xref: /dragonfly/sys/net/if_ethersubr.c (revision 5868d2b9)
1 /*
2  * Copyright (c) 1982, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipx.h"
40 #include "opt_mpls.h"
41 #include "opt_netgraph.h"
42 #include "opt_carp.h"
43 #include "opt_rss.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/globaldata.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/msgport.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 #include <sys/thread.h>
58 
59 #include <sys/thread2.h>
60 #include <sys/mplock2.h>
61 
62 #include <net/if.h>
63 #include <net/netisr.h>
64 #include <net/route.h>
65 #include <net/if_llc.h>
66 #include <net/if_dl.h>
67 #include <net/if_types.h>
68 #include <net/ifq_var.h>
69 #include <net/bpf.h>
70 #include <net/ethernet.h>
71 #include <net/vlan/if_vlan_ether.h>
72 #include <net/netmsg2.h>
73 
74 #if defined(INET) || defined(INET6)
75 #include <netinet/in.h>
76 #include <netinet/ip_var.h>
77 #include <netinet/if_ether.h>
78 #include <netinet/ip_flow.h>
79 #include <net/ipfw/ip_fw.h>
80 #include <net/dummynet/ip_dummynet.h>
81 #endif
82 #ifdef INET6
83 #include <netinet6/nd6.h>
84 #endif
85 
86 #ifdef CARP
87 #include <netinet/ip_carp.h>
88 #endif
89 
90 #ifdef IPX
91 #include <netproto/ipx/ipx.h>
92 #include <netproto/ipx/ipx_if.h>
93 int (*ef_inputp)(struct ifnet*, const struct ether_header *eh, struct mbuf *m);
94 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst,
95 		  short *tp, int *hlen);
96 #endif
97 
98 #ifdef MPLS
99 #include <netproto/mpls/mpls.h>
100 #endif
101 
102 /* netgraph node hooks for ng_ether(4) */
103 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
104 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
105 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
106 void	(*ng_ether_attach_p)(struct ifnet *ifp);
107 void	(*ng_ether_detach_p)(struct ifnet *ifp);
108 
109 void	(*vlan_input_p)(struct mbuf *);
110 
111 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *,
112 			struct rtentry *);
113 static void ether_restore_header(struct mbuf **, const struct ether_header *,
114 				 const struct ether_header *);
115 static int ether_characterize(struct mbuf **);
116 
117 /*
118  * if_bridge support
119  */
120 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
121 int (*bridge_output_p)(struct ifnet *, struct mbuf *);
122 void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
123 struct ifnet *(*bridge_interface_p)(void *if_bridge);
124 
125 static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
126 			      struct sockaddr *);
127 
128 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
129 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
130 };
131 
132 #define gotoerr(e) do { error = (e); goto bad; } while (0)
133 #define IFP2AC(ifp) ((struct arpcom *)(ifp))
134 
135 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
136 				struct ip_fw **rule,
137 				const struct ether_header *eh);
138 
139 static int ether_ipfw;
140 static u_long ether_restore_hdr;
141 static u_long ether_prepend_hdr;
142 static u_long ether_input_wronghash;
143 static int ether_debug;
144 
145 #ifdef RSS_DEBUG
146 static u_long ether_pktinfo_try;
147 static u_long ether_pktinfo_hit;
148 static u_long ether_rss_nopi;
149 static u_long ether_rss_nohash;
150 static u_long ether_input_requeue;
151 #endif
152 
153 SYSCTL_DECL(_net_link);
154 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
155 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW,
156     &ether_debug, 0, "Ether debug");
157 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
158     &ether_ipfw, 0, "Pass ether pkts through firewall");
159 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW,
160     &ether_restore_hdr, 0, "# of ether header restoration");
161 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW,
162     &ether_prepend_hdr, 0,
163     "# of ether header restoration which prepends mbuf");
164 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW,
165     &ether_input_wronghash, 0, "# of input packets with wrong hash");
166 #ifdef RSS_DEBUG
167 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW,
168     &ether_rss_nopi, 0, "# of packets do not have pktinfo");
169 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW,
170     &ether_rss_nohash, 0, "# of packets do not have hash");
171 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW,
172     &ether_pktinfo_try, 0,
173     "# of tries to find packets' msgport using pktinfo");
174 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW,
175     &ether_pktinfo_hit, 0,
176     "# of packets whose msgport are found using pktinfo");
177 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW,
178     &ether_input_requeue, 0, "# of input packets gets requeued");
179 #endif
180 
181 #define ETHER_KTR_STR		"ifp=%p"
182 #define ETHER_KTR_ARGS	struct ifnet *ifp
183 #ifndef KTR_ETHERNET
184 #define KTR_ETHERNET		KTR_ALL
185 #endif
186 KTR_INFO_MASTER(ether);
187 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS);
188 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS);
189 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS);
190 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS);
191 #define logether(name, arg)	KTR_LOG(ether_ ## name, arg)
192 
193 /*
194  * Ethernet output routine.
195  * Encapsulate a packet of type family for the local net.
196  * Use trailer local net encapsulation if enough data in first
197  * packet leaves a multiple of 512 bytes of data in remainder.
198  * Assumes that ifp is actually pointer to arpcom structure.
199  */
200 static int
201 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
202 	     struct rtentry *rt)
203 {
204 	struct ether_header *eh, *deh;
205 	u_char *edst;
206 	int loop_copy = 0;
207 	int hlen = ETHER_HDR_LEN;	/* link layer header length */
208 	struct arpcom *ac = IFP2AC(ifp);
209 	int error;
210 
211 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
212 
213 	if (ifp->if_flags & IFF_MONITOR)
214 		gotoerr(ENETDOWN);
215 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
216 		gotoerr(ENETDOWN);
217 
218 	M_PREPEND(m, sizeof(struct ether_header), MB_DONTWAIT);
219 	if (m == NULL)
220 		return (ENOBUFS);
221 	eh = mtod(m, struct ether_header *);
222 	edst = eh->ether_dhost;
223 
224 	/*
225 	 * Fill in the destination ethernet address and frame type.
