xref: /dragonfly/sys/net/if_ethersubr.c (revision f00eae14)
1 /*
2  * Copyright (c) 1982, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipx.h"
40 #include "opt_mpls.h"
41 #include "opt_netgraph.h"
42 #include "opt_carp.h"
43 #include "opt_rss.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/globaldata.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/msgport.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 #include <sys/thread.h>
58 
59 #include <sys/thread2.h>
60 #include <sys/mplock2.h>
61 
62 #include <net/if.h>
63 #include <net/netisr.h>
64 #include <net/route.h>
65 #include <net/if_llc.h>
66 #include <net/if_dl.h>
67 #include <net/if_types.h>
68 #include <net/ifq_var.h>
69 #include <net/bpf.h>
70 #include <net/ethernet.h>
71 #include <net/vlan/if_vlan_ether.h>
72 #include <net/vlan/if_vlan_var.h>
73 #include <net/netmsg2.h>
74 
75 #if defined(INET) || defined(INET6)
76 #include <netinet/in.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/tcp_var.h>
79 #include <netinet/if_ether.h>
80 #include <netinet/ip_flow.h>
81 #include <net/ipfw/ip_fw.h>
82 #include <net/dummynet/ip_dummynet.h>
83 #endif
84 #ifdef INET6
85 #include <netinet6/nd6.h>
86 #endif
87 
88 #ifdef CARP
89 #include <netinet/ip_carp.h>
90 #endif
91 
92 #ifdef IPX
93 #include <netproto/ipx/ipx.h>
94 #include <netproto/ipx/ipx_if.h>
95 int (*ef_inputp)(struct ifnet*, const struct ether_header *eh, struct mbuf *m);
96 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst,
97 		  short *tp, int *hlen);
98 #endif
99 
100 #ifdef MPLS
101 #include <netproto/mpls/mpls.h>
102 #endif
103 
104 /* netgraph node hooks for ng_ether(4) */
105 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
106 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
107 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
108 void	(*ng_ether_attach_p)(struct ifnet *ifp);
109 void	(*ng_ether_detach_p)(struct ifnet *ifp);
110 
111 void	(*vlan_input_p)(struct mbuf *);
112 
113 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *,
114 			struct rtentry *);
115 static void ether_restore_header(struct mbuf **, const struct ether_header *,
116 				 const struct ether_header *);
117 static int ether_characterize(struct mbuf **);
118 static void ether_dispatch(int, struct mbuf *);
119 
120 /*
121  * if_bridge support
122  */
123 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
124 int (*bridge_output_p)(struct ifnet *, struct mbuf *);
125 void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
126 struct ifnet *(*bridge_interface_p)(void *if_bridge);
127 
128 static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
129 			      struct sockaddr *);
130 
131 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
132 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
133 };
134 
135 #define gotoerr(e) do { error = (e); goto bad; } while (0)
136 #define IFP2AC(ifp) ((struct arpcom *)(ifp))
137 
138 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
139 				struct ip_fw **rule,
140 				const struct ether_header *eh);
141 
142 static int ether_ipfw;
143 static u_long ether_restore_hdr;
144 static u_long ether_prepend_hdr;
145 static u_long ether_input_wronghash;
146 static int ether_debug;
147 
148 #ifdef RSS_DEBUG
149 static u_long ether_pktinfo_try;
150 static u_long ether_pktinfo_hit;
151 static u_long ether_rss_nopi;
152 static u_long ether_rss_nohash;
153 static u_long ether_input_requeue;
154 #endif
155 static u_long ether_input_wronghwhash;
156 static int ether_input_ckhash;
157 
158 #define ETHER_TSOLEN_DEFAULT	(4 * ETHERMTU)
159 
160 static int ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
161 TUNABLE_INT("net.link.ether.tsolen", &ether_tsolen_default);
162 
163 SYSCTL_DECL(_net_link);
164 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
165 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW,
166     &ether_debug, 0, "Ether debug");
167 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
168     &ether_ipfw, 0, "Pass ether pkts through firewall");
169 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW,
170     &ether_restore_hdr, 0, "# of ether header restoration");
171 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW,
172     &ether_prepend_hdr, 0,
173     "# of ether header restoration which prepends mbuf");
174 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW,
175     &ether_input_wronghash, 0, "# of input packets with wrong hash");
176 SYSCTL_INT(_net_link_ether, OID_AUTO, tsolen, CTLFLAG_RW,
177     &ether_tsolen_default, 0, "Default max TSO length");
178 
179 #ifdef RSS_DEBUG
180 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW,
181     &ether_rss_nopi, 0, "# of packets do not have pktinfo");
182 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW,
183     &ether_rss_nohash, 0, "# of packets do not have hash");
184 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW,
185     &ether_pktinfo_try, 0,
186     "# of tries to find packets' msgport using pktinfo");
187 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW,
188     &ether_pktinfo_hit, 0,
189     "# of packets whose msgport are found using pktinfo");
190 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW,
191     &ether_input_requeue, 0, "# of input packets gets requeued");
192 #endif
193 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW,
194     &ether_input_wronghwhash, 0, "# of input packets with wrong hw hash");
195 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW,
196     &ether_input_ckhash, 0, "always check hash");
197 
198 #define ETHER_KTR_STR		"ifp=%p"
199 #define ETHER_KTR_ARGS	struct ifnet *ifp
200 #ifndef KTR_ETHERNET
201 #define KTR_ETHERNET		KTR_ALL
202 #endif
203 KTR_INFO_MASTER(ether);
204 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS);
205 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS);
206 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS);
207 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS);
208 #define logether(name, arg)	KTR_LOG(ether_ ## name, arg)
209 
210 /*
211  * Ethernet output routine.
212  * Encapsulate a packet of type family for the local net.
213  * Use trailer local net encapsulation if enough data in first
214  * packet leaves a multiple of 512 bytes of data in remainder.
215  * Assumes that ifp is actually pointer to arpcom structure.
216  */
217 static int
218 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
219 	     struct rtentry *rt)
220 {
221 	struct ether_header *eh, *deh;
222 	u_char *edst;
223 	int loop_copy = 0;
224 	int hlen = ETHER_HDR_LEN;	/* link layer header length */
225 	struct arpcom *ac = IFP2AC(ifp);
226 	int error;
227 
228 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
229 
230 	if (ifp->if_flags & IFF_MONITOR)
231 		gotoerr(ENETDOWN);
232 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
233 		gotoerr(ENETDOWN);
234 
235 	M_PREPEND(m, sizeof(struct ether_header), MB_DONTWAIT);
236 	if (m == NULL)
237 		return (ENOBUFS);
238 	m->m_pkthdr.csum_lhlen = sizeof(struct ether_header);
239 	eh = mtod(m, struct ether_header *);
240 	edst = eh->ether_dhost;
241 
242 	/*
243 	 * Fill in the destination ethernet address and frame type.
