xref: /dragonfly/sys/net/if_ethersubr.c (revision fae225dc)
1 /*
2  * Copyright (c) 1982, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
30  * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mpls.h"
36 #include "opt_netgraph.h"
37 #include "opt_carp.h"
38 #include "opt_rss.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/globaldata.h>
43 #include <sys/kernel.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/msgport.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52 #include <sys/thread.h>
53 
54 #include <sys/thread2.h>
55 #include <sys/mplock2.h>
56 
57 #include <net/if.h>
58 #include <net/netisr.h>
59 #include <net/route.h>
60 #include <net/if_llc.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/ifq_var.h>
64 #include <net/bpf.h>
65 #include <net/ethernet.h>
66 #include <net/vlan/if_vlan_ether.h>
67 #include <net/vlan/if_vlan_var.h>
68 #include <net/netmsg2.h>
69 #include <net/netisr2.h>
70 
71 #if defined(INET) || defined(INET6)
72 #include <netinet/in.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/tcp_var.h>
75 #include <netinet/if_ether.h>
76 #include <netinet/ip_flow.h>
77 #include <net/ipfw/ip_fw.h>
78 #include <net/ipfw3/ip_fw.h>
79 #include <net/dummynet/ip_dummynet.h>
80 #endif
81 #ifdef INET6
82 #include <netinet6/nd6.h>
83 #endif
84 
85 #ifdef CARP
86 #include <netinet/ip_carp.h>
87 #endif
88 
89 #ifdef MPLS
90 #include <netproto/mpls/mpls.h>
91 #endif
92 
93 /* netgraph node hooks for ng_ether(4) */
94 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
95 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
96 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
97 void	(*ng_ether_attach_p)(struct ifnet *ifp);
98 void	(*ng_ether_detach_p)(struct ifnet *ifp);
99 
100 void	(*vlan_input_p)(struct mbuf *);
101 
102 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *,
103 			struct rtentry *);
104 static void ether_restore_header(struct mbuf **, const struct ether_header *,
105 				 const struct ether_header *);
106 static int ether_characterize(struct mbuf **);
107 static void ether_dispatch(int, struct mbuf *, int);
108 
109 /*
110  * if_bridge support
111  */
112 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
113 int (*bridge_output_p)(struct ifnet *, struct mbuf *);
114 void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
115 struct ifnet *(*bridge_interface_p)(void *if_bridge);
116 
117 static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
118 			      struct sockaddr *);
119 
120 /*
121  * if_lagg(4) support
122  */
123 void	(*lagg_input_p)(struct ifnet *, struct mbuf *);
124 int (*lagg_output_p)(struct ifnet *, struct mbuf *);
125 
126 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
127 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
128 };
129 
130 #define gotoerr(e) do { error = (e); goto bad; } while (0)
131 #define IFP2AC(ifp) ((struct arpcom *)(ifp))
132 
133 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
134 				struct ip_fw **rule,
135 				const struct ether_header *eh);
136 
137 static int ether_ipfw;
138 static u_long ether_restore_hdr;
139 static u_long ether_prepend_hdr;
140 static u_long ether_input_wronghash;
141 static int ether_debug;
142 
143 #ifdef RSS_DEBUG
144 static u_long ether_pktinfo_try;
145 static u_long ether_pktinfo_hit;
146 static u_long ether_rss_nopi;
147 static u_long ether_rss_nohash;
148 static u_long ether_input_requeue;
149 #endif
150 static u_long ether_input_wronghwhash;
151 static int ether_input_ckhash;
152 
153 #define ETHER_TSOLEN_DEFAULT	(4 * ETHERMTU)
154 
155 #define ETHER_NMBCLUSTERS_DEFMIN	32
156 #define ETHER_NMBCLUSTERS_DEFAULT	256
157 
158 static int ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
159 TUNABLE_INT("net.link.ether.tsolen", &ether_tsolen_default);
160 
161 static int ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT;
162 TUNABLE_INT("net.link.ether.nmbclusters", &ether_nmbclusters_default);
163 
164 SYSCTL_DECL(_net_link);
165 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
166 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW,
167     &ether_debug, 0, "Ether debug");
168 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
169     &ether_ipfw, 0, "Pass ether pkts through firewall");
170 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW,
171     &ether_restore_hdr, 0, "# of ether header restoration");
172 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW,
173     &ether_prepend_hdr, 0,
174     "# of ether header restoration which prepends mbuf");
175 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW,
176     &ether_input_wronghash, 0, "# of input packets with wrong hash");
177 SYSCTL_INT(_net_link_ether, OID_AUTO, tsolen, CTLFLAG_RW,
178     &ether_tsolen_default, 0, "Default max TSO length");
179 
180 #ifdef RSS_DEBUG
181 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW,
182     &ether_rss_nopi, 0, "# of packets do not have pktinfo");
183 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW,
184     &ether_rss_nohash, 0, "# of packets do not have hash");
185 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW,
186     &ether_pktinfo_try, 0,
187     "# of tries to find packets' msgport using pktinfo");
188 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW,
189     &ether_pktinfo_hit, 0,
190     "# of packets whose msgport are found using pktinfo");
191 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW,
192     &ether_input_requeue, 0, "# of input packets gets requeued");
193 #endif
194 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW,
195     &ether_input_wronghwhash, 0, "# of input packets with wrong hw hash");
196 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW,
197     &ether_input_ckhash, 0, "always check hash");
198 
199 #define ETHER_KTR_STR		"ifp=%p"
200 #define ETHER_KTR_ARGS	struct ifnet *ifp
201 #ifndef KTR_ETHERNET
202 #define KTR_ETHERNET		KTR_ALL
203 #endif
204 KTR_INFO_MASTER(ether);
205 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS);
206 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS);
207 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS);
208 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS);
209 #define logether(name, arg)	KTR_LOG(ether_ ## name, arg)
210 
211 /*
212  * Ethernet output routine.
213  * Encapsulate a packet of type family for the local net.
214  * Use trailer local net encapsulation if enough data in first
215  * packet leaves a multiple of 512 bytes of data in remainder.
216  * Assumes that ifp is actually pointer to arpcom structure.
217  */
218 static int
219 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
220 	     struct rtentry *rt)
221 {
222 	struct ether_header *eh, *deh;
223 	u_char *edst;
224 	int loop_copy = 0;
225 	int hlen = ETHER_HDR_LEN;	/* link layer header length */
226 	struct arpcom *ac = IFP2AC(ifp);
227 	int error;
228 
229 	ASSERT_NETISR_NCPUS(mycpuid);
230 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
231 
232 	if (ifp->if_flags & IFF_MONITOR)
233 		gotoerr(ENETDOWN);
234 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
235 		gotoerr(ENETDOWN);
236 
237 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
238 	if (m == NULL)
239 		return (ENOBUFS);
240 	m->m_pkthdr.csum_lhlen = sizeof(struct ether_header);
241 	eh = mtod(m, struct ether_header *);
242 	edst = eh->ether_dhost;
243 
244 	/*
245 	 * Fill in the destination ethernet address and frame type.
