xref: /dragonfly/sys/net/if_ethersubr.c (revision fe76c4fb)
1 /*
2  * Copyright (c) 1982, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $
35  * $DragonFly: src/sys/net/if_ethersubr.c,v 1.36 2006/06/25 11:02:39 corecode Exp $
36  */
37 
38 #include "opt_atalk.h"
39 #include "opt_inet.h"
40 #include "opt_inet6.h"
41 #include "opt_ipx.h"
42 #include "opt_netgraph.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52 
53 #include <net/if.h>
54 #include <net/netisr.h>
55 #include <net/route.h>
56 #include <net/if_llc.h>
57 #include <net/if_dl.h>
58 #include <net/if_types.h>
59 #include <net/ifq_var.h>
60 #include <net/bpf.h>
61 #include <net/ethernet.h>
62 
63 #if defined(INET) || defined(INET6)
64 #include <netinet/in.h>
65 #include <netinet/in_var.h>
66 #include <netinet/if_ether.h>
67 #include <net/ipfw/ip_fw.h>
68 #include <net/dummynet/ip_dummynet.h>
69 #endif
70 #ifdef INET6
71 #include <netinet6/nd6.h>
72 #endif
73 
74 #ifdef IPX
75 #include <netproto/ipx/ipx.h>
76 #include <netproto/ipx/ipx_if.h>
77 int (*ef_inputp)(struct ifnet*, struct ether_header *eh, struct mbuf *m);
78 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst,
79 		  short *tp, int *hlen);
80 #endif
81 
82 #ifdef NS
83 #include <netns/ns.h>
84 #include <netns/ns_if.h>
85 ushort ns_nettype;
86 int ether_outputdebug = 0;
87 int ether_inputdebug = 0;
88 #endif
89 
90 #ifdef NETATALK
91 #include <netproto/atalk/at.h>
92 #include <netproto/atalk/at_var.h>
93 #include <netproto/atalk/at_extern.h>
94 
95 #define	llc_snap_org_code	llc_un.type_snap.org_code
96 #define	llc_snap_ether_type	llc_un.type_snap.ether_type
97 
98 extern u_char	at_org_code[3];
99 extern u_char	aarp_org_code[3];
100 #endif /* NETATALK */
101 
102 /* netgraph node hooks for ng_ether(4) */
103 void	(*ng_ether_input_p)(struct ifnet *ifp,
104 		struct mbuf **mp, struct ether_header *eh);
105 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp,
106 		struct mbuf *m, struct ether_header *eh);
107 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
108 void	(*ng_ether_attach_p)(struct ifnet *ifp);
109 void	(*ng_ether_detach_p)(struct ifnet *ifp);
110 
111 int	(*vlan_input_p)(struct ether_header *eh, struct mbuf *m);
112 int	(*vlan_input_tag_p)(struct mbuf *m, uint16_t t);
113 
114 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *,
115 			struct rtentry *);
116 
117 /*
118  * if_bridge support
119  */
120 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
121 int (*bridge_output_p)(struct ifnet *, struct mbuf *,
122 		       struct sockaddr *, struct rtentry *);
123 void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
124 
125 static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
126 			      struct sockaddr *);
127 
128 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
129 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
130 };
131 
132 #define gotoerr(e) do { error = (e); goto bad; } while (0)
133 #define IFP2AC(ifp) ((struct arpcom *)(ifp))
134 
135 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
136 				struct ip_fw **rule, struct ether_header *eh,
137 				boolean_t shared);
138 
139 static int ether_ipfw;
140 SYSCTL_DECL(_net_link);
141 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
142 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
143 	   &ether_ipfw, 0, "Pass ether pkts through firewall");
144 
145 /*
146  * Ethernet output routine.
147  * Encapsulate a packet of type family for the local net.
148  * Use trailer local net encapsulation if enough data in first
149  * packet leaves a multiple of 512 bytes of data in remainder.
150  * Assumes that ifp is actually pointer to arpcom structure.