244 	 */
245 	switch (dst->sa_family) {
246 #ifdef INET
247 	case AF_INET:
248 		if (!arpresolve(ifp, rt, m, dst, edst))
249 			return (0);	/* if not yet resolved */
250 #ifdef MPLS
251 		if (m->m_flags & M_MPLSLABELED)
252 			eh->ether_type = htons(ETHERTYPE_MPLS);
253 		else
254 #endif
255 			eh->ether_type = htons(ETHERTYPE_IP);
256 		break;
257 #endif
258 #ifdef INET6
259 	case AF_INET6:
260 		if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst))
261 			return (0);		/* Something bad happenned. */
262 		eh->ether_type = htons(ETHERTYPE_IPV6);
263 		break;
264 #endif
265 #ifdef IPX
266 	case AF_IPX:
267 		if (ef_outputp != NULL) {
268 			/*
269 			 * Hold BGL and recheck ef_outputp
270 			 */
271 			get_mplock();
272 			if (ef_outputp != NULL) {
273 				error = ef_outputp(ifp, &m, dst,
274 						   &eh->ether_type, &hlen);
275 				rel_mplock();
276 				if (error)
277 					goto bad;
278 				else
279 					break;
280 			}
281 			rel_mplock();
282 		}
283 		eh->ether_type = htons(ETHERTYPE_IPX);
284 		bcopy(&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host),
285 		      edst, ETHER_ADDR_LEN);
286 		break;
287 #endif
288 	case pseudo_AF_HDRCMPLT:
289 	case AF_UNSPEC:
290 		loop_copy = -1; /* if this is for us, don't do it */
291 		deh = (struct ether_header *)dst->sa_data;
292 		memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN);
293 		eh->ether_type = deh->ether_type;
294 		break;
295 
296 	default:
297 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
298 		gotoerr(EAFNOSUPPORT);
299 	}
300 
301 	if (dst->sa_family == pseudo_AF_HDRCMPLT)	/* unlikely */
302 		memcpy(eh->ether_shost,
303 		       ((struct ether_header *)dst->sa_data)->ether_shost,
304 		       ETHER_ADDR_LEN);
305 	else
306 		memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN);
307 
308 	/*
309 	 * Bridges require special output handling.
310 	 */
311 	if (ifp->if_bridge) {
312 		KASSERT(bridge_output_p != NULL,
313 			("%s: if_bridge not loaded!", __func__));
314 		return bridge_output_p(ifp, m);
315 	}
316 
317 	/*
318 	 * If a simplex interface, and the packet is being sent to our
319 	 * Ethernet address or a broadcast address, loopback a copy.
320 	 * XXX To make a simplex device behave exactly like a duplex
321 	 * device, we should copy in the case of sending to our own
322 	 * ethernet address (thus letting the original actually appear
323 	 * on the wire). However, we don't do that here for security
324 	 * reasons and compatibility with the original behavior.
325 	 */
326 	if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
327 		int csum_flags = 0;
328 
329 		if (m->m_pkthdr.csum_flags & CSUM_IP)
330 			csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID);
331 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
332 			csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
333 		if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
334 			struct mbuf *n;
335 
336 			if ((n = m_copypacket(m, MB_DONTWAIT)) != NULL) {
337 				n->m_pkthdr.csum_flags |= csum_flags;
338 				if (csum_flags & CSUM_DATA_VALID)
339 					n->m_pkthdr.csum_data = 0xffff;
340 				if_simloop(ifp, n, dst->sa_family, hlen);
341 			} else
342 				IFNET_STAT_INC(ifp, iqdrops, 1);
343 		} else if (bcmp(eh->ether_dhost, eh->ether_shost,
344 				ETHER_ADDR_LEN) == 0) {
345 			m->m_pkthdr.csum_flags |= csum_flags;
346 			if (csum_flags & CSUM_DATA_VALID)
347 				m->m_pkthdr.csum_data = 0xffff;
348 			if_simloop(ifp, m, dst->sa_family, hlen);
349 			return (0);	/* XXX */
350 		}
351 	}
352 
353 #ifdef CARP
354 	if (ifp->if_type == IFT_CARP) {
355 		ifp = carp_parent(ifp);
356 		if (ifp == NULL)
357 			gotoerr(ENETUNREACH);
358 
359 		ac = IFP2AC(ifp);
360 
361 		/*
362 		 * Check precondition again
363 		 */
364 		ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
365 
366 		if (ifp->if_flags & IFF_MONITOR)
367 			gotoerr(ENETDOWN);
368 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
369 		    (IFF_UP | IFF_RUNNING))
370 			gotoerr(ENETDOWN);
371 	}
372 #endif
373 
374 	/* Handle ng_ether(4) processing, if any */
375 	if (ng_ether_output_p != NULL) {
376 		/*
377 		 * Hold BGL and recheck ng_ether_output_p
378 		 */
379 		get_mplock();
380 		if (ng_ether_output_p != NULL) {
381 			if ((error = ng_ether_output_p(ifp, &m)) != 0) {
382 				rel_mplock();
383 				goto bad;
384 			}
385 			if (m == NULL) {
386 				rel_mplock();
387 				return (0);
388 			}
389 		}
390 		rel_mplock();
391 	}
392 
393 	/* Continue with link-layer output */
394 	return ether_output_frame(ifp, m);
395 
396 bad:
397 	m_freem(m);
398 	return (error);
399 }
400 
401 /*
402  * Returns the bridge interface an ifp is associated
403  * with.
404  *
405  * Only call if ifp->if_bridge != NULL.
406  */
407 struct ifnet *
408 ether_bridge_interface(struct ifnet *ifp)
409 {
410 	if (bridge_interface_p)
411 		return(bridge_interface_p(ifp->if_bridge));
412 	return (ifp);
413 }
414 
415 /*
416  * Ethernet link layer output routine to send a raw frame to the device.
417  *
418  * This assumes that the 14 byte Ethernet header is present and contiguous
419  * in the first mbuf.
420  */
421 int
422 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
423 {
424 	struct ip_fw *rule = NULL;
425 	int error = 0;
426 	struct altq_pktattr pktattr;
427 
428 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
429 
430 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
431 		struct m_tag *mtag;
432 
433 		/* Extract info from dummynet tag */
434 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
435 		KKASSERT(mtag != NULL);
436 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
437 		KKASSERT(rule != NULL);
438 
439 		m_tag_delete(m, mtag);
440 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
441 	}
442 
443 	if (ifq_is_enabled(&ifp->if_snd))
444 		altq_etherclassify(&ifp->if_snd, m, &pktattr);
445 	crit_enter();
446 	if (IPFW_LOADED && ether_ipfw != 0) {
447 		struct ether_header save_eh, *eh;
448 
449 		eh = mtod(m, struct ether_header *);
450 		save_eh = *eh;
451 		m_adj(m, ETHER_HDR_LEN);
452 		if (!ether_ipfw_chk(&m, ifp, &rule, eh)) {
453 			crit_exit();
454 			if (m != NULL) {
455 				m_freem(m);
456 				return ENOBUFS; /* pkt dropped */
457 			} else
458 				return 0;	/* consumed e.g. in a pipe */
459 		}
460 
461 		/* packet was ok, restore the ethernet header */
462 		ether_restore_header(&m, eh, &save_eh);
463 		if (m == NULL) {
464 			crit_exit();
465 			return ENOBUFS;
466 		}
467 	}
468 	crit_exit();
469 
470 	/*
471 	 * Queue message on interface, update output statistics if
472 	 * successful, and start output if interface not yet active.
