xref: /dragonfly/sys/net/if_ethersubr.c (revision 65cc0652)
1 /*
2  * Copyright (c) 1982, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
30  * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mpls.h"
36 #include "opt_netgraph.h"
37 #include "opt_carp.h"
38 #include "opt_rss.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/globaldata.h>
43 #include <sys/kernel.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/msgport.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52 #include <sys/thread.h>
53 
54 #include <sys/thread2.h>
55 #include <sys/mplock2.h>
56 
57 #include <net/if.h>
58 #include <net/netisr.h>
59 #include <net/route.h>
60 #include <net/if_llc.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/ifq_var.h>
64 #include <net/bpf.h>
65 #include <net/ethernet.h>
66 #include <net/vlan/if_vlan_ether.h>
67 #include <net/vlan/if_vlan_var.h>
68 #include <net/netmsg2.h>
69 #include <net/netisr2.h>
70 
71 #if defined(INET) || defined(INET6)
72 #include <netinet/in.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/tcp_var.h>
75 #include <netinet/if_ether.h>
76 #include <netinet/ip_flow.h>
77 #include <net/ipfw/ip_fw.h>
78 #include <net/ipfw3/ip_fw.h>
79 #include <net/dummynet/ip_dummynet.h>
80 #endif
81 #ifdef INET6
82 #include <netinet6/nd6.h>
83 #endif
84 
85 #ifdef CARP
86 #include <netinet/ip_carp.h>
87 #endif
88 
89 #ifdef MPLS
90 #include <netproto/mpls/mpls.h>
91 #endif
92 
93 /* netgraph node hooks for ng_ether(4) */
94 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
95 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
96 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
97 void	(*ng_ether_attach_p)(struct ifnet *ifp);
98 void	(*ng_ether_detach_p)(struct ifnet *ifp);
99 
100 void	(*vlan_input_p)(struct mbuf *);
101 
102 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *,
103 			struct rtentry *);
104 static void ether_restore_header(struct mbuf **, const struct ether_header *,
105 				 const struct ether_header *);
106 static int ether_characterize(struct mbuf **);
107 static void ether_dispatch(struct ifnet *, int, struct mbuf *, int);
108 
109 /*
110  * if_bridge support
111  */
112 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
113 int (*bridge_output_p)(struct ifnet *, struct mbuf *);
114 void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
115 struct ifnet *(*bridge_interface_p)(void *if_bridge);
116 
117 static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
118 			      struct sockaddr *);
119 
120 /*
121  * if_lagg(4) support
122  */
123 void	(*lagg_input_p)(struct ifnet *, struct mbuf *);
124 int (*lagg_output_p)(struct ifnet *, struct mbuf *);
125 
126 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
127 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
128 };
129 
130 #define gotoerr(e) do { error = (e); goto bad; } while (0)
131 #define IFP2AC(ifp) ((struct arpcom *)(ifp))
132 
133 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
134 				struct ip_fw **rule,
135 				const struct ether_header *eh);
136 
137 static int ether_ipfw;
138 static u_long ether_restore_hdr;
139 static u_long ether_prepend_hdr;
140 static u_long ether_input_wronghash;
141 static int ether_debug;
142 
143 #ifdef RSS_DEBUG
144 static u_long ether_pktinfo_try;
145 static u_long ether_pktinfo_hit;
146 static u_long ether_rss_nopi;
147 static u_long ether_rss_nohash;
148 static u_long ether_input_requeue;
149 #endif
150 static u_long ether_input_wronghwhash;
151 static int ether_input_ckhash;
152 
153 #define ETHER_TSOLEN_DEFAULT	(4 * ETHERMTU)
154 
155 #define ETHER_NMBCLUSTERS_DEFMIN	32
156 #define ETHER_NMBCLUSTERS_DEFAULT	256
157 
158 static int ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
159 TUNABLE_INT("net.link.ether.tsolen", &ether_tsolen_default);
160 
161 static int ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT;
162 TUNABLE_INT("net.link.ether.nmbclusters", &ether_nmbclusters_default);
163 
164 SYSCTL_DECL(_net_link);
165 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
166 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW,
167     &ether_debug, 0, "Ether debug");
168 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
169     &ether_ipfw, 0, "Pass ether pkts through firewall");
170 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW,
171     &ether_restore_hdr, 0, "# of ether header restoration");
172 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW,
173     &ether_prepend_hdr, 0,
174     "# of ether header restoration which prepends mbuf");
175 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW,
176     &ether_input_wronghash, 0, "# of input packets with wrong hash");
177 SYSCTL_INT(_net_link_ether, OID_AUTO, tsolen, CTLFLAG_RW,
178     &ether_tsolen_default, 0, "Default max TSO length");
179 
180 #ifdef RSS_DEBUG
181 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW,
182     &ether_rss_nopi, 0, "# of packets do not have pktinfo");
183 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW,
184     &ether_rss_nohash, 0, "# of packets do not have hash");
185 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW,
186     &ether_pktinfo_try, 0,
187     "# of tries to find packets' msgport using pktinfo");
188 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW,
189     &ether_pktinfo_hit, 0,
190     "# of packets whose msgport are found using pktinfo");
191 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW,
192     &ether_input_requeue, 0, "# of input packets gets requeued");
193 #endif
194 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW,
195     &ether_input_wronghwhash, 0, "# of input packets with wrong hw hash");
196 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW,
197     &ether_input_ckhash, 0, "always check hash");
198 
199 #define ETHER_KTR_STR		"ifp=%p"
200 #define ETHER_KTR_ARGS	struct ifnet *ifp
201 #ifndef KTR_ETHERNET
202 #define KTR_ETHERNET		KTR_ALL
203 #endif
204 KTR_INFO_MASTER(ether);
205 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS);
206 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS);
207 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS);
208 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS);
209 #define logether(name, arg)	KTR_LOG(ether_ ## name, arg)
210 
211 /*
212  * Ethernet output routine.
213  * Encapsulate a packet of type family for the local net.
214  * Use trailer local net encapsulation if enough data in first
215  * packet leaves a multiple of 512 bytes of data in remainder.
216  * Assumes that ifp is actually pointer to arpcom structure.
217  */
218 static int
219 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
220 	     struct rtentry *rt)
221 {
222 	struct ether_header *eh, *deh;
223 	u_char *edst;
224 	int loop_copy = 0;
225 	int hlen = ETHER_HDR_LEN;	/* link layer header length */
226 	struct arpcom *ac = IFP2AC(ifp);
227 	int error;
228 
229 	ASSERT_NETISR_NCPUS(mycpuid);
230 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
231 
232 	if (ifp->if_flags & IFF_MONITOR)
233 		gotoerr(ENETDOWN);
234 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
235 		gotoerr(ENETDOWN);
236 
237 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
238 	if (m == NULL)
239 		return (ENOBUFS);
240 	m->m_pkthdr.csum_lhlen = sizeof(struct ether_header);
241 	eh = mtod(m, struct ether_header *);
242 	edst = eh->ether_dhost;
243 
244 	/*
245 	 * Fill in the destination ethernet address and frame type.