151  */
152 static int
153 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
154 	     struct rtentry *rt)
155 {
156 	struct ether_header *eh, *deh;
157 	u_char *edst;
158 	int loop_copy = 0;
159 	int hlen = ETHER_HDR_LEN;	/* link layer header length */
160 	struct arpcom *ac = IFP2AC(ifp);
161 	int error;
162 
163 	ASSERT_SERIALIZED(ifp->if_serializer);
164 
165 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
166 		gotoerr(ENETDOWN);
167 
168 	M_PREPEND(m, sizeof(struct ether_header), MB_DONTWAIT);
169 	if (m == NULL)
170 		return (ENOBUFS);
171 	eh = mtod(m, struct ether_header *);
172 	edst = eh->ether_dhost;
173 
174 	/*
175 	 * Fill in the destination ethernet address and frame type.
176 	 */
177 	switch (dst->sa_family) {
178 #ifdef INET
179 	case AF_INET:
180 		if (!arpresolve(ifp, rt, m, dst, edst))
181 			return (0);	/* if not yet resolved */
182 		eh->ether_type = htons(ETHERTYPE_IP);
183 		break;
184 #endif
185 #ifdef INET6
186 	case AF_INET6:
187 		if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst))
188 			return (0);		/* Something bad happenned. */
189 		eh->ether_type = htons(ETHERTYPE_IPV6);
190 		break;
191 #endif
192 #ifdef IPX
193 	case AF_IPX:
194 		if (ef_outputp != NULL) {
195 			error = ef_outputp(ifp, &m, dst, &eh->ether_type,
196 					   &hlen);
197 			if (error)
198 				goto bad;
199 		} else {
200 			eh->ether_type = htons(ETHERTYPE_IPX);
201 			bcopy(&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host),
202 			      edst, ETHER_ADDR_LEN);
203 		}
204 		break;
205 #endif
206 #ifdef NETATALK
207 	case AF_APPLETALK: {
208 		struct at_ifaddr *aa;
209 
210 		if ((aa = at_ifawithnet((struct sockaddr_at *)dst)) == NULL) {
211 			error = 0;	/* XXX */
212 			goto bad;
213 		}
214 		/*
215 		 * In the phase 2 case, need to prepend an mbuf for
216 		 * the llc header.  Since we must preserve the value
217 		 * of m, which is passed to us by value, we m_copy()
218 		 * the first mbuf, and use it for our llc header.
219 		 */
220 		if (aa->aa_flags & AFA_PHASE2) {
221 			struct llc llc;
222 
223 			M_PREPEND(m, sizeof(struct llc), MB_DONTWAIT);
224 			eh = mtod(m, struct ether_header *);
225 			edst = eh->ether_dhost;
226 			llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
227 			llc.llc_control = LLC_UI;
228 			bcopy(at_org_code, llc.llc_snap_org_code,
229 			      sizeof at_org_code);
230 			llc.llc_snap_ether_type = htons(ETHERTYPE_AT);
231 			bcopy(&llc,
232 			      mtod(m, caddr_t) + sizeof(struct ether_header),
233 			      sizeof(struct llc));
234 			eh->ether_type = htons(m->m_pkthdr.len);
235 			hlen = sizeof(struct llc) + ETHER_HDR_LEN;
236 		} else {
237 			eh->ether_type = htons(ETHERTYPE_AT);
238 		}
239 		if (!aarpresolve(ac, m, (struct sockaddr_at *)dst, edst))
240 			return (0);
241 		break;
242 	  }
243 #endif
244 #ifdef NS
245 	case AF_NS:
246 		switch(ns_nettype) {
247 		default:
248 		case 0x8137:	/* Novell Ethernet_II Ethernet TYPE II */
249 			eh->ether_type = 0x8137;
250 			break;
251 		case 0x0:	/* Novell 802.3 */
252 			eh->ether_type = htons(m->m_pkthdr.len);
253 			break;
254 		case 0xe0e0:	/* Novell 802.2 and Token-Ring */
255 			M_PREPEND(m, 3, MB_DONTWAIT);
256 			eh = mtod(m, struct ether_header *);
257 			edst = eh->ether_dhost;
258 			eh->ether_type = htons(m->m_pkthdr.len);
259 			cp = mtod(m, u_char *) + sizeof(struct ether_header);
260 			*cp++ = 0xE0;
261 			*cp++ = 0xE0;
262 			*cp++ = 0x03;
263 			break;
264 		}
265 		bcopy(&(((struct sockaddr_ns *)dst)->sns_addr.x_host), edst,
266 		      ETHER_ADDR_LEN);
267 		/*
268 		 * XXX if ns_thishost is the same as the node's ethernet
269 		 * address then just the default code will catch this anyhow.
