xref: /dragonfly/sys/net/if_ethersubr.c (revision ae071d8d)
1 /*
2  * Copyright (c) 1982, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
30  * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ipx.h"
36 #include "opt_mpls.h"
37 #include "opt_netgraph.h"
38 #include "opt_carp.h"
39 #include "opt_rss.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/globaldata.h>
44 #include <sys/kernel.h>
45 #include <sys/ktr.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/msgport.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/thread.h>
54 
55 #include <sys/thread2.h>
56 #include <sys/mplock2.h>
57 
58 #include <net/if.h>
59 #include <net/netisr.h>
60 #include <net/route.h>
61 #include <net/if_llc.h>
62 #include <net/if_dl.h>
63 #include <net/if_types.h>
64 #include <net/ifq_var.h>
65 #include <net/bpf.h>
66 #include <net/ethernet.h>
67 #include <net/vlan/if_vlan_ether.h>
68 #include <net/vlan/if_vlan_var.h>
69 #include <net/netmsg2.h>
70 #include <net/netisr2.h>
71 
72 #if defined(INET) || defined(INET6)
73 #include <netinet/in.h>
74 #include <netinet/ip_var.h>
75 #include <netinet/tcp_var.h>
76 #include <netinet/if_ether.h>
77 #include <netinet/ip_flow.h>
78 #include <net/ipfw/ip_fw.h>
79 #include <net/dummynet/ip_dummynet.h>
80 #endif
81 #ifdef INET6
82 #include <netinet6/nd6.h>
83 #endif
84 
85 #ifdef CARP
86 #include <netinet/ip_carp.h>
87 #endif
88 
89 #ifdef IPX
90 #include <netproto/ipx/ipx.h>
91 #include <netproto/ipx/ipx_if.h>
92 int (*ef_inputp)(struct ifnet*, const struct ether_header *eh, struct mbuf *m);
93 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst,
94 		  short *tp, int *hlen);
95 #endif
96 
97 #ifdef MPLS
98 #include <netproto/mpls/mpls.h>
99 #endif
100 
101 /* netgraph node hooks for ng_ether(4) */
102 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
103 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
104 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
105 void	(*ng_ether_attach_p)(struct ifnet *ifp);
106 void	(*ng_ether_detach_p)(struct ifnet *ifp);
107 
108 void	(*vlan_input_p)(struct mbuf *);
109 
110 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *,
111 			struct rtentry *);
112 static void ether_restore_header(struct mbuf **, const struct ether_header *,
113 				 const struct ether_header *);
114 static int ether_characterize(struct mbuf **);
115 static void ether_dispatch(int, struct mbuf *);
116 
117 /*
118  * if_bridge support
119  */
120 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
121 int (*bridge_output_p)(struct ifnet *, struct mbuf *);
122 void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
123 struct ifnet *(*bridge_interface_p)(void *if_bridge);
124 
125 static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
126 			      struct sockaddr *);
127 
128 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
129 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
130 };
131 
132 #define gotoerr(e) do { error = (e); goto bad; } while (0)
133 #define IFP2AC(ifp) ((struct arpcom *)(ifp))
134 
135 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
136 				struct ip_fw **rule,
137 				const struct ether_header *eh);
138 
139 static int ether_ipfw;
140 static u_long ether_restore_hdr;
141 static u_long ether_prepend_hdr;
142 static u_long ether_input_wronghash;
143 static int ether_debug;
144 
145 #ifdef RSS_DEBUG
146 static u_long ether_pktinfo_try;
147 static u_long ether_pktinfo_hit;
148 static u_long ether_rss_nopi;
149 static u_long ether_rss_nohash;
150 static u_long ether_input_requeue;
151 #endif
152 static u_long ether_input_wronghwhash;
153 static int ether_input_ckhash;
154 
155 #define ETHER_TSOLEN_DEFAULT	(4 * ETHERMTU)
156 
157 static int ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
158 TUNABLE_INT("net.link.ether.tsolen", &ether_tsolen_default);
159 
160 SYSCTL_DECL(_net_link);
161 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
162 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW,
163     &ether_debug, 0, "Ether debug");
164 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
165     &ether_ipfw, 0, "Pass ether pkts through firewall");
166 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW,
167     &ether_restore_hdr, 0, "# of ether header restoration");
168 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW,
169     &ether_prepend_hdr, 0,
170     "# of ether header restoration which prepends mbuf");
171 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW,
172     &ether_input_wronghash, 0, "# of input packets with wrong hash");
173 SYSCTL_INT(_net_link_ether, OID_AUTO, tsolen, CTLFLAG_RW,
174     &ether_tsolen_default, 0, "Default max TSO length");
175 
176 #ifdef RSS_DEBUG
177 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW,
178     &ether_rss_nopi, 0, "# of packets do not have pktinfo");
179 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW,
180     &ether_rss_nohash, 0, "# of packets do not have hash");
181 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW,
182     &ether_pktinfo_try, 0,
183     "# of tries to find packets' msgport using pktinfo");
184 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW,
185     &ether_pktinfo_hit, 0,
186     "# of packets whose msgport are found using pktinfo");
187 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW,
188     &ether_input_requeue, 0, "# of input packets gets requeued");
189 #endif
190 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW,
191     &ether_input_wronghwhash, 0, "# of input packets with wrong hw hash");
192 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW,
193     &ether_input_ckhash, 0, "always check hash");
194 
195 #define ETHER_KTR_STR		"ifp=%p"
196 #define ETHER_KTR_ARGS	struct ifnet *ifp
197 #ifndef KTR_ETHERNET
198 #define KTR_ETHERNET		KTR_ALL
199 #endif
200 KTR_INFO_MASTER(ether);
201 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS);
202 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS);
203 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS);
204 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS);
205 #define logether(name, arg)	KTR_LOG(ether_ ## name, arg)
206 
207 /*
208  * Ethernet output routine.
209  * Encapsulate a packet of type family for the local net.
210  * Use trailer local net encapsulation if enough data in first
211  * packet leaves a multiple of 512 bytes of data in remainder.
212  * Assumes that ifp is actually pointer to arpcom structure.
213  */
214 static int
215 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
216 	     struct rtentry *rt)
217 {
218 	struct ether_header *eh, *deh;
219 	u_char *edst;
220 	int loop_copy = 0;
221 	int hlen = ETHER_HDR_LEN;	/* link layer header length */
222 	struct arpcom *ac = IFP2AC(ifp);
223 	int error;
224 
225 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
226 
227 	if (ifp->if_flags & IFF_MONITOR)
228 		gotoerr(ENETDOWN);
229 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
230 		gotoerr(ENETDOWN);
231 
232 	M_PREPEND(m, sizeof(struct ether_header), MB_DONTWAIT);
233 	if (m == NULL)
234 		return (ENOBUFS);
235 	m->m_pkthdr.csum_lhlen = sizeof(struct ether_header);
236 	eh = mtod(m, struct ether_header *);
237 	edst = eh->ether_dhost;
238 
239 	/*
240 	 * Fill in the destination ethernet address and frame type.
