold the interlock of ifnet.if_start
2482 		 */
2483 		ifq->altq_started = 1;
2484 		start = 1;
2485 	}
2486 	ALTQ_UNLOCK(ifq);
2487 
2488 	ifp->if_obytes += m->m_pkthdr.len;
2489 	if (m->m_flags & M_MCAST)
2490 		ifp->if_omcasts++;
2491 
2492 	if (!start) {
2493 		logifstart(avoid, ifp);
2494 		return 0;
2495 	}
2496 
2497 	if (ifq_dispatch_schedonly) {
2498 		/*
2499 		 * Always schedule ifnet.if_start on ifnet's CPU,
2500 		 * short circuit the rest of this function.
2501 		 */
2502 		logifstart(sched, ifp);
2503 		if_start_schedule(ifp);
2504 		return 0;
2505 	}
2506 
2507 	/*
2508 	 * Try to do direct ifnet.if_start first, if there is
2509 	 * contention on ifnet's serializer, ifnet.if_start will
2510 	 * be scheduled on ifnet's CPU.
2511 	 */
2512 	if (!ifnet_tryserialize_tx(ifp)) {
2513 		/*
2514 		 * ifnet serializer contention happened,
2515 		 * ifnet.if_start is scheduled on ifnet's
2516 		 * CPU, and we keep going.
2517 		 */
2518 		logifstart(contend_sched, ifp);
2519 		if_start_schedule(ifp);
2520 		return 0;
2521 	}
2522 
2523 	if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2524 		logifstart(run, ifp);
2525 		ifp->if_start(ifp);
2526 		if ((ifp->if_flags &
2527 		     (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
2528 			running = 1;
2529 	}
2530 
2531 	ifnet_deserialize_tx(ifp);
2532 
2533 	if (ifq_dispatch_schednochk || if_start_need_schedule(ifq, running)) {
2534 		/*
2535 		 * More data need to be transmitted, ifnet.if_start is
2536 		 * scheduled on ifnet's CPU, and we keep going.
2537 		 * NOTE: ifnet.if_start interlock is not released.
2538 		 */
2539 		logifstart(sched, ifp);
2540 		if_start_schedule(ifp);
2541 	}
2542 	return 0;
2543 }
2544 
2545 void *
2546 ifa_create(int size, int flags)
2547 {
2548 	struct ifaddr *ifa;
2549 	int i;
2550 
2551 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small\n"));
2552 
2553 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2554 	if (ifa == NULL)
2555 		return NULL;
2556 
2557 	ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container),
2558 				      M_IFADDR, M_WAITOK | M_ZERO);
2559 	ifa->ifa_ncnt = ncpus;
2560 	for (i = 0; i < ncpus; ++i) {
2561 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2562 
2563 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2564 		ifac->ifa = ifa;
2565 		ifac->ifa_refcnt = 1;
2566 	}
2567 #ifdef IFADDR_DEBUG
2568 	kprintf("alloc ifa %p %d\n", ifa, size);
2569 #endif
2570 	return ifa;
2571 }
2572 
2573 void
2574 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2575 {
2576 	struct ifaddr *ifa = ifac->ifa;
2577 
2578 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2579 	KKASSERT(ifac->ifa_refcnt == 0);
2580 	KASSERT(ifac->ifa_listmask == 0,
2581 		("ifa is still on %#x lists\n", ifac->ifa_listmask));
2582 
2583 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2584 
2585 #ifdef IFADDR_DEBUG_VERBOSE
2586 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2587 #endif
2588 
2589 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2590 		("invalid # of ifac, %d\n", ifa->ifa_ncnt));
2591 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2592 #ifdef IFADDR_DEBUG
2593 		kprintf("free ifa %p\n", ifa);
2594 #endif
2595 		kfree(ifa->ifa_containers, M_IFADDR);
2596 		kfree(ifa, M_IFADDR);
2597 	}
2598 }
2599 
2600 static void
2601 ifa_iflink_dispatch(netmsg_t nmsg)
2602 {
2603 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2604 	struct ifaddr *ifa = msg->ifa;
2605 	struct ifnet *ifp = msg->ifp;
2606 	int cpu = mycpuid;
2607 	struct ifaddr_container *ifac;
2608 
2609 	crit_enter();
2610 
2611 	ifac = &ifa->ifa_containers[cpu];
2612 	ASSERT_IFAC_VALID(ifac);
2613 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2614 		("ifaddr is on if_addrheads\n"));
2615 
2616 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2617 	if (msg->tail)
2618 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2619 	else
2620 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2621 
2622 	crit_exit();
2623 
2624 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2625 }
2626 
2627 void
2628 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2629 {
2630 	struct netmsg_ifaddr msg;
2631 
2632 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2633 		    0, ifa_iflink_dispatch);
2634 	msg.ifa = ifa;
2635 	msg.ifp = ifp;
2636 	msg.tail = tail;
2637 
