xref: /dragonfly/sys/net/if_ethersubr.c (revision e96fb831)
1 /*
2  * Copyright (c) 1982, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipx.h"
40 #include "opt_mpls.h"
41 #include "opt_netgraph.h"
42 #include "opt_carp.h"
43 #include "opt_rss.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/globaldata.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/msgport.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 #include <sys/thread.h>
58 
59 #include <sys/thread2.h>
60 #include <sys/mplock2.h>
61 
62 #include <net/if.h>
63 #include <net/netisr.h>
64 #include <net/route.h>
65 #include <net/if_llc.h>
66 #include <net/if_dl.h>
67 #include <net/if_types.h>
68 #include <net/ifq_var.h>
69 #include <net/bpf.h>
70 #include <net/ethernet.h>
71 #include <net/vlan/if_vlan_ether.h>
72 #include <net/netmsg2.h>
73 
74 #if defined(INET) || defined(INET6)
75 #include <netinet/in.h>
76 #include <netinet/ip_var.h>
77 #include <netinet/if_ether.h>
78 #include <netinet/ip_flow.h>
79 #include <net/ipfw/ip_fw.h>
80 #include <net/dummynet/ip_dummynet.h>
81 #endif
82 #ifdef INET6
83 #include <netinet6/nd6.h>
84 #endif
85 
86 #ifdef CARP
87 #include <netinet/ip_carp.h>
88 #endif
89 
90 #ifdef IPX
91 #include <netproto/ipx/ipx.h>
92 #include <netproto/ipx/ipx_if.h>
93 int (*ef_inputp)(struct ifnet*, const struct ether_header *eh, struct mbuf *m);
94 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst,
95 		  short *tp, int *hlen);
96 #endif
97 
98 #ifdef MPLS
99 #include <netproto/mpls/mpls.h>
100 #endif
101 
102 /* netgraph node hooks for ng_ether(4) */
103 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
104 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp,
105 		struct mbuf *m, const struct ether_header *eh);
106 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
107 void	(*ng_ether_attach_p)(struct ifnet *ifp);
108 void	(*ng_ether_detach_p)(struct ifnet *ifp);
109 
110 void	(*vlan_input_p)(struct mbuf *);
111 
112 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *,
113 			struct rtentry *);
114 static void ether_restore_header(struct mbuf **, const struct ether_header *,
115 				 const struct ether_header *);
116 static int ether_characterize(struct mbuf **);
117 
118 /*
119  * if_bridge support
120  */
121 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
122 int (*bridge_output_p)(struct ifnet *, struct mbuf *);
123 void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
124 struct ifnet *(*bridge_interface_p)(void *if_bridge);
125 
126 static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
127 			      struct sockaddr *);
128 
129 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
130 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
131 };
132 
133 #define gotoerr(e) do { error = (e); goto bad; } while (0)
134 #define IFP2AC(ifp) ((struct arpcom *)(ifp))
135 
136 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
137 				struct ip_fw **rule,
138 				const struct ether_header *eh);
139 
140 static int ether_ipfw;
141 static u_long ether_restore_hdr;
142 static u_long ether_prepend_hdr;
143 static u_long ether_input_wronghash;
144 static int ether_debug;
145 
146 #ifdef RSS_DEBUG
147 static u_long ether_pktinfo_try;
148 static u_long ether_pktinfo_hit;
149 static u_long ether_rss_nopi;
150 static u_long ether_rss_nohash;
151 static u_long ether_input_requeue;
152 #endif
153 
154 SYSCTL_DECL(_net_link);
155 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
156 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW,
157     &ether_debug, 0, "Ether debug");
158 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
159     &ether_ipfw, 0, "Pass ether pkts through firewall");
160 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW,
161     &ether_restore_hdr, 0, "# of ether header restoration");
162 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW,
163     &ether_prepend_hdr, 0,
164     "# of ether header restoration which prepends mbuf");
165 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW,
166     &ether_input_wronghash, 0, "# of input packets with wrong hash");
167 #ifdef RSS_DEBUG
168 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW,
169     &ether_rss_nopi, 0, "# of packets do not have pktinfo");
170 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW,
171     &ether_rss_nohash, 0, "# of packets do not have hash");
172 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW,
173     &ether_pktinfo_try, 0,
174     "# of tries to find packets' msgport using pktinfo");
175 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW,
176     &ether_pktinfo_hit, 0,
177     "# of packets whose msgport are found using pktinfo");
178 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW,
179     &ether_input_requeue, 0, "# of input packets gets requeued");
180 #endif
181 
182 #define ETHER_KTR_STR		"ifp=%p"
183 #define ETHER_KTR_ARGS	struct ifnet *ifp
184 #ifndef KTR_ETHERNET
185 #define KTR_ETHERNET		KTR_ALL
186 #endif
187 KTR_INFO_MASTER(ether);
188 KTR_INFO(KTR_ETHERNET, ether, chain_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS);
189 KTR_INFO(KTR_ETHERNET, ether, chain_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS);
190 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS);
191 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS);
192 #define logether(name, arg)	KTR_LOG(ether_ ## name, arg)
193 
194 /*
195  * Ethernet output routine.
196  * Encapsulate a packet of type family for the local net.
197  * Use trailer local net encapsulation if enough data in first
198  * packet leaves a multiple of 512 bytes of data in remainder.
199  * Assumes that ifp is actually pointer to arpcom structure.
200  */
201 static int
202 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
203 	     struct rtentry *rt)
204 {
205 	struct ether_header *eh, *deh;
206 	u_char *edst;
207 	int loop_copy = 0;
208 	int hlen = ETHER_HDR_LEN;	/* link layer header length */
209 	struct arpcom *ac = IFP2AC(ifp);
210 	int error;
211 
212 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
213 
214 	if (ifp->if_flags & IFF_MONITOR)
215 		gotoerr(ENETDOWN);
216 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
217 		gotoerr(ENETDOWN);
218 
219 	M_PREPEND(m, sizeof(struct ether_header), MB_DONTWAIT);
220 	if (m == NULL)
221 		return (ENOBUFS);
222 	eh = mtod(m, struct ether_header *);
223 	edst = eh->ether_dhost;
224 
225 	/*
226 	 * Fill in the destination ethernet address and frame type.