241 	 */
242 	switch (dst->sa_family) {
243 #ifdef INET
244 	case AF_INET:
245 		if (!arpresolve(ifp, rt, m, dst, edst))
246 			return (0);	/* if not yet resolved */
247 #ifdef MPLS
248 		if (m->m_flags & M_MPLSLABELED)
249 			eh->ether_type = htons(ETHERTYPE_MPLS);
250 		else
251 #endif
252 			eh->ether_type = htons(ETHERTYPE_IP);
253 		break;
254 #endif
255 #ifdef INET6
256 	case AF_INET6:
257 		if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst))
258 			return (0);		/* Something bad happenned. */
259 		eh->ether_type = htons(ETHERTYPE_IPV6);
260 		break;
261 #endif
262 #ifdef IPX
263 	case AF_IPX:
264 		if (ef_outputp != NULL) {
265 			/*
266 			 * Hold BGL and recheck ef_outputp
267 			 */
268 			get_mplock();
269 			if (ef_outputp != NULL) {
270 				error = ef_outputp(ifp, &m, dst,
271 						   &eh->ether_type, &hlen);
272 				rel_mplock();
273 				if (error)
274 					goto bad;
275 				else
276 					break;
277 			}
278 			rel_mplock();
279 		}
280 		eh->ether_type = htons(ETHERTYPE_IPX);
281 		bcopy(&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host),
282 		      edst, ETHER_ADDR_LEN);
283 		break;
284 #endif
285 	case pseudo_AF_HDRCMPLT:
286 	case AF_UNSPEC:
287 		loop_copy = -1; /* if this is for us, don't do it */
288 		deh = (struct ether_header *)dst->sa_data;
289 		memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN);
290 		eh->ether_type = deh->ether_type;
291 		break;
292 
293 	default:
294 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
295 		gotoerr(EAFNOSUPPORT);
296 	}
297 
298 	if (dst->sa_family == pseudo_AF_HDRCMPLT)	/* unlikely */
299 		memcpy(eh->ether_shost,
300 		       ((struct ether_header *)dst->sa_data)->ether_shost,
301 		       ETHER_ADDR_LEN);
302 	else
303 		memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN);
304 
305 	/*
306 	 * Bridges require special output handling.
307 	 */
308 	if (ifp->if_bridge) {
309 		KASSERT(bridge_output_p != NULL,
310 			("%s: if_bridge not loaded!", __func__));
311 		return bridge_output_p(ifp, m);
312 	}
313 
314 	/*
315 	 * If a simplex interface, and the packet is being sent to our
316 	 * Ethernet address or a broadcast address, loopback a copy.
317 	 * XXX To make a simplex device behave exactly like a duplex
318 	 * device, we should copy in the case of sending to our own
319 	 * ethernet address (thus letting the original actually appear
320 	 * on the wire). However, we don't do that here for security
321 	 * reasons and compatibility with the original behavior.
322 	 */
323 	if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
324 		int csum_flags = 0;
325 
326 		if (m->m_pkthdr.csum_flags & CSUM_IP)
327 			csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID);
328 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
329 			csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
330 		if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
331 			struct mbuf *n;
332 
333 			if ((n = m_copypacket(m, MB_DONTWAIT)) != NULL) {
334 				n->m_pkthdr.csum_flags |= csum_flags;
335 				if (csum_flags & CSUM_DATA_VALID)
336 					n->m_pkthdr.csum_data = 0xffff;
337 				if_simloop(ifp, n, dst->sa_family, hlen);
338 			} else
339 				IFNET_STAT_INC(ifp, iqdrops, 1);
340 		} else if (bcmp(eh->ether_dhost, eh->ether_shost,
341 				ETHER_ADDR_LEN) == 0) {
342 			m->m_pkthdr.csum_flags |= csum_flags;
343 			if (csum_flags & CSUM_DATA_VALID)
344 				m->m_pkthdr.csum_data = 0xffff;
345 			if_simloop(ifp, m, dst->sa_family, hlen);
346 			return (0);	/* XXX */
347 		}
348 	}
349 
350 #ifdef CARP
351 	if (ifp->if_type == IFT_CARP) {
352 		ifp = carp_parent(ifp);
353 		if (ifp == NULL)
354 			gotoerr(ENETUNREACH);
355 
356 		ac = IFP2AC(ifp);
357 
358 		/*
359 		 * Check precondition again
360 		 */
361 		ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
362 
363 		if (ifp->if_flags & IFF_MONITOR)
364 			gotoerr(ENETDOWN);
365 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
366 		    (IFF_UP | IFF_RUNNING))
367 			gotoerr(ENETDOWN);
368 	}
369 #endif
370 
371 	/* Handle ng_ether(4) processing, if any */
372 	if (ng_ether_output_p != NULL) {
373 		/*
374 		 * Hold BGL and recheck ng_ether_output_p
375 		 */
376 		get_mplock();
377 		if (ng_ether_output_p != NULL) {
378 			if ((error = ng_ether_output_p(ifp, &m)) != 0) {
379 				rel_mplock();
380 				goto bad;
381 			}
382 			if (m == NULL) {
383 				rel_mplock();
384 				return (0);
385 			}
386 		}
387 		rel_mplock();
388 	}
389 
390 	/* Continue with link-layer output */
391 	return ether_output_frame(ifp, m);
392 
393 bad:
394 	m_freem(m);
395 	return (error);
396 }
397 
398 /*
399  * Returns the bridge interface an ifp is associated
400  * with.
401  *
402  * Only call if ifp->if_bridge != NULL.
403  */
404 struct ifnet *
405 ether_bridge_interface(struct ifnet *ifp)
406 {
407 	if (bridge_interface_p)
408 		return(bridge_interface_p(ifp->if_bridge));
409 	return (ifp);
410 }
411 
412 /*
413  * Ethernet link layer output routine to send a raw frame to the device.
414  *
415  * This assumes that the 14 byte Ethernet header is present and contiguous
416  * in the first mbuf.