246 	 */
247 	switch (dst->sa_family) {
248 #ifdef INET
249 	case AF_INET:
250 		if (!arpresolve(ifp, rt, m, dst, edst))
251 			return (0);	/* if not yet resolved */
252 #ifdef MPLS
253 		if (m->m_flags & M_MPLSLABELED)
254 			eh->ether_type = htons(ETHERTYPE_MPLS);
255 		else
256 #endif
257 			eh->ether_type = htons(ETHERTYPE_IP);
258 		break;
259 #endif
260 #ifdef INET6
261 	case AF_INET6:
262 		if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst))
263 			return (0);		/* Something bad happenned. */
264 		eh->ether_type = htons(ETHERTYPE_IPV6);
265 		break;
266 #endif
267 	case pseudo_AF_HDRCMPLT:
268 	case AF_UNSPEC:
269 		loop_copy = -1; /* if this is for us, don't do it */
270 		deh = (struct ether_header *)dst->sa_data;
271 		memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN);
272 		eh->ether_type = deh->ether_type;
273 		break;
274 
275 	default:
276 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
277 		gotoerr(EAFNOSUPPORT);
278 	}
279 
280 	if (dst->sa_family == pseudo_AF_HDRCMPLT)	/* unlikely */
281 		memcpy(eh->ether_shost,
282 		       ((struct ether_header *)dst->sa_data)->ether_shost,
283 		       ETHER_ADDR_LEN);
284 	else
285 		memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN);
286 
287 	/*
288 	 * Bridges require special output handling.
289 	 */
290 	if (ifp->if_bridge) {
291 		KASSERT(bridge_output_p != NULL,
292 			("%s: if_bridge not loaded!", __func__));
293 		return bridge_output_p(ifp, m);
294 	}
295 #if 0 /* XXX */
296 	if (ifp->if_lagg) {
297 		KASSERT(lagg_output_p != NULL,
298 			("%s: if_lagg not loaded!", __func__));
299 		return lagg_output_p(ifp, m);
300 	}
301 #endif
302 
303 	/*
304 	 * If a simplex interface, and the packet is being sent to our
305 	 * Ethernet address or a broadcast address, loopback a copy.
306 	 * XXX To make a simplex device behave exactly like a duplex
307 	 * device, we should copy in the case of sending to our own
308 	 * ethernet address (thus letting the original actually appear
309 	 * on the wire). However, we don't do that here for security
310 	 * reasons and compatibility with the original behavior.
311 	 */
312 	if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
313 		int csum_flags = 0;
314 
315 		if (m->m_pkthdr.csum_flags & CSUM_IP)
316 			csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID);
317 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
318 			csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
319 		if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
320 			struct mbuf *n;
321 
322 			if ((n = m_copypacket(m, M_NOWAIT)) != NULL) {
323 				n->m_pkthdr.csum_flags |= csum_flags;
324 				if (csum_flags & CSUM_DATA_VALID)
325 					n->m_pkthdr.csum_data = 0xffff;
326 				if_simloop(ifp, n, dst->sa_family, hlen);
327 			} else
328 				IFNET_STAT_INC(ifp, iqdrops, 1);
329 		} else if (bcmp(eh->ether_dhost, eh->ether_shost,
330 				ETHER_ADDR_LEN) == 0) {
331 			m->m_pkthdr.csum_flags |= csum_flags;
332 			if (csum_flags & CSUM_DATA_VALID)
333 				m->m_pkthdr.csum_data = 0xffff;
334 			if_simloop(ifp, m, dst->sa_family, hlen);
335 			return (0);	/* XXX */
336 		}
337 	}
338 
339 #ifdef CARP
340 	if (ifp->if_type == IFT_CARP) {
341 		ifp = carp_parent(ifp);
342 		if (ifp == NULL)
343 			gotoerr(ENETUNREACH);
344 
345 		ac = IFP2AC(ifp);
346 
347 		/*
348 		 * Check precondition again
349 		 */
350 		ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
351 
352 		if (ifp->if_flags & IFF_MONITOR)
353 			gotoerr(ENETDOWN);
354 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
355 		    (IFF_UP | IFF_RUNNING))
356 			gotoerr(ENETDOWN);
357 	}
358 #endif
359 
360 	/* Handle ng_ether(4) processing, if any */
361 	if (ng_ether_output_p != NULL) {
362 		/*
363 		 * Hold BGL and recheck ng_ether_output_p
364 		 */
365 		get_mplock();
366 		if (ng_ether_output_p != NULL) {
367 			if ((error = ng_ether_output_p(ifp, &m)) != 0) {
368 				rel_mplock();
369 				goto bad;
370 			}
371 			if (m == NULL) {
372 				rel_mplock();
373 				return (0);
374 			}
375 		}
376 		rel_mplock();
377 	}
378 
379 	/* Continue with link-layer output */
380 	return ether_output_frame(ifp, m);
381 
382 bad:
383 	m_freem(m);
384 	return (error);
385 }
386 
387 /*
388  * Returns the bridge interface an ifp is associated
389  * with.
390  *
391  * Only call if ifp->if_bridge != NULL.
392  */
393 struct ifnet *
394 ether_bridge_interface(struct ifnet *ifp)
395 {
396 	if (bridge_interface_p)
397 		return(bridge_interface_p(ifp->if_bridge));
398 	return (ifp);
399 }
400 
401 /*
402  * Ethernet link layer output routine to send a raw frame to the device.
403  *
404  * This assumes that the 14 byte Ethernet header is present and contiguous
405  * in the first mbuf.
406  */
407 int
408 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
409 {
410 	struct ip_fw *rule = NULL;
411 	int error = 0;
412 	struct altq_pktattr pktattr;
413 
414 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
415 
416 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
417 		struct m_tag *mtag;
418 
419 		/* Extract info from dummynet tag */
420 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
421 		KKASSERT(mtag != NULL);
422 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
423 		KKASSERT(rule != NULL);
424 
425 		m_tag_delete(m, mtag);
426 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
427 	}
428 
429 	if (ifq_is_enabled(&ifp->if_snd))
430 		altq_etherclassify(&ifp->if_snd, m, &pktattr);
431 	crit_enter();
432 	if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0) {
433 		struct ether_header save_eh, *eh;
434 
435 		eh = mtod(m, struct ether_header *);
436 		save_eh = *eh;
437 		m_adj(m, ETHER_HDR_LEN);
438 		if (!ether_ipfw_chk(&m, ifp, &rule, eh)) {
439 			crit_exit();
440 			if (m != NULL) {
441 				m_freem(m);
442 				return ENOBUFS; /* pkt dropped */
443 			} else
444 				return 0;	/* consumed e.g. in a pipe */
445 		}
446 
447 		/* packet was ok, restore the ethernet header */
448 		ether_restore_header(&m, eh, &save_eh);
449 		if (m == NULL) {
450 			crit_exit();
451 			return ENOBUFS;
452 		}
453 	}
454 	crit_exit();
455 
456 	/*
457 	 * Queue message on interface, update output statistics if
458 	 * successful, and start output if interface not yet active.