226 	 */
227 	switch (dst->sa_family) {
228 #ifdef INET
229 	case AF_INET:
230 		if (!arpresolve(ifp, rt, m, dst, edst))
231 			return (0);	/* if not yet resolved */
232 #ifdef MPLS
233 		if (m->m_flags & M_MPLSLABELED)
234 			eh->ether_type = htons(ETHERTYPE_MPLS);
235 		else
236 #endif
237 			eh->ether_type = htons(ETHERTYPE_IP);
238 		break;
239 #endif
240 #ifdef INET6
241 	case AF_INET6:
242 		if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst))
243 			return (0);		/* Something bad happenned. */
244 		eh->ether_type = htons(ETHERTYPE_IPV6);
245 		break;
246 #endif
247 #ifdef IPX
248 	case AF_IPX:
249 		if (ef_outputp != NULL) {
250 			/*
251 			 * Hold BGL and recheck ef_outputp
252 			 */
253 			get_mplock();
254 			if (ef_outputp != NULL) {
255 				error = ef_outputp(ifp, &m, dst,
256 						   &eh->ether_type, &hlen);
257 				rel_mplock();
258 				if (error)
259 					goto bad;
260 				else
261 					break;
262 			}
263 			rel_mplock();
264 		}
265 		eh->ether_type = htons(ETHERTYPE_IPX);
266 		bcopy(&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host),
267 		      edst, ETHER_ADDR_LEN);
268 		break;
269 #endif
270 	case pseudo_AF_HDRCMPLT:
271 	case AF_UNSPEC:
272 		loop_copy = -1; /* if this is for us, don't do it */
273 		deh = (struct ether_header *)dst->sa_data;
274 		memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN);
275 		eh->ether_type = deh->ether_type;
276 		break;
277 
278 	default:
279 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
280 		gotoerr(EAFNOSUPPORT);
281 	}
282 
283 	if (dst->sa_family == pseudo_AF_HDRCMPLT)	/* unlikely */
284 		memcpy(eh->ether_shost,
285 		       ((struct ether_header *)dst->sa_data)->ether_shost,
286 		       ETHER_ADDR_LEN);
287 	else
288 		memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN);
289 
290 	/*
291 	 * Bridges require special output handling.
292 	 */
293 	if (ifp->if_bridge) {
294 		KASSERT(bridge_output_p != NULL,
295 			("%s: if_bridge not loaded!", __func__));
296 		return bridge_output_p(ifp, m);
297 	}
298 
299 	/*
300 	 * If a simplex interface, and the packet is being sent to our
301 	 * Ethernet address or a broadcast address, loopback a copy.
302 	 * XXX To make a simplex device behave exactly like a duplex
303 	 * device, we should copy in the case of sending to our own
304 	 * ethernet address (thus letting the original actually appear
305 	 * on the wire). However, we don't do that here for security
306 	 * reasons and compatibility with the original behavior.
307 	 */
308 	if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
309 		int csum_flags = 0;
310 
311 		if (m->m_pkthdr.csum_flags & CSUM_IP)
312 			csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID);
313 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
314 			csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
315 		if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
316 			struct mbuf *n;
317 
318 			if ((n = m_copypacket(m, MB_DONTWAIT)) != NULL) {
319 				n->m_pkthdr.csum_flags |= csum_flags;
320 				if (csum_flags & CSUM_DATA_VALID)
321 					n->m_pkthdr.csum_data = 0xffff;
322 				if_simloop(ifp, n, dst->sa_family, hlen);
323 			} else
324 				ifp->if_iqdrops++;
325 		} else if (bcmp(eh->ether_dhost, eh->ether_shost,
326 				ETHER_ADDR_LEN) == 0) {
327 			m->m_pkthdr.csum_flags |= csum_flags;
328 			if (csum_flags & CSUM_DATA_VALID)
329 				m->m_pkthdr.csum_data = 0xffff;
330 			if_simloop(ifp, m, dst->sa_family, hlen);
331 			return (0);	/* XXX */
332 		}
333 	}
334 
335 #ifdef CARP
336 	if (ifp->if_type == IFT_CARP) {
337 		ifp = carp_parent(ifp);
338 		if (ifp == NULL)
339 			gotoerr(ENETUNREACH);
340 
341 		ac = IFP2AC(ifp);
342 
343 		/*
344 		 * Check precondition again
345 		 */
346 		ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
347 
348 		if (ifp->if_flags & IFF_MONITOR)
349 			gotoerr(ENETDOWN);
350 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
351 		    (IFF_UP | IFF_RUNNING))
352 			gotoerr(ENETDOWN);
353 	}
354 #endif
355 
356 	/* Handle ng_ether(4) processing, if any */
357 	if (ng_ether_output_p != NULL) {
358 		/*
359 		 * Hold BGL and recheck ng_ether_output_p
360 		 */
361 		get_mplock();
362 		if (ng_ether_output_p != NULL) {
363 			if ((error = ng_ether_output_p(ifp, &m)) != 0) {
364 				rel_mplock();
365 				goto bad;
366 			}
367 			if (m == NULL) {
368 				rel_mplock();
369 				return (0);
370 			}
371 		}
372 		rel_mplock();
373 	}
374 
375 	/* Continue with link-layer output */
376 	return ether_output_frame(ifp, m);
377 
378 bad:
379 	m_freem(m);
380 	return (error);
381 }
382 
383 /*
384  * Returns the bridge interface an ifp is associated
385  * with.
386  *
387  * Only call if ifp->if_bridge != NULL.
388  */
389 struct ifnet *
390 ether_bridge_interface(struct ifnet *ifp)
391 {
392 	if (bridge_interface_p)
393 		return(bridge_interface_p(ifp->if_bridge));
394 	return (ifp);
395 }
396 
397 /*
398  * Ethernet link layer output routine to send a raw frame to the device.
399  *
400  * This assumes that the 14 byte Ethernet header is present and contiguous
401  * in the first mbuf.
402  */
403 int
404 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
405 {
406 	struct ip_fw *rule = NULL;
407 	int error = 0;
408 	struct altq_pktattr pktattr;
409 
410 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
411 
412 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
413 		struct m_tag *mtag;
414 
415 		/* Extract info from dummynet tag */
416 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
417 		KKASSERT(mtag != NULL);
418 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
419 		KKASSERT(rule != NULL);
420 
421 		m_tag_delete(m, mtag);
422 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
423 	}
424 
425 	if (ifq_is_enabled(&ifp->if_snd))
426 		altq_etherclassify(&ifp->if_snd, m, &pktattr);
427 	crit_enter();
428 	if (IPFW_LOADED && ether_ipfw != 0) {
429 		struct ether_header save_eh, *eh;
430 
431 		eh = mtod(m, struct ether_header *);
432 		save_eh = *eh;
433 		m_adj(m, ETHER_HDR_LEN);
434 		if (!ether_ipfw_chk(&m, ifp, &rule, eh)) {
435 			crit_exit();
436 			if (m != NULL) {
437 				m_freem(m);
438 				return ENOBUFS; /* pkt dropped */
439 			} else
440 				return 0;	/* consumed e.g. in a pipe */
441 		}
442 
443 		/* packet was ok, restore the ethernet header */
444 		ether_restore_header(&m, eh, &save_eh);
445 		if (m == NULL) {
446 			crit_exit();
447 			return ENOBUFS;
448 		}
449 	}
450 	crit_exit();
451 
452 	/*
453 	 * Queue message on interface, update output statistics if
454 	 * successful, and start output if interface not yet active.
