xref: /dragonfly/sys/net/if_ethersubr.c (revision 066b6da2)
1 /*
2  * Copyright (c) 1982, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
30  * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mpls.h"
36 #include "opt_netgraph.h"
37 #include "opt_carp.h"
38 #include "opt_rss.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/globaldata.h>
43 #include <sys/kernel.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/msgport.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52 #include <sys/thread.h>
53 
54 #include <sys/thread2.h>
55 #include <sys/mplock2.h>
56 
57 #include <net/if.h>
58 #include <net/netisr.h>
59 #include <net/route.h>
60 #include <net/if_llc.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/ifq_var.h>
64 #include <net/bpf.h>
65 #include <net/ethernet.h>
66 #include <net/vlan/if_vlan_ether.h>
67 #include <net/vlan/if_vlan_var.h>
68 #include <net/netmsg2.h>
69 #include <net/netisr2.h>
70 
71 #if defined(INET) || defined(INET6)
72 #include <netinet/in.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/tcp_var.h>
75 #include <netinet/if_ether.h>
76 #include <netinet/ip_flow.h>
77 #include <net/ipfw/ip_fw.h>
78 #include <net/dummynet/ip_dummynet.h>
79 #endif
80 #ifdef INET6
81 #include <netinet6/nd6.h>
82 #endif
83 
84 #ifdef CARP
85 #include <netinet/ip_carp.h>
86 #endif
87 
88 #ifdef MPLS
89 #include <netproto/mpls/mpls.h>
90 #endif
91 
92 /* netgraph node hooks for ng_ether(4) */
93 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
94 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
95 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
96 void	(*ng_ether_attach_p)(struct ifnet *ifp);
97 void	(*ng_ether_detach_p)(struct ifnet *ifp);
98 
99 void	(*vlan_input_p)(struct mbuf *);
100 
101 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *,
102 			struct rtentry *);
103 static void ether_restore_header(struct mbuf **, const struct ether_header *,
104 				 const struct ether_header *);
105 static int ether_characterize(struct mbuf **);
106 static void ether_dispatch(int, struct mbuf *, int);
107 
108 /*
109  * if_bridge support
110  */
111 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
112 int (*bridge_output_p)(struct ifnet *, struct mbuf *);
113 void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
114 struct ifnet *(*bridge_interface_p)(void *if_bridge);
115 
116 static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
117 			      struct sockaddr *);
118 
119 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
120 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
121 };
122 
123 #define gotoerr(e) do { error = (e); goto bad; } while (0)
124 #define IFP2AC(ifp) ((struct arpcom *)(ifp))
125 
126 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
127 				struct ip_fw **rule,
128 				const struct ether_header *eh);
129 
130 static int ether_ipfw;
131 static u_long ether_restore_hdr;
132 static u_long ether_prepend_hdr;
133 static u_long ether_input_wronghash;
134 static int ether_debug;
135 
136 #ifdef RSS_DEBUG
137 static u_long ether_pktinfo_try;
138 static u_long ether_pktinfo_hit;
139 static u_long ether_rss_nopi;
140 static u_long ether_rss_nohash;
141 static u_long ether_input_requeue;
142 #endif
143 static u_long ether_input_wronghwhash;
144 static int ether_input_ckhash;
145 
146 #define ETHER_TSOLEN_DEFAULT	(4 * ETHERMTU)
147 
148 static int ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
149 TUNABLE_INT("net.link.ether.tsolen", &ether_tsolen_default);
150 
151 SYSCTL_DECL(_net_link);
152 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
153 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW,
154     &ether_debug, 0, "Ether debug");
155 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
156     &ether_ipfw, 0, "Pass ether pkts through firewall");
157 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW,
158     &ether_restore_hdr, 0, "# of ether header restoration");
159 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW,
160     &ether_prepend_hdr, 0,
161     "# of ether header restoration which prepends mbuf");
162 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW,
163     &ether_input_wronghash, 0, "# of input packets with wrong hash");
164 SYSCTL_INT(_net_link_ether, OID_AUTO, tsolen, CTLFLAG_RW,
165     &ether_tsolen_default, 0, "Default max TSO length");
166 
167 #ifdef RSS_DEBUG
168 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW,
169     &ether_rss_nopi, 0, "# of packets do not have pktinfo");
170 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW,
171     &ether_rss_nohash, 0, "# of packets do not have hash");
172 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW,
173     &ether_pktinfo_try, 0,
174     "# of tries to find packets' msgport using pktinfo");
175 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW,
176     &ether_pktinfo_hit, 0,
177     "# of packets whose msgport are found using pktinfo");
178 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW,
179     &ether_input_requeue, 0, "# of input packets gets requeued");
180 #endif
181 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW,
182     &ether_input_wronghwhash, 0, "# of input packets with wrong hw hash");
183 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW,
184     &ether_input_ckhash, 0, "always check hash");
185 
186 #define ETHER_KTR_STR		"ifp=%p"
187 #define ETHER_KTR_ARGS	struct ifnet *ifp
188 #ifndef KTR_ETHERNET
189 #define KTR_ETHERNET		KTR_ALL
190 #endif
191 KTR_INFO_MASTER(ether);
192 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS);
193 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS);
194 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS);
195 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS);
196 #define logether(name, arg)	KTR_LOG(ether_ ## name, arg)
197 
198 /*
199  * Ethernet output routine.
200  * Encapsulate a packet of type family for the local net.
201  * Use trailer local net encapsulation if enough data in first
202  * packet leaves a multiple of 512 bytes of data in remainder.
203  * Assumes that ifp is actually pointer to arpcom structure.
204  */
205 static int
206 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
207 	     struct rtentry *rt)
208 {
209 	struct ether_header *eh, *deh;
210 	u_char *edst;
211 	int loop_copy = 0;
212 	int hlen = ETHER_HDR_LEN;	/* link layer header length */
213 	struct arpcom *ac = IFP2AC(ifp);
214 	int error;
215 
216 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
217 
218 	if (ifp->if_flags & IFF_MONITOR)
219 		gotoerr(ENETDOWN);
220 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
221 		gotoerr(ENETDOWN);
222 
223 	M_PREPEND(m, sizeof(struct ether_header), MB_DONTWAIT);
224 	if (m == NULL)
225 		return (ENOBUFS);
226 	m->m_pkthdr.csum_lhlen = sizeof(struct ether_header);
227 	eh = mtod(m, struct ether_header *);
228 	edst = eh->ether_dhost;
229 
230 	/*
231 	 * Fill in the destination ethernet address and frame type.