473 	 */
474 	error = ifq_dispatch(ifp, m, &pktattr);
475 	return (error);
476 }
477 
478 /*
479  * ipfw processing for ethernet packets (in and out).
480  * The second parameter is NULL from ether_demux(), and ifp from
481  * ether_output_frame().
482  */
483 static boolean_t
484 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule,
485 	       const struct ether_header *eh)
486 {
487 	struct ether_header save_eh = *eh;	/* might be a ptr in *m0 */
488 	struct ip_fw_args args;
489 	struct m_tag *mtag;
490 	struct mbuf *m;
491 	int i;
492 
493 	if (*rule != NULL && fw_one_pass)
494 		return TRUE; /* dummynet packet, already partially processed */
495 
496 	/*
497 	 * I need some amount of data to be contiguous.
498 	 */
499 	i = min((*m0)->m_pkthdr.len, max_protohdr);
500 	if ((*m0)->m_len < i) {
501 		*m0 = m_pullup(*m0, i);
502 		if (*m0 == NULL)
503 			return FALSE;
504 	}
505 
506 	/*
507 	 * Clean up tags
508 	 */
509 	if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
510 		m_tag_delete(*m0, mtag);
511 	if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
512 		mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL);
513 		KKASSERT(mtag != NULL);
514 		m_tag_delete(*m0, mtag);
515 		(*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED;
516 	}
517 
518 	args.m = *m0;		/* the packet we are looking at		*/
519 	args.oif = dst;		/* destination, if any			*/
520 	args.rule = *rule;	/* matching rule to restart		*/
521 	args.eh = &save_eh;	/* MAC header for bridged/MAC packets	*/
522 	i = ip_fw_chk_ptr(&args);
523 	*m0 = args.m;
524 	*rule = args.rule;
525 
526 	if (*m0 == NULL)
527 		return FALSE;
528 
529 	switch (i) {
530 	case IP_FW_PASS:
531 		return TRUE;
532 
533 	case IP_FW_DIVERT:
534 	case IP_FW_TEE:
535 	case IP_FW_DENY:
536 		/*
537 		 * XXX at some point add support for divert/forward actions.
538 		 * If none of the above matches, we have to drop the pkt.
539 		 */
540 		return FALSE;
541 
542 	case IP_FW_DUMMYNET:
543 		/*
544 		 * Pass the pkt to dummynet, which consumes it.
545 		 */
546 		m = *m0;	/* pass the original to dummynet */
547 		*m0 = NULL;	/* and nothing back to the caller */
548 
549 		ether_restore_header(&m, eh, &save_eh);
550 		if (m == NULL)
551 			return FALSE;
552 
553 		ip_fw_dn_io_ptr(m, args.cookie,
554 				dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
555 		ip_dn_queue(m);
556 		return FALSE;
557 
558 	default:
559 		panic("unknown ipfw return value: %d", i);
560 	}
561 }
562 
563 static void
564 ether_input(struct ifnet *ifp, struct mbuf *m)
565 {
566 	ether_input_pkt(ifp, m, NULL);
567 }
568 
569 /*
570  * Perform common duties while attaching to interface list
571  */
572 void
573 ether_ifattach(struct ifnet *ifp, uint8_t *lla, lwkt_serialize_t serializer)
574 {
575 	ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header),
576 			   serializer);
577 }
578 
579 void
580 ether_ifattach_bpf(struct ifnet *ifp, uint8_t *lla, u_int dlt, u_int hdrlen,
581 		   lwkt_serialize_t serializer)
582 {
583 	struct sockaddr_dl *sdl;
584 	char ethstr[ETHER_ADDRSTRLEN + 1];
585 
586 	ifp->if_type = IFT_ETHER;
587 	ifp->if_addrlen = ETHER_ADDR_LEN;
588 	ifp->if_hdrlen = ETHER_HDR_LEN;
589 	if_attach(ifp, serializer);
590 	ifp->if_mtu = ETHERMTU;
591 	if (ifp->if_tsolen <= 0) {
592 		if ((ether_tsolen_default / ETHERMTU) < 2) {
593 			kprintf("ether TSO maxlen %d -> %d\n",
594 			    ether_tsolen_default, ETHER_TSOLEN_DEFAULT);
595 			ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
596 		}
597 		ifp->if_tsolen = ether_tsolen_default;
598 	}
599 	if (ifp->if_baudrate == 0)
600 		ifp->if_baudrate = 10000000;
601 	ifp->if_output = ether_output;
602 	ifp->if_input = ether_input;
603 	ifp->if_resolvemulti = ether_resolvemulti;
604 	ifp->if_broadcastaddr = etherbroadcastaddr;
605 	sdl = IF_LLSOCKADDR(ifp);
606 	sdl->sdl_type = IFT_ETHER;
607 	sdl->sdl_alen = ifp->if_addrlen;
608 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
609 	/*
610 	 * XXX Keep the current drivers happy.
611 	 * XXX Remove once all drivers have been cleaned up
612 	 */
613 	if (lla != IFP2AC(ifp)->ac_enaddr)
614 		bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen);
615 	bpfattach(ifp, dlt, hdrlen);
616 	if (ng_ether_attach_p != NULL)
617 		(*ng_ether_attach_p)(ifp);
618 
619 	if_printf(ifp, "MAC address: %s\n", kether_ntoa(lla, ethstr));
620 }
621 
622 /*
623  * Perform common duties while detaching an Ethernet interface
624  */
625 void
626 ether_ifdetach(struct ifnet *ifp)
627 {
628 	if_down(ifp);
629 
630 	if (ng_ether_detach_p != NULL)
631 		(*ng_ether_detach_p)(ifp);
632 	bpfdetach(ifp);
633 	if_detach(ifp);
634 }
635 
636 int
637 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
638 {
639 	struct ifaddr *ifa = (struct ifaddr *) data;
640 	struct ifreq *ifr = (struct ifreq *) data;
641 	int error = 0;
642 
643 #define IF_INIT(ifp) \
644 do { \
645 	if (((ifp)->if_flags & IFF_UP) == 0) { \
646 		(ifp)->if_flags |= IFF_UP; \
647 		(ifp)->if_init((ifp)->if_softc); \
648 	} \
649 } while (0)
650 
651 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
652 
653 	switch (command) {
654 	case SIOCSIFADDR:
655 		switch (ifa->ifa_addr->sa_family) {
656 #ifdef INET
657 		case AF_INET:
658 			IF_INIT(ifp);	/* before arpwhohas */
659 			arp_ifinit(ifp, ifa);
660 			break;
661 #endif
662 #ifdef IPX
663 		/*
664 		 * XXX - This code is probably wrong
665 		 */
666 		case AF_IPX:
667 			{
668 			struct ipx_addr *ina = &IA_SIPX(ifa)->sipx_addr;
669 			struct arpcom *ac = IFP2AC(ifp);
670 
671 			if (ipx_nullhost(*ina))
672 				ina->x_host = *(union ipx_host *) ac->ac_enaddr;
673 			else
674 				bcopy(ina->x_host.c_host, ac->ac_enaddr,
675 				      sizeof ac->ac_enaddr);
676 
677 			IF_INIT(ifp);	/* Set new address. */
678 			break;
679 			}
680 #endif
681 		default:
682 			IF_INIT(ifp);
683 			break;
684 		}
685 		break;
686 
687 	case SIOCGIFADDR:
688 		bcopy(IFP2AC(ifp)->ac_enaddr,
689 		      ((struct sockaddr *)ifr->ifr_data)->sa_data,
690 		      ETHER_ADDR_LEN);
691 		break;
692 
693 	case SIOCSIFMTU:
694 		/*
695 		 * Set the interface MTU.