227 	 */
228 	switch (dst->sa_family) {
229 #ifdef INET
230 	case AF_INET:
231 		if (!arpresolve(ifp, rt, m, dst, edst))
232 			return (0);	/* if not yet resolved */
233 #ifdef MPLS
234 		if (m->m_flags & M_MPLSLABELED)
235 			eh->ether_type = htons(ETHERTYPE_MPLS);
236 		else
237 #endif
238 			eh->ether_type = htons(ETHERTYPE_IP);
239 		break;
240 #endif
241 #ifdef INET6
242 	case AF_INET6:
243 		if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst))
244 			return (0);		/* Something bad happenned. */
245 		eh->ether_type = htons(ETHERTYPE_IPV6);
246 		break;
247 #endif
248 #ifdef IPX
249 	case AF_IPX:
250 		if (ef_outputp != NULL) {
251 			/*
252 			 * Hold BGL and recheck ef_outputp
253 			 */
254 			get_mplock();
255 			if (ef_outputp != NULL) {
256 				error = ef_outputp(ifp, &m, dst,
257 						   &eh->ether_type, &hlen);
258 				rel_mplock();
259 				if (error)
260 					goto bad;
261 				else
262 					break;
263 			}
264 			rel_mplock();
265 		}
266 		eh->ether_type = htons(ETHERTYPE_IPX);
267 		bcopy(&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host),
268 		      edst, ETHER_ADDR_LEN);
269 		break;
270 #endif
271 	case pseudo_AF_HDRCMPLT:
272 	case AF_UNSPEC:
273 		loop_copy = -1; /* if this is for us, don't do it */
274 		deh = (struct ether_header *)dst->sa_data;
275 		memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN);
276 		eh->ether_type = deh->ether_type;
277 		break;
278 
279 	default:
280 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
281 		gotoerr(EAFNOSUPPORT);
282 	}
283 
284 	if (dst->sa_family == pseudo_AF_HDRCMPLT)	/* unlikely */
285 		memcpy(eh->ether_shost,
286 		       ((struct ether_header *)dst->sa_data)->ether_shost,
287 		       ETHER_ADDR_LEN);
288 	else
289 		memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN);
290 
291 	/*
292 	 * Bridges require special output handling.
293 	 */
294 	if (ifp->if_bridge) {
295 		KASSERT(bridge_output_p != NULL,
296 			("%s: if_bridge not loaded!", __func__));
297 		return bridge_output_p(ifp, m);
298 	}
299 
300 	/*
301 	 * If a simplex interface, and the packet is being sent to our
302 	 * Ethernet address or a broadcast address, loopback a copy.
303 	 * XXX To make a simplex device behave exactly like a duplex
304 	 * device, we should copy in the case of sending to our own
305 	 * ethernet address (thus letting the original actually appear
306 	 * on the wire). However, we don't do that here for security
307 	 * reasons and compatibility with the original behavior.
308 	 */
309 	if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
310 		int csum_flags = 0;
311 
312 		if (m->m_pkthdr.csum_flags & CSUM_IP)
313 			csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID);
314 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
315 			csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
316 		if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
317 			struct mbuf *n;
318 
319 			if ((n = m_copypacket(m, MB_DONTWAIT)) != NULL) {
320 				n->m_pkthdr.csum_flags |= csum_flags;
321 				if (csum_flags & CSUM_DATA_VALID)
322 					n->m_pkthdr.csum_data = 0xffff;
323 				if_simloop(ifp, n, dst->sa_family, hlen);
324 			} else
325 				ifp->if_iqdrops++;
326 		} else if (bcmp(eh->ether_dhost, eh->ether_shost,
327 				ETHER_ADDR_LEN) == 0) {
328 			m->m_pkthdr.csum_flags |= csum_flags;
329 			if (csum_flags & CSUM_DATA_VALID)
330 				m->m_pkthdr.csum_data = 0xffff;
331 			if_simloop(ifp, m, dst->sa_family, hlen);
332 			return (0);	/* XXX */
333 		}
334 	}
335 
336 #ifdef CARP
337 	if (ifp->if_carp) {
338 		/*
339 		 * Hold BGL and recheck ifp->if_carp
340 		 */
341 		get_mplock();
342 		if (ifp->if_carp && (error = carp_output(ifp, m, dst, NULL))) {
343 			rel_mplock();
344 			goto bad;
345 		}
346 		rel_mplock();
347 	}
348 #endif
349 
350 
351 	/* Handle ng_ether(4) processing, if any */
352 	if (ng_ether_output_p != NULL) {
353 		/*
354 		 * Hold BGL and recheck ng_ether_output_p
355 		 */
356 		get_mplock();
357 		if (ng_ether_output_p != NULL) {
358 			if ((error = ng_ether_output_p(ifp, &m)) != 0) {
359 				rel_mplock();
360 				goto bad;
361 			}
362 			if (m == NULL) {
363 				rel_mplock();
364 				return (0);
365 			}
366 		}
367 		rel_mplock();
368 	}
369 
370 	/* Continue with link-layer output */
371 	return ether_output_frame(ifp, m);
372 
373 bad:
374 	m_freem(m);
375 	return (error);
376 }
377 
378 /*
379  * Returns the bridge interface an ifp is associated
380  * with.
381  *
382  * Only call if ifp->if_bridge != NULL.
383  */
384 struct ifnet *
385 ether_bridge_interface(struct ifnet *ifp)
386 {
387 	if (bridge_interface_p)
388 		return(bridge_interface_p(ifp->if_bridge));
389 	return (ifp);
390 }
391 
392 /*
393  * Ethernet link layer output routine to send a raw frame to the device.
394  *
395  * This assumes that the 14 byte Ethernet header is present and contiguous
396  * in the first mbuf.
397  */
398 int
399 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
400 {
401 	struct ip_fw *rule = NULL;
402 	int error = 0;
403 	struct altq_pktattr pktattr;
404 
405 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
406 
407 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
408 		struct m_tag *mtag;
409 
410 		/* Extract info from dummynet tag */
411 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
412 		KKASSERT(mtag != NULL);
413 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
414 		KKASSERT(rule != NULL);
415 
416 		m_tag_delete(m, mtag);
417 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
418 	}
419 
420 	if (ifq_is_enabled(&ifp->if_snd))
421 		altq_etherclassify(&ifp->if_snd, m, &pktattr);
422 	crit_enter();
423 	if (IPFW_LOADED && ether_ipfw != 0) {
424 		struct ether_header save_eh, *eh;
425 
426 		eh = mtod(m, struct ether_header *);
427 		save_eh = *eh;
428 		m_adj(m, ETHER_HDR_LEN);
429 		if (!ether_ipfw_chk(&m, ifp, &rule, eh)) {
430 			crit_exit();
431 			if (m != NULL) {
432 				m_freem(m);
433 				return ENOBUFS; /* pkt dropped */
434 			} else
435 				return 0;	/* consumed e.g. in a pipe */
436 		}
437 
438 		/* packet was ok, restore the ethernet header */
439 		ether_restore_header(&m, eh, &save_eh);
440 		if (m == NULL) {
441 			crit_exit();
442 			return ENOBUFS;
443 		}
444 	}
445 	crit_exit();
446 
447 	/*
448 	 * Queue message on interface, update output statistics if
449 	 * successful, and start output if interface not yet active.