232 	 */
233 	switch (dst->sa_family) {
234 #ifdef INET
235 	case AF_INET:
236 		if (!arpresolve(ifp, rt, m, dst, edst))
237 			return (0);	/* if not yet resolved */
238 #ifdef MPLS
239 		if (m->m_flags & M_MPLSLABELED)
240 			eh->ether_type = htons(ETHERTYPE_MPLS);
241 		else
242 #endif
243 			eh->ether_type = htons(ETHERTYPE_IP);
244 		break;
245 #endif
246 #ifdef INET6
247 	case AF_INET6:
248 		if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst))
249 			return (0);		/* Something bad happenned. */
250 		eh->ether_type = htons(ETHERTYPE_IPV6);
251 		break;
252 #endif
253 	case pseudo_AF_HDRCMPLT:
254 	case AF_UNSPEC:
255 		loop_copy = -1; /* if this is for us, don't do it */
256 		deh = (struct ether_header *)dst->sa_data;
257 		memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN);
258 		eh->ether_type = deh->ether_type;
259 		break;
260 
261 	default:
262 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
263 		gotoerr(EAFNOSUPPORT);
264 	}
265 
266 	if (dst->sa_family == pseudo_AF_HDRCMPLT)	/* unlikely */
267 		memcpy(eh->ether_shost,
268 		       ((struct ether_header *)dst->sa_data)->ether_shost,
269 		       ETHER_ADDR_LEN);
270 	else
271 		memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN);
272 
273 	/*
274 	 * Bridges require special output handling.
275 	 */
276 	if (ifp->if_bridge) {
277 		KASSERT(bridge_output_p != NULL,
278 			("%s: if_bridge not loaded!", __func__));
279 		return bridge_output_p(ifp, m);
280 	}
281 
282 	/*
283 	 * If a simplex interface, and the packet is being sent to our
284 	 * Ethernet address or a broadcast address, loopback a copy.
285 	 * XXX To make a simplex device behave exactly like a duplex
286 	 * device, we should copy in the case of sending to our own
287 	 * ethernet address (thus letting the original actually appear
288 	 * on the wire). However, we don't do that here for security
289 	 * reasons and compatibility with the original behavior.
290 	 */
291 	if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
292 		int csum_flags = 0;
293 
294 		if (m->m_pkthdr.csum_flags & CSUM_IP)
295 			csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID);
296 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
297 			csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
298 		if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
299 			struct mbuf *n;
300 
301 			if ((n = m_copypacket(m, MB_DONTWAIT)) != NULL) {
302 				n->m_pkthdr.csum_flags |= csum_flags;
303 				if (csum_flags & CSUM_DATA_VALID)
304 					n->m_pkthdr.csum_data = 0xffff;
305 				if_simloop(ifp, n, dst->sa_family, hlen);
306 			} else
307 				IFNET_STAT_INC(ifp, iqdrops, 1);
308 		} else if (bcmp(eh->ether_dhost, eh->ether_shost,
309 				ETHER_ADDR_LEN) == 0) {
310 			m->m_pkthdr.csum_flags |= csum_flags;
311 			if (csum_flags & CSUM_DATA_VALID)
312 				m->m_pkthdr.csum_data = 0xffff;
313 			if_simloop(ifp, m, dst->sa_family, hlen);
314 			return (0);	/* XXX */
315 		}
316 	}
317 
318 #ifdef CARP
319 	if (ifp->if_type == IFT_CARP) {
320 		ifp = carp_parent(ifp);
321 		if (ifp == NULL)
322 			gotoerr(ENETUNREACH);
323 
324 		ac = IFP2AC(ifp);
325 
326 		/*
327 		 * Check precondition again
328 		 */
329 		ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
330 
331 		if (ifp->if_flags & IFF_MONITOR)
332 			gotoerr(ENETDOWN);
333 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
334 		    (IFF_UP | IFF_RUNNING))
335 			gotoerr(ENETDOWN);
336 	}
337 #endif
338 
339 	/* Handle ng_ether(4) processing, if any */
340 	if (ng_ether_output_p != NULL) {
341 		/*
342 		 * Hold BGL and recheck ng_ether_output_p
343 		 */
344 		get_mplock();
345 		if (ng_ether_output_p != NULL) {
346 			if ((error = ng_ether_output_p(ifp, &m)) != 0) {
347 				rel_mplock();
348 				goto bad;
349 			}
350 			if (m == NULL) {
351 				rel_mplock();
352 				return (0);
353 			}
354 		}
355 		rel_mplock();
356 	}
357 
358 	/* Continue with link-layer output */
359 	return ether_output_frame(ifp, m);
360 
361 bad:
362 	m_freem(m);
363 	return (error);
364 }
365 
366 /*
367  * Returns the bridge interface an ifp is associated
368  * with.
369  *
370  * Only call if ifp->if_bridge != NULL.
371  */
372 struct ifnet *
373 ether_bridge_interface(struct ifnet *ifp)
374 {
375 	if (bridge_interface_p)
376 		return(bridge_interface_p(ifp->if_bridge));
377 	return (ifp);
378 }
379 
380 /*
381  * Ethernet link layer output routine to send a raw frame to the device.
382  *
383  * This assumes that the 14 byte Ethernet header is present and contiguous
384  * in the first mbuf.
385  */
386 int
387 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
388 {
389 	struct ip_fw *rule = NULL;
390 	int error = 0;
391 	struct altq_pktattr pktattr;
392 
393 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
394 
395 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
396 		struct m_tag *mtag;
397 
398 		/* Extract info from dummynet tag */
399 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
400 		KKASSERT(mtag != NULL);
401 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
402 		KKASSERT(rule != NULL);
403 
404 		m_tag_delete(m, mtag);
405 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
406 	}
407 
408 	if (ifq_is_enabled(&ifp->if_snd))
409 		altq_etherclassify(&ifp->if_snd, m, &pktattr);
410 	crit_enter();
411 	if (IPFW_LOADED && ether_ipfw != 0) {
412 		struct ether_header save_eh, *eh;
413 
414 		eh = mtod(m, struct ether_header *);
415 		save_eh = *eh;
416 		m_adj(m, ETHER_HDR_LEN);
417 		if (!ether_ipfw_chk(&m, ifp, &rule, eh)) {
418 			crit_exit();
419 			if (m != NULL) {
420 				m_freem(m);
421 				return ENOBUFS; /* pkt dropped */
422 			} else
423 				return 0;	/* consumed e.g. in a pipe */
424 		}
425 
426 		/* packet was ok, restore the ethernet header */
427 		ether_restore_header(&m, eh, &save_eh);
428 		if (m == NULL) {
429 			crit_exit();
430 			return ENOBUFS;
431 		}
432 	}
433 	crit_exit();
434 
435 	/*
436 	 * Queue message on interface, update output statistics if
437 	 * successful, and start output if interface not yet active.