696 		 */
697 		if (ifr->ifr_mtu > ETHERMTU) {
698 			error = EINVAL;
699 		} else {
700 			ifp->if_mtu = ifr->ifr_mtu;
701 		}
702 		break;
703 	default:
704 		error = EINVAL;
705 		break;
706 	}
707 	return (error);
708 
709 #undef IF_INIT
710 }
711 
712 int
713 ether_resolvemulti(
714 	struct ifnet *ifp,
715 	struct sockaddr **llsa,
716 	struct sockaddr *sa)
717 {
718 	struct sockaddr_dl *sdl;
719 #ifdef INET
720 	struct sockaddr_in *sin;
721 #endif
722 #ifdef INET6
723 	struct sockaddr_in6 *sin6;
724 #endif
725 	u_char *e_addr;
726 
727 	switch(sa->sa_family) {
728 	case AF_LINK:
729 		/*
730 		 * No mapping needed. Just check that it's a valid MC address.
731 		 */
732 		sdl = (struct sockaddr_dl *)sa;
733 		e_addr = LLADDR(sdl);
734 		if ((e_addr[0] & 1) != 1)
735 			return EADDRNOTAVAIL;
736 		*llsa = NULL;
737 		return 0;
738 
739 #ifdef INET
740 	case AF_INET:
741 		sin = (struct sockaddr_in *)sa;
742 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
743 			return EADDRNOTAVAIL;
744 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
745 		sdl->sdl_len = sizeof *sdl;
746 		sdl->sdl_family = AF_LINK;
747 		sdl->sdl_index = ifp->if_index;
748 		sdl->sdl_type = IFT_ETHER;
749 		sdl->sdl_alen = ETHER_ADDR_LEN;
750 		e_addr = LLADDR(sdl);
751 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
752 		*llsa = (struct sockaddr *)sdl;
753 		return 0;
754 #endif
755 #ifdef INET6
756 	case AF_INET6:
757 		sin6 = (struct sockaddr_in6 *)sa;
758 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
759 			/*
760 			 * An IP6 address of 0 means listen to all
761 			 * of the Ethernet multicast address used for IP6.
762 			 * (This is used for multicast routers.)
763 			 */
764 			ifp->if_flags |= IFF_ALLMULTI;
765 			*llsa = NULL;
766 			return 0;
767 		}
768 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
769 			return EADDRNOTAVAIL;
770 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
771 		sdl->sdl_len = sizeof *sdl;
772 		sdl->sdl_family = AF_LINK;
773 		sdl->sdl_index = ifp->if_index;
774 		sdl->sdl_type = IFT_ETHER;
775 		sdl->sdl_alen = ETHER_ADDR_LEN;
776 		e_addr = LLADDR(sdl);
777 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
778 		*llsa = (struct sockaddr *)sdl;
779 		return 0;
780 #endif
781 
782 	default:
783 		/*
784 		 * Well, the text isn't quite right, but it's the name
785 		 * that counts...
786 		 */
787 		return EAFNOSUPPORT;
788 	}
789 }
790 
791 #if 0
792 /*
793  * This is for reference.  We have a table-driven version
794  * of the little-endian crc32 generator, which is faster
795  * than the double-loop.
796  */
797 uint32_t
798 ether_crc32_le(const uint8_t *buf, size_t len)
799 {
800 	uint32_t c, crc, carry;
801 	size_t i, j;
802 
803 	crc = 0xffffffffU;	/* initial value */
804 
805 	for (i = 0; i < len; i++) {
806 		c = buf[i];
807 		for (j = 0; j < 8; j++) {
808 			carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
809 			crc >>= 1;
810 			c >>= 1;
811 			if (carry)
812 				crc = (crc ^ ETHER_CRC_POLY_LE);
813 		}
814 	}
815 
816 	return (crc);
817 }
818 #else
819 uint32_t
820 ether_crc32_le(const uint8_t *buf, size_t len)
821 {
822 	static const uint32_t crctab[] = {
823 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
824 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
825 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
826 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
827 	};
828 	uint32_t crc;
829 	size_t i;
830 
831 	crc = 0xffffffffU;	/* initial value */
832 
833 	for (i = 0; i < len; i++) {
834 		crc ^= buf[i];
835 		crc = (crc >> 4) ^ crctab[crc & 0xf];
836 		crc = (crc >> 4) ^ crctab[crc & 0xf];
837 	}
838 
839 	return (crc);
840 }
841 #endif
842 
843 uint32_t
844 ether_crc32_be(const uint8_t *buf, size_t len)
845 {
846 	uint32_t c, crc, carry;
847 	size_t i, j;
848 
849 	crc = 0xffffffffU;	/* initial value */
850 
851 	for (i = 0; i < len; i++) {
852 		c = buf[i];
853 		for (j = 0; j < 8; j++) {
854 			carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
855 			crc <<= 1;
856 			c >>= 1;
857 			if (carry)
858 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
859 		}
860 	}
861 
862 	return (crc);
863 }
864 
865 /*
866  * find the size of ethernet header, and call classifier
867  */
868 void
869 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m,
870 		   struct altq_pktattr *pktattr)
871 {
872 	struct ether_header *eh;
873 	uint16_t ether_type;
874 	int hlen, af, hdrsize;
875 
876 	hlen = sizeof(struct ether_header);
877 	eh = mtod(m, struct ether_header *);
878 
879 	ether_type = ntohs(eh->ether_type);
880 	if (ether_type < ETHERMTU) {
881 		/* ick! LLC/SNAP */
882 		struct llc *llc = (struct llc *)(eh + 1);
883 		hlen += 8;
884 
885 		if (m->m_len < hlen ||
886 		    llc->llc_dsap != LLC_SNAP_LSAP ||
887 		    llc->llc_ssap != LLC_SNAP_LSAP ||
888 		    llc->llc_control != LLC_UI)
889 			goto bad;  /* not snap! */
890 
891 		ether_type = ntohs(llc->llc_un.type_snap.ether_type);
892 	}
893 
894 	if (ether_type == ETHERTYPE_IP) {
895 		af = AF_INET;
896 		hdrsize = 20;  /* sizeof(struct ip) */
897 #ifdef INET6
898 	} else if (ether_type == ETHERTYPE_IPV6) {
899 		af = AF_INET6;
900 		hdrsize = 40;  /* sizeof(struct ip6_hdr) */
901 #endif
902 	} else
903 		goto bad;
904 
905 	while (m->m_len <= hlen) {
906 		hlen -= m->m_len;
907 		m = m->m_next;
908 	}
909 	if (m->m_len < hlen + hdrsize) {
910 		/*
911 		 * ip header is not in a single mbuf.  this should not
912 		 * happen in the current code.