455 	 */
456 	error = ifq_dispatch(ifp, m, &pktattr);
457 	return (error);
458 }
459 
460 /*
461  * ipfw processing for ethernet packets (in and out).
462  * The second parameter is NULL from ether_demux(), and ifp from
463  * ether_output_frame().
464  */
465 static boolean_t
466 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule,
467 	       const struct ether_header *eh)
468 {
469 	struct ether_header save_eh = *eh;	/* might be a ptr in *m0 */
470 	struct ip_fw_args args;
471 	struct m_tag *mtag;
472 	struct mbuf *m;
473 	int i;
474 
475 	if (*rule != NULL && fw_one_pass)
476 		return TRUE; /* dummynet packet, already partially processed */
477 
478 	/*
479 	 * I need some amount of data to be contiguous.
480 	 */
481 	i = min((*m0)->m_pkthdr.len, max_protohdr);
482 	if ((*m0)->m_len < i) {
483 		*m0 = m_pullup(*m0, i);
484 		if (*m0 == NULL)
485 			return FALSE;
486 	}
487 
488 	/*
489 	 * Clean up tags
490 	 */
491 	if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
492 		m_tag_delete(*m0, mtag);
493 	if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
494 		mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL);
495 		KKASSERT(mtag != NULL);
496 		m_tag_delete(*m0, mtag);
497 		(*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED;
498 	}
499 
500 	args.m = *m0;		/* the packet we are looking at		*/
501 	args.oif = dst;		/* destination, if any			*/
502 	args.rule = *rule;	/* matching rule to restart		*/
503 	args.eh = &save_eh;	/* MAC header for bridged/MAC packets	*/
504 	i = ip_fw_chk_ptr(&args);
505 	*m0 = args.m;
506 	*rule = args.rule;
507 
508 	if (*m0 == NULL)
509 		return FALSE;
510 
511 	switch (i) {
512 	case IP_FW_PASS:
513 		return TRUE;
514 
515 	case IP_FW_DIVERT:
516 	case IP_FW_TEE:
517 	case IP_FW_DENY:
518 		/*
519 		 * XXX at some point add support for divert/forward actions.
520 		 * If none of the above matches, we have to drop the pkt.
521 		 */
522 		return FALSE;
523 
524 	case IP_FW_DUMMYNET:
525 		/*
526 		 * Pass the pkt to dummynet, which consumes it.
527 		 */
528 		m = *m0;	/* pass the original to dummynet */
529 		*m0 = NULL;	/* and nothing back to the caller */
530 
531 		ether_restore_header(&m, eh, &save_eh);
532 		if (m == NULL)
533 			return FALSE;
534 
535 		ip_fw_dn_io_ptr(m, args.cookie,
536 				dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
537 		ip_dn_queue(m);
538 		return FALSE;
539 
540 	default:
541 		panic("unknown ipfw return value: %d", i);
542 	}
543 }
544 
545 static void
546 ether_input(struct ifnet *ifp, struct mbuf *m)
547 {
548 	ether_input_pkt(ifp, m, NULL);
549 }
550 
551 /*
552  * Perform common duties while attaching to interface list
553  */
554 void
555 ether_ifattach(struct ifnet *ifp, uint8_t *lla, lwkt_serialize_t serializer)
556 {
557 	ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header),
558 			   serializer);
559 }
560 
561 void
562 ether_ifattach_bpf(struct ifnet *ifp, uint8_t *lla, u_int dlt, u_int hdrlen,
563 		   lwkt_serialize_t serializer)
564 {
565 	struct sockaddr_dl *sdl;
566 
567 	ifp->if_type = IFT_ETHER;
568 	ifp->if_addrlen = ETHER_ADDR_LEN;
569 	ifp->if_hdrlen = ETHER_HDR_LEN;
570 	if_attach(ifp, serializer);
571 	ifp->if_mtu = ETHERMTU;
572 	if (ifp->if_baudrate == 0)
573 		ifp->if_baudrate = 10000000;
574 	ifp->if_output = ether_output;
575 	ifp->if_input = ether_input;
576 	ifp->if_resolvemulti = ether_resolvemulti;
577 	ifp->if_broadcastaddr = etherbroadcastaddr;
578 	sdl = IF_LLSOCKADDR(ifp);
579 	sdl->sdl_type = IFT_ETHER;
580 	sdl->sdl_alen = ifp->if_addrlen;
581 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
582 	/*
583 	 * XXX Keep the current drivers happy.