450 	 */
451 	error = ifq_dispatch(ifp, m, &pktattr);
452 	return (error);
453 }
454 
455 /*
456  * ipfw processing for ethernet packets (in and out).
457  * The second parameter is NULL from ether_demux(), and ifp from
458  * ether_output_frame().
459  */
460 static boolean_t
461 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule,
462 	       const struct ether_header *eh)
463 {
464 	struct ether_header save_eh = *eh;	/* might be a ptr in *m0 */
465 	struct ip_fw_args args;
466 	struct m_tag *mtag;
467 	struct mbuf *m;
468 	int i;
469 
470 	if (*rule != NULL && fw_one_pass)
471 		return TRUE; /* dummynet packet, already partially processed */
472 
473 	/*
474 	 * I need some amount of data to be contiguous.
475 	 */
476 	i = min((*m0)->m_pkthdr.len, max_protohdr);
477 	if ((*m0)->m_len < i) {
478 		*m0 = m_pullup(*m0, i);
479 		if (*m0 == NULL)
480 			return FALSE;
481 	}
482 
483 	/*
484 	 * Clean up tags
485 	 */
486 	if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
487 		m_tag_delete(*m0, mtag);
488 	if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
489 		mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL);
490 		KKASSERT(mtag != NULL);
491 		m_tag_delete(*m0, mtag);
492 		(*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED;
493 	}
494 
495 	args.m = *m0;		/* the packet we are looking at		*/
496 	args.oif = dst;		/* destination, if any			*/
497 	args.rule = *rule;	/* matching rule to restart		*/
498 	args.eh = &save_eh;	/* MAC header for bridged/MAC packets	*/
499 	i = ip_fw_chk_ptr(&args);
500 	*m0 = args.m;
501 	*rule = args.rule;
502 
503 	if (*m0 == NULL)
504 		return FALSE;
505 
506 	switch (i) {
507 	case IP_FW_PASS:
508 		return TRUE;
509 
510 	case IP_FW_DIVERT:
511 	case IP_FW_TEE:
512 	case IP_FW_DENY:
513 		/*
514 		 * XXX at some point add support for divert/forward actions.
515 		 * If none of the above matches, we have to drop the pkt.
516 		 */
517 		return FALSE;
518 
519 	case IP_FW_DUMMYNET:
520 		/*
521 		 * Pass the pkt to dummynet, which consumes it.
522 		 */
523 		m = *m0;	/* pass the original to dummynet */
524 		*m0 = NULL;	/* and nothing back to the caller */
525 
526 		ether_restore_header(&m, eh, &save_eh);
527 		if (m == NULL)
528 			return FALSE;
529 
530 		ip_fw_dn_io_ptr(m, args.cookie,
531 				dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
532 		ip_dn_queue(m);
533 		return FALSE;
534 
535 	default:
536 		panic("unknown ipfw return value: %d\n", i);
537 	}
538 }
539 
540 static void
541 ether_input(struct ifnet *ifp, struct mbuf *m)
542 {
543 	ether_input_chain(ifp, m, NULL, NULL);
544 }
545 
546 /*
547  * Perform common duties while attaching to interface list
548  */
549 void
550 ether_ifattach(struct ifnet *ifp, uint8_t *lla, lwkt_serialize_t serializer)
551 {
552 	ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header),
553 			   serializer);
554 }
555 
556 void
557 ether_ifattach_bpf(struct ifnet *ifp, uint8_t *lla, u_int dlt, u_int hdrlen,
558 		   lwkt_serialize_t serializer)
559 {
560 	struct sockaddr_dl *sdl;
561 
562 	ifp->if_type = IFT_ETHER;
563 	ifp->if_addrlen = ETHER_ADDR_LEN;
564 	ifp->if_hdrlen = ETHER_HDR_LEN;
565 	if_attach(ifp, serializer);
566 	ifp->if_mtu = ETHERMTU;
567 	if (ifp->if_baudrate == 0)
568 		ifp->if_baudrate = 10000000;
569 	ifp->if_output = ether_output;
570 	ifp->if_input = ether_input;
571 	ifp->if_resolvemulti = ether_resolvemulti;
572 	ifp->if_broadcastaddr = etherbroadcastaddr;
573 	sdl = IF_LLSOCKADDR(ifp);
574 	sdl->sdl_type = IFT_ETHER;
575 	sdl->sdl_alen = ifp->if_addrlen;
576 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
577 	/*
578 	 * XXX Keep the current drivers happy.
579 	 * XXX Remove once all drivers have been cleaned up
580 	 */
581 	if (lla != IFP2AC(ifp)->ac_enaddr)
582 		bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen);
583 	bpfattach(ifp, dlt, hdrlen);
584 	if (ng_ether_attach_p != NULL)
585 		(*ng_ether_attach_p)(ifp);
586 
587 	if_printf(ifp, "MAC address: %6D\n", lla, ":");
588 }
589 
590 /*
591  * Perform common duties while detaching an Ethernet interface
592  */
593 void
594 ether_ifdetach(struct ifnet *ifp)
595 {
596 	if_down(ifp);
597 
598 	if (ng_ether_detach_p != NULL)
599 		(*ng_ether_detach_p)(ifp);
600 	bpfdetach(ifp);
601 	if_detach(ifp);
602 }
603 
604 int
605 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
606 {
607 	struct ifaddr *ifa = (struct ifaddr *) data;
608 	struct ifreq *ifr = (struct ifreq *) data;
609 	int error = 0;
610 
611 #define IF_INIT(ifp) \
612 do { \
613 	if (((ifp)->if_flags & IFF_UP) == 0) { \
614 		(ifp)->if_flags |= IFF_UP; \
615 		(ifp)->if_init((ifp)->if_softc); \
616 	} \
617 } while (0)
618 
619 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
620 
621 	switch (command) {
622 	case SIOCSIFADDR:
623 		switch (ifa->ifa_addr->sa_family) {
624 #ifdef INET
625 		case AF_INET:
626 			IF_INIT(ifp);	/* before arpwhohas */
627 			arp_ifinit(ifp, ifa);
628 			break;
629 #endif
630 #ifdef IPX
631 		/*
632 		 * XXX - This code is probably wrong
633 		 */
634 		case AF_IPX:
635 			{
636 			struct ipx_addr *ina = &IA_SIPX(ifa)->sipx_addr;
637 			struct arpcom *ac = IFP2AC(ifp);
638 
639 			if (ipx_nullhost(*ina))
640 				ina->x_host = *(union ipx_host *) ac->ac_enaddr;
641 			else
642 				bcopy(ina->x_host.c_host, ac->ac_enaddr,
643 				      sizeof ac->ac_enaddr);
644 
645 			IF_INIT(ifp);	/* Set new address. */
646 			break;
647 			}
648 #endif
649 		default:
650 			IF_INIT(ifp);
651 			break;
652 		}
653 		break;
654 
655 	case SIOCGIFADDR:
656 		bcopy(IFP2AC(ifp)->ac_enaddr,
657 		      ((struct sockaddr *)ifr->ifr_data)->sa_data,
658 		      ETHER_ADDR_LEN);
659 		break;
660 
661 	case SIOCSIFMTU:
662 		/*
663 		 * Set the interface MTU.