246 	 */
247 	switch (dst->sa_family) {
248 #ifdef INET
249 	case AF_INET:
250 		if (!arpresolve(ifp, rt, m, dst, edst))
251 			return (0);	/* if not yet resolved */
252 #ifdef MPLS
253 		if (m->m_flags & M_MPLSLABELED)
254 			eh->ether_type = htons(ETHERTYPE_MPLS);
255 		else
256 #endif
257 			eh->ether_type = htons(ETHERTYPE_IP);
258 		break;
259 #endif
260 #ifdef INET6
261 	case AF_INET6:
262 		if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst))
263 			return (0);		/* Something bad happenned. */
264 		eh->ether_type = htons(ETHERTYPE_IPV6);
265 		break;
266 #endif
267 	case pseudo_AF_HDRCMPLT:
268 	case AF_UNSPEC:
269 		loop_copy = -1; /* if this is for us, don't do it */
270 		deh = (struct ether_header *)dst->sa_data;
271 		memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN);
272 		eh->ether_type = deh->ether_type;
273 		break;
274 
275 	default:
276 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
277 		gotoerr(EAFNOSUPPORT);
278 	}
279 
280 	if (dst->sa_family == pseudo_AF_HDRCMPLT)	/* unlikely */
281 		memcpy(eh->ether_shost,
282 		       ((struct ether_header *)dst->sa_data)->ether_shost,
283 		       ETHER_ADDR_LEN);
284 	else
285 		memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN);
286 
287 	/*
288 	 * Bridges require special output handling.
289 	 */
290 	if (ifp->if_bridge) {
291 		KASSERT(bridge_output_p != NULL,
292 			("%s: if_bridge not loaded!", __func__));
293 		return bridge_output_p(ifp, m);
294 	}
295 #if 0 /* XXX */
296 	if (ifp->if_lagg) {
297 		KASSERT(lagg_output_p != NULL,
298 			("%s: if_lagg not loaded!", __func__));
299 		return lagg_output_p(ifp, m);
300 	}
301 #endif
302 
303 	/*
304 	 * If a simplex interface, and the packet is being sent to our
305 	 * Ethernet address or a broadcast address, loopback a copy.
306 	 * XXX To make a simplex device behave exactly like a duplex
307 	 * device, we should copy in the case of sending to our own
308 	 * ethernet address (thus letting the original actually appear
309 	 * on the wire). However, we don't do that here for security
310 	 * reasons and compatibility with the original behavior.
311 	 */
312 	if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
313 		int csum_flags = 0;
314 
315 		if (m->m_pkthdr.csum_flags & CSUM_IP)
316 			csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID);
317 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
318 			csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
319 		if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
320 			struct mbuf *n;
321 
322 			if ((n = m_copypacket(m, M_NOWAIT)) != NULL) {
323 				n->m_pkthdr.csum_flags |= csum_flags;
324 				if (csum_flags & CSUM_DATA_VALID)
325 					n->m_pkthdr.csum_data = 0xffff;
326 				if_simloop(ifp, n, dst->sa_family, hlen);
327 			} else
328 				IFNET_STAT_INC(ifp, iqdrops, 1);
329 		} else if (bcmp(eh->ether_dhost, eh->ether_shost,
330 				ETHER_ADDR_LEN) == 0) {
331 			m->m_pkthdr.csum_flags |= csum_flags;
332 			if (csum_flags & CSUM_DATA_VALID)
333 				m->m_pkthdr.csum_data = 0xffff;
334 			if_simloop(ifp, m, dst->sa_family, hlen);
335 			return (0);	/* XXX */
336 		}
337 	}
338 
339 #ifdef CARP
340 	if (ifp->if_type == IFT_CARP) {
341 		ifp = carp_parent(ifp);
342 		if (ifp == NULL)
343 			gotoerr(ENETUNREACH);
344 
345 		ac = IFP2AC(ifp);
346 
347 		/*
348 		 * Check precondition again
349 		 */
350 		ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
351 
352 		if (ifp->if_flags & IFF_MONITOR)
353 			gotoerr(ENETDOWN);
354 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
355 		    (IFF_UP | IFF_RUNNING))
356 			gotoerr(ENETDOWN);
357 	}
358 #endif
359 
360 	/* Handle ng_ether(4) processing, if any */
361 	if (ng_ether_output_p != NULL) {
362 		/*
363 		 * Hold BGL and recheck ng_ether_output_p
364 		 */
365 		get_mplock();
366 		if (ng_ether_output_p != NULL) {
367 			if ((error = ng_ether_output_p(ifp, &m)) != 0) {
368 				rel_mplock();
369 				goto bad;
370 			}
371 			if (m == NULL) {
372 				rel_mplock();
373 				return (0);
374 			}
375 		}
376 		rel_mplock();
377 	}
378 
379 	/* Continue with link-layer output */
380 	return ether_output_frame(ifp, m);
381 
382 bad:
383 	m_freem(m);
384 	return (error);
385 }
386 
387 /*
388  * Returns the bridge interface an ifp is associated
389  * with.
390  *
391  * Only call if ifp->if_bridge != NULL.
392  */
393 struct ifnet *
394 ether_bridge_interface(struct ifnet *ifp)
395 {
396 	if (bridge_interface_p)
397 		return(bridge_interface_p(ifp->if_bridge));
398 	return (ifp);
399 }
400 
401 /*
402  * Ethernet link layer output routine to send a raw frame to the device.
403  *
404  * This assumes that the 14 byte Ethernet header is present and contiguous
405  * in the first mbuf.
406  */
407 int
408 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
409 {
410 	struct ip_fw *rule = NULL;
411 	int error = 0;
412 	struct altq_pktattr pktattr;
413 
414 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
415 
416 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
417 		struct m_tag *mtag;
418 
419 		/* Extract info from dummynet tag */
420 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
421 		KKASSERT(mtag != NULL);
422 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
423 		KKASSERT(rule != NULL);
424 
425 		m_tag_delete(m, mtag);
426 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
427 	}
428 
429 	if (ifq_is_enabled(&ifp->if_snd))
430 		altq_etherclassify(&ifp->if_snd, m, &pktattr);
431 	crit_enter();
432 	if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0) {
433 		struct ether_header save_eh, *eh;
434 
435 		eh = mtod(m, struct ether_header *);
436 		save_eh = *eh;
437 		m_adj(m, ETHER_HDR_LEN);
438 		if (!ether_ipfw_chk(&m, ifp, &rule, eh)) {
439 			crit_exit();
440 			if (m != NULL) {
441 				m_freem(m);
442 				return ENOBUFS; /* pkt dropped */
443 			} else
444 				return 0;	/* consumed e.g. in a pipe */
445 		}
446 
447 		/* packet was ok, restore the ethernet header */
448 		ether_restore_header(&m, eh, &save_eh);
449 		if (m == NULL) {
450 			crit_exit();
451 			return ENOBUFS;
452 		}
453 	}
454 	crit_exit();
455 
456 	/*
457 	 * Queue message on interface, update output statistics if
458 	 * successful, and start output if interface not yet active.