270 		 * So I'm not sure if this next clause should be here at all?
271 		 * [JRE]
272 		 */
273 		if (bcmp(edst, &ns_thishost, ETHER_ADDR_LEN) == 0) {
274 			m->m_pkthdr.rcvif = ifp;
275 			netisr_dispatch(NETISR_NS, m);
276 			return (error);
277 		}
278 		if (bcmp(edst, &ns_broadhost, ETHER_ADDR_LEN) == 0)
279 			m->m_flags |= M_BCAST;
280 		break;
281 #endif
282 	case pseudo_AF_HDRCMPLT:
283 	case AF_UNSPEC:
284 		loop_copy = -1; /* if this is for us, don't do it */
285 		deh = (struct ether_header *)dst->sa_data;
286 		memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN);
287 		eh->ether_type = deh->ether_type;
288 		break;
289 
290 	default:
291 		printf("%s: can't handle af%d\n", ifp->if_xname,
292 			dst->sa_family);
293 		gotoerr(EAFNOSUPPORT);
294 	}
295 
296 	if (dst->sa_family == pseudo_AF_HDRCMPLT)	/* unlikely */
297 		memcpy(eh->ether_shost,
298 		       ((struct ether_header *)dst->sa_data)->ether_shost,
299 		       ETHER_ADDR_LEN);
300 	else
301 		memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN);
302 
303 	/*
304 	 * Bridges require special output handling.
305 	 */
306 	if (ifp->if_bridge) {
307 		KASSERT(bridge_output_p != NULL,("ether_input: if_bridge not loaded!"));
308 		return ((*bridge_output_p)(ifp, m, NULL, NULL));
309 	}
310 
311 	/*
312 	 * If a simplex interface, and the packet is being sent to our
313 	 * Ethernet address or a broadcast address, loopback a copy.
314 	 * XXX To make a simplex device behave exactly like a duplex
315 	 * device, we should copy in the case of sending to our own
316 	 * ethernet address (thus letting the original actually appear
317 	 * on the wire). However, we don't do that here for security
318 	 * reasons and compatibility with the original behavior.
319 	 */
320 	if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
321 		int csum_flags = 0;
322 
323 		if (m->m_pkthdr.csum_flags & CSUM_IP)
324 			csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID);
325 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
326 			csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
327 		if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
328 			struct mbuf *n;
329 
330 			if ((n = m_copypacket(m, MB_DONTWAIT)) != NULL) {
331 				n->m_pkthdr.csum_flags |= csum_flags;
332 				if (csum_flags & CSUM_DATA_VALID)
333 					n->m_pkthdr.csum_data = 0xffff;
334 				if_simloop(ifp, n, dst->sa_family, hlen);
335 			} else
336 				ifp->if_iqdrops++;
337 		} else if (bcmp(eh->ether_dhost, eh->ether_shost,
338 				ETHER_ADDR_LEN) == 0) {
339 			m->m_pkthdr.csum_flags |= csum_flags;
340 			if (csum_flags & CSUM_DATA_VALID)
341 				m->m_pkthdr.csum_data = 0xffff;
342 			if_simloop(ifp, m, dst->sa_family, hlen);
343 			return (0);	/* XXX */
344 		}
345 	}
346 
347 	/* Handle ng_ether(4) processing, if any */
348 	if (ng_ether_output_p != NULL) {
349 		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0)
350 			goto bad;
351 		if (m == NULL)
352 			return (0);
353 	}
354 
355 	/* Continue with link-layer output */
356 	return ether_output_frame(ifp, m);
357 
358 bad:
359 	m_freem(m);
360 	return (error);
361 }
362 
363 /*
364  * Ethernet link layer output routine to send a raw frame to the device.
365  *
366  * This assumes that the 14 byte Ethernet header is present and contiguous
367  * in the first mbuf.