438 	 */
439 	error = ifq_dispatch(ifp, m, &pktattr);
440 	return (error);
441 }
442 
443 /*
444  * ipfw processing for ethernet packets (in and out).
445  * The second parameter is NULL from ether_demux(), and ifp from
446  * ether_output_frame().
447  */
448 static boolean_t
449 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule,
450 	       const struct ether_header *eh)
451 {
452 	struct ether_header save_eh = *eh;	/* might be a ptr in *m0 */
453 	struct ip_fw_args args;
454 	struct m_tag *mtag;
455 	struct mbuf *m;
456 	int i;
457 
458 	if (*rule != NULL && fw_one_pass)
459 		return TRUE; /* dummynet packet, already partially processed */
460 
461 	/*
462 	 * I need some amount of data to be contiguous.
463 	 */
464 	i = min((*m0)->m_pkthdr.len, max_protohdr);
465 	if ((*m0)->m_len < i) {
466 		*m0 = m_pullup(*m0, i);
467 		if (*m0 == NULL)
468 			return FALSE;
469 	}
470 
471 	/*
472 	 * Clean up tags
473 	 */
474 	if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
475 		m_tag_delete(*m0, mtag);
476 	if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
477 		mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL);
478 		KKASSERT(mtag != NULL);
479 		m_tag_delete(*m0, mtag);
480 		(*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED;
481 	}
482 
483 	args.m = *m0;		/* the packet we are looking at		*/
484 	args.oif = dst;		/* destination, if any			*/
485 	args.rule = *rule;	/* matching rule to restart		*/
486 	args.eh = &save_eh;	/* MAC header for bridged/MAC packets	*/
487 	i = ip_fw_chk_ptr(&args);
488 	*m0 = args.m;
489 	*rule = args.rule;
490 
491 	if (*m0 == NULL)
492 		return FALSE;
493 
494 	switch (i) {
495 	case IP_FW_PASS:
496 		return TRUE;
497 
498 	case IP_FW_DIVERT:
499 	case IP_FW_TEE:
500 	case IP_FW_DENY:
501 		/*
502 		 * XXX at some point add support for divert/forward actions.
503 		 * If none of the above matches, we have to drop the pkt.
504 		 */
505 		return FALSE;
506 
507 	case IP_FW_DUMMYNET:
508 		/*
509 		 * Pass the pkt to dummynet, which consumes it.
510 		 */
511 		m = *m0;	/* pass the original to dummynet */
512 		*m0 = NULL;	/* and nothing back to the caller */
513 
514 		ether_restore_header(&m, eh, &save_eh);
515 		if (m == NULL)
516 			return FALSE;
517 
518 		ip_fw_dn_io_ptr(m, args.cookie,
519 				dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
520 		ip_dn_queue(m);
521 		return FALSE;
522 
523 	default:
524 		panic("unknown ipfw return value: %d", i);
525 	}
526 }
527 
528 /*
529  * Perform common duties while attaching to interface list
530  */
531 void
532 ether_ifattach(struct ifnet *ifp, const uint8_t *lla,
533     lwkt_serialize_t serializer)
534 {
535 	ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header),
536 	    serializer);
537 }
538 
539 void
540 ether_ifattach_bpf(struct ifnet *ifp, const uint8_t *lla,
541     u_int dlt, u_int hdrlen, lwkt_serialize_t serializer)
542 {
543 	struct sockaddr_dl *sdl;
544 	char ethstr[ETHER_ADDRSTRLEN + 1];
545 	struct ifaltq *ifq;
546 	int i;
547 
548 	ifp->if_type = IFT_ETHER;
549 	ifp->if_addrlen = ETHER_ADDR_LEN;
550 	ifp->if_hdrlen = ETHER_HDR_LEN;
551 	if_attach(ifp, serializer);
552 	ifq = &ifp->if_snd;
553 	for (i = 0; i < ifq->altq_subq_cnt; ++i) {
554 		struct ifaltq_subque *ifsq = ifq_get_subq(ifq, i);
555 
556 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen *
557 		    (ETHER_MAX_LEN - ETHER_CRC_LEN);
558 	}
559 	ifp->if_mtu = ETHERMTU;
560 	if (ifp->if_tsolen <= 0) {
561 		if ((ether_tsolen_default / ETHERMTU) < 2) {
562 			kprintf("ether TSO maxlen %d -> %d\n",
563 			    ether_tsolen_default, ETHER_TSOLEN_DEFAULT);
564 			ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
565 		}
566 		ifp->if_tsolen = ether_tsolen_default;
567 	}
568 	if (ifp->if_baudrate == 0)
569 		ifp->if_baudrate = 10000000;
570 	ifp->if_output = ether_output;
571 	ifp->if_input = ether_input;
572 	ifp->if_resolvemulti = ether_resolvemulti;
573 	ifp->if_broadcastaddr = etherbroadcastaddr;
574 	sdl = IF_LLSOCKADDR(ifp);
575 	sdl->sdl_type = IFT_ETHER;
576 	sdl->sdl_alen = ifp->if_addrlen;
577 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
578 	/*
579 	 * XXX Keep the current drivers happy.
580 	 * XXX Remove once all drivers have been cleaned up
581 	 */
582 	if (lla != IFP2AC(ifp)->ac_enaddr)
583 		bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen);
584 	bpfattach(ifp, dlt, hdrlen);
585 	if (ng_ether_attach_p != NULL)
586 		(*ng_ether_attach_p)(ifp);
587 
588 	if_printf(ifp, "MAC address: %s\n", kether_ntoa(lla, ethstr));
589 }
590 
591 /*
592  * Perform common duties while detaching an Ethernet interface
593  */
594 void
595 ether_ifdetach(struct ifnet *ifp)
596 {
597 	if_down(ifp);
598 
599 	if (ng_ether_detach_p != NULL)
600 		(*ng_ether_detach_p)(ifp);
601 	bpfdetach(ifp);
602 	if_detach(ifp);
603 }
604 
605 int
606 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
607 {
608 	struct ifaddr *ifa = (struct ifaddr *) data;
609 	struct ifreq *ifr = (struct ifreq *) data;
610 	int error = 0;
611 
612 #define IF_INIT(ifp) \
613 do { \
614 	if (((ifp)->if_flags & IFF_UP) == 0) { \
615 		(ifp)->if_flags |= IFF_UP; \
616 		(ifp)->if_init((ifp)->if_softc); \
617 	} \
618 } while (0)
619 
620 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
621 
622 	switch (command) {
623 	case SIOCSIFADDR:
624 		switch (ifa->ifa_addr->sa_family) {
625 #ifdef INET
626 		case AF_INET:
627 			IF_INIT(ifp);	/* before arpwhohas */
628 			arp_ifinit(ifp, ifa);
629 			break;
630 #endif
631 		default:
632 			IF_INIT(ifp);
633 			break;
634 		}
635 		break;
636 
637 	case SIOCGIFADDR:
638 		bcopy(IFP2AC(ifp)->ac_enaddr,
639 		      ((struct sockaddr *)ifr->ifr_data)->sa_data,
640 		      ETHER_ADDR_LEN);
641 		break;
642 
643 	case SIOCSIFMTU:
644 		/*
645 		 * Set the interface MTU.