459 	 */
460 	error = ifq_dispatch(ifp, m, &pktattr);
461 	return (error);
462 }
463 
464 /*
465  * ipfw processing for ethernet packets (in and out).
466  * The second parameter is NULL from ether_demux(), and ifp from
467  * ether_output_frame().
468  */
469 static boolean_t
470 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule,
471 	       const struct ether_header *eh)
472 {
473 	struct ether_header save_eh = *eh;	/* might be a ptr in *m0 */
474 	struct ip_fw_args args;
475 	struct m_tag *mtag;
476 	struct mbuf *m;
477 	int i;
478 
479 	if (*rule != NULL && fw_one_pass)
480 		return TRUE; /* dummynet packet, already partially processed */
481 
482 	/*
483 	 * I need some amount of data to be contiguous.
484 	 */
485 	i = min((*m0)->m_pkthdr.len, max_protohdr);
486 	if ((*m0)->m_len < i) {
487 		*m0 = m_pullup(*m0, i);
488 		if (*m0 == NULL)
489 			return FALSE;
490 	}
491 
492 	/*
493 	 * Clean up tags
494 	 */
495 	if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
496 		m_tag_delete(*m0, mtag);
497 	if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
498 		mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL);
499 		KKASSERT(mtag != NULL);
500 		m_tag_delete(*m0, mtag);
501 		(*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED;
502 	}
503 
504 	args.m = *m0;		/* the packet we are looking at		*/
505 	args.oif = dst;		/* destination, if any			*/
506 	args.rule = *rule;	/* matching rule to restart		*/
507 	args.eh = &save_eh;	/* MAC header for bridged/MAC packets	*/
508 	i = ip_fw_chk_ptr(&args);
509 	*m0 = args.m;
510 	*rule = args.rule;
511 
512 	if (*m0 == NULL)
513 		return FALSE;
514 
515 	switch (i) {
516 	case IP_FW_PASS:
517 		return TRUE;
518 
519 	case IP_FW_DIVERT:
520 	case IP_FW_TEE:
521 	case IP_FW_DENY:
522 		/*
523 		 * XXX at some point add support for divert/forward actions.
524 		 * If none of the above matches, we have to drop the pkt.
525 		 */
526 		return FALSE;
527 
528 	case IP_FW_DUMMYNET:
529 		/*
530 		 * Pass the pkt to dummynet, which consumes it.
531 		 */
532 		m = *m0;	/* pass the original to dummynet */
533 		*m0 = NULL;	/* and nothing back to the caller */
534 
535 		ether_restore_header(&m, eh, &save_eh);
536 		if (m == NULL)
537 			return FALSE;
538 
539 		ip_fw_dn_io_ptr(m, args.cookie,
540 				dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
541 		ip_dn_queue(m);
542 		return FALSE;
543 
544 	default:
545 		panic("unknown ipfw return value: %d", i);
546 	}
547 }
548 
549 /*
550  * Perform common duties while attaching to interface list
551  */
552 void
553 ether_ifattach(struct ifnet *ifp, const uint8_t *lla,
554     lwkt_serialize_t serializer)
555 {
556 	ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header),
557 	    serializer);
558 }
559 
560 void
561 ether_ifattach_bpf(struct ifnet *ifp, const uint8_t *lla,
562     u_int dlt, u_int hdrlen, lwkt_serialize_t serializer)
563 {
564 	struct sockaddr_dl *sdl;
565 	char ethstr[ETHER_ADDRSTRLEN + 1];
566 	struct ifaltq *ifq;
567 	int i;
568 
569 	/*
570 	 * If driver does not configure # of mbuf clusters/jclusters
571 	 * that could sit on the device queues for quite some time,
572 	 * we then assume:
573 	 * - The device queues only consume mbuf clusters.
574 	 * - No more than ether_nmbclusters_default (by default 256)
575 	 *   mbuf clusters will sit on the device queues for quite
576 	 *   some time.
577 	 */
578 	if (ifp->if_nmbclusters <= 0 && ifp->if_nmbjclusters <= 0) {
579 		if (ether_nmbclusters_default < ETHER_NMBCLUSTERS_DEFMIN) {
580 			kprintf("ether nmbclusters %d -> %d\n",
581 			    ether_nmbclusters_default,
582 			    ETHER_NMBCLUSTERS_DEFAULT);
583 			ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT;
584 		}
585 		ifp->if_nmbclusters = ether_nmbclusters_default;
586 	}
587 
588 	ifp->if_type = IFT_ETHER;
589 	ifp->if_addrlen = ETHER_ADDR_LEN;
590 	ifp->if_hdrlen = ETHER_HDR_LEN;
591 	if_attach(ifp, serializer);
592 	ifq = &ifp->if_snd;
593 	for (i = 0; i < ifq->altq_subq_cnt; ++i) {
594 		struct ifaltq_subque *ifsq = ifq_get_subq(ifq, i);
595 
596 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen *
597 		    (ETHER_MAX_LEN - ETHER_CRC_LEN);
598 	}
599 	ifp->if_mtu = ETHERMTU;
600 	if (ifp->if_tsolen <= 0) {
601 		if ((ether_tsolen_default / ETHERMTU) < 2) {
602 			kprintf("ether TSO maxlen %d -> %d\n",
603 			    ether_tsolen_default, ETHER_TSOLEN_DEFAULT);
604 			ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
605 		}
606 		ifp->if_tsolen = ether_tsolen_default;
607 	}
608 	if (ifp->if_baudrate == 0)
609 		ifp->if_baudrate = 10000000;
610 	ifp->if_output = ether_output;
611 	ifp->if_input = ether_input;
612 	ifp->if_resolvemulti = ether_resolvemulti;
613 	ifp->if_broadcastaddr = etherbroadcastaddr;
614 	sdl = IF_LLSOCKADDR(ifp);
615 	sdl->sdl_type = IFT_ETHER;
616 	sdl->sdl_alen = ifp->if_addrlen;
617 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
618 	/*
619 	 * XXX Keep the current drivers happy.