584 	 * XXX Remove once all drivers have been cleaned up
585 	 */
586 	if (lla != IFP2AC(ifp)->ac_enaddr)
587 		bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen);
588 	bpfattach(ifp, dlt, hdrlen);
589 	if (ng_ether_attach_p != NULL)
590 		(*ng_ether_attach_p)(ifp);
591 
592 	if_printf(ifp, "MAC address: %6D\n", lla, ":");
593 }
594 
595 /*
596  * Perform common duties while detaching an Ethernet interface
597  */
598 void
599 ether_ifdetach(struct ifnet *ifp)
600 {
601 	if_down(ifp);
602 
603 	if (ng_ether_detach_p != NULL)
604 		(*ng_ether_detach_p)(ifp);
605 	bpfdetach(ifp);
606 	if_detach(ifp);
607 }
608 
609 int
610 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
611 {
612 	struct ifaddr *ifa = (struct ifaddr *) data;
613 	struct ifreq *ifr = (struct ifreq *) data;
614 	int error = 0;
615 
616 #define IF_INIT(ifp) \
617 do { \
618 	if (((ifp)->if_flags & IFF_UP) == 0) { \
619 		(ifp)->if_flags |= IFF_UP; \
620 		(ifp)->if_init((ifp)->if_softc); \
621 	} \
622 } while (0)
623 
624 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
625 
626 	switch (command) {
627 	case SIOCSIFADDR:
628 		switch (ifa->ifa_addr->sa_family) {
629 #ifdef INET
630 		case AF_INET:
631 			IF_INIT(ifp);	/* before arpwhohas */
632 			arp_ifinit(ifp, ifa);
633 			break;
634 #endif
635 #ifdef IPX
636 		/*
637 		 * XXX - This code is probably wrong
638 		 */
639 		case AF_IPX:
640 			{
641 			struct ipx_addr *ina = &IA_SIPX(ifa)->sipx_addr;
642 			struct arpcom *ac = IFP2AC(ifp);
643 
644 			if (ipx_nullhost(*ina))
645 				ina->x_host = *(union ipx_host *) ac->ac_enaddr;
646 			else
647 				bcopy(ina->x_host.c_host, ac->ac_enaddr,
648 				      sizeof ac->ac_enaddr);
649 
650 			IF_INIT(ifp);	/* Set new address. */
651 			break;
652 			}
653 #endif
654 		default:
655 			IF_INIT(ifp);
656 			break;
657 		}
658 		break;
659 
660 	case SIOCGIFADDR:
661 		bcopy(IFP2AC(ifp)->ac_enaddr,
662 		      ((struct sockaddr *)ifr->ifr_data)->sa_data,
663 		      ETHER_ADDR_LEN);
664 		break;
665 
666 	case SIOCSIFMTU:
667 		/*
668 		 * Set the interface MTU.
669 		 */
670 		if (ifr->ifr_mtu > ETHERMTU) {
671 			error = EINVAL;
672 		} else {
673 			ifp->if_mtu = ifr->ifr_mtu;
674 		}
675 		break;
676 	default:
677 		error = EINVAL;
678 		break;
679 	}
680 	return (error);
681 
682 #undef IF_INIT
683 }
684 
685 int
686 ether_resolvemulti(
687 	struct ifnet *ifp,
688 	struct sockaddr **llsa,
689 	struct sockaddr *sa)
690 {
691 	struct sockaddr_dl *sdl;
692 #ifdef INET
693 	struct sockaddr_in *sin;
694 #endif
695 #ifdef INET6
696 	struct sockaddr_in6 *sin6;
697 #endif
698 	u_char *e_addr;
699 
700 	switch(sa->sa_family) {
701 	case AF_LINK:
702 		/*
703 		 * No mapping needed. Just check that it's a valid MC address.
704 		 */
705 		sdl = (struct sockaddr_dl *)sa;
706 		e_addr = LLADDR(sdl);
707 		if ((e_addr[0] & 1) != 1)
708 			return EADDRNOTAVAIL;
709 		*llsa = NULL;
710 		return 0;
711 
712 #ifdef INET
713 	case AF_INET:
714 		sin = (struct sockaddr_in *)sa;
715 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
716 			return EADDRNOTAVAIL;
717 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
718 		sdl->sdl_len = sizeof *sdl;
719 		sdl->sdl_family = AF_LINK;
720 		sdl->sdl_index = ifp->if_index;
721 		sdl->sdl_type = IFT_ETHER;
722 		sdl->sdl_alen = ETHER_ADDR_LEN;
723 		e_addr = LLADDR(sdl);
724 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
725 		*llsa = (struct sockaddr *)sdl;
726 		return 0;
727 #endif
728 #ifdef INET6
729 	case AF_INET6:
730 		sin6 = (struct sockaddr_in6 *)sa;
731 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
732 			/*
733 			 * An IP6 address of 0 means listen to all
734 			 * of the Ethernet multicast address used for IP6.
735 			 * (This is used for multicast routers.)
736 			 */
737 			ifp->if_flags |= IFF_ALLMULTI;
738 			*llsa = NULL;
739 			return 0;
740 		}
741 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
742 			return EADDRNOTAVAIL;
743 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
744 		sdl->sdl_len = sizeof *sdl;
745 		sdl->sdl_family = AF_LINK;
746 		sdl->sdl_index = ifp->if_index;
747 		sdl->sdl_type = IFT_ETHER;
748 		sdl->sdl_alen = ETHER_ADDR_LEN;
749 		e_addr = LLADDR(sdl);
750 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
751 		*llsa = (struct sockaddr *)sdl;
752 		return 0;
753 #endif
754 
755 	default:
756 		/*
757 		 * Well, the text isn't quite right, but it's the name
758 		 * that counts...
759 		 */
760 		return EAFNOSUPPORT;
761 	}
762 }
763 
764 #if 0
765 /*
766  * This is for reference.  We have a table-driven version
767  * of the little-endian crc32 generator, which is faster
768  * than the double-loop.