417  */
418 int
419 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
420 {
421 	struct ip_fw *rule = NULL;
422 	int error = 0;
423 	struct altq_pktattr pktattr;
424 
425 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
426 
427 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
428 		struct m_tag *mtag;
429 
430 		/* Extract info from dummynet tag */
431 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
432 		KKASSERT(mtag != NULL);
433 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
434 		KKASSERT(rule != NULL);
435 
436 		m_tag_delete(m, mtag);
437 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
438 	}
439 
440 	if (ifq_is_enabled(&ifp->if_snd))
441 		altq_etherclassify(&ifp->if_snd, m, &pktattr);
442 	crit_enter();
443 	if (IPFW_LOADED && ether_ipfw != 0) {
444 		struct ether_header save_eh, *eh;
445 
446 		eh = mtod(m, struct ether_header *);
447 		save_eh = *eh;
448 		m_adj(m, ETHER_HDR_LEN);
449 		if (!ether_ipfw_chk(&m, ifp, &rule, eh)) {
450 			crit_exit();
451 			if (m != NULL) {
452 				m_freem(m);
453 				return ENOBUFS; /* pkt dropped */
454 			} else
455 				return 0;	/* consumed e.g. in a pipe */
456 		}
457 
458 		/* packet was ok, restore the ethernet header */
459 		ether_restore_header(&m, eh, &save_eh);
460 		if (m == NULL) {
461 			crit_exit();
462 			return ENOBUFS;
463 		}
464 	}
465 	crit_exit();
466 
467 	/*
468 	 * Queue message on interface, update output statistics if
469 	 * successful, and start output if interface not yet active.
470 	 */
471 	error = ifq_dispatch(ifp, m, &pktattr);
472 	return (error);
473 }
474 
475 /*
476  * ipfw processing for ethernet packets (in and out).
477  * The second parameter is NULL from ether_demux(), and ifp from
478  * ether_output_frame().
479  */
480 static boolean_t
481 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule,
482 	       const struct ether_header *eh)
483 {
484 	struct ether_header save_eh = *eh;	/* might be a ptr in *m0 */
485 	struct ip_fw_args args;
486 	struct m_tag *mtag;
487 	struct mbuf *m;
488 	int i;
489 
490 	if (*rule != NULL && fw_one_pass)
491 		return TRUE; /* dummynet packet, already partially processed */
492 
493 	/*
494 	 * I need some amount of data to be contiguous.
495 	 */
496 	i = min((*m0)->m_pkthdr.len, max_protohdr);
497 	if ((*m0)->m_len < i) {
498 		*m0 = m_pullup(*m0, i);
499 		if (*m0 == NULL)
500 			return FALSE;
501 	}
502 
503 	/*
504 	 * Clean up tags
505 	 */
506 	if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
507 		m_tag_delete(*m0, mtag);
508 	if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
509 		mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL);
510 		KKASSERT(mtag != NULL);
511 		m_tag_delete(*m0, mtag);
512 		(*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED;
513 	}
514 
515 	args.m = *m0;		/* the packet we are looking at		*/
516 	args.oif = dst;		/* destination, if any			*/
517 	args.rule = *rule;	/* matching rule to restart		*/
518 	args.eh = &save_eh;	/* MAC header for bridged/MAC packets	*/
519 	i = ip_fw_chk_ptr(&args);
520 	*m0 = args.m;
521 	*rule = args.rule;
522 
523 	if (*m0 == NULL)
524 		return FALSE;
525 
526 	switch (i) {
527 	case IP_FW_PASS:
528 		return TRUE;
529 
530 	case IP_FW_DIVERT:
531 	case IP_FW_TEE:
532 	case IP_FW_DENY:
533 		/*
534 		 * XXX at some point add support for divert/forward actions.
535 		 * If none of the above matches, we have to drop the pkt.
536 		 */
537 		return FALSE;
538 
539 	case IP_FW_DUMMYNET:
540 		/*
541 		 * Pass the pkt to dummynet, which consumes it.
542 		 */
543 		m = *m0;	/* pass the original to dummynet */
544 		*m0 = NULL;	/* and nothing back to the caller */
545 
546 		ether_restore_header(&m, eh, &save_eh);
547 		if (m == NULL)
548 			return FALSE;
549 
550 		ip_fw_dn_io_ptr(m, args.cookie,
551 				dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
552 		ip_dn_queue(m);
553 		return FALSE;
554 
555 	default:
556 		panic("unknown ipfw return value: %d", i);
557 	}
558 }
559 
560 static void
561 ether_input(struct ifnet *ifp, struct mbuf *m)
562 {
563 	ether_input_pkt(ifp, m, NULL);
564 }
565 
566 /*
567  * Perform common duties while attaching to interface list
568  */
569 void
570 ether_ifattach(struct ifnet *ifp, const uint8_t *lla,
571     lwkt_serialize_t serializer)
572 {
573 	ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header),
574 	    serializer);
575 }
576 
577 void
578 ether_ifattach_bpf(struct ifnet *ifp, const uint8_t *lla,
579     u_int dlt, u_int hdrlen, lwkt_serialize_t serializer)
580 {
581 	struct sockaddr_dl *sdl;
582 	char ethstr[ETHER_ADDRSTRLEN + 1];
583 	struct ifaltq *ifq;
584 	int i;
585 
586 	ifp->if_type = IFT_ETHER;
587 	ifp->if_addrlen = ETHER_ADDR_LEN;
588 	ifp->if_hdrlen = ETHER_HDR_LEN;
589 	if_attach(ifp, serializer);
590 	ifq = &ifp->if_snd;
591 	for (i = 0; i < ifq->altq_subq_cnt; ++i) {
592 		struct ifaltq_subque *ifsq = ifq_get_subq(ifq, i);
593 
594 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen *
595 		    (ETHER_MAX_LEN - ETHER_CRC_LEN);
596 	}
597 	ifp->if_mtu = ETHERMTU;
598 	if (ifp->if_tsolen <= 0) {
599 		if ((ether_tsolen_default / ETHERMTU) < 2) {
600 			kprintf("ether TSO maxlen %d -> %d\n",
601 			    ether_tsolen_default, ETHER_TSOLEN_DEFAULT);
602 			ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
603 		}
604 		ifp->if_tsolen = ether_tsolen_default;
605 	}
606 	if (ifp->if_baudrate == 0)
607 		ifp->if_baudrate = 10000000;
608 	ifp->if_output = ether_output;
609 	ifp->if_input = ether_input;
610 	ifp->if_resolvemulti = ether_resolvemulti;
611 	ifp->if_broadcastaddr = etherbroadcastaddr;
612 	sdl = IF_LLSOCKADDR(ifp);
613 	sdl->sdl_type = IFT_ETHER;
614 	sdl->sdl_alen = ifp->if_addrlen;
615 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
616 	/*
617 	 * XXX Keep the current drivers happy.