459 	 */
460 	error = ifq_dispatch(ifp, m, &pktattr);
461 	return (error);
462 }
463 
464 /*
465  * ipfw processing for ethernet packets (in and out).
466  * The second parameter is NULL from ether_demux(), and ifp from
467  * ether_output_frame().
468  */
469 static boolean_t
470 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule,
471 	       const struct ether_header *eh)
472 {
473 	struct ether_header save_eh = *eh;	/* might be a ptr in *m0 */
474 	struct ip_fw_args args;
475 	struct m_tag *mtag;
476 	struct mbuf *m;
477 	int i;
478 
479 	if (*rule != NULL && fw_one_pass)
480 		return TRUE; /* dummynet packet, already partially processed */
481 
482 	/*
483 	 * I need some amount of data to be contiguous.
484 	 */
485 	i = min((*m0)->m_pkthdr.len, max_protohdr);
486 	if ((*m0)->m_len < i) {
487 		*m0 = m_pullup(*m0, i);
488 		if (*m0 == NULL)
489 			return FALSE;
490 	}
491 
492 	/*
493 	 * Clean up tags
494 	 */
495 	if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
496 		m_tag_delete(*m0, mtag);
497 	if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
498 		mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL);
499 		KKASSERT(mtag != NULL);
500 		m_tag_delete(*m0, mtag);
501 		(*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED;
502 	}
503 
504 	args.flags = 0;
505 	args.xlat = NULL;
506 	args.m = *m0;		/* the packet we are looking at		*/
507 	args.oif = dst;		/* destination, if any			*/
508 	args.rule = *rule;	/* matching rule to restart		*/
509 	args.eh = &save_eh;	/* MAC header for bridged/MAC packets	*/
510 	i = ip_fw_chk_ptr(&args);
511 	*m0 = args.m;
512 	*rule = args.rule;
513 
514 	if (*m0 == NULL)
515 		return FALSE;
516 
517 	switch (i) {
518 	case IP_FW_PASS:
519 		return TRUE;
520 
521 	case IP_FW_DIVERT:
522 	case IP_FW_TEE:
523 	case IP_FW_DENY:
524 		/*
525 		 * XXX at some point add support for divert/forward actions.
526 		 * If none of the above matches, we have to drop the pkt.
527 		 */
528 		return FALSE;
529 
530 	case IP_FW_DUMMYNET:
531 		/*
532 		 * Pass the pkt to dummynet, which consumes it.
533 		 */
534 		m = *m0;	/* pass the original to dummynet */
535 		*m0 = NULL;	/* and nothing back to the caller */
536 
537 		ether_restore_header(&m, eh, &save_eh);
538 		if (m == NULL)
539 			return FALSE;
540 
541 		m = ip_fw_dn_io_ptr(m, args.cookie,
542 		    dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
543 		if (m != NULL)
544 			ip_dn_queue(m);
545 		return FALSE;
546 
547 	default:
548 		panic("unknown ipfw return value: %d", i);
549 	}
550 }
551 
552 /*
553  * Perform common duties while attaching to interface list
554  */
555 void
556 ether_ifattach(struct ifnet *ifp, const uint8_t *lla,
557     lwkt_serialize_t serializer)
558 {
559 	ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header),
560 	    serializer);
561 }
562 
563 void
564 ether_ifattach_bpf(struct ifnet *ifp, const uint8_t *lla,
565     u_int dlt, u_int hdrlen, lwkt_serialize_t serializer)
566 {
567 	struct sockaddr_dl *sdl;
568 	char ethstr[ETHER_ADDRSTRLEN + 1];
569 	struct ifaltq *ifq;
570 	int i;
571 
572 	/*
573 	 * If driver does not configure # of mbuf clusters/jclusters
574 	 * that could sit on the device queues for quite some time,
575 	 * we then assume:
576 	 * - The device queues only consume mbuf clusters.
577 	 * - No more than ether_nmbclusters_default (by default 256)
578 	 *   mbuf clusters will sit on the device queues for quite
579 	 *   some time.
580 	 */
581 	if (ifp->if_nmbclusters <= 0 && ifp->if_nmbjclusters <= 0) {
582 		if (ether_nmbclusters_default < ETHER_NMBCLUSTERS_DEFMIN) {
583 			kprintf("ether nmbclusters %d -> %d\n",
584 			    ether_nmbclusters_default,
585 			    ETHER_NMBCLUSTERS_DEFAULT);
586 			ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT;
587 		}
588 		ifp->if_nmbclusters = ether_nmbclusters_default;
589 	}
590 
591 	ifp->if_type = IFT_ETHER;
592 	ifp->if_addrlen = ETHER_ADDR_LEN;
593 	ifp->if_hdrlen = ETHER_HDR_LEN;
594 	if_attach(ifp, serializer);
595 	ifq = &ifp->if_snd;
596 	for (i = 0; i < ifq->altq_subq_cnt; ++i) {
597 		struct ifaltq_subque *ifsq = ifq_get_subq(ifq, i);
598 
599 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen *
600 		    (ETHER_MAX_LEN - ETHER_CRC_LEN);
601 	}
602 	ifp->if_mtu = ETHERMTU;
603 	if (ifp->if_tsolen <= 0) {
604 		if ((ether_tsolen_default / ETHERMTU) < 2) {
605 			kprintf("ether TSO maxlen %d -> %d\n",
606 			    ether_tsolen_default, ETHER_TSOLEN_DEFAULT);
607 			ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
608 		}
609 		ifp->if_tsolen = ether_tsolen_default;
610 	}
611 	if (ifp->if_baudrate == 0)
612 		ifp->if_baudrate = 10000000;
613 	ifp->if_output = ether_output;
614 	ifp->if_input = ether_input;
615 	ifp->if_resolvemulti = ether_resolvemulti;
616 	ifp->if_broadcastaddr = etherbroadcastaddr;
617 	sdl = IF_LLSOCKADDR(ifp);
618 	sdl->sdl_type = IFT_ETHER;
619 	sdl->sdl_alen = ifp->if_addrlen;
620 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
621 	/*
622 	 * XXX Keep the current drivers happy.