368  */
369 int
370 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
371 {
372 	struct ip_fw *rule = NULL;
373 	int error = 0;
374 	struct altq_pktattr pktattr;
375 
376 	ASSERT_SERIALIZED(ifp->if_serializer);
377 
378 	/* Extract info from dummynet tag, ignore others */
379 	while (m->m_type == MT_TAG) {
380 		if (m->m_flags == PACKET_TAG_DUMMYNET) {
381 			rule = ((struct dn_pkt *)m)->rule;
382 			break;
383 		}
384 		m = m->m_next;
385 	}
386 
387 	if (ifq_is_enabled(&ifp->if_snd))
388 		altq_etherclassify(&ifp->if_snd, m, &pktattr);
389 	crit_enter();
390 	if (IPFW_LOADED && ether_ipfw != 0) {
391 		struct ether_header save_eh, *eh;
392 
393 		eh = mtod(m, struct ether_header *);
394 		save_eh = *eh;
395 		m_adj(m, ETHER_HDR_LEN);
396 		if (!ether_ipfw_chk(&m, ifp, &rule, eh, FALSE)) {
397 			crit_exit();
398 			if (m != NULL) {
399 				m_freem(m);
400 				return ENOBUFS; /* pkt dropped */
401 			} else
402 				return 0;	/* consumed e.g. in a pipe */
403 		}
404 		eh = mtod(m, struct ether_header *);
405 		/* packet was ok, restore the ethernet header */
406 		if ((void *)(eh + 1) == (void *)m->m_data) {
407 			m->m_data -= ETHER_HDR_LEN ;
408 			m->m_len += ETHER_HDR_LEN ;
409 			m->m_pkthdr.len += ETHER_HDR_LEN ;
410 		} else {
411 			M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT);
412 			if (m == NULL) /* nope... */ {
413 				crit_exit();
414 				return ENOBUFS;
415 			}
416 			bcopy(&save_eh, mtod(m, struct ether_header *),
417 			      ETHER_HDR_LEN);
418 		}
419 	}
420 	crit_exit();
421 
422 	/*
423 	 * Queue message on interface, update output statistics if
424 	 * successful, and start output if interface not yet active.
425 	 */
426 	error = ifq_handoff(ifp, m, &pktattr);
427 	return (error);
428 }
429 
430 /*
431  * ipfw processing for ethernet packets (in and out).
432  * The second parameter is NULL from ether_demux(), and ifp from
433  * ether_output_frame().
434  */
435 static boolean_t
436 ether_ipfw_chk(
437 	struct mbuf **m0,
438 	struct ifnet *dst,
439 	struct ip_fw **rule,
440 	struct ether_header *eh,
441 	boolean_t shared)
442 {
443 	struct ether_header save_eh = *eh;	/* might be a ptr in m */
444 	struct ip_fw_args args;
445 	struct m_tag *mtag;
446 	int i;
447 
448 	if (*rule != NULL && fw_one_pass)
449 		return TRUE; /* dummynet packet, already partially processed */
450 
451 	/*
452 	 * I need some amount of data to be contiguous, and in case others
453 	 * need the packet (shared==TRUE), it also better be in the first mbuf.
454 	 */
455 	i = min((*m0)->m_pkthdr.len, max_protohdr);
456 	if (shared || (*m0)->m_len < i) {
457 		*m0 = m_pullup(*m0, i);
458 		if (*m0 == NULL)
459 			return FALSE;
460 	}
461 
462 	args.m = *m0;		/* the packet we are looking at		*/
463 	args.oif = dst;		/* destination, if any			*/
464 	if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
465 		m_tag_delete(*m0, mtag);
466 	args.rule = *rule;	/* matching rule to restart		*/
467 	args.next_hop = NULL;	/* we do not support forward yet	*/
468 	args.eh = &save_eh;	/* MAC header for bridged/MAC packets	*/
469 	i = ip_fw_chk_ptr(&args);
470 	*m0 = args.m;
471 	*rule = args.rule;
472 
473 	if ((i & IP_FW_PORT_DENY_FLAG) || *m0 == NULL)	/* drop */
474 		return FALSE;
475 
476 	if (i == 0)					/* a PASS rule.  */
477 		return TRUE;
478 
479 	if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
480 		/*
481 		 * Pass the pkt to dummynet, which consumes it.
482 		 * If shared, make a copy and keep the original.