620 	 * XXX Remove once all drivers have been cleaned up
621 	 */
622 	if (lla != IFP2AC(ifp)->ac_enaddr)
623 		bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen);
624 	bpfattach(ifp, dlt, hdrlen);
625 	if (ng_ether_attach_p != NULL)
626 		(*ng_ether_attach_p)(ifp);
627 
628 	if_printf(ifp, "MAC address: %s\n", kether_ntoa(lla, ethstr));
629 }
630 
631 /*
632  * Perform common duties while detaching an Ethernet interface
633  */
634 void
635 ether_ifdetach(struct ifnet *ifp)
636 {
637 	if_down(ifp);
638 
639 	if (ng_ether_detach_p != NULL)
640 		(*ng_ether_detach_p)(ifp);
641 	bpfdetach(ifp);
642 	if_detach(ifp);
643 }
644 
645 int
646 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
647 {
648 	struct ifaddr *ifa = (struct ifaddr *) data;
649 	struct ifreq *ifr = (struct ifreq *) data;
650 	int error = 0;
651 
652 #define IF_INIT(ifp) \
653 do { \
654 	if (((ifp)->if_flags & IFF_UP) == 0) { \
655 		(ifp)->if_flags |= IFF_UP; \
656 		(ifp)->if_init((ifp)->if_softc); \
657 	} \
658 } while (0)
659 
660 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
661 
662 	switch (command) {
663 	case SIOCSIFADDR:
664 		switch (ifa->ifa_addr->sa_family) {
665 #ifdef INET
666 		case AF_INET:
667 			IF_INIT(ifp);	/* before arpwhohas */
668 			arp_ifinit(ifp, ifa);
669 			break;
670 #endif
671 		default:
672 			IF_INIT(ifp);
673 			break;
674 		}
675 		break;
676 
677 	case SIOCGIFADDR:
678 		bcopy(IFP2AC(ifp)->ac_enaddr,
679 		      ((struct sockaddr *)ifr->ifr_data)->sa_data,
680 		      ETHER_ADDR_LEN);
681 		break;
682 
683 	case SIOCSIFMTU:
684 		/*
685 		 * Set the interface MTU.
686 		 */
687 		if (ifr->ifr_mtu > ETHERMTU) {
688 			error = EINVAL;
689 		} else {
690 			ifp->if_mtu = ifr->ifr_mtu;
691 		}
692 		break;
693 	default:
694 		error = EINVAL;
695 		break;
696 	}
697 	return (error);
698 
699 #undef IF_INIT
700 }
701 
702 static int
703 ether_resolvemulti(
704 	struct ifnet *ifp,
705 	struct sockaddr **llsa,
706 	struct sockaddr *sa)
707 {
708 	struct sockaddr_dl *sdl;
709 #ifdef INET
710 	struct sockaddr_in *sin;
711 #endif
712 #ifdef INET6
713 	struct sockaddr_in6 *sin6;
714 #endif
715 	u_char *e_addr;
716 
717 	switch(sa->sa_family) {
718 	case AF_LINK:
719 		/*
720 		 * No mapping needed. Just check that it's a valid MC address.
721 		 */
722 		sdl = (struct sockaddr_dl *)sa;
723 		e_addr = LLADDR(sdl);
724 		if ((e_addr[0] & 1) != 1)
725 			return EADDRNOTAVAIL;
726 		*llsa = NULL;
727 		return 0;
728 
729 #ifdef INET
730 	case AF_INET:
731 		sin = (struct sockaddr_in *)sa;
732 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
733 			return EADDRNOTAVAIL;
734 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
735 		sdl->sdl_len = sizeof *sdl;
736 		sdl->sdl_family = AF_LINK;
737 		sdl->sdl_index = ifp->if_index;
738 		sdl->sdl_type = IFT_ETHER;
739 		sdl->sdl_alen = ETHER_ADDR_LEN;
740 		e_addr = LLADDR(sdl);
741 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
742 		*llsa = (struct sockaddr *)sdl;
743 		return 0;
744 #endif
745 #ifdef INET6
746 	case AF_INET6:
747 		sin6 = (struct sockaddr_in6 *)sa;
748 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
749 			/*
750 			 * An IP6 address of 0 means listen to all
751 			 * of the Ethernet multicast address used for IP6.
752 			 * (This is used for multicast routers.)
753 			 */
754 			ifp->if_flags |= IFF_ALLMULTI;
755 			*llsa = NULL;
756 			return 0;
757 		}
758 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
759 			return EADDRNOTAVAIL;
760 		sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
761 		sdl->sdl_len = sizeof *sdl;
762 		sdl->sdl_family = AF_LINK;
763 		sdl->sdl_index = ifp->if_index;
764 		sdl->sdl_type = IFT_ETHER;
765 		sdl->sdl_alen = ETHER_ADDR_LEN;
766 		e_addr = LLADDR(sdl);
767 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
768 		*llsa = (struct sockaddr *)sdl;
769 		return 0;
770 #endif
771 
772 	default:
773 		/*
774 		 * Well, the text isn't quite right, but it's the name
775 		 * that counts...
776 		 */
777 		return EAFNOSUPPORT;
778 	}
779 }
780 
781 #if 0
782 /*
783  * This is for reference.  We have a table-driven version
784  * of the little-endian crc32 generator, which is faster
785  * than the double-loop.
786  */
787 uint32_t
788 ether_crc32_le(const uint8_t *buf, size_t len)
789 {
790 	uint32_t c, crc, carry;
791 	size_t i, j;
792 
793 	crc = 0xffffffffU;	/* initial value */
794 
795 	for (i = 0; i < len; i++) {
796 		c = buf[i];
797 		for (j = 0; j < 8; j++) {
798 			carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
799 			crc >>= 1;
800 			c >>= 1;
801 			if (carry)
802 				crc = (crc ^ ETHER_CRC_POLY_LE);
803 		}
804 	}
805 
806 	return (crc);
807 }
808 #else
809 uint32_t
810 ether_crc32_le(const uint8_t *buf, size_t len)
811 {
812 	static const uint32_t crctab[] = {
813 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
814 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
815 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
816 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
817 	};
818 	uint32_t crc;
819 	size_t i;
820 
821 	crc = 0xffffffffU;	/* initial value */
822 
823 	for (i = 0; i < len; i++) {
824 		crc ^= buf[i];
825 		crc = (crc >> 4) ^ crctab[crc & 0xf];
826 		crc = (crc >> 4) ^ crctab[crc & 0xf];
827 	}
828 
829 	return (crc);
830 }
831 #endif
832 
833 uint32_t
834 ether_crc32_be(const uint8_t *buf, size_t len)
835 {
836 	uint32_t c, crc, carry;
837 	size_t i, j;
838 
839 	crc = 0xffffffffU;	/* initial value */
840 
841 	for (i = 0; i < len; i++) {
842 		c = buf[i];
843 		for (j = 0; j < 8; j++) {
844 			carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
845 			crc <<= 1;
846 			c >>= 1;
847 			if (carry)
848 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
849 		}
850 	}
851 
852 	return (crc);
853 }
854 
855 /*
856  * find the size of ethernet header, and call classifier
857  */
858 void
859 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m,
860 		   struct altq_pktattr *pktattr)
861 {
862 	struct ether_header *eh;
863 	uint16_t ether_type;
864 	int hlen, af, hdrsize;
865 
866 	hlen = sizeof(struct ether_header);
867 	eh = mtod(m, struct ether_header *);
868 
869 	ether_type = ntohs(eh->ether_type);
870 	if (ether_type < ETHERMTU) {
871 		/* ick! LLC/SNAP */
872 		struct llc *llc = (struct llc *)(eh + 1);
873 		hlen += 8;
874 
875 		if (m->m_len < hlen ||
876 		    llc->llc_dsap != LLC_SNAP_LSAP ||
877 		    llc->llc_ssap != LLC_SNAP_LSAP ||
878 		    llc->llc_control != LLC_UI)
879 			goto bad;  /* not snap! */
880 
881 		ether_type = ntohs(llc->llc_un.type_snap.ether_type);
882 	}
883 
884 	if (ether_type == ETHERTYPE_IP) {
885 		af = AF_INET;
886 		hdrsize = 20;  /* sizeof(struct ip) */
887 #ifdef INET6
888 	} else if (ether_type == ETHERTYPE_IPV6) {
889 		af = AF_INET6;
890 		hdrsize = 40;  /* sizeof(struct ip6_hdr) */
891 #endif
892 	} else
893 		goto bad;
894 
895 	while (m->m_len <= hlen) {
896 		hlen -= m->m_len;
897 		m = m->m_next;
898 	}
899 	if (m->m_len < hlen + hdrsize) {
900 		/*
901 		 * ip header is not in a single mbuf.  this should not
902 		 * happen in the current code.