623 	 * XXX Remove once all drivers have been cleaned up
624 	 */
625 	if (lla != IFP2AC(ifp)->ac_enaddr)
626 		bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen);
627 	bpfattach(ifp, dlt, hdrlen);
628 	if (ng_ether_attach_p != NULL)
629 		(*ng_ether_attach_p)(ifp);
630 
631 	if_printf(ifp, "MAC address: %s\n", kether_ntoa(lla, ethstr));
632 }
633 
634 /*
635  * Perform common duties while detaching an Ethernet interface
636  */
637 void
638 ether_ifdetach(struct ifnet *ifp)
639 {
640 	if_down(ifp);
641 
642 	if (ng_ether_detach_p != NULL)
643 		(*ng_ether_detach_p)(ifp);
644 	bpfdetach(ifp);
645 	if_detach(ifp);
646 }
647 
648 int
649 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
650 {
651 	struct ifaddr *ifa = (struct ifaddr *) data;
652 	struct ifreq *ifr = (struct ifreq *) data;
653 	int error = 0;
654 
655 #define IF_INIT(ifp) \
656 do { \
657 	if (((ifp)->if_flags & IFF_UP) == 0) { \
658 		(ifp)->if_flags |= IFF_UP; \
659 		(ifp)->if_init((ifp)->if_softc); \
660 	} \
661 } while (0)
662 
663 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
664 
665 	switch (command) {
666 	case SIOCSIFADDR:
667 		switch (ifa->ifa_addr->sa_family) {
668 #ifdef INET
669 		case AF_INET:
670 			IF_INIT(ifp);	/* before arpwhohas */
671 			arp_ifinit(ifp, ifa);
672 			break;
673 #endif
674 		default:
675 			IF_INIT(ifp);
676 			break;
677 		}
678 		break;
679 
680 	case SIOCGIFADDR:
681 		bcopy(IFP2AC(ifp)->ac_enaddr,
682 		      ((struct sockaddr *)ifr->ifr_data)->sa_data,
683 		      ETHER_ADDR_LEN);
684 		break;
685 
686 	case SIOCSIFMTU:
687 		/*
688 		 * Set the interface MTU.
689 		 */
690 		if (ifr->ifr_mtu > ETHERMTU) {
691 			error = EINVAL;
692 		} else {
693 			ifp->if_mtu = ifr->ifr_mtu;
694 		}
695 		break;
696 	default:
697 		error = EINVAL;
698 		break;
699 	}
700 	return (error);
701 
702 #undef IF_INIT
703 }
704 
705 static int
706 ether_resolvemulti(
707 	struct ifnet *ifp,
708 	struct sockaddr **llsa,
709 	struct sockaddr *sa)
710 {
711 	struct sockaddr_dl *sdl;
712 #ifdef INET
713 	struct sockaddr_in *sin;
714 #endif
715 #ifdef INET6
716 	struct sockaddr_in6 *sin6;
717 #endif
718 	u_char *e_addr;
719 
720 	switch(sa->sa_family) {
721 	case AF_LINK:
722 		/*
723 		 * No mapping needed. Just check that it's a valid MC address.
724 		 */
725 		sdl = (struct sockaddr_dl *)sa;
726 		e_addr = LLADDR(sdl);
727 		if ((e_addr[0] & 1) != 1)
728 			return EADDRNOTAVAIL;
729 		*llsa = NULL;
730 		return 0;
731 
732 #ifdef INET
733 	case AF_INET:
734 		sin = (struct sockaddr_in *)sa;
735 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
736 			return EADDRNOTAVAIL;
737 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
738 		sdl->sdl_len = sizeof *sdl;
739 		sdl->sdl_family = AF_LINK;
740 		sdl->sdl_index = ifp->if_index;
741 		sdl->sdl_type = IFT_ETHER;
742 		sdl->sdl_alen = ETHER_ADDR_LEN;
743 		e_addr = LLADDR(sdl);
744 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
745 		*llsa = (struct sockaddr *)sdl;
746 		return 0;
747 #endif
748 #ifdef INET6
749 	case AF_INET6:
750 		sin6 = (struct sockaddr_in6 *)sa;
751 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
752 			/*
753 			 * An IP6 address of 0 means listen to all
754 			 * of the Ethernet multicast address used for IP6.
755 			 * (This is used for multicast routers.)
756 			 */
757 			ifp->if_flags |= IFF_ALLMULTI;
758 			*llsa = NULL;
759 			return 0;
760 		}
761 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
762 			return EADDRNOTAVAIL;
763 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
764 		sdl->sdl_len = sizeof *sdl;
765 		sdl->sdl_family = AF_LINK;
766 		sdl->sdl_index = ifp->if_index;
767 		sdl->sdl_type = IFT_ETHER;
768 		sdl->sdl_alen = ETHER_ADDR_LEN;
769 		e_addr = LLADDR(sdl);
770 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
771 		*llsa = (struct sockaddr *)sdl;
772 		return 0;
773 #endif
774 
775 	default:
776 		/*
777 		 * Well, the text isn't quite right, but it's the name
778 		 * that counts...
779 		 */
780 		return EAFNOSUPPORT;
781 	}
782 }
783 
784 #if 0
785 /*
786  * This is for reference.  We have a table-driven version
787  * of the little-endian crc32 generator, which is faster
788  * than the double-loop.
789  */
790 uint32_t
791 ether_crc32_le(const uint8_t *buf, size_t len)
792 {
793 	uint32_t c, crc, carry;
794 	size_t i, j;
795 
796 	crc = 0xffffffffU;	/* initial value */
797 
798 	for (i = 0; i < len; i++) {
799 		c = buf[i];
800 		for (j = 0; j < 8; j++) {
801 			carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
802 			crc >>= 1;
803 			c >>= 1;
804 			if (carry)
805 				crc = (crc ^ ETHER_CRC_POLY_LE);
806 		}
807 	}
808 
809 	return (crc);
810 }
811 #else
812 uint32_t
813 ether_crc32_le(const uint8_t *buf, size_t len)
814 {
815 	static const uint32_t crctab[] = {
816 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
817 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
818 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
819 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
820 	};
821 	uint32_t crc;
822 	size_t i;
823 
824 	crc = 0xffffffffU;	/* initial value */
825 
826 	for (i = 0; i < len; i++) {
827 		crc ^= buf[i];
828 		crc = (crc >> 4) ^ crctab[crc & 0xf];
829 		crc = (crc >> 4) ^ crctab[crc & 0xf];
830 	}
831 
832 	return (crc);
833 }
834 #endif
835 
836 uint32_t
837 ether_crc32_be(const uint8_t *buf, size_t len)
838 {
839 	uint32_t c, crc, carry;
840 	size_t i, j;
841 
842 	crc = 0xffffffffU;	/* initial value */
843 
844 	for (i = 0; i < len; i++) {
845 		c = buf[i];
846 		for (j = 0; j < 8; j++) {
847 			carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
848 			crc <<= 1;
849 			c >>= 1;
850 			if (carry)
851 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
852 		}
853 	}
854 
855 	return (crc);
856 }
857 
858 /*
859  * find the size of ethernet header, and call classifier
860  */
861 void
862 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m,
863 		   struct altq_pktattr *pktattr)
864 {
865 	struct ether_header *eh;
866 	uint16_t ether_type;
867 	int hlen, af, hdrsize;
868 
869 	hlen = sizeof(struct ether_header);
870 	eh = mtod(m, struct ether_header *);
871 
872 	ether_type = ntohs(eh->ether_type);
873 	if (ether_type < ETHERMTU) {
874 		/* ick! LLC/SNAP */
875 		struct llc *llc = (struct llc *)(eh + 1);
876 		hlen += 8;
877 
878 		if (m->m_len < hlen ||
879 		    llc->llc_dsap != LLC_SNAP_LSAP ||
880 		    llc->llc_ssap != LLC_SNAP_LSAP ||
881 		    llc->llc_control != LLC_UI)
882 			goto bad;  /* not snap! */
883 
884 		ether_type = ntohs(llc->llc_un.type_snap.ether_type);
885 	}
886 
887 	if (ether_type == ETHERTYPE_IP) {
888 		af = AF_INET;
889 		hdrsize = 20;  /* sizeof(struct ip) */
890 #ifdef INET6
891 	} else if (ether_type == ETHERTYPE_IPV6) {
892 		af = AF_INET6;
893 		hdrsize = 40;  /* sizeof(struct ip6_hdr) */
894 #endif
895 	} else
896 		goto bad;
897 
898 	while (m->m_len <= hlen) {
899 		hlen -= m->m_len;
900 		m = m->m_next;
901 	}
902 	if (m->m_len < hlen + hdrsize) {
903 		/*
904 		 * ip header is not in a single mbuf.  this should not
905 		 * happen in the current code.