483 		 */
484 		struct mbuf *m ;
485 
486 		if (shared) {
487 			m = m_copypacket(*m0, MB_DONTWAIT);
488 			if (m == NULL)
489 				return FALSE;
490 		} else {
491 			m = *m0 ;	/* pass the original to dummynet */
492 			*m0 = NULL ;	/* and nothing back to the caller */
493 		}
494 		/*
495 		 * Prepend the header, optimize for the common case of
496 		 * eh pointing into the mbuf.
497 		 */
498 		if ((void *)(eh + 1) == (void *)m->m_data) {
499 			m->m_data -= ETHER_HDR_LEN ;
500 			m->m_len += ETHER_HDR_LEN ;
501 			m->m_pkthdr.len += ETHER_HDR_LEN ;
502 		} else {
503 			M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT);
504 			if (m == NULL)
505 				return FALSE;
506 			bcopy(&save_eh, mtod(m, struct ether_header *),
507 			      ETHER_HDR_LEN);
508 		}
509 		ip_dn_io_ptr(m, (i & 0xffff),
510 			     dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
511 		return FALSE;
512 	}
513 	/*
514 	 * XXX at some point add support for divert/forward actions.
515 	 * If none of the above matches, we have to drop the pkt.
516 	 */
517 	return FALSE;
518 }
519 
520 /*
521  * XXX merge this function with ether_input.
522  */
523 static void
524 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
525 {
526 	ether_input(ifp, NULL, m);
527 }
528 
529 /*
530  * Process a received Ethernet packet. We have two different interfaces:
531  * one (conventional) assumes the packet in the mbuf, with the ethernet
532  * header provided separately in *eh. The second one (new) has everything
533  * in the mbuf, and we can tell it because eh == NULL.
534  * The caller MUST MAKE SURE that there are at least
535  * sizeof(struct ether_header) bytes in the first mbuf.
536  *
537  * This allows us to concentrate in one place a bunch of code which
538  * is replicated in all device drivers. Also, many functions called
539  * from ether_input() try to put the eh back into the mbuf, so we
540  * can later propagate the 'contiguous packet' interface to them,
541  * and handle the old interface just here.
542  *
543  * NOTA BENE: for many drivers "eh" is a pointer into the first mbuf or
544  * cluster, right before m_data. So be very careful when working on m,
545  * as you could destroy *eh !!
546  *
547  * First we perform any link layer operations, then continue
548  * to the upper layers with ether_demux().
549  */
550 void
551 ether_input(struct ifnet *ifp, struct ether_header *eh, struct mbuf *m)
552 {
553 	struct ether_header save_eh;
554 
555 	ASSERT_SERIALIZED(ifp->if_serializer);
556 
557 	/* XXX old crufty stuff, needs to be removed */
558 	if (eh != NULL) {
559 		printf("ether_input got mbuf without embedded ethernet header");
560 		m_free(m);
561 		return;
562 	}
563 
564 	if (m->m_len < sizeof(struct ether_header)) {
565 		/* XXX error in the caller. */
566 		m_freem(m);
567 		return;
568 	}
569 	m->m_pkthdr.rcvif = ifp;
570 	eh = mtod(m, struct ether_header *);
571 
572 	BPF_MTAP(ifp, m);
573 
574 	ifp->if_ibytes += m->m_pkthdr.len;
575 
576 	/*
577 	 * Tap the packet off here for a bridge.  bridge_input()
578 	 * will return NULL if it has consumed the packet, otherwise
579 	 * it gets processed as normal.  Note that bridge_input()
580 	 * will always return the original packet if we need to
581 	 * process it locally.
582 	 */
583 	if (ifp->if_bridge) {
584 		KASSERT(bridge_input_p != NULL,("ether_input: if_bridge not loaded!"));
585 
586 		if(m->m_flags & M_PROTO1) {
587 			m->m_flags &= ~M_PROTO1;
588 		} else {
589 			/* clear M_PROMISC, in case the packets comes from a vlan */
590 			/* m->m_flags &= ~M_PROMISC; */
591 			lwkt_serialize_exit(ifp->if_serializer);
592 			m = (*bridge_input_p)(ifp, m);
593 			lwkt_serialize_enter(ifp->if_serializer);
594 			if (m == NULL)
595 				return;
596 
597 			/*
598 			 * Bridge has determined that the packet is for us.