769  */
770 uint32_t
771 ether_crc32_le(const uint8_t *buf, size_t len)
772 {
773 	uint32_t c, crc, carry;
774 	size_t i, j;
775 
776 	crc = 0xffffffffU;	/* initial value */
777 
778 	for (i = 0; i < len; i++) {
779 		c = buf[i];
780 		for (j = 0; j < 8; j++) {
781 			carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
782 			crc >>= 1;
783 			c >>= 1;
784 			if (carry)
785 				crc = (crc ^ ETHER_CRC_POLY_LE);
786 		}
787 	}
788 
789 	return (crc);
790 }
791 #else
792 uint32_t
793 ether_crc32_le(const uint8_t *buf, size_t len)
794 {
795 	static const uint32_t crctab[] = {
796 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
797 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
798 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
799 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
800 	};
801 	uint32_t crc;
802 	size_t i;
803 
804 	crc = 0xffffffffU;	/* initial value */
805 
806 	for (i = 0; i < len; i++) {
807 		crc ^= buf[i];
808 		crc = (crc >> 4) ^ crctab[crc & 0xf];
809 		crc = (crc >> 4) ^ crctab[crc & 0xf];
810 	}
811 
812 	return (crc);
813 }
814 #endif
815 
816 uint32_t
817 ether_crc32_be(const uint8_t *buf, size_t len)
818 {
819 	uint32_t c, crc, carry;
820 	size_t i, j;
821 
822 	crc = 0xffffffffU;	/* initial value */
823 
824 	for (i = 0; i < len; i++) {
825 		c = buf[i];
826 		for (j = 0; j < 8; j++) {
827 			carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
828 			crc <<= 1;
829 			c >>= 1;
830 			if (carry)
831 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
832 		}
833 	}
834 
835 	return (crc);
836 }
837 
838 /*
839  * find the size of ethernet header, and call classifier
840  */
841 void
842 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m,
843 		   struct altq_pktattr *pktattr)
844 {
845 	struct ether_header *eh;
846 	uint16_t ether_type;
847 	int hlen, af, hdrsize;
848 	caddr_t hdr;
849 
850 	hlen = sizeof(struct ether_header);
851 	eh = mtod(m, struct ether_header *);
852 
853 	ether_type = ntohs(eh->ether_type);
854 	if (ether_type < ETHERMTU) {
855 		/* ick! LLC/SNAP */
856 		struct llc *llc = (struct llc *)(eh + 1);
857 		hlen += 8;
858 
859 		if (m->m_len < hlen ||
860 		    llc->llc_dsap != LLC_SNAP_LSAP ||
861 		    llc->llc_ssap != LLC_SNAP_LSAP ||
862 		    llc->llc_control != LLC_UI)
863 			goto bad;  /* not snap! */
864 
865 		ether_type = ntohs(llc->llc_un.type_snap.ether_type);
866 	}
867 
868 	if (ether_type == ETHERTYPE_IP) {
869 		af = AF_INET;
870 		hdrsize = 20;  /* sizeof(struct ip) */
871 #ifdef INET6
872 	} else if (ether_type == ETHERTYPE_IPV6) {
873 		af = AF_INET6;
874 		hdrsize = 40;  /* sizeof(struct ip6_hdr) */
875 #endif
876 	} else
877 		goto bad;
878 
879 	while (m->m_len <= hlen) {
880 		hlen -= m->m_len;
881 		m = m->m_next;
882 	}
883 	hdr = m->m_data + hlen;
884 	if (m->m_len < hlen + hdrsize) {
885 		/*
886 		 * ip header is not in a single mbuf.  this should not
887 		 * happen in the current code.
888 		 * (todo: use m_pulldown in the future)
889 		 */
890 		goto bad;
891 	}
892 	m->m_data += hlen;
893 	m->m_len -= hlen;
894 	ifq_classify(ifq, m, af, pktattr);
895 	m->m_data -= hlen;
896 	m->m_len += hlen;
897 
898 	return;
899 
900 bad:
901 	pktattr->pattr_class = NULL;
902 	pktattr->pattr_hdr = NULL;
903 	pktattr->pattr_af = AF_UNSPEC;
904 }
905 
906 static void
907 ether_restore_header(struct mbuf **m0, const struct ether_header *eh,
908 		     const struct ether_header *save_eh)
909 {
910 	struct mbuf *m = *m0;
911 
912 	ether_restore_hdr++;
913 
914 	/*
915 	 * Prepend the header, optimize for the common case of
916 	 * eh pointing into the mbuf.
917 	 */
918 	if ((const void *)(eh + 1) == (void *)m->m_data) {
919 		m->m_data -= ETHER_HDR_LEN;
920 		m->m_len += ETHER_HDR_LEN;
921 		m->m_pkthdr.len += ETHER_HDR_LEN;
922 	} else {
923 		ether_prepend_hdr++;
924 
925 		M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT);
926 		if (m != NULL) {
927 			bcopy(save_eh, mtod(m, struct ether_header *),
928 			      ETHER_HDR_LEN);
929 		}
930 	}
931 	*m0 = m;
932 }
933 
934 /*
935  * Upper layer processing for a received Ethernet packet.
936  */
937 void
938 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m)
939 {
940 	struct ether_header *eh;
941 	int isr, discard = 0;
942 	u_short ether_type;
943 	struct ip_fw *rule = NULL;
944 
945 	M_ASSERTPKTHDR(m);
946 	KASSERT(m->m_len >= ETHER_HDR_LEN,
947 		("ether header is not contiguous!"));
948 
949 	eh = mtod(m, struct ether_header *);
950 
951 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
952 		struct m_tag *mtag;
953 
954 		/* Extract info from dummynet tag */
955 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
956 		KKASSERT(mtag != NULL);
957 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
958 		KKASSERT(rule != NULL);
959 
960 		m_tag_delete(m, mtag);
961 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
962 
963 		/* packet is passing the second time */
964 		goto post_stats;
965 	}
966 
967 	/*
968 	 * We got a packet which was unicast to a different Ethernet
969 	 * address.  If the driver is working properly, then this
970 	 * situation can only happen when the interface is in
971 	 * promiscuous mode.  We defer the packet discarding until the
972 	 * vlan processing is done, so that vlan/bridge or vlan/netgraph
973 	 * could work.
974 	 */
975 	if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) &&
976 	    !ETHER_IS_MULTICAST(eh->ether_dhost) &&
977 	    bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) {
978 		if (ether_debug & 1) {
979 			kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
980 				"%02x:%02x:%02x:%02x:%02x:%02x "
981 				"%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n",
982 				eh->ether_dhost[0],
983 				eh->ether_dhost[1],
984 				eh->ether_dhost[2],
985 				eh->ether_dhost[3],
986 				eh->ether_dhost[4],
987 				eh->ether_dhost[5],
988 				eh->ether_shost[0],
989 				eh->ether_shost[1],
990 				eh->ether_shost[2],
991 				eh->ether_shost[3],
992 				eh->ether_shost[4],
993 				eh->ether_shost[5],
994 				eh->ether_type,
995 				((u_char *)IFP2AC(ifp)->ac_enaddr)[0],
996 				((u_char *)IFP2AC(ifp)->ac_enaddr)[1],
997 				((u_char *)IFP2AC(ifp)->ac_enaddr)[2],
998 				((u_char *)IFP2AC(ifp)->ac_enaddr)[3],
999 				((u_char *)IFP2AC(ifp)->ac_enaddr)[4],
1000 				((u_char *)IFP2AC(ifp)->ac_enaddr)[5]
1001 			);
1002 		}
1003 		if ((ether_debug & 2) == 0)
1004 			discard = 1;
1005 	}
1006 
1007 post_stats:
1008 	if (IPFW_LOADED && ether_ipfw != 0 && !discard) {
1009 		struct ether_header save_eh = *eh;
1010 
1011 		/* XXX old crufty stuff, needs to be removed */
1012 		m_adj(m, sizeof(struct ether_header));
1013 
1014 		if (!ether_ipfw_chk(&m, NULL, &rule, eh)) {
1015 			m_freem(m);
1016 			return;
1017 		}
1018 
1019 		ether_restore_header(&m, eh, &save_eh);
1020 		if (m == NULL)
1021 			return;
1022 		eh = mtod(m, struct ether_header *);
1023 	}
1024 
1025 	ether_type = ntohs(eh->ether_type);
1026 	KKASSERT(ether_type != ETHERTYPE_VLAN);
1027 
1028 	if (m->m_flags & M_VLANTAG) {
1029 		void (*vlan_input_func)(struct mbuf *);
1030 
1031 		vlan_input_func = vlan_input_p;
1032 		if (vlan_input_func != NULL) {
1033 			vlan_input_func(m);
1034 		} else {
1035 			m->m_pkthdr.rcvif->if_noproto++;
1036 			m_freem(m);
1037 		}
1038 		return;
1039 	}
1040 
1041 	/*
1042 	 * If we have been asked to discard this packet
1043 	 * (e.g. not for us), drop it before entering
1044 	 * the upper layer.