913 		 * (todo: use m_pulldown in the future)
914 		 */
915 		goto bad;
916 	}
917 	m->m_data += hlen;
918 	m->m_len -= hlen;
919 	ifq_classify(ifq, m, af, pktattr);
920 	m->m_data -= hlen;
921 	m->m_len += hlen;
922 
923 	return;
924 
925 bad:
926 	pktattr->pattr_class = NULL;
927 	pktattr->pattr_hdr = NULL;
928 	pktattr->pattr_af = AF_UNSPEC;
929 }
930 
931 static void
932 ether_restore_header(struct mbuf **m0, const struct ether_header *eh,
933 		     const struct ether_header *save_eh)
934 {
935 	struct mbuf *m = *m0;
936 
937 	ether_restore_hdr++;
938 
939 	/*
940 	 * Prepend the header, optimize for the common case of
941 	 * eh pointing into the mbuf.
942 	 */
943 	if ((const void *)(eh + 1) == (void *)m->m_data) {
944 		m->m_data -= ETHER_HDR_LEN;
945 		m->m_len += ETHER_HDR_LEN;
946 		m->m_pkthdr.len += ETHER_HDR_LEN;
947 	} else {
948 		ether_prepend_hdr++;
949 
950 		M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT);
951 		if (m != NULL) {
952 			bcopy(save_eh, mtod(m, struct ether_header *),
953 			      ETHER_HDR_LEN);
954 		}
955 	}
956 	*m0 = m;
957 }
958 
959 /*
960  * Upper layer processing for a received Ethernet packet.
961  */
962 void
963 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m)
964 {
965 	struct ether_header *eh;
966 	int isr, discard = 0;
967 	u_short ether_type;
968 	struct ip_fw *rule = NULL;
969 
970 	M_ASSERTPKTHDR(m);
971 	KASSERT(m->m_len >= ETHER_HDR_LEN,
972 		("ether header is not contiguous!"));
973 
974 	eh = mtod(m, struct ether_header *);
975 
976 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
977 		struct m_tag *mtag;
978 
979 		/* Extract info from dummynet tag */
980 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
981 		KKASSERT(mtag != NULL);
982 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
983 		KKASSERT(rule != NULL);
984 
985 		m_tag_delete(m, mtag);
986 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
987 
988 		/* packet is passing the second time */
989 		goto post_stats;
990 	}
991 
992 	/*
993 	 * We got a packet which was unicast to a different Ethernet
994 	 * address.  If the driver is working properly, then this
995 	 * situation can only happen when the interface is in
996 	 * promiscuous mode.  We defer the packet discarding until the
997 	 * vlan processing is done, so that vlan/bridge or vlan/netgraph
998 	 * could work.
999 	 */
1000 	if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) &&
1001 	    !ETHER_IS_MULTICAST(eh->ether_dhost) &&
1002 	    bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) {
1003 		if (ether_debug & 1) {
1004 			kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
1005 				"%02x:%02x:%02x:%02x:%02x:%02x "
1006 				"%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n",
1007 				eh->ether_dhost[0],
1008 				eh->ether_dhost[1],
1009 				eh->ether_dhost[2],
1010 				eh->ether_dhost[3],
1011 				eh->ether_dhost[4],
1012 				eh->ether_dhost[5],
1013 				eh->ether_shost[0],
1014 				eh->ether_shost[1],
1015 				eh->ether_shost[2],
1016 				eh->ether_shost[3],
1017 				eh->ether_shost[4],
1018 				eh->ether_shost[5],
1019 				eh->ether_type,
1020 				((u_char *)IFP2AC(ifp)->ac_enaddr)[0],
1021 				((u_char *)IFP2AC(ifp)->ac_enaddr)[1],
1022 				((u_char *)IFP2AC(ifp)->ac_enaddr)[2],
1023 				((u_char *)IFP2AC(ifp)->ac_enaddr)[3],
1024 				((u_char *)IFP2AC(ifp)->ac_enaddr)[4],
1025 				((u_char *)IFP2AC(ifp)->ac_enaddr)[5]
1026 			);
1027 		}
1028 		if ((ether_debug & 2) == 0)
1029 			discard = 1;
1030 	}
1031 
1032 post_stats:
1033 	if (IPFW_LOADED && ether_ipfw != 0 && !discard) {
1034 		struct ether_header save_eh = *eh;
1035 
1036 		/* XXX old crufty stuff, needs to be removed */
1037 		m_adj(m, sizeof(struct ether_header));
1038 
1039 		if (!ether_ipfw_chk(&m, NULL, &rule, eh)) {
1040 			m_freem(m);
1041 			return;
1042 		}
1043 
1044 		ether_restore_header(&m, eh, &save_eh);
1045 		if (m == NULL)
1046 			return;
1047 		eh = mtod(m, struct ether_header *);
1048 	}
1049 
1050 	ether_type = ntohs(eh->ether_type);
1051 	KKASSERT(ether_type != ETHERTYPE_VLAN);
1052 
1053 	if (m->m_flags & M_VLANTAG) {
1054 		void (*vlan_input_func)(struct mbuf *);
1055 
1056 		vlan_input_func = vlan_input_p;
1057 		if (vlan_input_func != NULL) {
1058 			vlan_input_func(m);
1059 		} else {
1060 			IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1061 			m_freem(m);
1062 		}
1063 		return;
1064 	}
1065 
1066 	/*
1067 	 * If we have been asked to discard this packet
1068 	 * (e.g. not for us), drop it before entering
1069 	 * the upper layer.
1070 	 */
1071 	if (discard) {
1072 		m_freem(m);
1073 		return;
1074 	}
1075 
1076 	/*
1077 	 * Clear protocol specific flags,
1078 	 * before entering the upper layer.