646 		 */
647 		if (ifr->ifr_mtu > ETHERMTU) {
648 			error = EINVAL;
649 		} else {
650 			ifp->if_mtu = ifr->ifr_mtu;
651 		}
652 		break;
653 	default:
654 		error = EINVAL;
655 		break;
656 	}
657 	return (error);
658 
659 #undef IF_INIT
660 }
661 
662 int
663 ether_resolvemulti(
664 	struct ifnet *ifp,
665 	struct sockaddr **llsa,
666 	struct sockaddr *sa)
667 {
668 	struct sockaddr_dl *sdl;
669 #ifdef INET
670 	struct sockaddr_in *sin;
671 #endif
672 #ifdef INET6
673 	struct sockaddr_in6 *sin6;
674 #endif
675 	u_char *e_addr;
676 
677 	switch(sa->sa_family) {
678 	case AF_LINK:
679 		/*
680 		 * No mapping needed. Just check that it's a valid MC address.
681 		 */
682 		sdl = (struct sockaddr_dl *)sa;
683 		e_addr = LLADDR(sdl);
684 		if ((e_addr[0] & 1) != 1)
685 			return EADDRNOTAVAIL;
686 		*llsa = NULL;
687 		return 0;
688 
689 #ifdef INET
690 	case AF_INET:
691 		sin = (struct sockaddr_in *)sa;
692 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
693 			return EADDRNOTAVAIL;
694 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
695 		sdl->sdl_len = sizeof *sdl;
696 		sdl->sdl_family = AF_LINK;
697 		sdl->sdl_index = ifp->if_index;
698 		sdl->sdl_type = IFT_ETHER;
699 		sdl->sdl_alen = ETHER_ADDR_LEN;
700 		e_addr = LLADDR(sdl);
701 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
702 		*llsa = (struct sockaddr *)sdl;
703 		return 0;
704 #endif
705 #ifdef INET6
706 	case AF_INET6:
707 		sin6 = (struct sockaddr_in6 *)sa;
708 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
709 			/*
710 			 * An IP6 address of 0 means listen to all
711 			 * of the Ethernet multicast address used for IP6.
712 			 * (This is used for multicast routers.)
713 			 */
714 			ifp->if_flags |= IFF_ALLMULTI;
715 			*llsa = NULL;
716 			return 0;
717 		}
718 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
719 			return EADDRNOTAVAIL;
720 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
721 		sdl->sdl_len = sizeof *sdl;
722 		sdl->sdl_family = AF_LINK;
723 		sdl->sdl_index = ifp->if_index;
724 		sdl->sdl_type = IFT_ETHER;
725 		sdl->sdl_alen = ETHER_ADDR_LEN;
726 		e_addr = LLADDR(sdl);
727 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
728 		*llsa = (struct sockaddr *)sdl;
729 		return 0;
730 #endif
731 
732 	default:
733 		/*
734 		 * Well, the text isn't quite right, but it's the name
735 		 * that counts...
736 		 */
737 		return EAFNOSUPPORT;
738 	}
739 }
740 
741 #if 0
742 /*
743  * This is for reference.  We have a table-driven version
744  * of the little-endian crc32 generator, which is faster
745  * than the double-loop.
746  */
747 uint32_t
748 ether_crc32_le(const uint8_t *buf, size_t len)
749 {
750 	uint32_t c, crc, carry;
751 	size_t i, j;
752 
753 	crc = 0xffffffffU;	/* initial value */
754 
755 	for (i = 0; i < len; i++) {
756 		c = buf[i];
757 		for (j = 0; j < 8; j++) {
758 			carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
759 			crc >>= 1;
760 			c >>= 1;
761 			if (carry)
762 				crc = (crc ^ ETHER_CRC_POLY_LE);
763 		}
764 	}
765 
766 	return (crc);
767 }
768 #else
769 uint32_t
770 ether_crc32_le(const uint8_t *buf, size_t len)
771 {
772 	static const uint32_t crctab[] = {
773 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
774 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
775 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
776 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
777 	};
778 	uint32_t crc;
779 	size_t i;
780 
781 	crc = 0xffffffffU;	/* initial value */
782 
783 	for (i = 0; i < len; i++) {
784 		crc ^= buf[i];
785 		crc = (crc >> 4) ^ crctab[crc & 0xf];
786 		crc = (crc >> 4) ^ crctab[crc & 0xf];
787 	}
788 
789 	return (crc);
790 }
791 #endif
792 
793 uint32_t
794 ether_crc32_be(const uint8_t *buf, size_t len)
795 {
796 	uint32_t c, crc, carry;
797 	size_t i, j;
798 
799 	crc = 0xffffffffU;	/* initial value */
800 
801 	for (i = 0; i < len; i++) {
802 		c = buf[i];
803 		for (j = 0; j < 8; j++) {
804 			carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
805 			crc <<= 1;
806 			c >>= 1;
807 			if (carry)
808 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
809 		}
810 	}
811 
812 	return (crc);
813 }
814 
815 /*
816  * find the size of ethernet header, and call classifier
817  */
818 void
819 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m,
820 		   struct altq_pktattr *pktattr)
821 {
822 	struct ether_header *eh;
823 	uint16_t ether_type;
824 	int hlen, af, hdrsize;
825 
826 	hlen = sizeof(struct ether_header);
827 	eh = mtod(m, struct ether_header *);
828 
829 	ether_type = ntohs(eh->ether_type);
830 	if (ether_type < ETHERMTU) {
831 		/* ick! LLC/SNAP */
832 		struct llc *llc = (struct llc *)(eh + 1);
833 		hlen += 8;
834 
835 		if (m->m_len < hlen ||
836 		    llc->llc_dsap != LLC_SNAP_LSAP ||
837 		    llc->llc_ssap != LLC_SNAP_LSAP ||
838 		    llc->llc_control != LLC_UI)
839 			goto bad;  /* not snap! */
840 
841 		ether_type = ntohs(llc->llc_un.type_snap.ether_type);
842 	}
843 
844 	if (ether_type == ETHERTYPE_IP) {
845 		af = AF_INET;
846 		hdrsize = 20;  /* sizeof(struct ip) */
847 #ifdef INET6
848 	} else if (ether_type == ETHERTYPE_IPV6) {
849 		af = AF_INET6;
850 		hdrsize = 40;  /* sizeof(struct ip6_hdr) */
851 #endif
852 	} else
853 		goto bad;
854 
855 	while (m->m_len <= hlen) {
856 		hlen -= m->m_len;
857 		m = m->m_next;
858 	}
859 	if (m->m_len < hlen + hdrsize) {
860 		/*
861 		 * ip header is not in a single mbuf.  this should not
862 		 * happen in the current code.