599 			 * Update our interface pointer -- we may have had
600 			 * to "bridge" the packet locally.
601 			 */
602 			ifp = m->m_pkthdr.rcvif;
603 		}
604 	}
605 
606 	/* XXX old crufty stuff, needs to be removed */
607 	m_adj(m, sizeof(struct ether_header));
608 	/* XXX */
609 	/* m->m_pkthdr.len = m->m_len; */
610 
611 	/* Handle ng_ether(4) processing, if any */
612 	if (ng_ether_input_p != NULL) {
613 		lwkt_serialize_exit(ifp->if_serializer);
614 		(*ng_ether_input_p)(ifp, &m, eh);
615 		lwkt_serialize_enter(ifp->if_serializer);
616 		if (m == NULL)
617 			return;
618 	}
619 
620 	/* Continue with upper layer processing */
621 	ether_demux(ifp, eh, m);
622 }
623 
624 /*
625  * Upper layer processing for a received Ethernet packet.
626  */
627 void
628 ether_demux(struct ifnet *ifp, struct ether_header *eh, struct mbuf *m)
629 {
630 	int isr;
631 	u_short ether_type;
632 	struct ip_fw *rule = NULL;
633 #ifdef NETATALK
634 	struct llc *l;
635 #endif
636 
637 	/* Extract info from dummynet tag, ignore others */
638 	while (m->m_type == MT_TAG) {
639 		if (m->m_flags == PACKET_TAG_DUMMYNET) {
640 			rule = ((struct dn_pkt *)m)->rule;
641 			ifp = m->m_next->m_pkthdr.rcvif;
642 			break;
643 		}
644 		m = m->m_next;
645 	}
646 	if (rule)	/* packet is passing the second time */
647 		goto post_stats;
648 
649 	/*
650 	 * Discard packet if upper layers shouldn't see it because
651 	 * it was unicast to a different Ethernet address.  If the
652 	 * driver is working properly, then this situation can only
653 	 * happen when the interface is in promiscuous mode.
654 	 */
655 	if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) &&
656 	    (eh->ether_dhost[0] & 1) == 0 &&
657 	    bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) {
658 		m_freem(m);
659 		return;
660 	}
661 	/* Discard packet if interface is not up */
662 	if (!(ifp->if_flags & IFF_UP)) {
663 		m_freem(m);
664 		return;
665 	}
666 	if (eh->ether_dhost[0] & 1) {
667 		if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
668 			 ifp->if_addrlen) == 0)
669 			m->m_flags |= M_BCAST;
670 		else
671 			m->m_flags |= M_MCAST;
672 		ifp->if_imcasts++;
673 	}
674 
675 post_stats:
676 	if (IPFW_LOADED && ether_ipfw != 0) {
677 		if (!ether_ipfw_chk(&m, NULL, &rule, eh, FALSE)) {
678 			m_freem(m);
679 			return;
680 		}
681 		eh = mtod(m, struct ether_header *);
682 	}
683 
684 	ether_type = ntohs(eh->ether_type);
685 
686 	switch (ether_type) {
687 #ifdef INET
688 	case ETHERTYPE_IP:
689 		if (ipflow_fastforward(m, ifp->if_serializer))
690 			return;
691 		isr = NETISR_IP;
692 		break;
693 
694 	case ETHERTYPE_ARP:
695 		if (ifp->if_flags & IFF_NOARP) {
696 			/* Discard packet if ARP is disabled on interface */
697 			m_freem(m);
698 			return;
699 		}
700 		isr = NETISR_ARP;
701 		break;
702 #endif
703 
704 #ifdef INET6
705 	case ETHERTYPE_IPV6:
706 		isr = NETISR_IPV6;
707 		break;
708 #endif
709 
710 #ifdef IPX
711 	case ETHERTYPE_IPX:
712 		if (ef_inputp && ef_inputp(ifp, eh, m) == 0)
713 			return;
714 		isr = NETISR_IPX;
715 		break;
716 #endif