618 	 * XXX Remove once all drivers have been cleaned up
619 	 */
620 	if (lla != IFP2AC(ifp)->ac_enaddr)
621 		bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen);
622 	bpfattach(ifp, dlt, hdrlen);
623 	if (ng_ether_attach_p != NULL)
624 		(*ng_ether_attach_p)(ifp);
625 
626 	if_printf(ifp, "MAC address: %s\n", kether_ntoa(lla, ethstr));
627 }
628 
629 /*
630  * Perform common duties while detaching an Ethernet interface
631  */
632 void
633 ether_ifdetach(struct ifnet *ifp)
634 {
635 	if_down(ifp);
636 
637 	if (ng_ether_detach_p != NULL)
638 		(*ng_ether_detach_p)(ifp);
639 	bpfdetach(ifp);
640 	if_detach(ifp);
641 }
642 
643 int
644 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
645 {
646 	struct ifaddr *ifa = (struct ifaddr *) data;
647 	struct ifreq *ifr = (struct ifreq *) data;
648 	int error = 0;
649 
650 #define IF_INIT(ifp) \
651 do { \
652 	if (((ifp)->if_flags & IFF_UP) == 0) { \
653 		(ifp)->if_flags |= IFF_UP; \
654 		(ifp)->if_init((ifp)->if_softc); \
655 	} \
656 } while (0)
657 
658 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
659 
660 	switch (command) {
661 	case SIOCSIFADDR:
662 		switch (ifa->ifa_addr->sa_family) {
663 #ifdef INET
664 		case AF_INET:
665 			IF_INIT(ifp);	/* before arpwhohas */
666 			arp_ifinit(ifp, ifa);
667 			break;
668 #endif
669 #ifdef IPX
670 		/*
671 		 * XXX - This code is probably wrong
672 		 */
673 		case AF_IPX:
674 			{
675 			struct ipx_addr *ina = &IA_SIPX(ifa)->sipx_addr;
676 			struct arpcom *ac = IFP2AC(ifp);
677 
678 			if (ipx_nullhost(*ina))
679 				ina->x_host = *(union ipx_host *) ac->ac_enaddr;
680 			else
681 				bcopy(ina->x_host.c_host, ac->ac_enaddr,
682 				      sizeof ac->ac_enaddr);
683 
684 			IF_INIT(ifp);	/* Set new address. */
685 			break;
686 			}
687 #endif
688 		default:
689 			IF_INIT(ifp);
690 			break;
691 		}
692 		break;
693 
694 	case SIOCGIFADDR:
695 		bcopy(IFP2AC(ifp)->ac_enaddr,
696 		      ((struct sockaddr *)ifr->ifr_data)->sa_data,
697 		      ETHER_ADDR_LEN);
698 		break;
699 
700 	case SIOCSIFMTU:
701 		/*
702 		 * Set the interface MTU.
703 		 */
704 		if (ifr->ifr_mtu > ETHERMTU) {
705 			error = EINVAL;
706 		} else {
707 			ifp->if_mtu = ifr->ifr_mtu;
708 		}
709 		break;
710 	default:
711 		error = EINVAL;
712 		break;
713 	}
714 	return (error);
715 
716 #undef IF_INIT
717 }
718 
719 int
720 ether_resolvemulti(
721 	struct ifnet *ifp,
722 	struct sockaddr **llsa,
723 	struct sockaddr *sa)
724 {
725 	struct sockaddr_dl *sdl;
726 #ifdef INET
727 	struct sockaddr_in *sin;
728 #endif
729 #ifdef INET6
730 	struct sockaddr_in6 *sin6;
731 #endif
732 	u_char *e_addr;
733 
734 	switch(sa->sa_family) {
735 	case AF_LINK:
736 		/*
737 		 * No mapping needed. Just check that it's a valid MC address.
738 		 */
739 		sdl = (struct sockaddr_dl *)sa;
740 		e_addr = LLADDR(sdl);
741 		if ((e_addr[0] & 1) != 1)
742 			return EADDRNOTAVAIL;
743 		*llsa = NULL;
744 		return 0;
745 
746 #ifdef INET
747 	case AF_INET:
748 		sin = (struct sockaddr_in *)sa;
749 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
750 			return EADDRNOTAVAIL;
751 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
752 		sdl->sdl_len = sizeof *sdl;
753 		sdl->sdl_family = AF_LINK;
754 		sdl->sdl_index = ifp->if_index;
755 		sdl->sdl_type = IFT_ETHER;
756 		sdl->sdl_alen = ETHER_ADDR_LEN;
757 		e_addr = LLADDR(sdl);
758 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
759 		*llsa = (struct sockaddr *)sdl;
760 		return 0;
761 #endif
762 #ifdef INET6
763 	case AF_INET6:
764 		sin6 = (struct sockaddr_in6 *)sa;
765 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
766 			/*
767 			 * An IP6 address of 0 means listen to all
768 			 * of the Ethernet multicast address used for IP6.
769 			 * (This is used for multicast routers.)
770 			 */
771 			ifp->if_flags |= IFF_ALLMULTI;
772 			*llsa = NULL;
773 			return 0;
774 		}
775 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
776 			return EADDRNOTAVAIL;
777 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
778 		sdl->sdl_len = sizeof *sdl;
779 		sdl->sdl_family = AF_LINK;
780 		sdl->sdl_index = ifp->if_index;
781 		sdl->sdl_type = IFT_ETHER;
782 		sdl->sdl_alen = ETHER_ADDR_LEN;
783 		e_addr = LLADDR(sdl);
784 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
785 		*llsa = (struct sockaddr *)sdl;
786 		return 0;
787 #endif
788 
789 	default:
790 		/*
791 		 * Well, the text isn't quite right, but it's the name
792 		 * that counts...
793 		 */
794 		return EAFNOSUPPORT;
795 	}
796 }
797 
798 #if 0
799 /*
800  * This is for reference.  We have a table-driven version
801  * of the little-endian crc32 generator, which is faster
802  * than the double-loop.