906 		 * (todo: use m_pulldown in the future)
907 		 */
908 		goto bad;
909 	}
910 	m->m_data += hlen;
911 	m->m_len -= hlen;
912 	ifq_classify(ifq, m, af, pktattr);
913 	m->m_data -= hlen;
914 	m->m_len += hlen;
915 
916 	return;
917 
918 bad:
919 	pktattr->pattr_class = NULL;
920 	pktattr->pattr_hdr = NULL;
921 	pktattr->pattr_af = AF_UNSPEC;
922 }
923 
924 static void
925 ether_restore_header(struct mbuf **m0, const struct ether_header *eh,
926 		     const struct ether_header *save_eh)
927 {
928 	struct mbuf *m = *m0;
929 
930 	ether_restore_hdr++;
931 
932 	/*
933 	 * Prepend the header, optimize for the common case of
934 	 * eh pointing into the mbuf.
935 	 */
936 	if ((const void *)(eh + 1) == (void *)m->m_data) {
937 		m->m_data -= ETHER_HDR_LEN;
938 		m->m_len += ETHER_HDR_LEN;
939 		m->m_pkthdr.len += ETHER_HDR_LEN;
940 	} else {
941 		ether_prepend_hdr++;
942 
943 		M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
944 		if (m != NULL) {
945 			bcopy(save_eh, mtod(m, struct ether_header *),
946 			      ETHER_HDR_LEN);
947 		}
948 	}
949 	*m0 = m;
950 }
951 
952 /*
953  * Upper layer processing for a received Ethernet packet.
954  */
955 void
956 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m)
957 {
958 	struct ether_header *eh;
959 	int isr, discard = 0;
960 	u_short ether_type;
961 	struct ip_fw *rule = NULL;
962 
963 	M_ASSERTPKTHDR(m);
964 	KASSERT(m->m_len >= ETHER_HDR_LEN,
965 		("ether header is not contiguous!"));
966 
967 	eh = mtod(m, struct ether_header *);
968 
969 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
970 		struct m_tag *mtag;
971 
972 		/* Extract info from dummynet tag */
973 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
974 		KKASSERT(mtag != NULL);
975 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
976 		KKASSERT(rule != NULL);
977 
978 		m_tag_delete(m, mtag);
979 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
980 
981 		/* packet is passing the second time */
982 		goto post_stats;
983 	}
984 
985 	/*
986 	 * We got a packet which was unicast to a different Ethernet
987 	 * address.  If the driver is working properly, then this
988 	 * situation can only happen when the interface is in
989 	 * promiscuous mode.  We defer the packet discarding until the
990 	 * vlan processing is done, so that vlan/bridge or vlan/netgraph
991 	 * could work.
992 	 */
993 	if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) &&
994 	    !ETHER_IS_MULTICAST(eh->ether_dhost) &&
995 	    bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) {
996 		if (ether_debug & 1) {
997 			kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
998 				"%02x:%02x:%02x:%02x:%02x:%02x "
999 				"%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n",
1000 				eh->ether_dhost[0],
1001 				eh->ether_dhost[1],
1002 				eh->ether_dhost[2],
1003 				eh->ether_dhost[3],
1004 				eh->ether_dhost[4],
1005 				eh->ether_dhost[5],
1006 				eh->ether_shost[0],
1007 				eh->ether_shost[1],
1008 				eh->ether_shost[2],
1009 				eh->ether_shost[3],
1010 				eh->ether_shost[4],
1011 				eh->ether_shost[5],
1012 				eh->ether_type,
1013 				((u_char *)IFP2AC(ifp)->ac_enaddr)[0],
1014 				((u_char *)IFP2AC(ifp)->ac_enaddr)[1],
1015 				((u_char *)IFP2AC(ifp)->ac_enaddr)[2],
1016 				((u_char *)IFP2AC(ifp)->ac_enaddr)[3],
1017 				((u_char *)IFP2AC(ifp)->ac_enaddr)[4],
1018 				((u_char *)IFP2AC(ifp)->ac_enaddr)[5]
1019 			);
1020 		}
1021 		if ((ether_debug & 2) == 0)
1022 			discard = 1;
1023 	}
1024 
1025 post_stats:
1026 	if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0 && !discard) {
1027 		struct ether_header save_eh = *eh;
1028 
1029 		/* XXX old crufty stuff, needs to be removed */
1030 		m_adj(m, sizeof(struct ether_header));
1031 
1032 		if (!ether_ipfw_chk(&m, NULL, &rule, eh)) {
1033 			m_freem(m);
1034 			return;
1035 		}
1036 
1037 		ether_restore_header(&m, eh, &save_eh);
1038 		if (m == NULL)
1039 			return;
1040 		eh = mtod(m, struct ether_header *);
1041 	}
1042 
1043 	ether_type = ntohs(eh->ether_type);
1044 	KKASSERT(ether_type != ETHERTYPE_VLAN);
1045 
1046         /* Handle input from a lagg(4) port */
1047         if (ifp->if_type == IFT_IEEE8023ADLAG) {
1048                 KASSERT(lagg_input_p != NULL,
1049                     ("%s: if_lagg not loaded!", __func__));
1050                 (*lagg_input_p)(ifp, m);
1051 		return;
1052         }
1053 
1054 	if (m->m_flags & M_VLANTAG) {
1055 		void (*vlan_input_func)(struct mbuf *);
1056 
1057 		vlan_input_func = vlan_input_p;
1058 		/* Make sure 'vlan_input_func' is really used. */
1059 		cpu_ccfence();
1060 		if (vlan_input_func != NULL) {
1061 			vlan_input_func(m);
1062 		} else {
1063 			IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1064 			m_freem(m);
1065 		}
1066 		return;
1067 	}
1068 
1069 	/*
1070 	 * If we have been asked to discard this packet
1071 	 * (e.g. not for us), drop it before entering
1072 	 * the upper layer.