1079 	 */
1080 	m->m_flags &= ~M_ETHER_FLAGS;
1081 
1082 	/* Strip ethernet header. */
1083 	m_adj(m, sizeof(struct ether_header));
1084 
1085 	switch (ether_type) {
1086 #ifdef INET
1087 	case ETHERTYPE_IP:
1088 		if ((m->m_flags & M_LENCHECKED) == 0) {
1089 			if (!ip_lengthcheck(&m, 0))
1090 				return;
1091 		}
1092 		if (ipflow_fastforward(m))
1093 			return;
1094 		isr = NETISR_IP;
1095 		break;
1096 
1097 	case ETHERTYPE_ARP:
1098 		if (ifp->if_flags & IFF_NOARP) {
1099 			/* Discard packet if ARP is disabled on interface */
1100 			m_freem(m);
1101 			return;
1102 		}
1103 		isr = NETISR_ARP;
1104 		break;
1105 #endif
1106 
1107 #ifdef INET6
1108 	case ETHERTYPE_IPV6:
1109 		isr = NETISR_IPV6;
1110 		break;
1111 #endif
1112 
1113 #ifdef IPX
1114 	case ETHERTYPE_IPX:
1115 		if (ef_inputp) {
1116 			/*
1117 			 * Hold BGL and recheck ef_inputp
1118 			 */
1119 			get_mplock();
1120 			if (ef_inputp && ef_inputp(ifp, eh, m) == 0) {
1121 				rel_mplock();
1122 				return;
1123 			}
1124 			rel_mplock();
1125 		}
1126 		isr = NETISR_IPX;
1127 		break;
1128 #endif
1129 
1130 #ifdef MPLS
1131 	case ETHERTYPE_MPLS:
1132 	case ETHERTYPE_MPLS_MCAST:
1133 		/* Should have been set by ether_input_pkt(). */
1134 		KKASSERT(m->m_flags & M_MPLSLABELED);
1135 		isr = NETISR_MPLS;
1136 		break;
1137 #endif
1138 
1139 	default:
1140 		/*
1141 		 * The accurate msgport is not determined before
1142 		 * we reach here, so recharacterize packet.
1143 		 */
1144 		m->m_flags &= ~M_HASH;
1145 #ifdef IPX
1146 		if (ef_inputp) {
1147 			/*
1148 			 * Hold BGL and recheck ef_inputp
1149 			 */
1150 			get_mplock();
1151 			if (ef_inputp && ef_inputp(ifp, eh, m) == 0) {
1152 				rel_mplock();
1153 				return;
1154 			}
1155 			rel_mplock();
1156 		}
1157 #endif
1158 		if (ng_ether_input_orphan_p != NULL) {
1159 			/*
1160 			 * Put back the ethernet header so netgraph has a
1161 			 * consistent view of inbound packets.
1162 			 */
1163 			M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT);
1164 			if (m == NULL) {
1165 				/*
1166 				 * M_PREPEND frees the mbuf in case of failure.
1167 				 */
1168 				return;
1169 			}
1170 			/*
1171 			 * Hold BGL and recheck ng_ether_input_orphan_p
1172 			 */
1173 			get_mplock();
1174 			if (ng_ether_input_orphan_p != NULL) {
1175 				ng_ether_input_orphan_p(ifp, m);
1176 				rel_mplock();
1177 				return;
1178 			}
1179 			rel_mplock();
1180 		}
1181 		m_freem(m);
1182 		return;
1183 	}
1184 
1185 	if (m->m_flags & M_HASH) {
1186 		if (&curthread->td_msgport == netisr_portfn(m->m_pkthdr.hash)) {
1187 			netisr_handle(isr, m);
1188 			return;
1189 		} else {
1190 			/*
1191 			 * XXX Something is wrong,
1192 			 * we probably should panic here!
1193 			 */
1194 			m->m_flags &= ~M_HASH;
1195 			atomic_add_long(&ether_input_wronghash, 1);
1196 		}
1197 	}
1198 #ifdef RSS_DEBUG
1199 	atomic_add_long(&ether_input_requeue, 1);
1200 #endif
1201 	netisr_queue(isr, m);
1202 }
1203 
1204 /*
1205  * First we perform any link layer operations, then continue to the
1206  * upper layers with ether_demux_oncpu().
1207  */
1208 static void
1209 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m)
1210 {
1211 #ifdef CARP
1212 	void *carp;
1213 #endif
1214 
1215 	if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) {
1216 		/*
1217 		 * Receiving interface's flags are changed, when this
1218 		 * packet is waiting for processing; discard it.
1219 		 */
1220 		m_freem(m);
1221 		return;
1222 	}
1223 
1224 	/*
1225 	 * Tap the packet off here for a bridge.  bridge_input()
1226 	 * will return NULL if it has consumed the packet, otherwise
1227 	 * it gets processed as normal.  Note that bridge_input()
1228 	 * will always return the original packet if we need to
1229 	 * process it locally.
1230 	 */
1231 	if (ifp->if_bridge) {
1232 		KASSERT(bridge_input_p != NULL,
1233 			("%s: if_bridge not loaded!", __func__));
1234 
1235 		if(m->m_flags & M_ETHER_BRIDGED) {
1236 			m->m_flags &= ~M_ETHER_BRIDGED;
1237 		} else {
1238 			m = bridge_input_p(ifp, m);
1239 			if (m == NULL)
1240 				return;
1241 
1242 			KASSERT(ifp == m->m_pkthdr.rcvif,
1243 				("bridge_input_p changed rcvif"));
1244 		}
1245 	}
1246 
1247 #ifdef CARP
1248 	carp = ifp->if_carp;
1249 	if (carp) {
1250 		m = carp_input(carp, m);
1251 		if (m == NULL)
1252 			return;
1253 		KASSERT(ifp == m->m_pkthdr.rcvif,
1254 		    ("carp_input changed rcvif"));
1255 	}
1256 #endif
1257 
1258 	/* Handle ng_ether(4) processing, if any */
1259 	if (ng_ether_input_p != NULL) {
1260 		/*
1261 		 * Hold BGL and recheck ng_ether_input_p
1262 		 */
1263 		get_mplock();
1264 		if (ng_ether_input_p != NULL)
1265 			ng_ether_input_p(ifp, &m);
1266 		rel_mplock();
1267 
1268 		if (m == NULL)
1269 			return;
1270 	}
1271 
1272 	/* Continue with upper layer processing */
1273 	ether_demux_oncpu(ifp, m);
1274 }
1275 
1276 /*
1277  * Perform certain functions of ether_input_pkt():
1278  * - Test IFF_UP
1279  * - Update statistics
1280  * - Run bpf(4) tap if requested
1281  * Then pass the packet to ether_input_oncpu().
1282  *
1283  * This function should be used by pseudo interface (e.g. vlan(4)),
1284  * when it tries to claim that the packet is received by it.
1285  *
1286  * REINPUT_KEEPRCVIF
1287  * REINPUT_RUNBPF
1288  */
1289 void
1290 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags)
1291 {
1292 	/* Discard packet if interface is not up */
1293 	if (!(ifp->if_flags & IFF_UP)) {
1294 		m_freem(m);
1295 		return;
1296 	}
1297 
1298 	/*
1299 	 * Change receiving interface.  The bridge will often pass a flag to
1300 	 * ask that this not be done so ARPs get applied to the correct
1301 	 * side.