2638 	ifa_domsg(&msg.base.lmsg, 0);
2639 }
2640 
2641 static void
2642 ifa_ifunlink_dispatch(netmsg_t nmsg)
2643 {
2644 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2645 	struct ifaddr *ifa = msg->ifa;
2646 	struct ifnet *ifp = msg->ifp;
2647 	int cpu = mycpuid;
2648 	struct ifaddr_container *ifac;
2649 
2650 	crit_enter();
2651 
2652 	ifac = &ifa->ifa_containers[cpu];
2653 	ASSERT_IFAC_VALID(ifac);
2654 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2655 		("ifaddr is not on if_addrhead\n"));
2656 
2657 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2658 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2659 
2660 	crit_exit();
2661 
2662 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2663 }
2664 
2665 void
2666 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2667 {
2668 	struct netmsg_ifaddr msg;
2669 
2670 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2671 		    0, ifa_ifunlink_dispatch);
2672 	msg.ifa = ifa;
2673 	msg.ifp = ifp;
2674 
2675 	ifa_domsg(&msg.base.lmsg, 0);
2676 }
2677 
2678 static void
2679 ifa_destroy_dispatch(netmsg_t nmsg)
2680 {
2681 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2682 
2683 	IFAFREE(msg->ifa);
2684 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
2685 }
2686 
2687 void
2688 ifa_destroy(struct ifaddr *ifa)
2689 {
2690 	struct netmsg_ifaddr msg;
2691 
2692 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2693 		    0, ifa_destroy_dispatch);
2694 	msg.ifa = ifa;
2695 
2696 	ifa_domsg(&msg.base.lmsg, 0);
2697 }
2698 
2699 struct lwkt_port *
2700 ifnet_portfn(int cpu)
2701 {
2702 	return &ifnet_threads[cpu].td_msgport;
2703 }
2704 
2705 void
2706 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2707 {
2708 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2709 
2710 	if (next_cpu < ncpus)
2711 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2712 	else
2713 		lwkt_replymsg(lmsg, 0);
2714 }
2715 
2716 int
2717 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2718 {
2719 	KKASSERT(cpu < ncpus);
2720 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2721 }
2722 
2723 void
2724 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2725 {
2726 	KKASSERT(cpu < ncpus);
2727 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2728 }
2729 
2730 /*
2731  * Generic netmsg service loop.  Some protocols may roll their own but all
2732  * must do the basic command dispatch function call done here.
2733  */
2734 static void
2735 ifnet_service_loop(void *arg __unused)
2736 {
2737 	netmsg_t msg;
2738 
2739 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
2740 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
2741 		msg->base.nm_dispatch(msg);
2742 	}
2743 }
2744 
2745 static void
2746 ifnetinit(void *dummy __unused)
2747 {
2748 	int i;
2749 
2750 	for (i = 0; i < ncpus; ++i) {
2751 		struct thread *thr = &ifnet_threads[i];
2752 
2753 		lwkt_create(ifnet_service_loop, NULL, NULL,
2754 			    thr, TDF_NOSTART|TDF_FORCE_SPINPORT,
2755 			    i, "ifnet %d", i);
2756 		netmsg_service_port_init(&thr->td_msgport);
2757 		lwkt_schedule(thr);
2758 	}
2759 }
2760 
2761 struct ifnet *
2762 ifnet_byindex(unsigned short idx)
2763 {
2764 	if (idx > if_index)
2765 		return NULL;
2766 	return ifindex2ifnet[idx];
2767 }
2768 
2769 struct ifaddr *
2770 ifaddr_byindex(unsigned short idx)
2771 {
2772 	struct ifnet *ifp;
2773 
2774 	ifp = ifnet_byindex(idx);
2775 	if (!ifp)
2776 		return NULL;
2777 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
2778 }
2779 
2780 void
2781 if_register_com_alloc(u_char type,
2782     if_com_alloc_t *a, if_com_free_t *f)
2783 {
2784 
2785         KASSERT(if_com_alloc[type] == NULL,
2786             ("if_register_com_alloc: %d already registered", type));
2787         KASSERT(if_com_free[type] == NULL,
2788             ("if_register_com_alloc: %d free already registered", type));
2789 
2790         if_com_alloc[type] = a;
2791         if_com_free[type] = f;
2792 }
2793 
2794 void
2795 if_deregister_com_alloc(u_char type)
2796 {
2797 
2798         KASSERT(if_com_alloc[type] != NULL,
2799             ("if_deregister_com_alloc: %d not registered", type));
2800         KASSERT(if_com_free[type] != NULL,
2801             ("if_deregister_com_alloc: %d free not registered", type));
2802         if_com_alloc[type] = NULL;
2803         if_com_free[type] = NULL;
2804 }
2805