664 		 */
665 		if (ifr->ifr_mtu > ETHERMTU) {
666 			error = EINVAL;
667 		} else {
668 			ifp->if_mtu = ifr->ifr_mtu;
669 		}
670 		break;
671 	default:
672 		error = EINVAL;
673 		break;
674 	}
675 	return (error);
676 
677 #undef IF_INIT
678 }
679 
680 int
681 ether_resolvemulti(
682 	struct ifnet *ifp,
683 	struct sockaddr **llsa,
684 	struct sockaddr *sa)
685 {
686 	struct sockaddr_dl *sdl;
687 #ifdef INET
688 	struct sockaddr_in *sin;
689 #endif
690 #ifdef INET6
691 	struct sockaddr_in6 *sin6;
692 #endif
693 	u_char *e_addr;
694 
695 	switch(sa->sa_family) {
696 	case AF_LINK:
697 		/*
698 		 * No mapping needed. Just check that it's a valid MC address.
699 		 */
700 		sdl = (struct sockaddr_dl *)sa;
701 		e_addr = LLADDR(sdl);
702 		if ((e_addr[0] & 1) != 1)
703 			return EADDRNOTAVAIL;
704 		*llsa = NULL;
705 		return 0;
706 
707 #ifdef INET
708 	case AF_INET:
709 		sin = (struct sockaddr_in *)sa;
710 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
711 			return EADDRNOTAVAIL;
712 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
713 		sdl->sdl_len = sizeof *sdl;
714 		sdl->sdl_family = AF_LINK;
715 		sdl->sdl_index = ifp->if_index;
716 		sdl->sdl_type = IFT_ETHER;
717 		sdl->sdl_alen = ETHER_ADDR_LEN;
718 		e_addr = LLADDR(sdl);
719 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
720 		*llsa = (struct sockaddr *)sdl;
721 		return 0;
722 #endif
723 #ifdef INET6
724 	case AF_INET6:
725 		sin6 = (struct sockaddr_in6 *)sa;
726 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
727 			/*
728 			 * An IP6 address of 0 means listen to all
729 			 * of the Ethernet multicast address used for IP6.
730 			 * (This is used for multicast routers.)
731 			 */
732 			ifp->if_flags |= IFF_ALLMULTI;
733 			*llsa = NULL;
734 			return 0;
735 		}
736 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
737 			return EADDRNOTAVAIL;
738 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
739 		sdl->sdl_len = sizeof *sdl;
740 		sdl->sdl_family = AF_LINK;
741 		sdl->sdl_index = ifp->if_index;
742 		sdl->sdl_type = IFT_ETHER;
743 		sdl->sdl_alen = ETHER_ADDR_LEN;
744 		e_addr = LLADDR(sdl);
745 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
746 		*llsa = (struct sockaddr *)sdl;
747 		return 0;
748 #endif
749 
750 	default:
751 		/*
752 		 * Well, the text isn't quite right, but it's the name
753 		 * that counts...
754 		 */
755 		return EAFNOSUPPORT;
756 	}
757 }
758 
759 #if 0
760 /*
761  * This is for reference.  We have a table-driven version
762  * of the little-endian crc32 generator, which is faster
763  * than the double-loop.
764  */
765 uint32_t
766 ether_crc32_le(const uint8_t *buf, size_t len)
767 {
768 	uint32_t c, crc, carry;
769 	size_t i, j;
770 
771 	crc = 0xffffffffU;	/* initial value */
772 
773 	for (i = 0; i < len; i++) {
774 		c = buf[i];
775 		for (j = 0; j < 8; j++) {
776 			carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
777 			crc >>= 1;
778 			c >>= 1;
779 			if (carry)
780 				crc = (crc ^ ETHER_CRC_POLY_LE);
781 		}
782 	}
783 
784 	return (crc);
785 }
786 #else
787 uint32_t
788 ether_crc32_le(const uint8_t *buf, size_t len)
789 {
790 	static const uint32_t crctab[] = {
791 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
792 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
793 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
794 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
795 	};
796 	uint32_t crc;
797 	size_t i;
798 
799 	crc = 0xffffffffU;	/* initial value */
800 
801 	for (i = 0; i < len; i++) {
802 		crc ^= buf[i];
803 		crc = (crc >> 4) ^ crctab[crc & 0xf];
804 		crc = (crc >> 4) ^ crctab[crc & 0xf];
805 	}
806 
807 	return (crc);
808 }
809 #endif
810 
811 uint32_t
812 ether_crc32_be(const uint8_t *buf, size_t len)
813 {
814 	uint32_t c, crc, carry;
815 	size_t i, j;
816 
817 	crc = 0xffffffffU;	/* initial value */
818 
819 	for (i = 0; i < len; i++) {
820 		c = buf[i];
821 		for (j = 0; j < 8; j++) {
822 			carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
823 			crc <<= 1;
824 			c >>= 1;
825 			if (carry)
826 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
827 		}
828 	}
829 
830 	return (crc);
831 }
832 
833 /*
834  * find the size of ethernet header, and call classifier
835  */
836 void
837 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m,
838 		   struct altq_pktattr *pktattr)
839 {
840 	struct ether_header *eh;
841 	uint16_t ether_type;
842 	int hlen, af, hdrsize;
843 	caddr_t hdr;
844 
845 	hlen = sizeof(struct ether_header);
846 	eh = mtod(m, struct ether_header *);
847 
848 	ether_type = ntohs(eh->ether_type);
849 	if (ether_type < ETHERMTU) {
850 		/* ick! LLC/SNAP */
851 		struct llc *llc = (struct llc *)(eh + 1);
852 		hlen += 8;
853 
854 		if (m->m_len < hlen ||
855 		    llc->llc_dsap != LLC_SNAP_LSAP ||
856 		    llc->llc_ssap != LLC_SNAP_LSAP ||
857 		    llc->llc_control != LLC_UI)
858 			goto bad;  /* not snap! */
859 
860 		ether_type = ntohs(llc->llc_un.type_snap.ether_type);
861 	}
862 
863 	if (ether_type == ETHERTYPE_IP) {
864 		af = AF_INET;
865 		hdrsize = 20;  /* sizeof(struct ip) */
866 #ifdef INET6
867 	} else if (ether_type == ETHERTYPE_IPV6) {
868 		af = AF_INET6;
869 		hdrsize = 40;  /* sizeof(struct ip6_hdr) */
870 #endif
871 	} else
872 		goto bad;
873 
874 	while (m->m_len <= hlen) {
875 		hlen -= m->m_len;
876 		m = m->m_next;
877 	}
878 	hdr = m->m_data + hlen;
879 	if (m->m_len < hlen + hdrsize) {
880 		/*
881 		 * ip header is not in a single mbuf.  this should not
882 		 * happen in the current code.