803  */
804 uint32_t
805 ether_crc32_le(const uint8_t *buf, size_t len)
806 {
807 	uint32_t c, crc, carry;
808 	size_t i, j;
809 
810 	crc = 0xffffffffU;	/* initial value */
811 
812 	for (i = 0; i < len; i++) {
813 		c = buf[i];
814 		for (j = 0; j < 8; j++) {
815 			carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
816 			crc >>= 1;
817 			c >>= 1;
818 			if (carry)
819 				crc = (crc ^ ETHER_CRC_POLY_LE);
820 		}
821 	}
822 
823 	return (crc);
824 }
825 #else
826 uint32_t
827 ether_crc32_le(const uint8_t *buf, size_t len)
828 {
829 	static const uint32_t crctab[] = {
830 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
831 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
832 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
833 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
834 	};
835 	uint32_t crc;
836 	size_t i;
837 
838 	crc = 0xffffffffU;	/* initial value */
839 
840 	for (i = 0; i < len; i++) {
841 		crc ^= buf[i];
842 		crc = (crc >> 4) ^ crctab[crc & 0xf];
843 		crc = (crc >> 4) ^ crctab[crc & 0xf];
844 	}
845 
846 	return (crc);
847 }
848 #endif
849 
850 uint32_t
851 ether_crc32_be(const uint8_t *buf, size_t len)
852 {
853 	uint32_t c, crc, carry;
854 	size_t i, j;
855 
856 	crc = 0xffffffffU;	/* initial value */
857 
858 	for (i = 0; i < len; i++) {
859 		c = buf[i];
860 		for (j = 0; j < 8; j++) {
861 			carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
862 			crc <<= 1;
863 			c >>= 1;
864 			if (carry)
865 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
866 		}
867 	}
868 
869 	return (crc);
870 }
871 
872 /*
873  * find the size of ethernet header, and call classifier
874  */
875 void
876 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m,
877 		   struct altq_pktattr *pktattr)
878 {
879 	struct ether_header *eh;
880 	uint16_t ether_type;
881 	int hlen, af, hdrsize;
882 
883 	hlen = sizeof(struct ether_header);
884 	eh = mtod(m, struct ether_header *);
885 
886 	ether_type = ntohs(eh->ether_type);
887 	if (ether_type < ETHERMTU) {
888 		/* ick! LLC/SNAP */
889 		struct llc *llc = (struct llc *)(eh + 1);
890 		hlen += 8;
891 
892 		if (m->m_len < hlen ||
893 		    llc->llc_dsap != LLC_SNAP_LSAP ||
894 		    llc->llc_ssap != LLC_SNAP_LSAP ||
895 		    llc->llc_control != LLC_UI)
896 			goto bad;  /* not snap! */
897 
898 		ether_type = ntohs(llc->llc_un.type_snap.ether_type);
899 	}
900 
901 	if (ether_type == ETHERTYPE_IP) {
902 		af = AF_INET;
903 		hdrsize = 20;  /* sizeof(struct ip) */
904 #ifdef INET6
905 	} else if (ether_type == ETHERTYPE_IPV6) {
906 		af = AF_INET6;
907 		hdrsize = 40;  /* sizeof(struct ip6_hdr) */
908 #endif
909 	} else
910 		goto bad;
911 
912 	while (m->m_len <= hlen) {
913 		hlen -= m->m_len;
914 		m = m->m_next;
915 	}
916 	if (m->m_len < hlen + hdrsize) {
917 		/*
918 		 * ip header is not in a single mbuf.  this should not
919 		 * happen in the current code.
920 		 * (todo: use m_pulldown in the future)
921 		 */
922 		goto bad;
923 	}
924 	m->m_data += hlen;
925 	m->m_len -= hlen;
926 	ifq_classify(ifq, m, af, pktattr);
927 	m->m_data -= hlen;
928 	m->m_len += hlen;
929 
930 	return;
931 
932 bad:
933 	pktattr->pattr_class = NULL;
934 	pktattr->pattr_hdr = NULL;
935 	pktattr->pattr_af = AF_UNSPEC;
936 }
937 
938 static void
939 ether_restore_header(struct mbuf **m0, const struct ether_header *eh,
940 		     const struct ether_header *save_eh)
941 {
942 	struct mbuf *m = *m0;
943 
944 	ether_restore_hdr++;
945 
946 	/*
947 	 * Prepend the header, optimize for the common case of
948 	 * eh pointing into the mbuf.
949 	 */
950 	if ((const void *)(eh + 1) == (void *)m->m_data) {
951 		m->m_data -= ETHER_HDR_LEN;
952 		m->m_len += ETHER_HDR_LEN;
953 		m->m_pkthdr.len += ETHER_HDR_LEN;
954 	} else {
955 		ether_prepend_hdr++;
956 
957 		M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT);
958 		if (m != NULL) {
959 			bcopy(save_eh, mtod(m, struct ether_header *),
960 			      ETHER_HDR_LEN);
961 		}
962 	}
963 	*m0 = m;
964 }
965 
966 /*
967  * Upper layer processing for a received Ethernet packet.
968  */
969 void
970 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m)
971 {
972 	struct ether_header *eh;
973 	int isr, discard = 0;
974 	u_short ether_type;
975 	struct ip_fw *rule = NULL;
976 
977 	M_ASSERTPKTHDR(m);
978 	KASSERT(m->m_len >= ETHER_HDR_LEN,
979 		("ether header is not contiguous!"));
980 
981 	eh = mtod(m, struct ether_header *);
982 
983 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
984 		struct m_tag *mtag;
985 
986 		/* Extract info from dummynet tag */
987 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
988 		KKASSERT(mtag != NULL);
989 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
990 		KKASSERT(rule != NULL);
991 
992 		m_tag_delete(m, mtag);
993 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
994 
995 		/* packet is passing the second time */
996 		goto post_stats;
997 	}
998 
999 	/*
1000 	 * We got a packet which was unicast to a different Ethernet
1001 	 * address.  If the driver is working properly, then this
1002 	 * situation can only happen when the interface is in
1003 	 * promiscuous mode.  We defer the packet discarding until the
1004 	 * vlan processing is done, so that vlan/bridge or vlan/netgraph
1005 	 * could work.
1006 	 */
1007 	if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) &&
1008 	    !ETHER_IS_MULTICAST(eh->ether_dhost) &&
1009 	    bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) {
1010 		if (ether_debug & 1) {
1011 			kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
1012 				"%02x:%02x:%02x:%02x:%02x:%02x "
1013 				"%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n",
1014 				eh->ether_dhost[0],
1015 				eh->ether_dhost[1],
1016 				eh->ether_dhost[2],
1017 				eh->ether_dhost[3],
1018 				eh->ether_dhost[4],
1019 				eh->ether_dhost[5],
1020 				eh->ether_shost[0],
1021 				eh->ether_shost[1],
1022 				eh->ether_shost[2],
1023 				eh->ether_shost[3],
1024 				eh->ether_shost[4],
1025 				eh->ether_shost[5],
1026 				eh->ether_type,
1027 				((u_char *)IFP2AC(ifp)->ac_enaddr)[0],
1028 				((u_char *)IFP2AC(ifp)->ac_enaddr)[1],
1029 				((u_char *)IFP2AC(ifp)->ac_enaddr)[2],
1030 				((u_char *)IFP2AC(ifp)->ac_enaddr)[3],
1031 				((u_char *)IFP2AC(ifp)->ac_enaddr)[4],
1032 				((u_char *)IFP2AC(ifp)->ac_enaddr)[5]
1033 			);
1034 		}
1035 		if ((ether_debug & 2) == 0)
1036 			discard = 1;
1037 	}
1038 
1039 post_stats:
1040 	if (IPFW_LOADED && ether_ipfw != 0 && !discard) {
1041 		struct ether_header save_eh = *eh;
1042 
1043 		/* XXX old crufty stuff, needs to be removed */
1044 		m_adj(m, sizeof(struct ether_header));
1045 
1046 		if (!ether_ipfw_chk(&m, NULL, &rule, eh)) {
1047 			m_freem(m);
1048 			return;
1049 		}
1050 
1051 		ether_restore_header(&m, eh, &save_eh);
1052 		if (m == NULL)
1053 			return;
1054 		eh = mtod(m, struct ether_header *);
1055 	}
1056 
1057 	ether_type = ntohs(eh->ether_type);
1058 	KKASSERT(ether_type != ETHERTYPE_VLAN);
1059 
1060 	if (m->m_flags & M_VLANTAG) {
1061 		void (*vlan_input_func)(struct mbuf *);
1062 
1063 		vlan_input_func = vlan_input_p;
1064 		if (vlan_input_func != NULL) {
1065 			vlan_input_func(m);
1066 		} else {
1067 			IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1068 			m_freem(m);
1069 		}
1070 		return;
1071 	}
1072 
1073 	/*
1074 	 * If we have been asked to discard this packet
1075 	 * (e.g. not for us), drop it before entering
1076 	 * the upper layer.