863 		 * (todo: use m_pulldown in the future)
864 		 */
865 		goto bad;
866 	}
867 	m->m_data += hlen;
868 	m->m_len -= hlen;
869 	ifq_classify(ifq, m, af, pktattr);
870 	m->m_data -= hlen;
871 	m->m_len += hlen;
872 
873 	return;
874 
875 bad:
876 	pktattr->pattr_class = NULL;
877 	pktattr->pattr_hdr = NULL;
878 	pktattr->pattr_af = AF_UNSPEC;
879 }
880 
881 static void
882 ether_restore_header(struct mbuf **m0, const struct ether_header *eh,
883 		     const struct ether_header *save_eh)
884 {
885 	struct mbuf *m = *m0;
886 
887 	ether_restore_hdr++;
888 
889 	/*
890 	 * Prepend the header, optimize for the common case of
891 	 * eh pointing into the mbuf.
892 	 */
893 	if ((const void *)(eh + 1) == (void *)m->m_data) {
894 		m->m_data -= ETHER_HDR_LEN;
895 		m->m_len += ETHER_HDR_LEN;
896 		m->m_pkthdr.len += ETHER_HDR_LEN;
897 	} else {
898 		ether_prepend_hdr++;
899 
900 		M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT);
901 		if (m != NULL) {
902 			bcopy(save_eh, mtod(m, struct ether_header *),
903 			      ETHER_HDR_LEN);
904 		}
905 	}
906 	*m0 = m;
907 }
908 
909 /*
910  * Upper layer processing for a received Ethernet packet.
911  */
912 void
913 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m)
914 {
915 	struct ether_header *eh;
916 	int isr, discard = 0;
917 	u_short ether_type;
918 	struct ip_fw *rule = NULL;
919 
920 	M_ASSERTPKTHDR(m);
921 	KASSERT(m->m_len >= ETHER_HDR_LEN,
922 		("ether header is not contiguous!"));
923 
924 	eh = mtod(m, struct ether_header *);
925 
926 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
927 		struct m_tag *mtag;
928 
929 		/* Extract info from dummynet tag */
930 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
931 		KKASSERT(mtag != NULL);
932 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
933 		KKASSERT(rule != NULL);
934 
935 		m_tag_delete(m, mtag);
936 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
937 
938 		/* packet is passing the second time */
939 		goto post_stats;
940 	}
941 
942 	/*
943 	 * We got a packet which was unicast to a different Ethernet
944 	 * address.  If the driver is working properly, then this
945 	 * situation can only happen when the interface is in
946 	 * promiscuous mode.  We defer the packet discarding until the
947 	 * vlan processing is done, so that vlan/bridge or vlan/netgraph
948 	 * could work.
949 	 */
950 	if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) &&
951 	    !ETHER_IS_MULTICAST(eh->ether_dhost) &&
952 	    bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) {
953 		if (ether_debug & 1) {
954 			kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
955 				"%02x:%02x:%02x:%02x:%02x:%02x "
956 				"%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n",
957 				eh->ether_dhost[0],
958 				eh->ether_dhost[1],
959 				eh->ether_dhost[2],
960 				eh->ether_dhost[3],
961 				eh->ether_dhost[4],
962 				eh->ether_dhost[5],
963 				eh->ether_shost[0],
964 				eh->ether_shost[1],
965 				eh->ether_shost[2],
966 				eh->ether_shost[3],
967 				eh->ether_shost[4],
968 				eh->ether_shost[5],
969 				eh->ether_type,
970 				((u_char *)IFP2AC(ifp)->ac_enaddr)[0],
971 				((u_char *)IFP2AC(ifp)->ac_enaddr)[1],
972 				((u_char *)IFP2AC(ifp)->ac_enaddr)[2],
973 				((u_char *)IFP2AC(ifp)->ac_enaddr)[3],
974 				((u_char *)IFP2AC(ifp)->ac_enaddr)[4],
975 				((u_char *)IFP2AC(ifp)->ac_enaddr)[5]
976 			);
977 		}
978 		if ((ether_debug & 2) == 0)
979 			discard = 1;
980 	}
981 
982 post_stats:
983 	if (IPFW_LOADED && ether_ipfw != 0 && !discard) {
984 		struct ether_header save_eh = *eh;
985 
986 		/* XXX old crufty stuff, needs to be removed */
987 		m_adj(m, sizeof(struct ether_header));
988 
989 		if (!ether_ipfw_chk(&m, NULL, &rule, eh)) {
990 			m_freem(m);
991 			return;
992 		}
993 
994 		ether_restore_header(&m, eh, &save_eh);
995 		if (m == NULL)
996 			return;
997 		eh = mtod(m, struct ether_header *);
998 	}
999 
1000 	ether_type = ntohs(eh->ether_type);
1001 	KKASSERT(ether_type != ETHERTYPE_VLAN);
1002 
1003 	if (m->m_flags & M_VLANTAG) {
1004 		void (*vlan_input_func)(struct mbuf *);
1005 
1006 		vlan_input_func = vlan_input_p;
1007 		if (vlan_input_func != NULL) {
1008 			vlan_input_func(m);
1009 		} else {
1010 			IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1011 			m_freem(m);
1012 		}
1013 		return;
1014 	}
1015 
1016 	/*
1017 	 * If we have been asked to discard this packet
1018 	 * (e.g. not for us), drop it before entering
1019 	 * the upper layer.
1020 	 */
1021 	if (discard) {
1022 		m_freem(m);
1023 		return;
1024 	}
1025 
1026 	/*
1027 	 * Clear protocol specific flags,
1028 	 * before entering the upper layer.