1045 	 */
1046 	if (discard) {
1047 		m_freem(m);
1048 		return;
1049 	}
1050 
1051 	/*
1052 	 * Clear protocol specific flags,
1053 	 * before entering the upper layer.
1054 	 */
1055 	m->m_flags &= ~M_ETHER_FLAGS;
1056 
1057 	/* Strip ethernet header. */
1058 	m_adj(m, sizeof(struct ether_header));
1059 
1060 	switch (ether_type) {
1061 #ifdef INET
1062 	case ETHERTYPE_IP:
1063 		if ((m->m_flags & M_LENCHECKED) == 0) {
1064 			if (!ip_lengthcheck(&m, 0))
1065 				return;
1066 		}
1067 		if (ipflow_fastforward(m))
1068 			return;
1069 		isr = NETISR_IP;
1070 		break;
1071 
1072 	case ETHERTYPE_ARP:
1073 		if (ifp->if_flags & IFF_NOARP) {
1074 			/* Discard packet if ARP is disabled on interface */
1075 			m_freem(m);
1076 			return;
1077 		}
1078 		isr = NETISR_ARP;
1079 		break;
1080 #endif
1081 
1082 #ifdef INET6
1083 	case ETHERTYPE_IPV6:
1084 		isr = NETISR_IPV6;
1085 		break;
1086 #endif
1087 
1088 #ifdef IPX
1089 	case ETHERTYPE_IPX:
1090 		if (ef_inputp) {
1091 			/*
1092 			 * Hold BGL and recheck ef_inputp
1093 			 */
1094 			get_mplock();
1095 			if (ef_inputp && ef_inputp(ifp, eh, m) == 0) {
1096 				rel_mplock();
1097 				return;
1098 			}
1099 			rel_mplock();
1100 		}
1101 		isr = NETISR_IPX;
1102 		break;
1103 #endif
1104 
1105 #ifdef MPLS
1106 	case ETHERTYPE_MPLS:
1107 	case ETHERTYPE_MPLS_MCAST:
1108 		/* Should have been set by ether_input_pkt(). */
1109 		KKASSERT(m->m_flags & M_MPLSLABELED);
1110 		isr = NETISR_MPLS;
1111 		break;
1112 #endif
1113 
1114 	default:
1115 		/*
1116 		 * The accurate msgport is not determined before
1117 		 * we reach here, so recharacterize packet.
1118 		 */
1119 		m->m_flags &= ~M_HASH;
1120 #ifdef IPX
1121 		if (ef_inputp) {
1122 			/*
1123 			 * Hold BGL and recheck ef_inputp
1124 			 */
1125 			get_mplock();
1126 			if (ef_inputp && ef_inputp(ifp, eh, m) == 0) {
1127 				rel_mplock();
1128 				return;
1129 			}
1130 			rel_mplock();
1131 		}
1132 #endif
1133 		if (ng_ether_input_orphan_p != NULL) {
1134 			/*
1135 			 * Put back the ethernet header so netgraph has a
1136 			 * consistent view of inbound packets.
1137 			 */
1138 			M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT);
1139 			if (m == NULL) {
1140 				/*
1141 				 * M_PREPEND frees the mbuf in case of failure.
1142 				 */
1143 				return;
1144 			}
1145 			/*
1146 			 * Hold BGL and recheck ng_ether_input_orphan_p
1147 			 */
1148 			get_mplock();
1149 			if (ng_ether_input_orphan_p != NULL) {
1150 				ng_ether_input_orphan_p(ifp, m);
1151 				rel_mplock();
1152 				return;
1153 			}
1154 			rel_mplock();
1155 		}
1156 		m_freem(m);
1157 		return;
1158 	}
1159 
1160 	if (m->m_flags & M_HASH) {
1161 		if (&curthread->td_msgport == cpu_portfn(m->m_pkthdr.hash)) {
1162 			netisr_handle(isr, m);
1163 			return;
1164 		} else {
1165 			/*
1166 			 * XXX Something is wrong,
1167 			 * we probably should panic here!
1168 			 */
1169 			m->m_flags &= ~M_HASH;
1170 			atomic_add_long(&ether_input_wronghash, 1);
1171 		}
1172 	}
1173 #ifdef RSS_DEBUG
1174 	atomic_add_long(&ether_input_requeue, 1);
1175 #endif
1176 	netisr_queue(isr, m);
1177 }
1178 
1179 /*
1180  * First we perform any link layer operations, then continue to the
1181  * upper layers with ether_demux_oncpu().
1182  */
1183 static void
1184 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m)
1185 {
1186 #ifdef CARP
1187 	void *carp;
1188 #endif
1189 
1190 	if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) {
1191 		/*
1192 		 * Receiving interface's flags are changed, when this
1193 		 * packet is waiting for processing; discard it.
1194 		 */
1195 		m_freem(m);
1196 		return;
1197 	}
1198 
1199 	/*
1200 	 * Tap the packet off here for a bridge.  bridge_input()
1201 	 * will return NULL if it has consumed the packet, otherwise
1202 	 * it gets processed as normal.  Note that bridge_input()
1203 	 * will always return the original packet if we need to
1204 	 * process it locally.