1073 	 */
1074 	if (discard) {
1075 		m_freem(m);
1076 		return;
1077 	}
1078 
1079 	/*
1080 	 * Clear protocol specific flags,
1081 	 * before entering the upper layer.
1082 	 */
1083 	m->m_flags &= ~M_ETHER_FLAGS;
1084 
1085 	/* Strip ethernet header. */
1086 	m_adj(m, sizeof(struct ether_header));
1087 
1088 	switch (ether_type) {
1089 #ifdef INET
1090 	case ETHERTYPE_IP:
1091 		if ((m->m_flags & M_LENCHECKED) == 0) {
1092 			if (!ip_lengthcheck(&m, 0))
1093 				return;
1094 		}
1095 		if (ipflow_fastforward(m))
1096 			return;
1097 		isr = NETISR_IP;
1098 		break;
1099 
1100 	case ETHERTYPE_ARP:
1101 		if (ifp->if_flags & IFF_NOARP) {
1102 			/* Discard packet if ARP is disabled on interface */
1103 			m_freem(m);
1104 			return;
1105 		}
1106 		isr = NETISR_ARP;
1107 		break;
1108 #endif
1109 
1110 #ifdef INET6
1111 	case ETHERTYPE_IPV6:
1112 		isr = NETISR_IPV6;
1113 		break;
1114 #endif
1115 
1116 #ifdef MPLS
1117 	case ETHERTYPE_MPLS:
1118 	case ETHERTYPE_MPLS_MCAST:
1119 		/* Should have been set by ether_input(). */
1120 		KKASSERT(m->m_flags & M_MPLSLABELED);
1121 		isr = NETISR_MPLS;
1122 		break;
1123 #endif
1124 
1125 	default:
1126 		/*
1127 		 * The accurate msgport is not determined before
1128 		 * we reach here, so recharacterize packet.
1129 		 */
1130 		m->m_flags &= ~M_HASH;
1131 		if (ng_ether_input_orphan_p != NULL) {
1132 			/*
1133 			 * Put back the ethernet header so netgraph has a
1134 			 * consistent view of inbound packets.
1135 			 */
1136 			M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
1137 			if (m == NULL) {
1138 				/*
1139 				 * M_PREPEND frees the mbuf in case of failure.
1140 				 */
1141 				return;
1142 			}
1143 			/*
1144 			 * Hold BGL and recheck ng_ether_input_orphan_p
1145 			 */
1146 			get_mplock();
1147 			if (ng_ether_input_orphan_p != NULL) {
1148 				ng_ether_input_orphan_p(ifp, m);
1149 				rel_mplock();
1150 				return;
1151 			}
1152 			rel_mplock();
1153 		}
1154 		m_freem(m);
1155 		return;
1156 	}
1157 
1158 	if (m->m_flags & M_HASH) {
1159 		if (&curthread->td_msgport ==
1160 		    netisr_hashport(m->m_pkthdr.hash)) {
1161 			netisr_handle(isr, m);
1162 			return;
1163 		} else {
1164 			/*
1165 			 * XXX Something is wrong,
1166 			 * we probably should panic here!
1167 			 */
1168 			m->m_flags &= ~M_HASH;
1169 			atomic_add_long(&ether_input_wronghash, 1);
1170 		}
1171 	}
1172 #ifdef RSS_DEBUG
1173 	atomic_add_long(&ether_input_requeue, 1);
1174 #endif
1175 	netisr_queue(isr, m);
1176 }
1177 
1178 /*
1179  * First we perform any link layer operations, then continue to the
1180  * upper layers with ether_demux_oncpu().
1181  */
1182 static void
1183 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m)
1184 {
1185 #ifdef CARP
1186 	void *carp;
1187 #endif
1188 
1189 	if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) {
1190 		/*
1191 		 * Receiving interface's flags are changed, when this
1192 		 * packet is waiting for processing; discard it.
1193 		 */
1194 		m_freem(m);
1195 		return;
1196 	}
1197 
1198 	/*
1199 	 * Tap the packet off here for a bridge.  bridge_input()
1200 	 * will return NULL if it has consumed the packet, otherwise
1201 	 * it gets processed as normal.  Note that bridge_input()
1202 	 * will always return the original packet if we need to
1203 	 * process it locally.
1204 	 */
1205 	if (ifp->if_bridge) {
1206 		KASSERT(bridge_input_p != NULL,
1207 			("%s: if_bridge not loaded!", __func__));
1208 
1209 		if(m->m_flags & M_ETHER_BRIDGED) {
1210 			m->m_flags &= ~M_ETHER_BRIDGED;
1211 		} else {
1212 			m = bridge_input_p(ifp, m);
1213 			if (m == NULL)
1214 				return;
1215 
1216 			KASSERT(ifp == m->m_pkthdr.rcvif,
1217 				("bridge_input_p changed rcvif"));
1218 		}
1219 	}
1220 
1221 #ifdef CARP
1222 	carp = ifp->if_carp;
1223 	if (carp) {
1224 		m = carp_input(carp, m);
1225 		if (m == NULL)
1226 			return;
1227 		KASSERT(ifp == m->m_pkthdr.rcvif,
1228 		    ("carp_input changed rcvif"));
1229 	}
1230 #endif
1231 
1232 	/* Handle ng_ether(4) processing, if any */
1233 	if (ng_ether_input_p != NULL) {
1234 		/*
1235 		 * Hold BGL and recheck ng_ether_input_p
1236 		 */
1237 		get_mplock();
1238 		if (ng_ether_input_p != NULL)
1239 			ng_ether_input_p(ifp, &m);
1240 		rel_mplock();
1241 
1242 		if (m == NULL)
1243 			return;
1244 	}
1245 
1246 	/* Continue with upper layer processing */
1247 	ether_demux_oncpu(ifp, m);
1248 }
1249 
1250 /*
1251  * Perform certain functions of ether_input():
1252  * - Test IFF_UP
1253  * - Update statistics
1254  * - Run bpf(4) tap if requested
1255  * Then pass the packet to ether_input_oncpu().
1256  *
1257  * This function should be used by pseudo interface (e.g. vlan(4)),
1258  * when it tries to claim that the packet is received by it.
1259  *
1260  * REINPUT_KEEPRCVIF
1261  * REINPUT_RUNBPF
1262  */
1263 void
1264 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags)
1265 {
1266 	/* Discard packet if interface is not up */
1267 	if (!(ifp->if_flags & IFF_UP)) {
1268 		m_freem(m);
1269 		return;
1270 	}
1271 
1272 	/*
1273 	 * Change receiving interface.  The bridge will often pass a flag to
1274 	 * ask that this not be done so ARPs get applied to the correct
1275 	 * side.