903 		 * (todo: use m_pulldown in the future)
904 		 */
905 		goto bad;
906 	}
907 	m->m_data += hlen;
908 	m->m_len -= hlen;
909 	ifq_classify(ifq, m, af, pktattr);
910 	m->m_data -= hlen;
911 	m->m_len += hlen;
912 
913 	return;
914 
915 bad:
916 	pktattr->pattr_class = NULL;
917 	pktattr->pattr_hdr = NULL;
918 	pktattr->pattr_af = AF_UNSPEC;
919 }
920 
921 static void
922 ether_restore_header(struct mbuf **m0, const struct ether_header *eh,
923 		     const struct ether_header *save_eh)
924 {
925 	struct mbuf *m = *m0;
926 
927 	ether_restore_hdr++;
928 
929 	/*
930 	 * Prepend the header, optimize for the common case of
931 	 * eh pointing into the mbuf.
932 	 */
933 	if ((const void *)(eh + 1) == (void *)m->m_data) {
934 		m->m_data -= ETHER_HDR_LEN;
935 		m->m_len += ETHER_HDR_LEN;
936 		m->m_pkthdr.len += ETHER_HDR_LEN;
937 	} else {
938 		ether_prepend_hdr++;
939 
940 		M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
941 		if (m != NULL) {
942 			bcopy(save_eh, mtod(m, struct ether_header *),
943 			      ETHER_HDR_LEN);
944 		}
945 	}
946 	*m0 = m;
947 }
948 
949 /*
950  * Upper layer processing for a received Ethernet packet.
951  */
952 void
953 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m)
954 {
955 	struct ether_header *eh;
956 	int isr, discard = 0;
957 	u_short ether_type;
958 	struct ip_fw *rule = NULL;
959 
960 	M_ASSERTPKTHDR(m);
961 	KASSERT(m->m_len >= ETHER_HDR_LEN,
962 		("ether header is not contiguous!"));
963 
964 	eh = mtod(m, struct ether_header *);
965 
966 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
967 		struct m_tag *mtag;
968 
969 		/* Extract info from dummynet tag */
970 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
971 		KKASSERT(mtag != NULL);
972 		rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
973 		KKASSERT(rule != NULL);
974 
975 		m_tag_delete(m, mtag);
976 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
977 
978 		/* packet is passing the second time */
979 		goto post_stats;
980 	}
981 
982 	/*
983 	 * We got a packet which was unicast to a different Ethernet
984 	 * address.  If the driver is working properly, then this
985 	 * situation can only happen when the interface is in
986 	 * promiscuous mode.  We defer the packet discarding until the
987 	 * vlan processing is done, so that vlan/bridge or vlan/netgraph
988 	 * could work.
989 	 */
990 	if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) &&
991 	    !ETHER_IS_MULTICAST(eh->ether_dhost) &&
992 	    bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) {
993 		if (ether_debug & 1) {
994 			kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
995 				"%02x:%02x:%02x:%02x:%02x:%02x "
996 				"%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n",
997 				eh->ether_dhost[0],
998 				eh->ether_dhost[1],
999 				eh->ether_dhost[2],
1000 				eh->ether_dhost[3],
1001 				eh->ether_dhost[4],
1002 				eh->ether_dhost[5],
1003 				eh->ether_shost[0],
1004 				eh->ether_shost[1],
1005 				eh->ether_shost[2],
1006 				eh->ether_shost[3],
1007 				eh->ether_shost[4],
1008 				eh->ether_shost[5],
1009 				eh->ether_type,
1010 				((u_char *)IFP2AC(ifp)->ac_enaddr)[0],
1011 				((u_char *)IFP2AC(ifp)->ac_enaddr)[1],
1012 				((u_char *)IFP2AC(ifp)->ac_enaddr)[2],
1013 				((u_char *)IFP2AC(ifp)->ac_enaddr)[3],
1014 				((u_char *)IFP2AC(ifp)->ac_enaddr)[4],
1015 				((u_char *)IFP2AC(ifp)->ac_enaddr)[5]
1016 			);
1017 		}
1018 		if ((ether_debug & 2) == 0)
1019 			discard = 1;
1020 	}
1021 
1022 post_stats:
1023 	if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0 && !discard) {
1024 		struct ether_header save_eh = *eh;
1025 
1026 		/* XXX old crufty stuff, needs to be removed */
1027 		m_adj(m, sizeof(struct ether_header));
1028 
1029 		if (!ether_ipfw_chk(&m, NULL, &rule, eh)) {
1030 			m_freem(m);
1031 			return;
1032 		}
1033 
1034 		ether_restore_header(&m, eh, &save_eh);
1035 		if (m == NULL)
1036 			return;
1037 		eh = mtod(m, struct ether_header *);
1038 	}
1039 
1040 	ether_type = ntohs(eh->ether_type);
1041 	KKASSERT(ether_type != ETHERTYPE_VLAN);
1042 
1043         /* Handle input from a lagg(4) port */
1044         if (ifp->if_type == IFT_IEEE8023ADLAG) {
1045                 KASSERT(lagg_input_p != NULL,
1046                     ("%s: if_lagg not loaded!", __func__));
1047                 (*lagg_input_p)(ifp, m);
1048 		return;
1049         }
1050 
1051 	if (m->m_flags & M_VLANTAG) {
1052 		void (*vlan_input_func)(struct mbuf *);
1053 
1054 		vlan_input_func = vlan_input_p;
1055 		/* Make sure 'vlan_input_func' is really used. */
1056 		cpu_ccfence();
1057 		if (vlan_input_func != NULL) {
1058 			vlan_input_func(m);
1059 		} else {
1060 			IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1061 			m_freem(m);
1062 		}
1063 		return;
1064 	}
1065 
1066 	/*
1067 	 * If we have been asked to discard this packet
1068 	 * (e.g. not for us), drop it before entering
1069 	 * the upper layer.