883 		 * (todo: use m_pulldown in the future)
884 		 */
885 		goto bad;
886 	}
887 	m->m_data += hlen;
888 	m->m_len -= hlen;
889 	ifq_classify(ifq, m, af, pktattr);
890 	m->m_data -= hlen;
891 	m->m_len += hlen;
892 
893 	return;
894 
895 bad:
896 	pktattr->pattr_class = NULL;
897 	pktattr->pattr_hdr = NULL;
898 	pktattr->pattr_af = AF_UNSPEC;
899 }
900 
901 static void
902 ether_restore_header(struct mbuf **m0, const struct ether_header *eh,
903 		     const struct ether_header *save_eh)
904 {
905 	struct mbuf *m = *m0;
906 
907 	ether_restore_hdr++;
908 
909 	/*
910 	 * Prepend the header, optimize for the common case of
911 	 * eh pointing into the mbuf.
912 	 */
913 	if ((const void *)(eh + 1) == (void *)m->m_data) {
914 		m->m_data -= ETHER_HDR_LEN;
915 		m->m_len += ETHER_HDR_LEN;
916 		m->m_pkthdr.len += ETHER_HDR_LEN;
917 	} else {
918 		ether_prepend_hdr++;
919 
920 		M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT);
921 		if (m != NULL) {
922 			bcopy(save_eh, mtod(m, struct ether_header *),
923 			      ETHER_HDR_LEN);
924 		}
925 	}
926 	*m0 = m;
927 }
928 
929 static void
930 ether_input_ipifunc(void *arg)
931 {
932 	struct mbuf *m, *next;
933 	lwkt_port_t port = cpu_portfn(mycpu->gd_cpuid);
934 
935 	m = arg;
936 	do {
937 		next = m->m_nextpkt;
938 		m->m_nextpkt = NULL;
939 		lwkt_sendmsg(port, &m->m_hdr.mh_netmsg.base.lmsg);
940 		m = next;
941 	} while (m != NULL);
942 }
943 
944 void
945 ether_input_dispatch(struct mbuf_chain *chain)
946 {
947 #ifdef SMP
948 	int i;
949 
950 	logether(disp_beg, NULL);
951 	for (i = 0; i < ncpus; ++i) {
952 		if (chain[i].mc_head != NULL) {
953 			lwkt_send_ipiq(globaldata_find(i),
954 				       ether_input_ipifunc, chain[i].mc_head);
955 		}
956 	}
957 #else
958 	logether(disp_beg, NULL);
959 	if (chain->mc_head != NULL)
960 		ether_input_ipifunc(chain->mc_head);
961 #endif
962 	logether(disp_end, NULL);
963 }
964 
965 void
966 ether_input_chain_init(struct mbuf_chain *chain)
967 {
968 #ifdef SMP
969 	int i;
970 
971 	for (i = 0; i < ncpus; ++i)
972 		chain[i].mc_head = chain[i].mc_tail = NULL;
973 #else
974 	chain->mc_head = chain->mc_tail = NULL;
975 #endif
976 }
977 
978 /*
979  * Upper layer processing for a received Ethernet packet.
980  */
981 void
982 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m)
983 {
984 	struct ether_header *eh;
985 	int isr, discard = 0;
986 	u_short ether_type;
987 	struct ip_fw *rule = NULL;
988 
989 	M_ASSERTPKTHDR(m);
990 	KASSERT(m->m_len >= ETHER_HDR_LEN,
991 		("ether header is no contiguous!\n"));
992 
993 	eh = mtod(m, struct ether_header *);
994 
995 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
996 		struct m_tag *mtag;
997 
998 		/* Extract info from dummynet tag */
999 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
1000 		KKASSERT(mtag != NULL);
1001 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
1002 		KKASSERT(rule != NULL);
1003 
1004 		m_tag_delete(m, mtag);
1005 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
1006 
1007 		/* packet is passing the second time */
1008 		goto post_stats;
1009 	}
1010 
1011 #ifdef CARP
1012 	/*
1013 	 * XXX: Okay, we need to call carp_forus() and - if it is for
1014 	 * us jump over code that does the normal check
1015 	 * "ac_enaddr == ether_dhost". The check sequence is a bit
1016 	 * different from OpenBSD, so we jump over as few code as
1017 	 * possible, to catch _all_ sanity checks. This needs
1018 	 * evaluation, to see if the carp ether_dhost values break any
1019 	 * of these checks!
1020 	 */
1021 	if (ifp->if_carp) {
1022 		/*
1023 		 * Hold BGL and recheck ifp->if_carp
1024 		 */
1025 		get_mplock();
1026 		if (ifp->if_carp && carp_forus(ifp->if_carp, eh->ether_dhost)) {
1027 			rel_mplock();
1028 			goto post_stats;
1029 		}
1030 		rel_mplock();
1031 	}
1032 #endif
1033 
1034 	/*
1035 	 * We got a packet which was unicast to a different Ethernet
1036 	 * address.  If the driver is working properly, then this
1037 	 * situation can only happen when the interface is in
1038 	 * promiscuous mode.  We defer the packet discarding until the
1039 	 * vlan processing is done, so that vlan/bridge or vlan/netgraph
1040 	 * could work.