1276 	 */
1277 	if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 ||
1278 	    m->m_pkthdr.rcvif == NULL) {
1279 		m->m_pkthdr.rcvif = ifp;
1280 	}
1281 
1282 	/* Update statistics */
1283 	IFNET_STAT_INC(ifp, ipackets, 1);
1284 	IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1285 	if (m->m_flags & (M_MCAST | M_BCAST))
1286 		IFNET_STAT_INC(ifp, imcasts, 1);
1287 
1288 	if (reinput_flags & REINPUT_RUNBPF)
1289 		BPF_MTAP(ifp, m);
1290 
1291 	ether_input_oncpu(ifp, m);
1292 }
1293 
1294 static __inline boolean_t
1295 ether_vlancheck(struct mbuf **m0)
1296 {
1297 	struct mbuf *m = *m0;
1298 	struct ether_header *eh = mtod(m, struct ether_header *);
1299 	uint16_t ether_type = ntohs(eh->ether_type);
1300 
1301 	if (ether_type == ETHERTYPE_VLAN) {
1302 		if ((m->m_flags & M_VLANTAG) == 0) {
1303 			/*
1304 			 * Extract vlan tag if hardware does not do
1305 			 * it for us.
1306 			 */
1307 			vlan_ether_decap(&m);
1308 			if (m == NULL)
1309 				goto failed;
1310 
1311 			eh = mtod(m, struct ether_header *);
1312 			ether_type = ntohs(eh->ether_type);
1313 			if (ether_type == ETHERTYPE_VLAN) {
1314 				/*
1315 				 * To prevent possible dangerous recursion,
1316 				 * we don't do vlan-in-vlan.
1317 				 */
1318 				IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1319 				goto failed;
1320 			}
1321 		} else {
1322 			/*
1323 			 * To prevent possible dangerous recursion,
1324 			 * we don't do vlan-in-vlan.
1325 			 */
1326 			IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1327 			goto failed;
1328 		}
1329 		KKASSERT(ether_type != ETHERTYPE_VLAN);
1330 	}
1331 
1332 	m->m_flags |= M_ETHER_VLANCHECKED;
1333 	*m0 = m;
1334 	return TRUE;
1335 failed:
1336 	if (m != NULL)
1337 		m_freem(m);
1338 	*m0 = NULL;
1339 	return FALSE;
1340 }
1341 
1342 static void
1343 ether_input_handler(netmsg_t nmsg)
1344 {
1345 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1346 	struct ether_header *eh;
1347 	struct ifnet *ifp;
1348 	struct mbuf *m;
1349 
1350 	m = nmp->nm_packet;
1351 	M_ASSERTPKTHDR(m);
1352 
1353 	if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) {
1354 		if (!ether_vlancheck(&m)) {
1355 			KKASSERT(m == NULL);
1356 			return;
1357 		}
1358 	}
1359 
1360 	ifp = m->m_pkthdr.rcvif;
1361 	if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) ||
1362 	    __predict_false(ether_input_ckhash)) {
1363 		int isr;
1364 
1365 		/*
1366 		 * Need to verify the hash supplied by the hardware
1367 		 * which could be wrong.
1368 		 */
1369 		m->m_flags &= ~(M_HASH | M_CKHASH);
1370 		isr = ether_characterize(&m);
1371 		if (m == NULL)
1372 			return;
1373 		KKASSERT(m->m_flags & M_HASH);
1374 
1375 		if (netisr_hashcpu(m->m_pkthdr.hash) != mycpuid) {
1376 			/*
1377 			 * Wrong hardware supplied hash; redispatch
1378 			 */
1379 			ether_dispatch(ifp, isr, m, -1);
1380 			if (__predict_false(ether_input_ckhash))
1381 				atomic_add_long(&ether_input_wronghwhash, 1);
1382 			return;
1383 		}
1384 	}
1385 
1386 	eh = mtod(m, struct ether_header *);
1387 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
1388 		if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
1389 			 ifp->if_addrlen) == 0)
1390 			m->m_flags |= M_BCAST;
1391 		else
1392 			m->m_flags |= M_MCAST;
1393 		IFNET_STAT_INC(ifp, imcasts, 1);
1394 	}
1395 
1396 	ether_input_oncpu(ifp, m);
1397 }
1398 
1399 /*
1400  * Send the packet to the target netisr msgport
1401  *
1402  * At this point the packet must be characterized (M_HASH set),
1403  * so we know which netisr to send it to.
1404  */
1405 static void
1406 ether_dispatch(struct ifnet *ifp, int isr, struct mbuf *m, int cpuid)
1407 {
1408 	struct netmsg_packet *pmsg;
1409 	int target_cpuid;
1410 
1411 	KKASSERT(m->m_flags & M_HASH);
1412 	target_cpuid = netisr_hashcpu(m->m_pkthdr.hash);
1413 
1414 	pmsg = &m->m_hdr.mh_netmsg;
1415 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1416 		    0, ether_input_handler);
1417 	pmsg->nm_packet = m;
1418 	pmsg->base.lmsg.u.ms_result = isr;
1419 
1420 	logether(disp_beg, NULL);
1421 	if (target_cpuid == cpuid) {
1422 		if ((ifp->if_flags & IFF_IDIRECT) && IN_NETISR_NCPUS(cpuid)) {
1423 			ether_input_handler((netmsg_t)pmsg);
1424 		} else {
1425 			lwkt_sendmsg_oncpu(netisr_cpuport(target_cpuid),
1426 			    &pmsg->base.lmsg);
1427 		}
1428 	} else {
1429 		lwkt_sendmsg(netisr_cpuport(target_cpuid),
1430 		    &pmsg->base.lmsg);
1431 	}
1432 	logether(disp_end, NULL);
1433 }
1434 
1435 /*
1436  * Process a received Ethernet packet.
1437  *
1438  * The ethernet header is assumed to be in the mbuf so the caller
1439  * MUST MAKE SURE that there are at least sizeof(struct ether_header)
1440  * bytes in the first mbuf.
1441  *
1442  * If the caller knows that the current thread is stick to the current
1443  * cpu, e.g. the interrupt thread or the netisr thread, the current cpuid
1444  * (mycpuid) should be passed through 'cpuid' argument.  Else -1 should
1445  * be passed as 'cpuid' argument.