1205 	 */
1206 	if (ifp->if_bridge) {
1207 		KASSERT(bridge_input_p != NULL,
1208 			("%s: if_bridge not loaded!", __func__));
1209 
1210 		if(m->m_flags & M_ETHER_BRIDGED) {
1211 			m->m_flags &= ~M_ETHER_BRIDGED;
1212 		} else {
1213 			m = bridge_input_p(ifp, m);
1214 			if (m == NULL)
1215 				return;
1216 
1217 			KASSERT(ifp == m->m_pkthdr.rcvif,
1218 				("bridge_input_p changed rcvif"));
1219 		}
1220 	}
1221 
1222 #ifdef CARP
1223 	carp = ifp->if_carp;
1224 	if (carp) {
1225 		m = carp_input(carp, m);
1226 		if (m == NULL)
1227 			return;
1228 		KASSERT(ifp == m->m_pkthdr.rcvif,
1229 		    ("carp_input changed rcvif"));
1230 	}
1231 #endif
1232 
1233 	/* Handle ng_ether(4) processing, if any */
1234 	if (ng_ether_input_p != NULL) {
1235 		/*
1236 		 * Hold BGL and recheck ng_ether_input_p
1237 		 */
1238 		get_mplock();
1239 		if (ng_ether_input_p != NULL)
1240 			ng_ether_input_p(ifp, &m);
1241 		rel_mplock();
1242 
1243 		if (m == NULL)
1244 			return;
1245 	}
1246 
1247 	/* Continue with upper layer processing */
1248 	ether_demux_oncpu(ifp, m);
1249 }
1250 
1251 /*
1252  * Perform certain functions of ether_input_pkt():
1253  * - Test IFF_UP
1254  * - Update statistics
1255  * - Run bpf(4) tap if requested
1256  * Then pass the packet to ether_input_oncpu().
1257  *
1258  * This function should be used by pseudo interface (e.g. vlan(4)),
1259  * when it tries to claim that the packet is received by it.
1260  *
1261  * REINPUT_KEEPRCVIF
1262  * REINPUT_RUNBPF
1263  */
1264 void
1265 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags)
1266 {
1267 	/* Discard packet if interface is not up */
1268 	if (!(ifp->if_flags & IFF_UP)) {
1269 		m_freem(m);
1270 		return;
1271 	}
1272 
1273 	/*
1274 	 * Change receiving interface.  The bridge will often pass a flag to
1275 	 * ask that this not be done so ARPs get applied to the correct
1276 	 * side.
1277 	 */
1278 	if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 ||
1279 	    m->m_pkthdr.rcvif == NULL) {
1280 		m->m_pkthdr.rcvif = ifp;
1281 	}
1282 
1283 	/* Update statistics */
1284 	ifp->if_ipackets++;
1285 	ifp->if_ibytes += m->m_pkthdr.len;
1286 	if (m->m_flags & (M_MCAST | M_BCAST))
1287 		ifp->if_imcasts++;
1288 
1289 	if (reinput_flags & REINPUT_RUNBPF)
1290 		BPF_MTAP(ifp, m);
1291 
1292 	ether_input_oncpu(ifp, m);
1293 }
1294 
1295 static __inline boolean_t
1296 ether_vlancheck(struct mbuf **m0)
1297 {
1298 	struct mbuf *m = *m0;
1299 	struct ether_header *eh;
1300 	uint16_t ether_type;
1301 
1302 	eh = mtod(m, struct ether_header *);
1303 	ether_type = ntohs(eh->ether_type);
1304 
1305 	if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG) == 0) {
1306 		/*
1307 		 * Extract vlan tag if hardware does not do it for us
1308 		 */
1309 		vlan_ether_decap(&m);
1310 		if (m == NULL)
1311 			goto failed;
1312 
1313 		eh = mtod(m, struct ether_header *);
1314 		ether_type = ntohs(eh->ether_type);
1315 	}
1316 
1317 	if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG)) {
1318 		/*
1319 		 * To prevent possible dangerous recursion,
1320 		 * we don't do vlan-in-vlan
1321 		 */
1322 		m->m_pkthdr.rcvif->if_noproto++;
1323 		goto failed;
1324 	}
1325 	KKASSERT(ether_type != ETHERTYPE_VLAN);
1326 
1327 	m->m_flags |= M_ETHER_VLANCHECKED;
1328 	*m0 = m;
1329 	return TRUE;
1330 failed:
1331 	if (m != NULL)
1332 		m_freem(m);
1333 	*m0 = NULL;
1334 	return FALSE;
1335 }
1336 
1337 static void
1338 ether_input_handler(netmsg_t nmsg)
1339 {
1340 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1341 	struct ether_header *eh;
1342 	struct ifnet *ifp;
1343 	struct mbuf *m;
1344 
1345 	m = nmp->nm_packet;
1346 	M_ASSERTPKTHDR(m);
1347 	ifp = m->m_pkthdr.rcvif;
1348 
1349 	eh = mtod(m, struct ether_header *);
1350 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
1351 		if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
1352 			 ifp->if_addrlen) == 0)
1353 			m->m_flags |= M_BCAST;
1354 		else
1355 			m->m_flags |= M_MCAST;
1356 		ifp->if_imcasts++;
1357 	}
1358 
1359 	if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) {
1360 		if (!ether_vlancheck(&m)) {
1361 			KKASSERT(m == NULL);
1362 			return;
1363 		}
1364 	}
1365 
1366 	ether_input_oncpu(ifp, m);
1367 }
1368 
1369 /*
1370  * Send the packet to the target msgport
1371  *
1372  * At this point the packet had better be characterized (M_HASH set),
1373  * so we know which cpu to send it to.
1374  */
1375 static void
1376 ether_dispatch(int isr, struct mbuf *m)
1377 {
1378 	struct netmsg_packet *pmsg;
1379 
1380 	KKASSERT(m->m_flags & M_HASH);
1381 	pmsg = &m->m_hdr.mh_netmsg;
1382 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1383 		    0, ether_input_handler);
1384 	pmsg->nm_packet = m;
1385 	pmsg->base.lmsg.u.ms_result = isr;
1386 
1387 	logether(disp_beg, NULL);
1388 	lwkt_sendmsg(cpu_portfn(m->m_pkthdr.hash), &pmsg->base.lmsg);
1389 	logether(disp_end, NULL);
1390 }
1391 
1392 /*
1393  * Process a received Ethernet packet.
1394  *
1395  * The ethernet header is assumed to be in the mbuf so the caller
1396  * MUST MAKE SURE that there are at least sizeof(struct ether_header)
1397  * bytes in the first mbuf.