1077 	 */
1078 	if (discard) {
1079 		m_freem(m);
1080 		return;
1081 	}
1082 
1083 	/*
1084 	 * Clear protocol specific flags,
1085 	 * before entering the upper layer.
1086 	 */
1087 	m->m_flags &= ~M_ETHER_FLAGS;
1088 
1089 	/* Strip ethernet header. */
1090 	m_adj(m, sizeof(struct ether_header));
1091 
1092 	switch (ether_type) {
1093 #ifdef INET
1094 	case ETHERTYPE_IP:
1095 		if ((m->m_flags & M_LENCHECKED) == 0) {
1096 			if (!ip_lengthcheck(&m, 0))
1097 				return;
1098 		}
1099 		if (ipflow_fastforward(m))
1100 			return;
1101 		isr = NETISR_IP;
1102 		break;
1103 
1104 	case ETHERTYPE_ARP:
1105 		if (ifp->if_flags & IFF_NOARP) {
1106 			/* Discard packet if ARP is disabled on interface */
1107 			m_freem(m);
1108 			return;
1109 		}
1110 		isr = NETISR_ARP;
1111 		break;
1112 #endif
1113 
1114 #ifdef INET6
1115 	case ETHERTYPE_IPV6:
1116 		isr = NETISR_IPV6;
1117 		break;
1118 #endif
1119 
1120 #ifdef IPX
1121 	case ETHERTYPE_IPX:
1122 		if (ef_inputp) {
1123 			/*
1124 			 * Hold BGL and recheck ef_inputp
1125 			 */
1126 			get_mplock();
1127 			if (ef_inputp && ef_inputp(ifp, eh, m) == 0) {
1128 				rel_mplock();
1129 				return;
1130 			}
1131 			rel_mplock();
1132 		}
1133 		isr = NETISR_IPX;
1134 		break;
1135 #endif
1136 
1137 #ifdef MPLS
1138 	case ETHERTYPE_MPLS:
1139 	case ETHERTYPE_MPLS_MCAST:
1140 		/* Should have been set by ether_input_pkt(). */
1141 		KKASSERT(m->m_flags & M_MPLSLABELED);
1142 		isr = NETISR_MPLS;
1143 		break;
1144 #endif
1145 
1146 	default:
1147 		/*
1148 		 * The accurate msgport is not determined before
1149 		 * we reach here, so recharacterize packet.
1150 		 */
1151 		m->m_flags &= ~M_HASH;
1152 #ifdef IPX
1153 		if (ef_inputp) {
1154 			/*
1155 			 * Hold BGL and recheck ef_inputp
1156 			 */
1157 			get_mplock();
1158 			if (ef_inputp && ef_inputp(ifp, eh, m) == 0) {
1159 				rel_mplock();
1160 				return;
1161 			}
1162 			rel_mplock();
1163 		}
1164 #endif
1165 		if (ng_ether_input_orphan_p != NULL) {
1166 			/*
1167 			 * Put back the ethernet header so netgraph has a
1168 			 * consistent view of inbound packets.
1169 			 */
1170 			M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT);
1171 			if (m == NULL) {
1172 				/*
1173 				 * M_PREPEND frees the mbuf in case of failure.
1174 				 */
1175 				return;
1176 			}
1177 			/*
1178 			 * Hold BGL and recheck ng_ether_input_orphan_p
1179 			 */
1180 			get_mplock();
1181 			if (ng_ether_input_orphan_p != NULL) {
1182 				ng_ether_input_orphan_p(ifp, m);
1183 				rel_mplock();
1184 				return;
1185 			}
1186 			rel_mplock();
1187 		}
1188 		m_freem(m);
1189 		return;
1190 	}
1191 
1192 	if (m->m_flags & M_HASH) {
1193 		if (&curthread->td_msgport ==
1194 		    netisr_hashport(m->m_pkthdr.hash)) {
1195 			netisr_handle(isr, m);
1196 			return;
1197 		} else {
1198 			/*
1199 			 * XXX Something is wrong,
1200 			 * we probably should panic here!
1201 			 */
1202 			m->m_flags &= ~M_HASH;
1203 			atomic_add_long(&ether_input_wronghash, 1);
1204 		}
1205 	}
1206 #ifdef RSS_DEBUG
1207 	atomic_add_long(&ether_input_requeue, 1);
1208 #endif
1209 	netisr_queue(isr, m);
1210 }
1211 
1212 /*
1213  * First we perform any link layer operations, then continue to the
1214  * upper layers with ether_demux_oncpu().
1215  */
1216 static void
1217 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m)
1218 {
1219 #ifdef CARP
1220 	void *carp;
1221 #endif
1222 
1223 	if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) {
1224 		/*
1225 		 * Receiving interface's flags are changed, when this
1226 		 * packet is waiting for processing; discard it.
1227 		 */
1228 		m_freem(m);
1229 		return;
1230 	}
1231 
1232 	/*
1233 	 * Tap the packet off here for a bridge.  bridge_input()
1234 	 * will return NULL if it has consumed the packet, otherwise
1235 	 * it gets processed as normal.  Note that bridge_input()
1236 	 * will always return the original packet if we need to
1237 	 * process it locally.
1238 	 */
1239 	if (ifp->if_bridge) {
1240 		KASSERT(bridge_input_p != NULL,
1241 			("%s: if_bridge not loaded!", __func__));
1242 
1243 		if(m->m_flags & M_ETHER_BRIDGED) {
1244 			m->m_flags &= ~M_ETHER_BRIDGED;
1245 		} else {
1246 			m = bridge_input_p(ifp, m);
1247 			if (m == NULL)
1248 				return;
1249 
1250 			KASSERT(ifp == m->m_pkthdr.rcvif,
1251 				("bridge_input_p changed rcvif"));
1252 		}
1253 	}
1254 
1255 #ifdef CARP
1256 	carp = ifp->if_carp;
1257 	if (carp) {
1258 		m = carp_input(carp, m);
1259 		if (m == NULL)
1260 			return;
1261 		KASSERT(ifp == m->m_pkthdr.rcvif,
1262 		    ("carp_input changed rcvif"));
1263 	}
1264 #endif
1265 
1266 	/* Handle ng_ether(4) processing, if any */
1267 	if (ng_ether_input_p != NULL) {
1268 		/*
1269 		 * Hold BGL and recheck ng_ether_input_p
1270 		 */
1271 		get_mplock();
1272 		if (ng_ether_input_p != NULL)
1273 			ng_ether_input_p(ifp, &m);
1274 		rel_mplock();
1275 
1276 		if (m == NULL)
1277 			return;
1278 	}
1279 
1280 	/* Continue with upper layer processing */
1281 	ether_demux_oncpu(ifp, m);
1282 }
1283 
1284 /*
1285  * Perform certain functions of ether_input_pkt():
1286  * - Test IFF_UP
1287  * - Update statistics
1288  * - Run bpf(4) tap if requested
1289  * Then pass the packet to ether_input_oncpu().