1041 	 */
1042 	if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) &&
1043 	    !ETHER_IS_MULTICAST(eh->ether_dhost) &&
1044 	    bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) {
1045 		if (ether_debug & 1) {
1046 			kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
1047 				"%02x:%02x:%02x:%02x:%02x:%02x "
1048 				"%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n",
1049 				eh->ether_dhost[0],
1050 				eh->ether_dhost[1],
1051 				eh->ether_dhost[2],
1052 				eh->ether_dhost[3],
1053 				eh->ether_dhost[4],
1054 				eh->ether_dhost[5],
1055 				eh->ether_shost[0],
1056 				eh->ether_shost[1],
1057 				eh->ether_shost[2],
1058 				eh->ether_shost[3],
1059 				eh->ether_shost[4],
1060 				eh->ether_shost[5],
1061 				eh->ether_type,
1062 				((u_char *)IFP2AC(ifp)->ac_enaddr)[0],
1063 				((u_char *)IFP2AC(ifp)->ac_enaddr)[1],
1064 				((u_char *)IFP2AC(ifp)->ac_enaddr)[2],
1065 				((u_char *)IFP2AC(ifp)->ac_enaddr)[3],
1066 				((u_char *)IFP2AC(ifp)->ac_enaddr)[4],
1067 				((u_char *)IFP2AC(ifp)->ac_enaddr)[5]
1068 			);
1069 		}
1070 		if ((ether_debug & 2) == 0)
1071 			discard = 1;
1072 	}
1073 
1074 post_stats:
1075 	if (IPFW_LOADED && ether_ipfw != 0 && !discard) {
1076 		struct ether_header save_eh = *eh;
1077 
1078 		/* XXX old crufty stuff, needs to be removed */
1079 		m_adj(m, sizeof(struct ether_header));
1080 
1081 		if (!ether_ipfw_chk(&m, NULL, &rule, eh)) {
1082 			m_freem(m);
1083 			return;
1084 		}
1085 
1086 		ether_restore_header(&m, eh, &save_eh);
1087 		if (m == NULL)
1088 			return;
1089 		eh = mtod(m, struct ether_header *);
1090 	}
1091 
1092 	ether_type = ntohs(eh->ether_type);
1093 	KKASSERT(ether_type != ETHERTYPE_VLAN);
1094 
1095 	if (m->m_flags & M_VLANTAG) {
1096 		void (*vlan_input_func)(struct mbuf *);
1097 
1098 		vlan_input_func = vlan_input_p;
1099 		if (vlan_input_func != NULL) {
1100 			vlan_input_func(m);
1101 		} else {
1102 			m->m_pkthdr.rcvif->if_noproto++;
1103 			m_freem(m);
1104 		}
1105 		return;
1106 	}
1107 
1108 	/*
1109 	 * If we have been asked to discard this packet
1110 	 * (e.g. not for us), drop it before entering
1111 	 * the upper layer.
1112 	 */
1113 	if (discard) {
1114 		m_freem(m);
1115 		return;
1116 	}
1117 
1118 	/*
1119 	 * Clear protocol specific flags,
1120 	 * before entering the upper layer.
1121 	 */
1122 	m->m_flags &= ~M_ETHER_FLAGS;
1123 
1124 	/* Strip ethernet header. */
1125 	m_adj(m, sizeof(struct ether_header));
1126 
1127 	switch (ether_type) {
1128 #ifdef INET
1129 	case ETHERTYPE_IP:
1130 		if ((m->m_flags & M_LENCHECKED) == 0) {
1131 			if (!ip_lengthcheck(&m, 0))
1132 				return;
1133 		}
1134 		if (ipflow_fastforward(m))
1135 			return;
1136 		isr = NETISR_IP;
1137 		break;
1138 
1139 	case ETHERTYPE_ARP:
1140 		if (ifp->if_flags & IFF_NOARP) {
1141 			/* Discard packet if ARP is disabled on interface */
1142 			m_freem(m);
1143 			return;
1144 		}
1145 		isr = NETISR_ARP;
1146 		break;
1147 #endif
1148 
1149 #ifdef INET6
1150 	case ETHERTYPE_IPV6:
1151 		isr = NETISR_IPV6;
1152 		break;
1153 #endif
1154 
1155 #ifdef IPX
1156 	case ETHERTYPE_IPX:
1157 		if (ef_inputp) {
1158 			/*
1159 			 * Hold BGL and recheck ef_inputp
1160 			 */
1161 			get_mplock();
1162 			if (ef_inputp && ef_inputp(ifp, eh, m) == 0) {
1163 				rel_mplock();
1164 				return;
1165 			}
1166 			rel_mplock();
1167 		}
1168 		isr = NETISR_IPX;
1169 		break;
1170 #endif
1171 
1172 #ifdef MPLS
1173 	case ETHERTYPE_MPLS:
1174 	case ETHERTYPE_MPLS_MCAST:
1175 		/* Should have been set by ether_input_chain(). */
1176 		KKASSERT(m->m_flags & M_MPLSLABELED);
1177 		isr = NETISR_MPLS;
1178 		break;
1179 #endif
1180 
1181 	default:
1182 		/*
1183 		 * The accurate msgport is not determined before
1184 		 * we reach here, so recharacterize packet.
1185 		 */
1186 		m->m_flags &= ~M_HASH;
1187 #ifdef IPX
1188 		if (ef_inputp) {
1189 			/*
1190 			 * Hold BGL and recheck ef_inputp
1191 			 */
1192 			get_mplock();
1193 			if (ef_inputp && ef_inputp(ifp, eh, m) == 0) {
1194 				rel_mplock();
1195 				return;
1196 			}
1197 			rel_mplock();
1198 		}
1199 #endif
1200 		if (ng_ether_input_orphan_p != NULL) {
1201 			/*
1202 			 * Hold BGL and recheck ng_ether_input_orphan_p
1203 			 */
1204 			get_mplock();
1205 			if (ng_ether_input_orphan_p != NULL) {
1206 				ng_ether_input_orphan_p(ifp, m, eh);
1207 				rel_mplock();
1208 				return;
1209 			}
1210 			rel_mplock();
1211 		}
1212 		m_freem(m);
1213 		return;
1214 	}
1215 
1216 	if (m->m_flags & M_HASH) {
1217 		if (&curthread->td_msgport == cpu_portfn(m->m_pkthdr.hash)) {
1218 			netisr_handle(isr, m);
1219 			return;
1220 		} else {
1221 			/*
1222 			 * XXX Something is wrong,
1223 			 * we probably should panic here!
1224 			 */
1225 			m->m_flags &= ~M_HASH;
1226 			ether_input_wronghash++;
1227 		}
1228 	}
1229 #ifdef RSS_DEBUG
1230 	ether_input_requeue++;
1231 #endif
1232 	netisr_queue(isr, m);
1233 }
1234 
1235 /*
1236  * First we perform any link layer operations, then continue to the
1237  * upper layers with ether_demux_oncpu().
1238  */
1239 static void
1240 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m)
1241 {
1242 	if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) {
1243 		/*
1244 		 * Receiving interface's flags are changed, when this
1245 		 * packet is waiting for processing; discard it.
1246 		 */
1247 		m_freem(m);
1248 		return;
1249 	}
1250 
1251 	/*
1252 	 * Tap the packet off here for a bridge.  bridge_input()
1253 	 * will return NULL if it has consumed the packet, otherwise
1254 	 * it gets processed as normal.  Note that bridge_input()
1255 	 * will always return the original packet if we need to
1256 	 * process it locally.