1398  */
1399 void
1400 ether_input_pkt(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi)
1401 {
1402 	int isr;
1403 
1404 	M_ASSERTPKTHDR(m);
1405 
1406 	/* Discard packet if interface is not up */
1407 	if (!(ifp->if_flags & IFF_UP)) {
1408 		m_freem(m);
1409 		return;
1410 	}
1411 
1412 	if (m->m_len < sizeof(struct ether_header)) {
1413 		/* XXX error in the caller. */
1414 		m_freem(m);
1415 		return;
1416 	}
1417 
1418 	m->m_pkthdr.rcvif = ifp;
1419 
1420 	logether(pkt_beg, ifp);
1421 
1422 	ETHER_BPF_MTAP(ifp, m);
1423 
1424 	ifp->if_ibytes += m->m_pkthdr.len;
1425 
1426 	if (ifp->if_flags & IFF_MONITOR) {
1427 		struct ether_header *eh;
1428 
1429 		eh = mtod(m, struct ether_header *);
1430 		if (ETHER_IS_MULTICAST(eh->ether_dhost))
1431 			ifp->if_imcasts++;
1432 
1433 		/*
1434 		 * Interface marked for monitoring; discard packet.
1435 		 */
1436 		m_freem(m);
1437 
1438 		logether(pkt_end, ifp);
1439 		return;
1440 	}
1441 
1442 	/*
1443 	 * If the packet has been characterized (pi->pi_netisr / M_HASH)
1444 	 * we can dispatch it immediately without further inspection.
1445 	 */
1446 	if (pi != NULL && (m->m_flags & M_HASH)) {
1447 #ifdef RSS_DEBUG
1448 		atomic_add_long(&ether_pktinfo_try, 1);
1449 #endif
1450 		netisr_hashcheck(pi->pi_netisr, m, pi);
1451 		if (m->m_flags & M_HASH) {
1452 			ether_dispatch(pi->pi_netisr, m);
1453 #ifdef RSS_DEBUG
1454 			atomic_add_long(&ether_pktinfo_hit, 1);
1455 #endif
1456 			logether(pkt_end, ifp);
1457 			return;
1458 		}
1459 	}
1460 #ifdef RSS_DEBUG
1461 	else if (ifp->if_capenable & IFCAP_RSS) {
1462 		if (pi == NULL)
1463 			atomic_add_long(&ether_rss_nopi, 1);
1464 		else
1465 			atomic_add_long(&ether_rss_nohash, 1);
1466 	}
1467 #endif
1468 
1469 	/*
1470 	 * Packet hash will be recalculated by software,
1471 	 * so clear the M_HASH flag set by the driver;
1472 	 * the hash value calculated by the hardware may
1473 	 * not be exactly what we want.
1474 	 */
1475 	m->m_flags &= ~M_HASH;
1476 
1477 	if (!ether_vlancheck(&m)) {
1478 		KKASSERT(m == NULL);
1479 		logether(pkt_end, ifp);
1480 		return;
1481 	}
1482 
1483 	isr = ether_characterize(&m);
1484 	if (m == NULL) {
1485 		logether(pkt_end, ifp);
1486 		return;
1487 	}
1488 
1489 	/*
1490 	 * Finally dispatch it
1491 	 */
1492 	ether_dispatch(isr, m);
1493 
1494 	logether(pkt_end, ifp);
1495 }
1496 
1497 static int
1498 ether_characterize(struct mbuf **m0)
1499 {
1500 	struct mbuf *m = *m0;
1501 	struct ether_header *eh;
1502 	uint16_t ether_type;
1503 	int isr;
1504 
1505 	eh = mtod(m, struct ether_header *);
1506 	ether_type = ntohs(eh->ether_type);
1507 
1508 	/*
1509 	 * Map ether type to netisr id.
1510 	 */
1511 	switch (ether_type) {
1512 #ifdef INET
1513 	case ETHERTYPE_IP:
1514 		isr = NETISR_IP;
1515 		break;
1516 
1517 	case ETHERTYPE_ARP:
1518 		isr = NETISR_ARP;
1519 		break;
1520 #endif
1521 
1522 #ifdef INET6
1523 	case ETHERTYPE_IPV6:
1524 		isr = NETISR_IPV6;
1525 		break;
1526 #endif
1527 
1528 #ifdef IPX
1529 	case ETHERTYPE_IPX:
1530 		isr = NETISR_IPX;
1531 		break;
1532 #endif
1533 
1534 #ifdef MPLS
1535 	case ETHERTYPE_MPLS:
1536 	case ETHERTYPE_MPLS_MCAST:
1537 		m->m_flags |= M_MPLSLABELED;
1538 		isr = NETISR_MPLS;
1539 		break;
1540 #endif
1541 
1542 	default:
1543 		/*
1544 		 * NETISR_MAX is an invalid value; it is chosen to let
1545 		 * netisr_characterize() know that we have no clear
1546 		 * idea where this packet should go.
1547 		 */
1548 		isr = NETISR_MAX;
1549 		break;
1550 	}
1551 
1552 	/*
1553 	 * Ask the isr to characterize the packet since we couldn't.
1554 	 * This is an attempt to optimally get us onto the correct protocol
1555 	 * thread.
1556 	 */
1557 	netisr_characterize(isr, &m, sizeof(struct ether_header));
1558 
1559 	*m0 = m;
1560 	return isr;
1561 }
1562 
1563 static void
1564 ether_demux_handler(netmsg_t nmsg)
1565 {
1566 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1567 	struct ifnet *ifp;
1568 	struct mbuf *m;
1569 
1570 	m = nmp->nm_packet;
1571 	M_ASSERTPKTHDR(m);
1572 	ifp = m->m_pkthdr.rcvif;
1573 
1574 	ether_demux_oncpu(ifp, m);
1575 }
1576 
1577 void
1578 ether_demux(struct mbuf *m)
1579 {
1580 	struct netmsg_packet *pmsg;
1581 	int isr;
1582 
1583 	isr = ether_characterize(&m);
1584 	if (m == NULL)
1585 		return;
1586 
1587 	KKASSERT(m->m_flags & M_HASH);
1588 	pmsg = &m->m_hdr.mh_netmsg;
1589 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1590 	    0, ether_demux_handler);
1591 	pmsg->nm_packet = m;
1592 	pmsg->base.lmsg.u.ms_result = isr;
1593 
1594 	lwkt_sendmsg(cpu_portfn(m->m_pkthdr.hash), &pmsg->base.lmsg);
1595 }
1596 
1597 MODULE_VERSION(ether, 1);
1598