1029 	 */
1030 	m->m_flags &= ~M_ETHER_FLAGS;
1031 
1032 	/* Strip ethernet header. */
1033 	m_adj(m, sizeof(struct ether_header));
1034 
1035 	switch (ether_type) {
1036 #ifdef INET
1037 	case ETHERTYPE_IP:
1038 		if ((m->m_flags & M_LENCHECKED) == 0) {
1039 			if (!ip_lengthcheck(&m, 0))
1040 				return;
1041 		}
1042 		if (ipflow_fastforward(m))
1043 			return;
1044 		isr = NETISR_IP;
1045 		break;
1046 
1047 	case ETHERTYPE_ARP:
1048 		if (ifp->if_flags & IFF_NOARP) {
1049 			/* Discard packet if ARP is disabled on interface */
1050 			m_freem(m);
1051 			return;
1052 		}
1053 		isr = NETISR_ARP;
1054 		break;
1055 #endif
1056 
1057 #ifdef INET6
1058 	case ETHERTYPE_IPV6:
1059 		isr = NETISR_IPV6;
1060 		break;
1061 #endif
1062 
1063 #ifdef MPLS
1064 	case ETHERTYPE_MPLS:
1065 	case ETHERTYPE_MPLS_MCAST:
1066 		/* Should have been set by ether_input(). */
1067 		KKASSERT(m->m_flags & M_MPLSLABELED);
1068 		isr = NETISR_MPLS;
1069 		break;
1070 #endif
1071 
1072 	default:
1073 		/*
1074 		 * The accurate msgport is not determined before
1075 		 * we reach here, so recharacterize packet.
1076 		 */
1077 		m->m_flags &= ~M_HASH;
1078 		if (ng_ether_input_orphan_p != NULL) {
1079 			/*
1080 			 * Put back the ethernet header so netgraph has a
1081 			 * consistent view of inbound packets.
1082 			 */
1083 			M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT);
1084 			if (m == NULL) {
1085 				/*
1086 				 * M_PREPEND frees the mbuf in case of failure.
1087 				 */
1088 				return;
1089 			}
1090 			/*
1091 			 * Hold BGL and recheck ng_ether_input_orphan_p
1092 			 */
1093 			get_mplock();
1094 			if (ng_ether_input_orphan_p != NULL) {
1095 				ng_ether_input_orphan_p(ifp, m);
1096 				rel_mplock();
1097 				return;
1098 			}
1099 			rel_mplock();
1100 		}
1101 		m_freem(m);
1102 		return;
1103 	}
1104 
1105 	if (m->m_flags & M_HASH) {
1106 		if (&curthread->td_msgport ==
1107 		    netisr_hashport(m->m_pkthdr.hash)) {
1108 			netisr_handle(isr, m);
1109 			return;
1110 		} else {
1111 			/*
1112 			 * XXX Something is wrong,
1113 			 * we probably should panic here!
1114 			 */
1115 			m->m_flags &= ~M_HASH;
1116 			atomic_add_long(&ether_input_wronghash, 1);
1117 		}
1118 	}
1119 #ifdef RSS_DEBUG
1120 	atomic_add_long(&ether_input_requeue, 1);
1121 #endif
1122 	netisr_queue(isr, m);
1123 }
1124 
1125 /*
1126  * First we perform any link layer operations, then continue to the
1127  * upper layers with ether_demux_oncpu().
1128  */
1129 static void
1130 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m)
1131 {
1132 #ifdef CARP
1133 	void *carp;
1134 #endif
1135 
1136 	if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) {
1137 		/*
1138 		 * Receiving interface's flags are changed, when this
1139 		 * packet is waiting for processing; discard it.
1140 		 */
1141 		m_freem(m);
1142 		return;
1143 	}
1144 
1145 	/*
1146 	 * Tap the packet off here for a bridge.  bridge_input()
1147 	 * will return NULL if it has consumed the packet, otherwise
1148 	 * it gets processed as normal.  Note that bridge_input()
1149 	 * will always return the original packet if we need to
1150 	 * process it locally.
1151 	 */
1152 	if (ifp->if_bridge) {
1153 		KASSERT(bridge_input_p != NULL,
1154 			("%s: if_bridge not loaded!", __func__));
1155 
1156 		if(m->m_flags & M_ETHER_BRIDGED) {
1157 			m->m_flags &= ~M_ETHER_BRIDGED;
1158 		} else {
1159 			m = bridge_input_p(ifp, m);
1160 			if (m == NULL)
1161 				return;
1162 
1163 			KASSERT(ifp == m->m_pkthdr.rcvif,
1164 				("bridge_input_p changed rcvif"));
1165 		}
1166 	}
1167 
1168 #ifdef CARP
1169 	carp = ifp->if_carp;
1170 	if (carp) {
1171 		m = carp_input(carp, m);
1172 		if (m == NULL)
1173 			return;
1174 		KASSERT(ifp == m->m_pkthdr.rcvif,
1175 		    ("carp_input changed rcvif"));
1176 	}
1177 #endif
1178 
1179 	/* Handle ng_ether(4) processing, if any */
1180 	if (ng_ether_input_p != NULL) {
1181 		/*
1182 		 * Hold BGL and recheck ng_ether_input_p
1183 		 */
1184 		get_mplock();
1185 		if (ng_ether_input_p != NULL)
1186 			ng_ether_input_p(ifp, &m);
1187 		rel_mplock();
1188 
1189 		if (m == NULL)
1190 			return;
1191 	}
1192 
1193 	/* Continue with upper layer processing */
1194 	ether_demux_oncpu(ifp, m);
1195 }
1196 
1197 /*
1198  * Perform certain functions of ether_input():
1199  * - Test IFF_UP
1200  * - Update statistics
1201  * - Run bpf(4) tap if requested
1202  * Then pass the packet to ether_input_oncpu().
1203  *
1204  * This function should be used by pseudo interface (e.g. vlan(4)),
1205  * when it tries to claim that the packet is received by it.
1206  *
1207  * REINPUT_KEEPRCVIF
1208  * REINPUT_RUNBPF
1209  */
1210 void
1211 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags)
1212 {
1213 	/* Discard packet if interface is not up */
1214 	if (!(ifp->if_flags & IFF_UP)) {
1215 		m_freem(m);
1216 		return;
1217 	}
1218 
1219 	/*
1220 	 * Change receiving interface.  The bridge will often pass a flag to
1221 	 * ask that this not be done so ARPs get applied to the correct
1222 	 * side.