1070 	 */
1071 	if (discard) {
1072 		m_freem(m);
1073 		return;
1074 	}
1075 
1076 	/*
1077 	 * Clear protocol specific flags,
1078 	 * before entering the upper layer.
1079 	 */
1080 	m->m_flags &= ~M_ETHER_FLAGS;
1081 
1082 	/* Strip ethernet header. */
1083 	m_adj(m, sizeof(struct ether_header));
1084 
1085 	switch (ether_type) {
1086 #ifdef INET
1087 	case ETHERTYPE_IP:
1088 		if ((m->m_flags & M_LENCHECKED) == 0) {
1089 			if (!ip_lengthcheck(&m, 0))
1090 				return;
1091 		}
1092 		if (ipflow_fastforward(m))
1093 			return;
1094 		isr = NETISR_IP;
1095 		break;
1096 
1097 	case ETHERTYPE_ARP:
1098 		if (ifp->if_flags & IFF_NOARP) {
1099 			/* Discard packet if ARP is disabled on interface */
1100 			m_freem(m);
1101 			return;
1102 		}
1103 		isr = NETISR_ARP;
1104 		break;
1105 #endif
1106 
1107 #ifdef INET6
1108 	case ETHERTYPE_IPV6:
1109 		isr = NETISR_IPV6;
1110 		break;
1111 #endif
1112 
1113 #ifdef MPLS
1114 	case ETHERTYPE_MPLS:
1115 	case ETHERTYPE_MPLS_MCAST:
1116 		/* Should have been set by ether_input(). */
1117 		KKASSERT(m->m_flags & M_MPLSLABELED);
1118 		isr = NETISR_MPLS;
1119 		break;
1120 #endif
1121 
1122 	default:
1123 		/*
1124 		 * The accurate msgport is not determined before
1125 		 * we reach here, so recharacterize packet.
1126 		 */
1127 		m->m_flags &= ~M_HASH;
1128 		if (ng_ether_input_orphan_p != NULL) {
1129 			/*
1130 			 * Put back the ethernet header so netgraph has a
1131 			 * consistent view of inbound packets.
1132 			 */
1133 			M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
1134 			if (m == NULL) {
1135 				/*
1136 				 * M_PREPEND frees the mbuf in case of failure.
1137 				 */
1138 				return;
1139 			}
1140 			/*
1141 			 * Hold BGL and recheck ng_ether_input_orphan_p
1142 			 */
1143 			get_mplock();
1144 			if (ng_ether_input_orphan_p != NULL) {
1145 				ng_ether_input_orphan_p(ifp, m);
1146 				rel_mplock();
1147 				return;
1148 			}
1149 			rel_mplock();
1150 		}
1151 		m_freem(m);
1152 		return;
1153 	}
1154 
1155 	if (m->m_flags & M_HASH) {
1156 		if (&curthread->td_msgport ==
1157 		    netisr_hashport(m->m_pkthdr.hash)) {
1158 			netisr_handle(isr, m);
1159 			return;
1160 		} else {
1161 			/*
1162 			 * XXX Something is wrong,
1163 			 * we probably should panic here!
1164 			 */
1165 			m->m_flags &= ~M_HASH;
1166 			atomic_add_long(&ether_input_wronghash, 1);
1167 		}
1168 	}
1169 #ifdef RSS_DEBUG
1170 	atomic_add_long(&ether_input_requeue, 1);
1171 #endif
1172 	netisr_queue(isr, m);
1173 }
1174 
1175 /*
1176  * First we perform any link layer operations, then continue to the
1177  * upper layers with ether_demux_oncpu().
1178  */
1179 static void
1180 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m)
1181 {
1182 #ifdef CARP
1183 	void *carp;
1184 #endif
1185 
1186 	if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) {
1187 		/*
1188 		 * Receiving interface's flags are changed, when this
1189 		 * packet is waiting for processing; discard it.
1190 		 */
1191 		m_freem(m);
1192 		return;
1193 	}
1194 
1195 	/*
1196 	 * Tap the packet off here for a bridge.  bridge_input()
1197 	 * will return NULL if it has consumed the packet, otherwise
1198 	 * it gets processed as normal.  Note that bridge_input()
1199 	 * will always return the original packet if we need to
1200 	 * process it locally.
1201 	 */
1202 	if (ifp->if_bridge) {
1203 		KASSERT(bridge_input_p != NULL,
1204 			("%s: if_bridge not loaded!", __func__));
1205 
1206 		if(m->m_flags & M_ETHER_BRIDGED) {
1207 			m->m_flags &= ~M_ETHER_BRIDGED;
1208 		} else {
1209 			m = bridge_input_p(ifp, m);
1210 			if (m == NULL)
1211 				return;
1212 
1213 			KASSERT(ifp == m->m_pkthdr.rcvif,
1214 				("bridge_input_p changed rcvif"));
1215 		}
1216 	}
1217 
1218 #ifdef CARP
1219 	carp = ifp->if_carp;
1220 	if (carp) {
1221 		m = carp_input(carp, m);
1222 		if (m == NULL)
1223 			return;
1224 		KASSERT(ifp == m->m_pkthdr.rcvif,
1225 		    ("carp_input changed rcvif"));
1226 	}
1227 #endif
1228 
1229 	/* Handle ng_ether(4) processing, if any */
1230 	if (ng_ether_input_p != NULL) {
1231 		/*
1232 		 * Hold BGL and recheck ng_ether_input_p
1233 		 */
1234 		get_mplock();
1235 		if (ng_ether_input_p != NULL)
1236 			ng_ether_input_p(ifp, &m);
1237 		rel_mplock();
1238 
1239 		if (m == NULL)
1240 			return;
1241 	}
1242 
1243 	/* Continue with upper layer processing */
1244 	ether_demux_oncpu(ifp, m);
1245 }
1246 
1247 /*
1248  * Perform certain functions of ether_input():
1249  * - Test IFF_UP
1250  * - Update statistics
1251  * - Run bpf(4) tap if requested
1252  * Then pass the packet to ether_input_oncpu().
1253  *
1254  * This function should be used by pseudo interface (e.g. vlan(4)),
1255  * when it tries to claim that the packet is received by it.