1302 	 */
1303 	if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 ||
1304 	    m->m_pkthdr.rcvif == NULL) {
1305 		m->m_pkthdr.rcvif = ifp;
1306 	}
1307 
1308 	/* Update statistics */
1309 	IFNET_STAT_INC(ifp, ipackets, 1);
1310 	IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1311 	if (m->m_flags & (M_MCAST | M_BCAST))
1312 		IFNET_STAT_INC(ifp, imcasts, 1);
1313 
1314 	if (reinput_flags & REINPUT_RUNBPF)
1315 		BPF_MTAP(ifp, m);
1316 
1317 	ether_input_oncpu(ifp, m);
1318 }
1319 
1320 static __inline boolean_t
1321 ether_vlancheck(struct mbuf **m0)
1322 {
1323 	struct mbuf *m = *m0;
1324 	struct ether_header *eh;
1325 	uint16_t ether_type;
1326 
1327 	eh = mtod(m, struct ether_header *);
1328 	ether_type = ntohs(eh->ether_type);
1329 
1330 	if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG) == 0) {
1331 		/*
1332 		 * Extract vlan tag if hardware does not do it for us
1333 		 */
1334 		vlan_ether_decap(&m);
1335 		if (m == NULL)
1336 			goto failed;
1337 
1338 		eh = mtod(m, struct ether_header *);
1339 		ether_type = ntohs(eh->ether_type);
1340 	}
1341 
1342 	if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG)) {
1343 		/*
1344 		 * To prevent possible dangerous recursion,
1345 		 * we don't do vlan-in-vlan
1346 		 */
1347 		IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1348 		goto failed;
1349 	}
1350 	KKASSERT(ether_type != ETHERTYPE_VLAN);
1351 
1352 	m->m_flags |= M_ETHER_VLANCHECKED;
1353 	*m0 = m;
1354 	return TRUE;
1355 failed:
1356 	if (m != NULL)
1357 		m_freem(m);
1358 	*m0 = NULL;
1359 	return FALSE;
1360 }
1361 
1362 static void
1363 ether_input_handler(netmsg_t nmsg)
1364 {
1365 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1366 	struct ether_header *eh;
1367 	struct ifnet *ifp;
1368 	struct mbuf *m;
1369 
1370 	m = nmp->nm_packet;
1371 	M_ASSERTPKTHDR(m);
1372 
1373 	if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) {
1374 		if (!ether_vlancheck(&m)) {
1375 			KKASSERT(m == NULL);
1376 			return;
1377 		}
1378 	}
1379 	if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) ||
1380 	    __predict_false(ether_input_ckhash)) {
1381 		int isr;
1382 
1383 		/*
1384 		 * Need to verify the hash supplied by the hardware
1385 		 * which could be wrong.
1386 		 */
1387 		m->m_flags &= ~(M_HASH | M_CKHASH);
1388 		isr = ether_characterize(&m);
1389 		if (m == NULL)
1390 			return;
1391 		KKASSERT(m->m_flags & M_HASH);
1392 
1393 		if (m->m_pkthdr.hash != mycpuid) {
1394 			/*
1395 			 * Wrong hardware supplied hash; redispatch
1396 			 */
1397 			ether_dispatch(isr, m);
1398 			if (__predict_false(ether_input_ckhash))
1399 				atomic_add_long(&ether_input_wronghwhash, 1);
1400 			return;
1401 		}
1402 	}
1403 	ifp = m->m_pkthdr.rcvif;
1404 
1405 	eh = mtod(m, struct ether_header *);
1406 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
1407 		if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
1408 			 ifp->if_addrlen) == 0)
1409 			m->m_flags |= M_BCAST;
1410 		else
1411 			m->m_flags |= M_MCAST;
1412 		IFNET_STAT_INC(ifp, imcasts, 1);
1413 	}
1414 
1415 	ether_input_oncpu(ifp, m);
1416 }
1417 
1418 /*
1419  * Send the packet to the target msgport
1420  *
1421  * At this point the packet had better be characterized (M_HASH set),
1422  * so we know which cpu to send it to.
1423  */
1424 static void
1425 ether_dispatch(int isr, struct mbuf *m)
1426 {
1427 	struct netmsg_packet *pmsg;
1428 
1429 	KKASSERT(m->m_flags & M_HASH);
1430 	pmsg = &m->m_hdr.mh_netmsg;
1431 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1432 		    0, ether_input_handler);
1433 	pmsg->nm_packet = m;
1434 	pmsg->base.lmsg.u.ms_result = isr;
1435 
1436 	logether(disp_beg, NULL);
1437 	lwkt_sendmsg(netisr_portfn(m->m_pkthdr.hash), &pmsg->base.lmsg);
1438 	logether(disp_end, NULL);
1439 }
1440 
1441 /*
1442  * Process a received Ethernet packet.
1443  *
1444  * The ethernet header is assumed to be in the mbuf so the caller
1445  * MUST MAKE SURE that there are at least sizeof(struct ether_header)
1446  * bytes in the first mbuf.
1447  */
1448 void
1449 ether_input_pkt(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi)
1450 {
1451 	int isr;
1452 
1453 	M_ASSERTPKTHDR(m);
1454 
1455 	/* Discard packet if interface is not up */
1456 	if (!(ifp->if_flags & IFF_UP)) {
1457 		m_freem(m);
1458 		return;
1459 	}
1460 
1461 	if (m->m_len < sizeof(struct ether_header)) {
1462 		/* XXX error in the caller. */
1463 		m_freem(m);
1464 		return;
1465 	}
1466 
1467 	m->m_pkthdr.rcvif = ifp;
1468 
1469 	logether(pkt_beg, ifp);
1470 
1471 	ETHER_BPF_MTAP(ifp, m);
1472 
1473 	IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1474 
1475 	if (ifp->if_flags & IFF_MONITOR) {
1476 		struct ether_header *eh;
1477 
1478 		eh = mtod(m, struct ether_header *);
1479 		if (ETHER_IS_MULTICAST(eh->ether_dhost))
1480 			IFNET_STAT_INC(ifp, imcasts, 1);
1481 
1482 		/*
1483 		 * Interface marked for monitoring; discard packet.
1484 		 */
1485 		m_freem(m);
1486 
1487 		logether(pkt_end, ifp);
1488 		return;
1489 	}
1490 
1491 	/*
1492 	 * If the packet has been characterized (pi->pi_netisr / M_HASH)
1493 	 * we can dispatch it immediately without further inspection.
1494 	 */
1495 	if (pi != NULL && (m->m_flags & M_HASH)) {
1496 #ifdef RSS_DEBUG
1497 		atomic_add_long(&ether_pktinfo_try, 1);
1498 #endif
1499 		netisr_hashcheck(pi->pi_netisr, m, pi);
1500 		if (m->m_flags & M_HASH) {
1501 			ether_dispatch(pi->pi_netisr, m);
1502 #ifdef RSS_DEBUG
1503 			atomic_add_long(&ether_pktinfo_hit, 1);
1504 #endif
1505 			logether(pkt_end, ifp);
1506 			return;
1507 		}
1508 	}
1509 #ifdef RSS_DEBUG
1510 	else if (ifp->if_capenable & IFCAP_RSS) {
1511 		if (pi == NULL)
1512 			atomic_add_long(&ether_rss_nopi, 1);
1513 		else
1514 			atomic_add_long(&ether_rss_nohash, 1);
1515 	}
1516 #endif
1517 
1518 	/*
1519 	 * Packet hash will be recalculated by software, so clear
1520 	 * the M_HASH and M_CKHASH flag set by the driver; the hash
1521 	 * value calculated by the hardware may not be exactly what
1522 	 * we want.