1290  *
1291  * This function should be used by pseudo interface (e.g. vlan(4)),
1292  * when it tries to claim that the packet is received by it.
1293  *
1294  * REINPUT_KEEPRCVIF
1295  * REINPUT_RUNBPF
1296  */
1297 void
1298 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags)
1299 {
1300 	/* Discard packet if interface is not up */
1301 	if (!(ifp->if_flags & IFF_UP)) {
1302 		m_freem(m);
1303 		return;
1304 	}
1305 
1306 	/*
1307 	 * Change receiving interface.  The bridge will often pass a flag to
1308 	 * ask that this not be done so ARPs get applied to the correct
1309 	 * side.
1310 	 */
1311 	if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 ||
1312 	    m->m_pkthdr.rcvif == NULL) {
1313 		m->m_pkthdr.rcvif = ifp;
1314 	}
1315 
1316 	/* Update statistics */
1317 	IFNET_STAT_INC(ifp, ipackets, 1);
1318 	IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1319 	if (m->m_flags & (M_MCAST | M_BCAST))
1320 		IFNET_STAT_INC(ifp, imcasts, 1);
1321 
1322 	if (reinput_flags & REINPUT_RUNBPF)
1323 		BPF_MTAP(ifp, m);
1324 
1325 	ether_input_oncpu(ifp, m);
1326 }
1327 
1328 static __inline boolean_t
1329 ether_vlancheck(struct mbuf **m0)
1330 {
1331 	struct mbuf *m = *m0;
1332 	struct ether_header *eh;
1333 	uint16_t ether_type;
1334 
1335 	eh = mtod(m, struct ether_header *);
1336 	ether_type = ntohs(eh->ether_type);
1337 
1338 	if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG) == 0) {
1339 		/*
1340 		 * Extract vlan tag if hardware does not do it for us
1341 		 */
1342 		vlan_ether_decap(&m);
1343 		if (m == NULL)
1344 			goto failed;
1345 
1346 		eh = mtod(m, struct ether_header *);
1347 		ether_type = ntohs(eh->ether_type);
1348 	}
1349 
1350 	if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG)) {
1351 		/*
1352 		 * To prevent possible dangerous recursion,
1353 		 * we don't do vlan-in-vlan
1354 		 */
1355 		IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1356 		goto failed;
1357 	}
1358 	KKASSERT(ether_type != ETHERTYPE_VLAN);
1359 
1360 	m->m_flags |= M_ETHER_VLANCHECKED;
1361 	*m0 = m;
1362 	return TRUE;
1363 failed:
1364 	if (m != NULL)
1365 		m_freem(m);
1366 	*m0 = NULL;
1367 	return FALSE;
1368 }
1369 
1370 static void
1371 ether_input_handler(netmsg_t nmsg)
1372 {
1373 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1374 	struct ether_header *eh;
1375 	struct ifnet *ifp;
1376 	struct mbuf *m;
1377 
1378 	m = nmp->nm_packet;
1379 	M_ASSERTPKTHDR(m);
1380 
1381 	if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) {
1382 		if (!ether_vlancheck(&m)) {
1383 			KKASSERT(m == NULL);
1384 			return;
1385 		}
1386 	}
1387 	if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) ||
1388 	    __predict_false(ether_input_ckhash)) {
1389 		int isr;
1390 
1391 		/*
1392 		 * Need to verify the hash supplied by the hardware
1393 		 * which could be wrong.
1394 		 */
1395 		m->m_flags &= ~(M_HASH | M_CKHASH);
1396 		isr = ether_characterize(&m);
1397 		if (m == NULL)
1398 			return;
1399 		KKASSERT(m->m_flags & M_HASH);
1400 
1401 		if (netisr_hashcpu(m->m_pkthdr.hash) != mycpuid) {
1402 			/*
1403 			 * Wrong hardware supplied hash; redispatch
1404 			 */
1405 			ether_dispatch(isr, m);
1406 			if (__predict_false(ether_input_ckhash))
1407 				atomic_add_long(&ether_input_wronghwhash, 1);
1408 			return;
1409 		}
1410 	}
1411 	ifp = m->m_pkthdr.rcvif;
1412 
1413 	eh = mtod(m, struct ether_header *);
1414 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
1415 		if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
1416 			 ifp->if_addrlen) == 0)
1417 			m->m_flags |= M_BCAST;
1418 		else
1419 			m->m_flags |= M_MCAST;
1420 		IFNET_STAT_INC(ifp, imcasts, 1);
1421 	}
1422 
1423 	ether_input_oncpu(ifp, m);
1424 }
1425 
1426 /*
1427  * Send the packet to the target netisr msgport
1428  *
1429  * At this point the packet must be characterized (M_HASH set),
1430  * so we know which netisr to send it to.
1431  */
1432 static void
1433 ether_dispatch(int isr, struct mbuf *m)
1434 {
1435 	struct netmsg_packet *pmsg;
1436 
1437 	KKASSERT(m->m_flags & M_HASH);
1438 	pmsg = &m->m_hdr.mh_netmsg;
1439 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1440 		    0, ether_input_handler);
1441 	pmsg->nm_packet = m;
1442 	pmsg->base.lmsg.u.ms_result = isr;
1443 
1444 	logether(disp_beg, NULL);
1445 	lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg);
1446 	logether(disp_end, NULL);
1447 }
1448 
1449 /*
1450  * Process a received Ethernet packet.
1451  *
1452  * The ethernet header is assumed to be in the mbuf so the caller
1453  * MUST MAKE SURE that there are at least sizeof(struct ether_header)
1454  * bytes in the first mbuf.
1455  */
1456 void
1457 ether_input_pkt(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi)
1458 {
1459 	int isr;
1460 
1461 	M_ASSERTPKTHDR(m);
1462 
1463 	/* Discard packet if interface is not up */
1464 	if (!(ifp->if_flags & IFF_UP)) {
1465 		m_freem(m);
1466 		return;
1467 	}
1468 
1469 	if (m->m_len < sizeof(struct ether_header)) {
1470 		/* XXX error in the caller. */
1471 		m_freem(m);
1472 		return;
1473 	}
1474 
1475 	m->m_pkthdr.rcvif = ifp;
1476 
1477 	logether(pkt_beg, ifp);
1478 
1479 	ETHER_BPF_MTAP(ifp, m);
1480 
1481 	IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1482 
1483 	if (ifp->if_flags & IFF_MONITOR) {
1484 		struct ether_header *eh;
1485 
1486 		eh = mtod(m, struct ether_header *);
1487 		if (ETHER_IS_MULTICAST(eh->ether_dhost))
1488 			IFNET_STAT_INC(ifp, imcasts, 1);
1489 
1490 		/*
1491 		 * Interface marked for monitoring; discard packet.