1256  *
1257  * REINPUT_KEEPRCVIF
1258  * REINPUT_RUNBPF
1259  */
1260 void
1261 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags)
1262 {
1263 	/* Discard packet if interface is not up */
1264 	if (!(ifp->if_flags & IFF_UP)) {
1265 		m_freem(m);
1266 		return;
1267 	}
1268 
1269 	/*
1270 	 * Change receiving interface.  The bridge will often pass a flag to
1271 	 * ask that this not be done so ARPs get applied to the correct
1272 	 * side.
1273 	 */
1274 	if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 ||
1275 	    m->m_pkthdr.rcvif == NULL) {
1276 		m->m_pkthdr.rcvif = ifp;
1277 	}
1278 
1279 	/* Update statistics */
1280 	IFNET_STAT_INC(ifp, ipackets, 1);
1281 	IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1282 	if (m->m_flags & (M_MCAST | M_BCAST))
1283 		IFNET_STAT_INC(ifp, imcasts, 1);
1284 
1285 	if (reinput_flags & REINPUT_RUNBPF)
1286 		BPF_MTAP(ifp, m);
1287 
1288 	ether_input_oncpu(ifp, m);
1289 }
1290 
1291 static __inline boolean_t
1292 ether_vlancheck(struct mbuf **m0)
1293 {
1294 	struct mbuf *m = *m0;
1295 	struct ether_header *eh;
1296 	uint16_t ether_type;
1297 
1298 	eh = mtod(m, struct ether_header *);
1299 	ether_type = ntohs(eh->ether_type);
1300 
1301 	if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG) == 0) {
1302 		/*
1303 		 * Extract vlan tag if hardware does not do it for us
1304 		 */
1305 		vlan_ether_decap(&m);
1306 		if (m == NULL)
1307 			goto failed;
1308 
1309 		eh = mtod(m, struct ether_header *);
1310 		ether_type = ntohs(eh->ether_type);
1311 	}
1312 
1313 	if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG)) {
1314 		/*
1315 		 * To prevent possible dangerous recursion,
1316 		 * we don't do vlan-in-vlan
1317 		 */
1318 		IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1319 		goto failed;
1320 	}
1321 	KKASSERT(ether_type != ETHERTYPE_VLAN);
1322 
1323 	m->m_flags |= M_ETHER_VLANCHECKED;
1324 	*m0 = m;
1325 	return TRUE;
1326 failed:
1327 	if (m != NULL)
1328 		m_freem(m);
1329 	*m0 = NULL;
1330 	return FALSE;
1331 }
1332 
1333 static void
1334 ether_input_handler(netmsg_t nmsg)
1335 {
1336 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1337 	struct ether_header *eh;
1338 	struct ifnet *ifp;
1339 	struct mbuf *m;
1340 
1341 	m = nmp->nm_packet;
1342 	M_ASSERTPKTHDR(m);
1343 
1344 	if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) {
1345 		if (!ether_vlancheck(&m)) {
1346 			KKASSERT(m == NULL);
1347 			return;
1348 		}
1349 	}
1350 	if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) ||
1351 	    __predict_false(ether_input_ckhash)) {
1352 		int isr;
1353 
1354 		/*
1355 		 * Need to verify the hash supplied by the hardware
1356 		 * which could be wrong.
1357 		 */
1358 		m->m_flags &= ~(M_HASH | M_CKHASH);
1359 		isr = ether_characterize(&m);
1360 		if (m == NULL)
1361 			return;
1362 		KKASSERT(m->m_flags & M_HASH);
1363 
1364 		if (netisr_hashcpu(m->m_pkthdr.hash) != mycpuid) {
1365 			/*
1366 			 * Wrong hardware supplied hash; redispatch
1367 			 */
1368 			ether_dispatch(isr, m, -1);
1369 			if (__predict_false(ether_input_ckhash))
1370 				atomic_add_long(&ether_input_wronghwhash, 1);
1371 			return;
1372 		}
1373 	}
1374 	ifp = m->m_pkthdr.rcvif;
1375 
1376 	eh = mtod(m, struct ether_header *);
1377 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
1378 		if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
1379 			 ifp->if_addrlen) == 0)
1380 			m->m_flags |= M_BCAST;
1381 		else
1382 			m->m_flags |= M_MCAST;
1383 		IFNET_STAT_INC(ifp, imcasts, 1);
1384 	}
1385 
1386 	ether_input_oncpu(ifp, m);
1387 }
1388 
1389 /*
1390  * Send the packet to the target netisr msgport
1391  *
1392  * At this point the packet must be characterized (M_HASH set),
1393  * so we know which netisr to send it to.
1394  */
1395 static void
1396 ether_dispatch(int isr, struct mbuf *m, int cpuid)
1397 {
1398 	struct netmsg_packet *pmsg;
1399 	int target_cpuid;
1400 
1401 	KKASSERT(m->m_flags & M_HASH);
1402 	target_cpuid = netisr_hashcpu(m->m_pkthdr.hash);
1403 
1404 	pmsg = &m->m_hdr.mh_netmsg;
1405 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1406 		    0, ether_input_handler);
1407 	pmsg->nm_packet = m;
1408 	pmsg->base.lmsg.u.ms_result = isr;
1409 
1410 	logether(disp_beg, NULL);
1411 	if (target_cpuid == cpuid) {
1412 		lwkt_sendmsg_oncpu(netisr_cpuport(target_cpuid),
1413 		    &pmsg->base.lmsg);
1414 	} else {
1415 		lwkt_sendmsg(netisr_cpuport(target_cpuid),
1416 		    &pmsg->base.lmsg);
1417 	}
1418 	logether(disp_end, NULL);
1419 }
1420 
1421 /*
1422  * Process a received Ethernet packet.
1423  *
1424  * The ethernet header is assumed to be in the mbuf so the caller
1425  * MUST MAKE SURE that there are at least sizeof(struct ether_header)
1426  * bytes in the first mbuf.
1427  *
1428  * If the caller knows that the current thread is stick to the current
1429  * cpu, e.g. the interrupt thread or the netisr thread, the current cpuid
1430  * (mycpuid) should be passed through 'cpuid' argument.  Else -1 should
1431  * be passed as 'cpuid' argument.
1432  */
1433 void
1434 ether_input(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi,
1435     int cpuid)
1436 {
1437 	int isr;
1438 
1439 	M_ASSERTPKTHDR(m);
1440 
1441 	/* Discard packet if interface is not up */
1442 	if (!(ifp->if_flags & IFF_UP)) {
1443 		m_freem(m);
1444 		return;
1445 	}
1446 
1447 	if (m->m_len < sizeof(struct ether_header)) {
1448 		/* XXX error in the caller. */
1449 		m_freem(m);
1450 		return;
1451 	}
1452 
1453 	m->m_pkthdr.rcvif = ifp;
1454 
1455 	logether(pkt_beg, ifp);
1456 
1457 	ETHER_BPF_MTAP(ifp, m);
1458 
1459 	IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1460 
1461 	if (ifp->if_flags & IFF_MONITOR) {
1462 		struct ether_header *eh;
1463 
1464 		eh = mtod(m, struct ether_header *);
1465 		if (ETHER_IS_MULTICAST(eh->ether_dhost))
1466 			IFNET_STAT_INC(ifp, imcasts, 1);
1467 
1468 		/*
1469 		 * Interface marked for monitoring; discard packet.