1446  */
1447 void
1448 ether_input(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi,
1449     int cpuid)
1450 {
1451 	int isr;
1452 
1453 	M_ASSERTPKTHDR(m);
1454 
1455 	/* Discard packet if interface is not up */
1456 	if (!(ifp->if_flags & IFF_UP)) {
1457 		m_freem(m);
1458 		return;
1459 	}
1460 
1461 	if (m->m_len < sizeof(struct ether_header)) {
1462 		/* XXX error in the caller. */
1463 		m_freem(m);
1464 		return;
1465 	}
1466 
1467 	m->m_pkthdr.rcvif = ifp;
1468 
1469 	logether(pkt_beg, ifp);
1470 
1471 	ETHER_BPF_MTAP(ifp, m);
1472 
1473 	IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1474 
1475 	if (ifp->if_flags & IFF_MONITOR) {
1476 		struct ether_header *eh;
1477 
1478 		eh = mtod(m, struct ether_header *);
1479 		if (ETHER_IS_MULTICAST(eh->ether_dhost))
1480 			IFNET_STAT_INC(ifp, imcasts, 1);
1481 
1482 		/*
1483 		 * Interface marked for monitoring; discard packet.
1484 		 */
1485 		m_freem(m);
1486 
1487 		logether(pkt_end, ifp);
1488 		return;
1489 	}
1490 
1491 	/*
1492 	 * If the packet has been characterized (pi->pi_netisr / M_HASH)
1493 	 * we can dispatch it immediately with trivial checks.
1494 	 */
1495 	if (pi != NULL && (m->m_flags & M_HASH)) {
1496 #ifdef RSS_DEBUG
1497 		atomic_add_long(&ether_pktinfo_try, 1);
1498 #endif
1499 		netisr_hashcheck(pi->pi_netisr, m, pi);
1500 		if (m->m_flags & M_HASH) {
1501 			ether_dispatch(ifp, pi->pi_netisr, m, cpuid);
1502 #ifdef RSS_DEBUG
1503 			atomic_add_long(&ether_pktinfo_hit, 1);
1504 #endif
1505 			logether(pkt_end, ifp);
1506 			return;
1507 		}
1508 	}
1509 #ifdef RSS_DEBUG
1510 	else if (ifp->if_capenable & IFCAP_RSS) {
1511 		if (pi == NULL)
1512 			atomic_add_long(&ether_rss_nopi, 1);
1513 		else
1514 			atomic_add_long(&ether_rss_nohash, 1);
1515 	}
1516 #endif
1517 
1518 	/*
1519 	 * Packet hash will be recalculated by software, so clear
1520 	 * the M_HASH and M_CKHASH flag set by the driver; the hash
1521 	 * value calculated by the hardware may not be exactly what
1522 	 * we want.
1523 	 */
1524 	m->m_flags &= ~(M_HASH | M_CKHASH);
1525 
1526 	if (!ether_vlancheck(&m)) {
1527 		KKASSERT(m == NULL);
1528 		logether(pkt_end, ifp);
1529 		return;
1530 	}
1531 
1532 	isr = ether_characterize(&m);
1533 	if (m == NULL) {
1534 		logether(pkt_end, ifp);
1535 		return;
1536 	}
1537 
1538 	/*
1539 	 * Finally dispatch it
1540 	 */
1541 	ether_dispatch(ifp, isr, m, cpuid);
1542 
1543 	logether(pkt_end, ifp);
1544 }
1545 
1546 static int
1547 ether_characterize(struct mbuf **m0)
1548 {
1549 	struct mbuf *m = *m0;
1550 	struct ether_header *eh;
1551 	uint16_t ether_type;
1552 	int isr;
1553 
1554 	eh = mtod(m, struct ether_header *);
1555 	ether_type = ntohs(eh->ether_type);
1556 
1557 	/*
1558 	 * Map ether type to netisr id.
1559 	 */
1560 	switch (ether_type) {
1561 #ifdef INET
1562 	case ETHERTYPE_IP:
1563 		isr = NETISR_IP;
1564 		break;
1565 
1566 	case ETHERTYPE_ARP:
1567 		isr = NETISR_ARP;
1568 		break;
1569 #endif
1570 
1571 #ifdef INET6
1572 	case ETHERTYPE_IPV6:
1573 		isr = NETISR_IPV6;
1574 		break;
1575 #endif
1576 
1577 #ifdef MPLS
1578 	case ETHERTYPE_MPLS:
1579 	case ETHERTYPE_MPLS_MCAST:
1580 		m->m_flags |= M_MPLSLABELED;
1581 		isr = NETISR_MPLS;
1582 		break;
1583 #endif
1584 
1585 	default:
1586 		/*
1587 		 * NETISR_MAX is an invalid value; it is chosen to let
1588 		 * netisr_characterize() know that we have no clear
1589 		 * idea where this packet should go.
1590 		 */
1591 		isr = NETISR_MAX;
1592 		break;
1593 	}
1594 
1595 	/*
1596 	 * Ask the isr to characterize the packet since we couldn't.
1597 	 * This is an attempt to optimally get us onto the correct protocol
1598 	 * thread.
1599 	 */
1600 	netisr_characterize(isr, &m, sizeof(struct ether_header));
1601 
1602 	*m0 = m;
1603 	return isr;
1604 }
1605 
1606 static void
1607 ether_demux_handler(netmsg_t nmsg)
1608 {
1609 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1610 	struct ifnet *ifp;
1611 	struct mbuf *m;
1612 
1613 	m = nmp->nm_packet;
1614 	M_ASSERTPKTHDR(m);
1615 	ifp = m->m_pkthdr.rcvif;
1616 
1617 	ether_demux_oncpu(ifp, m);
1618 }
1619 
1620 void
1621 ether_demux(struct mbuf *m)
1622 {
1623 	struct netmsg_packet *pmsg;
1624 	int isr;
1625 
1626 	isr = ether_characterize(&m);
1627 	if (m == NULL)
1628 		return;
1629 
1630 	KKASSERT(m->m_flags & M_HASH);
1631 	pmsg = &m->m_hdr.mh_netmsg;
1632 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1633 	    0, ether_demux_handler);
1634 	pmsg->nm_packet = m;
1635 	pmsg->base.lmsg.u.ms_result = isr;
1636 
1637 	lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg);
1638 }
1639 
1640 u_char *
1641 kether_aton(const char *macstr, u_char *addr)
1642 {
1643         unsigned int o0, o1, o2, o3, o4, o5;
1644         int n;
1645 
1646         if (macstr == NULL || addr == NULL)
1647                 return NULL;
1648 
1649         n = ksscanf(macstr, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2,
1650             &o3, &o4, &o5);
1651         if (n != 6)
1652                 return NULL;
1653 
1654         addr[0] = o0;
1655         addr[1] = o1;
1656         addr[2] = o2;
1657         addr[3] = o3;
1658         addr[4] = o4;
1659         addr[5] = o5;
1660 
1661         return addr;
1662 }
1663 
1664 char *
1665 kether_ntoa(const u_char *addr, char *buf)
1666 {
1667         int len = ETHER_ADDRSTRLEN + 1;
1668         int n;
1669 
1670         n = ksnprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0],
1671             addr[1], addr[2], addr[3], addr[4], addr[5]);
1672 
1673         if (n < 17)
1674                 return NULL;
1675 
1676         return buf;
1677 }
1678 
1679 MODULE_VERSION(ether, 1);
1680