1492 		 */
1493 		m_freem(m);
1494 
1495 		logether(pkt_end, ifp);
1496 		return;
1497 	}
1498 
1499 	/*
1500 	 * If the packet has been characterized (pi->pi_netisr / M_HASH)
1501 	 * we can dispatch it immediately with trivial checks.
1502 	 */
1503 	if (pi != NULL && (m->m_flags & M_HASH)) {
1504 #ifdef RSS_DEBUG
1505 		atomic_add_long(&ether_pktinfo_try, 1);
1506 #endif
1507 		netisr_hashcheck(pi->pi_netisr, m, pi);
1508 		if (m->m_flags & M_HASH) {
1509 			ether_dispatch(pi->pi_netisr, m);
1510 #ifdef RSS_DEBUG
1511 			atomic_add_long(&ether_pktinfo_hit, 1);
1512 #endif
1513 			logether(pkt_end, ifp);
1514 			return;
1515 		}
1516 	}
1517 #ifdef RSS_DEBUG
1518 	else if (ifp->if_capenable & IFCAP_RSS) {
1519 		if (pi == NULL)
1520 			atomic_add_long(&ether_rss_nopi, 1);
1521 		else
1522 			atomic_add_long(&ether_rss_nohash, 1);
1523 	}
1524 #endif
1525 
1526 	/*
1527 	 * Packet hash will be recalculated by software, so clear
1528 	 * the M_HASH and M_CKHASH flag set by the driver; the hash
1529 	 * value calculated by the hardware may not be exactly what
1530 	 * we want.
1531 	 */
1532 	m->m_flags &= ~(M_HASH | M_CKHASH);
1533 
1534 	if (!ether_vlancheck(&m)) {
1535 		KKASSERT(m == NULL);
1536 		logether(pkt_end, ifp);
1537 		return;
1538 	}
1539 
1540 	isr = ether_characterize(&m);
1541 	if (m == NULL) {
1542 		logether(pkt_end, ifp);
1543 		return;
1544 	}
1545 
1546 	/*
1547 	 * Finally dispatch it
1548 	 */
1549 	ether_dispatch(isr, m);
1550 
1551 	logether(pkt_end, ifp);
1552 }
1553 
1554 static int
1555 ether_characterize(struct mbuf **m0)
1556 {
1557 	struct mbuf *m = *m0;
1558 	struct ether_header *eh;
1559 	uint16_t ether_type;
1560 	int isr;
1561 
1562 	eh = mtod(m, struct ether_header *);
1563 	ether_type = ntohs(eh->ether_type);
1564 
1565 	/*
1566 	 * Map ether type to netisr id.
1567 	 */
1568 	switch (ether_type) {
1569 #ifdef INET
1570 	case ETHERTYPE_IP:
1571 		isr = NETISR_IP;
1572 		break;
1573 
1574 	case ETHERTYPE_ARP:
1575 		isr = NETISR_ARP;
1576 		break;
1577 #endif
1578 
1579 #ifdef INET6
1580 	case ETHERTYPE_IPV6:
1581 		isr = NETISR_IPV6;
1582 		break;
1583 #endif
1584 
1585 #ifdef IPX
1586 	case ETHERTYPE_IPX:
1587 		isr = NETISR_IPX;
1588 		break;
1589 #endif
1590 
1591 #ifdef MPLS
1592 	case ETHERTYPE_MPLS:
1593 	case ETHERTYPE_MPLS_MCAST:
1594 		m->m_flags |= M_MPLSLABELED;
1595 		isr = NETISR_MPLS;
1596 		break;
1597 #endif
1598 
1599 	default:
1600 		/*
1601 		 * NETISR_MAX is an invalid value; it is chosen to let
1602 		 * netisr_characterize() know that we have no clear
1603 		 * idea where this packet should go.
1604 		 */
1605 		isr = NETISR_MAX;
1606 		break;
1607 	}
1608 
1609 	/*
1610 	 * Ask the isr to characterize the packet since we couldn't.
1611 	 * This is an attempt to optimally get us onto the correct protocol
1612 	 * thread.
1613 	 */
1614 	netisr_characterize(isr, &m, sizeof(struct ether_header));
1615 
1616 	*m0 = m;
1617 	return isr;
1618 }
1619 
1620 static void
1621 ether_demux_handler(netmsg_t nmsg)
1622 {
1623 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1624 	struct ifnet *ifp;
1625 	struct mbuf *m;
1626 
1627 	m = nmp->nm_packet;
1628 	M_ASSERTPKTHDR(m);
1629 	ifp = m->m_pkthdr.rcvif;
1630 
1631 	ether_demux_oncpu(ifp, m);
1632 }
1633 
1634 void
1635 ether_demux(struct mbuf *m)
1636 {
1637 	struct netmsg_packet *pmsg;
1638 	int isr;
1639 
1640 	isr = ether_characterize(&m);
1641 	if (m == NULL)
1642 		return;
1643 
1644 	KKASSERT(m->m_flags & M_HASH);
1645 	pmsg = &m->m_hdr.mh_netmsg;
1646 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1647 	    0, ether_demux_handler);
1648 	pmsg->nm_packet = m;
1649 	pmsg->base.lmsg.u.ms_result = isr;
1650 
1651 	lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg);
1652 }
1653 
1654 u_char *
1655 kether_aton(const char *macstr, u_char *addr)
1656 {
1657         unsigned int o0, o1, o2, o3, o4, o5;
1658         int n;
1659 
1660         if (macstr == NULL || addr == NULL)
1661                 return NULL;
1662 
1663         n = ksscanf(macstr, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2,
1664             &o3, &o4, &o5);
1665         if (n != 6)
1666                 return NULL;
1667 
1668         addr[0] = o0;
1669         addr[1] = o1;
1670         addr[2] = o2;
1671         addr[3] = o3;
1672         addr[4] = o4;
1673         addr[5] = o5;
1674 
1675         return addr;
1676 }
1677 
1678 char *
1679 kether_ntoa(const u_char *addr, char *buf)
1680 {
1681         int len = ETHER_ADDRSTRLEN + 1;
1682         int n;
1683 
1684         n = ksnprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0],
1685             addr[1], addr[2], addr[3], addr[4], addr[5]);
1686 
1687         if (n < 17)
1688                 return NULL;
1689 
1690         return buf;
1691 }
1692 
1693 MODULE_VERSION(ether, 1);
1694