1523 	 */
1524 	m->m_flags &= ~(M_HASH | M_CKHASH);
1525 
1526 	if (!ether_vlancheck(&m)) {
1527 		KKASSERT(m == NULL);
1528 		logether(pkt_end, ifp);
1529 		return;
1530 	}
1531 
1532 	isr = ether_characterize(&m);
1533 	if (m == NULL) {
1534 		logether(pkt_end, ifp);
1535 		return;
1536 	}
1537 
1538 	/*
1539 	 * Finally dispatch it
1540 	 */
1541 	ether_dispatch(isr, m);
1542 
1543 	logether(pkt_end, ifp);
1544 }
1545 
1546 static int
1547 ether_characterize(struct mbuf **m0)
1548 {
1549 	struct mbuf *m = *m0;
1550 	struct ether_header *eh;
1551 	uint16_t ether_type;
1552 	int isr;
1553 
1554 	eh = mtod(m, struct ether_header *);
1555 	ether_type = ntohs(eh->ether_type);
1556 
1557 	/*
1558 	 * Map ether type to netisr id.
1559 	 */
1560 	switch (ether_type) {
1561 #ifdef INET
1562 	case ETHERTYPE_IP:
1563 		isr = NETISR_IP;
1564 		break;
1565 
1566 	case ETHERTYPE_ARP:
1567 		isr = NETISR_ARP;
1568 		break;
1569 #endif
1570 
1571 #ifdef INET6
1572 	case ETHERTYPE_IPV6:
1573 		isr = NETISR_IPV6;
1574 		break;
1575 #endif
1576 
1577 #ifdef IPX
1578 	case ETHERTYPE_IPX:
1579 		isr = NETISR_IPX;
1580 		break;
1581 #endif
1582 
1583 #ifdef MPLS
1584 	case ETHERTYPE_MPLS:
1585 	case ETHERTYPE_MPLS_MCAST:
1586 		m->m_flags |= M_MPLSLABELED;
1587 		isr = NETISR_MPLS;
1588 		break;
1589 #endif
1590 
1591 	default:
1592 		/*
1593 		 * NETISR_MAX is an invalid value; it is chosen to let
1594 		 * netisr_characterize() know that we have no clear
1595 		 * idea where this packet should go.
1596 		 */
1597 		isr = NETISR_MAX;
1598 		break;
1599 	}
1600 
1601 	/*
1602 	 * Ask the isr to characterize the packet since we couldn't.
1603 	 * This is an attempt to optimally get us onto the correct protocol
1604 	 * thread.
1605 	 */
1606 	netisr_characterize(isr, &m, sizeof(struct ether_header));
1607 
1608 	*m0 = m;
1609 	return isr;
1610 }
1611 
1612 static void
1613 ether_demux_handler(netmsg_t nmsg)
1614 {
1615 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1616 	struct ifnet *ifp;
1617 	struct mbuf *m;
1618 
1619 	m = nmp->nm_packet;
1620 	M_ASSERTPKTHDR(m);
1621 	ifp = m->m_pkthdr.rcvif;
1622 
1623 	ether_demux_oncpu(ifp, m);
1624 }
1625 
1626 void
1627 ether_demux(struct mbuf *m)
1628 {
1629 	struct netmsg_packet *pmsg;
1630 	int isr;
1631 
1632 	isr = ether_characterize(&m);
1633 	if (m == NULL)
1634 		return;
1635 
1636 	KKASSERT(m->m_flags & M_HASH);
1637 	pmsg = &m->m_hdr.mh_netmsg;
1638 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1639 	    0, ether_demux_handler);
1640 	pmsg->nm_packet = m;
1641 	pmsg->base.lmsg.u.ms_result = isr;
1642 
1643 	lwkt_sendmsg(netisr_portfn(m->m_pkthdr.hash), &pmsg->base.lmsg);
1644 }
1645 
1646 boolean_t
1647 ether_tso_pullup(struct mbuf **mp, int *hoff0, struct ip **ip, int *iphlen,
1648     struct tcphdr **th, int *thoff)
1649 {
1650 	struct mbuf *m = *mp;
1651 	struct ether_header *eh;
1652 	uint16_t type;
1653 	int hoff;
1654 
1655 	KASSERT(M_WRITABLE(m), ("not writable"));
1656 
1657 	hoff = ETHER_HDR_LEN;
1658 	if (m->m_len < hoff) {
1659 		m = m_pullup(m, hoff);
1660 		if (m == NULL)
1661 			goto failed;
1662 	}
1663 	eh = mtod(m, struct ether_header *);
1664 	type = eh->ether_type;
1665 
1666 	if (type == htons(ETHERTYPE_VLAN)) {
1667 		struct ether_vlan_header *evh;
1668 
1669 		hoff += EVL_ENCAPLEN;
1670 		if (m->m_len < hoff) {
1671 			m = m_pullup(m, hoff);
1672 			if (m == NULL)
1673 				goto failed;
1674 		}
1675 		evh = mtod(m, struct ether_vlan_header *);
1676 		type = evh->evl_proto;
1677 	}
1678 	KASSERT(type == htons(ETHERTYPE_IP), ("not IP %d", ntohs(type)));
1679 
1680 	*mp = m;
1681 	*hoff0 = hoff;
1682 	return tcp_tso_pullup(mp, hoff, ip, iphlen, th, thoff);
1683 
1684 failed:
1685 	if (m != NULL)
1686 		m_freem(m);
1687 	*mp = NULL;
1688 	return FALSE;
1689 }
1690 
1691 u_char *
1692 kether_aton(const char *macstr, u_char *addr)
1693 {
1694         unsigned int o0, o1, o2, o3, o4, o5;
1695         int n;
1696 
1697         if (macstr == NULL || addr == NULL)
1698                 return NULL;
1699 
1700         n = ksscanf(macstr, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2,
1701             &o3, &o4, &o5);
1702         if (n != 6)
1703                 return NULL;
1704 
1705         addr[0] = o0;
1706         addr[1] = o1;
1707         addr[2] = o2;
1708         addr[3] = o3;
1709         addr[4] = o4;
1710         addr[5] = o5;
1711 
1712         return addr;
1713 }
1714 
1715 char *
1716 kether_ntoa(const u_char *addr, char *buf)
1717 {
1718         int len = ETHER_ADDRSTRLEN + 1;
1719         int n;
1720 
1721         n = ksnprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0],
1722             addr[1], addr[2], addr[3], addr[4], addr[5]);
1723 
1724         if (n < 17)
1725                 return NULL;
1726 
1727         return buf;
1728 }
1729 
1730 MODULE_VERSION(ether, 1);
1731