1257 	 */
1258 	if (ifp->if_bridge) {
1259 		KASSERT(bridge_input_p != NULL,
1260 			("%s: if_bridge not loaded!", __func__));
1261 
1262 		if(m->m_flags & M_ETHER_BRIDGED) {
1263 			m->m_flags &= ~M_ETHER_BRIDGED;
1264 		} else {
1265 			m = bridge_input_p(ifp, m);
1266 			if (m == NULL)
1267 				return;
1268 
1269 			KASSERT(ifp == m->m_pkthdr.rcvif,
1270 				("bridge_input_p changed rcvif\n"));
1271 		}
1272 	}
1273 
1274 	/* Handle ng_ether(4) processing, if any */
1275 	if (ng_ether_input_p != NULL) {
1276 		/*
1277 		 * Hold BGL and recheck ng_ether_input_p
1278 		 */
1279 		get_mplock();
1280 		if (ng_ether_input_p != NULL)
1281 			ng_ether_input_p(ifp, &m);
1282 		rel_mplock();
1283 
1284 		if (m == NULL)
1285 			return;
1286 	}
1287 
1288 	/* Continue with upper layer processing */
1289 	ether_demux_oncpu(ifp, m);
1290 }
1291 
1292 /*
1293  * Perform certain functions of ether_input_chain():
1294  * - Test IFF_UP
1295  * - Update statistics
1296  * - Run bpf(4) tap if requested
1297  * Then pass the packet to ether_input_oncpu().
1298  *
1299  * This function should be used by pseudo interface (e.g. vlan(4)),
1300  * when it tries to claim that the packet is received by it.
1301  *
1302  * REINPUT_KEEPRCVIF
1303  * REINPUT_RUNBPF
1304  */
1305 void
1306 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags)
1307 {
1308 	/* Discard packet if interface is not up */
1309 	if (!(ifp->if_flags & IFF_UP)) {
1310 		m_freem(m);
1311 		return;
1312 	}
1313 
1314 	/*
1315 	 * Change receiving interface.  The bridge will often pass a flag to
1316 	 * ask that this not be done so ARPs get applied to the correct
1317 	 * side.
1318 	 */
1319 	if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 ||
1320 	    m->m_pkthdr.rcvif == NULL) {
1321 		m->m_pkthdr.rcvif = ifp;
1322 	}
1323 
1324 	/* Update statistics */
1325 	ifp->if_ipackets++;
1326 	ifp->if_ibytes += m->m_pkthdr.len;
1327 	if (m->m_flags & (M_MCAST | M_BCAST))
1328 		ifp->if_imcasts++;
1329 
1330 	if (reinput_flags & REINPUT_RUNBPF)
1331 		BPF_MTAP(ifp, m);
1332 
1333 	ether_input_oncpu(ifp, m);
1334 }
1335 
1336 static __inline boolean_t
1337 ether_vlancheck(struct mbuf **m0)
1338 {
1339 	struct mbuf *m = *m0;
1340 	struct ether_header *eh;
1341 	uint16_t ether_type;
1342 
1343 	eh = mtod(m, struct ether_header *);
1344 	ether_type = ntohs(eh->ether_type);
1345 
1346 	if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG) == 0) {
1347 		/*
1348 		 * Extract vlan tag if hardware does not do it for us
1349 		 */
1350 		vlan_ether_decap(&m);
1351 		if (m == NULL)
1352 			goto failed;
1353 
1354 		eh = mtod(m, struct ether_header *);
1355 		ether_type = ntohs(eh->ether_type);
1356 	}
1357 
1358 	if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG)) {
1359 		/*
1360 		 * To prevent possible dangerous recursion,
1361 		 * we don't do vlan-in-vlan
1362 		 */
1363 		m->m_pkthdr.rcvif->if_noproto++;
1364 		goto failed;
1365 	}
1366 	KKASSERT(ether_type != ETHERTYPE_VLAN);
1367 
1368 	m->m_flags |= M_ETHER_VLANCHECKED;
1369 	*m0 = m;
1370 	return TRUE;
1371 failed:
1372 	if (m != NULL)
1373 		m_freem(m);
1374 	*m0 = NULL;
1375 	return FALSE;
1376 }
1377 
1378 static void
1379 ether_input_handler(netmsg_t nmsg)
1380 {
1381 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1382 	struct ether_header *eh;
1383 	struct ifnet *ifp;
1384 	struct mbuf *m;
1385 
1386 	m = nmp->nm_packet;
1387 	M_ASSERTPKTHDR(m);
1388 	ifp = m->m_pkthdr.rcvif;
1389 
1390 	eh = mtod(m, struct ether_header *);
1391 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
1392 		if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
1393 			 ifp->if_addrlen) == 0)
1394 			m->m_flags |= M_BCAST;
1395 		else
1396 			m->m_flags |= M_MCAST;
1397 		ifp->if_imcasts++;
1398 	}
1399 
1400 	if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) {
1401 		if (!ether_vlancheck(&m)) {
1402 			KKASSERT(m == NULL);
1403 			return;
1404 		}
1405 	}
1406 
1407 	ether_input_oncpu(ifp, m);
1408 }
1409 
1410 /*
1411  * Send the packet to the target msgport or queue it into 'chain'.
1412  *
1413  * At this point the packet had better be characterized (M_HASH set),
1414  * so we know which cpu to send it to.
1415  */
1416 static void
1417 ether_dispatch(int isr, struct mbuf *m, struct mbuf_chain *chain)
1418 {
1419 	struct netmsg_packet *pmsg;
1420 
1421 	KKASSERT(m->m_flags & M_HASH);
1422 	pmsg = &m->m_hdr.mh_netmsg;
1423 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1424 		    0, ether_input_handler);
1425 	pmsg->nm_packet = m;
1426 	pmsg->base.lmsg.u.ms_result = isr;
1427 
1428 	if (chain != NULL) {
1429 		int cpuid = m->m_pkthdr.hash;
1430 		struct mbuf_chain *c;
1431 
1432 		c = &chain[cpuid];
1433 		if (c->mc_head == NULL) {
1434 			c->mc_head = c->mc_tail = m;
1435 		} else {
1436 			c->mc_tail->m_nextpkt = m;
1437 			c->mc_tail = m;
1438 		}
1439 		m->m_nextpkt = NULL;
1440 	} else {
1441 		lwkt_sendmsg(cpu_portfn(m->m_pkthdr.hash), &pmsg->base.lmsg);
1442 	}
1443 }
1444 
1445 /*
1446  * Process a received Ethernet packet.
1447  *
1448  * The ethernet header is assumed to be in the mbuf so the caller
1449  * MUST MAKE SURE that there are at least sizeof(struct ether_header)
1450  * bytes in the first mbuf.
1451  *
1452  * - If 'chain' is NULL, this ether frame is sent to the target msgport
1453  *   immediately.  This situation happens when ether_input_chain is
1454  *   accessed through ifnet.if_input.
1455  *
1456  * - If 'chain' is not NULL, this ether frame is queued to the 'chain'
1457  *   bucket indexed by the target msgport's cpuid and the target msgport
1458  *   is saved in mbuf's m_pkthdr.m_head.  Caller of ether_input_chain
1459  *   must initialize 'chain' by calling ether_input_chain_init().