1223 	 */
1224 	if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 ||
1225 	    m->m_pkthdr.rcvif == NULL) {
1226 		m->m_pkthdr.rcvif = ifp;
1227 	}
1228 
1229 	/* Update statistics */
1230 	IFNET_STAT_INC(ifp, ipackets, 1);
1231 	IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1232 	if (m->m_flags & (M_MCAST | M_BCAST))
1233 		IFNET_STAT_INC(ifp, imcasts, 1);
1234 
1235 	if (reinput_flags & REINPUT_RUNBPF)
1236 		BPF_MTAP(ifp, m);
1237 
1238 	ether_input_oncpu(ifp, m);
1239 }
1240 
1241 static __inline boolean_t
1242 ether_vlancheck(struct mbuf **m0)
1243 {
1244 	struct mbuf *m = *m0;
1245 	struct ether_header *eh;
1246 	uint16_t ether_type;
1247 
1248 	eh = mtod(m, struct ether_header *);
1249 	ether_type = ntohs(eh->ether_type);
1250 
1251 	if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG) == 0) {
1252 		/*
1253 		 * Extract vlan tag if hardware does not do it for us
1254 		 */
1255 		vlan_ether_decap(&m);
1256 		if (m == NULL)
1257 			goto failed;
1258 
1259 		eh = mtod(m, struct ether_header *);
1260 		ether_type = ntohs(eh->ether_type);
1261 	}
1262 
1263 	if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG)) {
1264 		/*
1265 		 * To prevent possible dangerous recursion,
1266 		 * we don't do vlan-in-vlan
1267 		 */
1268 		IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1269 		goto failed;
1270 	}
1271 	KKASSERT(ether_type != ETHERTYPE_VLAN);
1272 
1273 	m->m_flags |= M_ETHER_VLANCHECKED;
1274 	*m0 = m;
1275 	return TRUE;
1276 failed:
1277 	if (m != NULL)
1278 		m_freem(m);
1279 	*m0 = NULL;
1280 	return FALSE;
1281 }
1282 
1283 static void
1284 ether_input_handler(netmsg_t nmsg)
1285 {
1286 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1287 	struct ether_header *eh;
1288 	struct ifnet *ifp;
1289 	struct mbuf *m;
1290 
1291 	m = nmp->nm_packet;
1292 	M_ASSERTPKTHDR(m);
1293 
1294 	if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) {
1295 		if (!ether_vlancheck(&m)) {
1296 			KKASSERT(m == NULL);
1297 			return;
1298 		}
1299 	}
1300 	if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) ||
1301 	    __predict_false(ether_input_ckhash)) {
1302 		int isr;
1303 
1304 		/*
1305 		 * Need to verify the hash supplied by the hardware
1306 		 * which could be wrong.
1307 		 */
1308 		m->m_flags &= ~(M_HASH | M_CKHASH);
1309 		isr = ether_characterize(&m);
1310 		if (m == NULL)
1311 			return;
1312 		KKASSERT(m->m_flags & M_HASH);
1313 
1314 		if (netisr_hashcpu(m->m_pkthdr.hash) != mycpuid) {
1315 			/*
1316 			 * Wrong hardware supplied hash; redispatch
1317 			 */
1318 			ether_dispatch(isr, m, -1);
1319 			if (__predict_false(ether_input_ckhash))
1320 				atomic_add_long(&ether_input_wronghwhash, 1);
1321 			return;
1322 		}
1323 	}
1324 	ifp = m->m_pkthdr.rcvif;
1325 
1326 	eh = mtod(m, struct ether_header *);
1327 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
1328 		if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
1329 			 ifp->if_addrlen) == 0)
1330 			m->m_flags |= M_BCAST;
1331 		else
1332 			m->m_flags |= M_MCAST;
1333 		IFNET_STAT_INC(ifp, imcasts, 1);
1334 	}
1335 
1336 	ether_input_oncpu(ifp, m);
1337 }
1338 
1339 /*
1340  * Send the packet to the target netisr msgport
1341  *
1342  * At this point the packet must be characterized (M_HASH set),
1343  * so we know which netisr to send it to.
1344  */
1345 static void
1346 ether_dispatch(int isr, struct mbuf *m, int cpuid)
1347 {
1348 	struct netmsg_packet *pmsg;
1349 	int target_cpuid;
1350 
1351 	KKASSERT(m->m_flags & M_HASH);
1352 	target_cpuid = netisr_hashcpu(m->m_pkthdr.hash);
1353 
1354 	pmsg = &m->m_hdr.mh_netmsg;
1355 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1356 		    0, ether_input_handler);
1357 	pmsg->nm_packet = m;
1358 	pmsg->base.lmsg.u.ms_result = isr;
1359 
1360 	logether(disp_beg, NULL);
1361 	if (target_cpuid == cpuid) {
1362 		lwkt_sendmsg_oncpu(netisr_cpuport(target_cpuid),
1363 		    &pmsg->base.lmsg);
1364 	} else {
1365 		lwkt_sendmsg(netisr_cpuport(target_cpuid),
1366 		    &pmsg->base.lmsg);
1367 	}
1368 	logether(disp_end, NULL);
1369 }
1370 
1371 /*
1372  * Process a received Ethernet packet.
1373  *
1374  * The ethernet header is assumed to be in the mbuf so the caller
1375  * MUST MAKE SURE that there are at least sizeof(struct ether_header)
1376  * bytes in the first mbuf.
1377  *
1378  * If the caller knows that the current thread is stick to the current
1379  * cpu, e.g. the interrupt thread or the netisr thread, the current cpuid
1380  * (mycpuid) should be passed through 'cpuid' argument.  Else -1 should
1381  * be passed as 'cpuid' argument.
1382  */
1383 void
1384 ether_input(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi,
1385     int cpuid)
1386 {
1387 	int isr;
1388 
1389 	M_ASSERTPKTHDR(m);
1390 
1391 	/* Discard packet if interface is not up */
1392 	if (!(ifp->if_flags & IFF_UP)) {
1393 		m_freem(m);
1394 		return;
1395 	}
1396 
1397 	if (m->m_len < sizeof(struct ether_header)) {
1398 		/* XXX error in the caller. */
1399 		m_freem(m);
1400 		return;
1401 	}
1402 
1403 	m->m_pkthdr.rcvif = ifp;
1404 
1405 	logether(pkt_beg, ifp);
1406 
1407 	ETHER_BPF_MTAP(ifp, m);
1408 
1409 	IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1410 
1411 	if (ifp->if_flags & IFF_MONITOR) {
1412 		struct ether_header *eh;
1413 
1414 		eh = mtod(m, struct ether_header *);
1415 		if (ETHER_IS_MULTICAST(eh->ether_dhost))
1416 			IFNET_STAT_INC(ifp, imcasts, 1);
1417 
1418 		/*
1419 		 * Interface marked for monitoring; discard packet.