1470 		 */
1471 		m_freem(m);
1472 
1473 		logether(pkt_end, ifp);
1474 		return;
1475 	}
1476 
1477 	/*
1478 	 * If the packet has been characterized (pi->pi_netisr / M_HASH)
1479 	 * we can dispatch it immediately with trivial checks.
1480 	 */
1481 	if (pi != NULL && (m->m_flags & M_HASH)) {
1482 #ifdef RSS_DEBUG
1483 		atomic_add_long(&ether_pktinfo_try, 1);
1484 #endif
1485 		netisr_hashcheck(pi->pi_netisr, m, pi);
1486 		if (m->m_flags & M_HASH) {
1487 			ether_dispatch(pi->pi_netisr, m, cpuid);
1488 #ifdef RSS_DEBUG
1489 			atomic_add_long(&ether_pktinfo_hit, 1);
1490 #endif
1491 			logether(pkt_end, ifp);
1492 			return;
1493 		}
1494 	}
1495 #ifdef RSS_DEBUG
1496 	else if (ifp->if_capenable & IFCAP_RSS) {
1497 		if (pi == NULL)
1498 			atomic_add_long(&ether_rss_nopi, 1);
1499 		else
1500 			atomic_add_long(&ether_rss_nohash, 1);
1501 	}
1502 #endif
1503 
1504 	/*
1505 	 * Packet hash will be recalculated by software, so clear
1506 	 * the M_HASH and M_CKHASH flag set by the driver; the hash
1507 	 * value calculated by the hardware may not be exactly what
1508 	 * we want.
1509 	 */
1510 	m->m_flags &= ~(M_HASH | M_CKHASH);
1511 
1512 	if (!ether_vlancheck(&m)) {
1513 		KKASSERT(m == NULL);
1514 		logether(pkt_end, ifp);
1515 		return;
1516 	}
1517 
1518 	isr = ether_characterize(&m);
1519 	if (m == NULL) {
1520 		logether(pkt_end, ifp);
1521 		return;
1522 	}
1523 
1524 	/*
1525 	 * Finally dispatch it
1526 	 */
1527 	ether_dispatch(isr, m, cpuid);
1528 
1529 	logether(pkt_end, ifp);
1530 }
1531 
1532 static int
1533 ether_characterize(struct mbuf **m0)
1534 {
1535 	struct mbuf *m = *m0;
1536 	struct ether_header *eh;
1537 	uint16_t ether_type;
1538 	int isr;
1539 
1540 	eh = mtod(m, struct ether_header *);
1541 	ether_type = ntohs(eh->ether_type);
1542 
1543 	/*
1544 	 * Map ether type to netisr id.
1545 	 */
1546 	switch (ether_type) {
1547 #ifdef INET
1548 	case ETHERTYPE_IP:
1549 		isr = NETISR_IP;
1550 		break;
1551 
1552 	case ETHERTYPE_ARP:
1553 		isr = NETISR_ARP;
1554 		break;
1555 #endif
1556 
1557 #ifdef INET6
1558 	case ETHERTYPE_IPV6:
1559 		isr = NETISR_IPV6;
1560 		break;
1561 #endif
1562 
1563 #ifdef MPLS
1564 	case ETHERTYPE_MPLS:
1565 	case ETHERTYPE_MPLS_MCAST:
1566 		m->m_flags |= M_MPLSLABELED;
1567 		isr = NETISR_MPLS;
1568 		break;
1569 #endif
1570 
1571 	default:
1572 		/*
1573 		 * NETISR_MAX is an invalid value; it is chosen to let
1574 		 * netisr_characterize() know that we have no clear
1575 		 * idea where this packet should go.
1576 		 */
1577 		isr = NETISR_MAX;
1578 		break;
1579 	}
1580 
1581 	/*
1582 	 * Ask the isr to characterize the packet since we couldn't.
1583 	 * This is an attempt to optimally get us onto the correct protocol
1584 	 * thread.
1585 	 */
1586 	netisr_characterize(isr, &m, sizeof(struct ether_header));
1587 
1588 	*m0 = m;
1589 	return isr;
1590 }
1591 
1592 static void
1593 ether_demux_handler(netmsg_t nmsg)
1594 {
1595 	struct netmsg_packet *nmp = &nmsg->packet;	/* actual size */
1596 	struct ifnet *ifp;
1597 	struct mbuf *m;
1598 
1599 	m = nmp->nm_packet;
1600 	M_ASSERTPKTHDR(m);
1601 	ifp = m->m_pkthdr.rcvif;
1602 
1603 	ether_demux_oncpu(ifp, m);
1604 }
1605 
1606 void
1607 ether_demux(struct mbuf *m)
1608 {
1609 	struct netmsg_packet *pmsg;
1610 	int isr;
1611 
1612 	isr = ether_characterize(&m);
1613 	if (m == NULL)
1614 		return;
1615 
1616 	KKASSERT(m->m_flags & M_HASH);
1617 	pmsg = &m->m_hdr.mh_netmsg;
1618 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1619 	    0, ether_demux_handler);
1620 	pmsg->nm_packet = m;
1621 	pmsg->base.lmsg.u.ms_result = isr;
1622 
1623 	lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg);
1624 }
1625 
1626 u_char *
1627 kether_aton(const char *macstr, u_char *addr)
1628 {
1629         unsigned int o0, o1, o2, o3, o4, o5;
1630         int n;
1631 
1632         if (macstr == NULL || addr == NULL)
1633                 return NULL;
1634 
1635         n = ksscanf(macstr, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2,
1636             &o3, &o4, &o5);
1637         if (n != 6)
1638                 return NULL;
1639 
1640         addr[0] = o0;
1641         addr[1] = o1;
1642         addr[2] = o2;
1643         addr[3] = o3;
1644         addr[4] = o4;
1645         addr[5] = o5;
1646 
1647         return addr;
1648 }
1649 
1650 char *
1651 kether_ntoa(const u_char *addr, char *buf)
1652 {
1653         int len = ETHER_ADDRSTRLEN + 1;
1654         int n;
1655 
1656         n = ksnprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0],
1657             addr[1], addr[2], addr[3], addr[4], addr[5]);
1658 
1659         if (n < 17)
1660                 return NULL;
1661 
1662         return buf;
1663 }
1664 
1665 MODULE_VERSION(ether, 1);
1666