1460  *   ether_input_dispatch must be called later to send ether frames
1461  *   queued on 'chain' to their target msgport.
1462  */
1463 void
1464 ether_input_chain(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi,
1465 		  struct mbuf_chain *chain)
1466 {
1467 	int isr;
1468 
1469 	M_ASSERTPKTHDR(m);
1470 
1471 	/* Discard packet if interface is not up */
1472 	if (!(ifp->if_flags & IFF_UP)) {
1473 		m_freem(m);
1474 		return;
1475 	}
1476 
1477 	if (m->m_len < sizeof(struct ether_header)) {
1478 		/* XXX error in the caller. */
1479 		m_freem(m);
1480 		return;
1481 	}
1482 
1483 	m->m_pkthdr.rcvif = ifp;
1484 
1485 	logether(chain_beg, ifp);
1486 
1487 	ETHER_BPF_MTAP(ifp, m);
1488 
1489 	ifp->if_ibytes += m->m_pkthdr.len;
1490 
1491 	if (ifp->if_flags & IFF_MONITOR) {
1492 		struct ether_header *eh;
1493 
1494 		eh = mtod(m, struct ether_header *);
1495 		if (ETHER_IS_MULTICAST(eh->ether_dhost))
1496 			ifp->if_imcasts++;
1497 
1498 		/*
1499 		 * Interface marked for monitoring; discard packet.
1500 		 */
1501 		m_freem(m);
1502 
1503 		logether(chain_end, ifp);
1504 		return;
1505 	}
1506 
1507 	/*
1508 	 * If the packet has been characterized (pi->pi_netisr / M_HASH)
1509 	 * we can dispatch it immediately without further inspection.
1510 	 */
1511 	if (pi != NULL && (m->m_flags & M_HASH)) {
1512 #ifdef RSS_DEBUG
1513 		ether_pktinfo_try++;
1514 #endif
1515 		netisr_hashcheck(pi->pi_netisr, m, pi);
1516 		if (m->m_flags & M_HASH) {
1517 			ether_dispatch(pi->pi_netisr, m, chain);
1518 #ifdef RSS_DEBUG
1519 			ether_pktinfo_hit++;
1520 #endif
1521 			logether(chain_end, ifp);
1522 			return;
1523 		}
1524 	}
1525 #ifdef RSS_DEBUG
1526 	else if (ifp->if_capenable & IFCAP_RSS) {
1527 		if (pi == NULL)
1528 			ether_rss_nopi++;
1529 		else
1530 			ether_rss_nohash++;
1531 	}
1532 #endif
1533 
1534 	/*
1535 	 * Packet hash will be recalculated by software,
1536 	 * so clear the M_HASH flag set by the driver;
1537 	 * the hash value calculated by the hardware may
1538 	 * not be exactly what we want.
1539 	 */
1540 	m->m_flags &= ~M_HASH;
1541 
1542 	if (!ether_vlancheck(&m)) {
1543 		KKASSERT(m == NULL);
1544 		logether(chain_end, ifp);
1545 		return;
1546 	}
1547 
1548 	isr = ether_characterize(&m);
1549 	if (m == NULL) {
1550 		logether(chain_end, ifp);
1551 		return;
1552 	}
1553 
1554 	/*
1555 	 * Finally dispatch it
1556 	 */
1557 	ether_dispatch(isr, m, chain);
1558 
1559 	logether(chain_end, ifp);
1560 }
1561 
1562 static int
1563 ether_characterize(struct mbuf **m0)
1564 {
1565 	struct mbuf *m = *m0;
1566 	struct ether_header *eh;
1567 	uint16_t ether_type;
1568 	int isr;
1569 
1570 	eh = mtod(m, struct ether_header *);
1571 	ether_type = ntohs(eh->ether_type);
1572 
1573 	/*
1574 	 * Map ether type to netisr id.
1575 	 */
1576 	switch (ether_type) {
1577 #ifdef INET
1578 	case ETHERTYPE_IP:
1579 		isr = NETISR_IP;
1580 		break;
1581 
1582 	case ETHERTYPE_ARP:
1583 		isr = NETISR_ARP;
1584 		break;
1585 #endif
1586 
1587 #ifdef INET6
1588 	case ETHERTYPE_IPV6:
1589 		isr = NETISR_IPV6;
1590 		break;
1591 #endif
1592 
1593 #ifdef IPX
1594 	case ETHERTYPE_IPX:
1595 		isr = NETISR_IPX;
1596 		break;
1597 #endif
1598 
1599 #ifdef MPLS
1600 	case ETHERTYPE_MPLS:
1601 	case ETHERTYPE_MPLS_MCAST:
1602 		m->m_flags |= M_MPLSLABELED;
1603 		isr = NETISR_MPLS;
1604 		break;
1605 #endif
1606 
1607 	default:
1608 		/*
1609 		 * NETISR_MAX is an invalid value; it is chosen to let
1610 		 * netisr_characterize() know that we have no clear
1611 		 * idea where this packet should go.
1612 		 */
1613 		isr = NETISR_MAX;
1614 		break;
1615 	}
1616 
1617 	/*
1618 	 * Ask the isr to characterize the packet since we couldn't.
1619 	 * This is an attempt to optimally get us onto the correct protocol
1620 	 * thread.
1621 	 */
1622 	netisr_characterize(isr, &m, sizeof(struct ether_header));
1623 
1624 	*m0 = m;
1625 	return isr;
1626 }
1627 
1628 static void
1629 ether_demux_handler(netmsg_t nmsg)
1630 {
1631 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1632 	struct ifnet *ifp;
1633 	struct mbuf *m;
1634 
1635 	m = nmp->nm_packet;
1636 	M_ASSERTPKTHDR(m);
1637 	ifp = m->m_pkthdr.rcvif;
1638 
1639 	ether_demux_oncpu(ifp, m);
1640 }
1641 
1642 void
1643 ether_demux(struct mbuf *m)
1644 {
1645 	struct netmsg_packet *pmsg;
1646 	int isr;
1647 
1648 	isr = ether_characterize(&m);
1649 	if (m == NULL)
1650 		return;
1651 
1652 	KKASSERT(m->m_flags & M_HASH);
1653 	pmsg = &m->m_hdr.mh_netmsg;
1654 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1655 	    0, ether_demux_handler);
1656 	pmsg->nm_packet = m;
1657 	pmsg->base.lmsg.u.ms_result = isr;
1658 
1659 	lwkt_sendmsg(cpu_portfn(m->m_pkthdr.hash), &pmsg->base.lmsg);
1660 }
1661 
1662 MODULE_VERSION(ether, 1);
1663