1420 		 */
1421 		m_freem(m);
1422 
1423 		logether(pkt_end, ifp);
1424 		return;
1425 	}
1426 
1427 	/*
1428 	 * If the packet has been characterized (pi->pi_netisr / M_HASH)
1429 	 * we can dispatch it immediately with trivial checks.
1430 	 */
1431 	if (pi != NULL && (m->m_flags & M_HASH)) {
1432 #ifdef RSS_DEBUG
1433 		atomic_add_long(&ether_pktinfo_try, 1);
1434 #endif
1435 		netisr_hashcheck(pi->pi_netisr, m, pi);
1436 		if (m->m_flags & M_HASH) {
1437 			ether_dispatch(pi->pi_netisr, m, cpuid);
1438 #ifdef RSS_DEBUG
1439 			atomic_add_long(&ether_pktinfo_hit, 1);
1440 #endif
1441 			logether(pkt_end, ifp);
1442 			return;
1443 		}
1444 	}
1445 #ifdef RSS_DEBUG
1446 	else if (ifp->if_capenable & IFCAP_RSS) {
1447 		if (pi == NULL)
1448 			atomic_add_long(&ether_rss_nopi, 1);
1449 		else
1450 			atomic_add_long(&ether_rss_nohash, 1);
1451 	}
1452 #endif
1453 
1454 	/*
1455 	 * Packet hash will be recalculated by software, so clear
1456 	 * the M_HASH and M_CKHASH flag set by the driver; the hash
1457 	 * value calculated by the hardware may not be exactly what
1458 	 * we want.
1459 	 */
1460 	m->m_flags &= ~(M_HASH | M_CKHASH);
1461 
1462 	if (!ether_vlancheck(&m)) {
1463 		KKASSERT(m == NULL);
1464 		logether(pkt_end, ifp);
1465 		return;
1466 	}
1467 
1468 	isr = ether_characterize(&m);
1469 	if (m == NULL) {
1470 		logether(pkt_end, ifp);
1471 		return;
1472 	}
1473 
1474 	/*
1475 	 * Finally dispatch it
1476 	 */
1477 	ether_dispatch(isr, m, cpuid);
1478 
1479 	logether(pkt_end, ifp);
1480 }
1481 
1482 static int
1483 ether_characterize(struct mbuf **m0)
1484 {
1485 	struct mbuf *m = *m0;
1486 	struct ether_header *eh;
1487 	uint16_t ether_type;
1488 	int isr;
1489 
1490 	eh = mtod(m, struct ether_header *);
1491 	ether_type = ntohs(eh->ether_type);
1492 
1493 	/*
1494 	 * Map ether type to netisr id.
1495 	 */
1496 	switch (ether_type) {
1497 #ifdef INET
1498 	case ETHERTYPE_IP:
1499 		isr = NETISR_IP;
1500 		break;
1501 
1502 	case ETHERTYPE_ARP:
1503 		isr = NETISR_ARP;
1504 		break;
1505 #endif
1506 
1507 #ifdef INET6
1508 	case ETHERTYPE_IPV6:
1509 		isr = NETISR_IPV6;
1510 		break;
1511 #endif
1512 
1513 #ifdef MPLS
1514 	case ETHERTYPE_MPLS:
1515 	case ETHERTYPE_MPLS_MCAST:
1516 		m->m_flags |= M_MPLSLABELED;
1517 		isr = NETISR_MPLS;
1518 		break;
1519 #endif
1520 
1521 	default:
1522 		/*
1523 		 * NETISR_MAX is an invalid value; it is chosen to let
1524 		 * netisr_characterize() know that we have no clear
1525 		 * idea where this packet should go.
1526 		 */
1527 		isr = NETISR_MAX;
1528 		break;
1529 	}
1530 
1531 	/*
1532 	 * Ask the isr to characterize the packet since we couldn't.
1533 	 * This is an attempt to optimally get us onto the correct protocol
1534 	 * thread.
1535 	 */
1536 	netisr_characterize(isr, &m, sizeof(struct ether_header));
1537 
1538 	*m0 = m;
1539 	return isr;
1540 }
1541 
1542 static void
1543 ether_demux_handler(netmsg_t nmsg)
1544 {
1545 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1546 	struct ifnet *ifp;
1547 	struct mbuf *m;
1548 
1549 	m = nmp->nm_packet;
1550 	M_ASSERTPKTHDR(m);
1551 	ifp = m->m_pkthdr.rcvif;
1552 
1553 	ether_demux_oncpu(ifp, m);
1554 }
1555 
1556 void
1557 ether_demux(struct mbuf *m)
1558 {
1559 	struct netmsg_packet *pmsg;
1560 	int isr;
1561 
1562 	isr = ether_characterize(&m);
1563 	if (m == NULL)
1564 		return;
1565 
1566 	KKASSERT(m->m_flags & M_HASH);
1567 	pmsg = &m->m_hdr.mh_netmsg;
1568 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1569 	    0, ether_demux_handler);
1570 	pmsg->nm_packet = m;
1571 	pmsg->base.lmsg.u.ms_result = isr;
1572 
1573 	lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg);
1574 }
1575 
1576 u_char *
1577 kether_aton(const char *macstr, u_char *addr)
1578 {
1579         unsigned int o0, o1, o2, o3, o4, o5;
1580         int n;
1581 
1582         if (macstr == NULL || addr == NULL)
1583                 return NULL;
1584 
1585         n = ksscanf(macstr, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2,
1586             &o3, &o4, &o5);
1587         if (n != 6)
1588                 return NULL;
1589 
1590         addr[0] = o0;
1591         addr[1] = o1;
1592         addr[2] = o2;
1593         addr[3] = o3;
1594         addr[4] = o4;
1595         addr[5] = o5;
1596 
1597         return addr;
1598 }
1599 
1600 char *
1601 kether_ntoa(const u_char *addr, char *buf)
1602 {
1603         int len = ETHER_ADDRSTRLEN + 1;
1604         int n;
1605 
1606         n = ksnprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0],
1607             addr[1], addr[2], addr[3], addr[4], addr[5]);
1608 
1609         if (n < 17)
1610                 return NULL;
1611 
1612         return buf;
1613 }
1614 
1615 MODULE_VERSION(ether, 1);
1616