717 
718 #ifdef NS
719 	case 0x8137: /* Novell Ethernet_II Ethernet TYPE II */
720 		isr = NETISR_NS;
721 		break;
722 
723 #endif
724 
725 #ifdef NETATALK
726 	case ETHERTYPE_AT:
727 		isr = NETISR_ATALK1;
728 		break;
729 	case ETHERTYPE_AARP:
730 		isr = NETISR_AARP;
731 		break;
732 #endif
733 
734 	case ETHERTYPE_VLAN:
735 		if (vlan_input_p != NULL)
736 			(*vlan_input_p)(eh, m);
737 		else {
738 			m->m_pkthdr.rcvif->if_noproto++;
739 			m_freem(m);
740 		}
741 		return;
742 
743 	default:
744 #ifdef IPX
745 		if (ef_inputp && ef_inputp(ifp, eh, m) == 0)
746 			return;
747 #endif
748 #ifdef NS
749 		checksum = mtod(m, ushort *);
750 		/* Novell 802.3 */
751 		if ((ether_type <= ETHERMTU) &&
752 		    ((*checksum == 0xffff) || (*checksum == 0xE0E0))) {
753 			if (*checksum == 0xE0E0) {
754 				m->m_pkthdr.len -= 3;
755 				m->m_len -= 3;
756 				m->m_data += 3;
757 			}
758 			isr = NETISR_NS;
759 			break;
760 		}
761 #endif
762 #ifdef NETATALK
763 		if (ether_type > ETHERMTU)
764 			goto dropanyway;
765 		l = mtod(m, struct llc *);
766 		if (l->llc_dsap == LLC_SNAP_LSAP &&
767 		    l->llc_ssap == LLC_SNAP_LSAP &&
768 		    l->llc_control == LLC_UI) {
769 			if (bcmp(&(l->llc_snap_org_code)[0], at_org_code,
770 				 sizeof at_org_code) == 0 &&
771 			    ntohs(l->llc_snap_ether_type) == ETHERTYPE_AT) {
772 				m_adj(m, sizeof(struct llc));
773 				isr = NETISR_ATALK2;
774 				break;
775 			}
776 			if (bcmp(&(l->llc_snap_org_code)[0], aarp_org_code,
777 				 sizeof aarp_org_code) == 0 &&
778 			    ntohs(l->llc_snap_ether_type) == ETHERTYPE_AARP) {
779 				m_adj(m, sizeof(struct llc));
780 				isr = NETISR_AARP;
781 				break;
782 			}
783 		}
784 dropanyway:
785 #endif
786 		if (ng_ether_input_orphan_p != NULL)
787 			(*ng_ether_input_orphan_p)(ifp, m, eh);
788 		else
789 			m_freem(m);
790 		return;
791 	}
792 	netisr_dispatch(isr, m);
793 }
794 
795 /*
796  * Perform common duties while attaching to interface list
797  */
798 
799 void
800 ether_ifattach(struct ifnet *ifp, uint8_t *lla, lwkt_serialize_t serializer)
801 {
802 	ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header),
803 			   serializer);
804 }
805 
806 void
807 ether_ifattach_bpf(struct ifnet *ifp, uint8_t *lla, u_int dlt, u_int hdrlen,
808 		   lwkt_serialize_t serializer)
809 {
810 	struct sockaddr_dl *sdl;
811 
812 	ifp->if_type = IFT_ETHER;
813 	ifp->if_addrlen = ETHER_ADDR_LEN;
814 	ifp->if_hdrlen = ETHER_HDR_LEN;
815 	if_attach(ifp, serializer);
816 	ifp->if_mtu = ETHERMTU;
817 	if (ifp->if_baudrate == 0)
818 		ifp->if_baudrate = 10000000;
819 	ifp->if_output = ether_output;
820 	ifp->if_input = ether_input_internal;
821 	ifp->if_resolvemulti = ether_resolvemulti;
822 	ifp->if_broadcastaddr = etherbroadcastaddr;
823 	sdl = IF_LLSOCKADDR(ifp);
824 	sdl->sdl_type = IFT_ETHER;
825 	sdl->sdl_alen = ifp->if_addrlen;
826 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
827 	/*
828 	 * XXX Keep the current drivers happy.
829 	 * XXX Remove once all drivers have been cleaned up
830 	 */
831 	if (lla != IFP2AC(ifp)->ac_enaddr)
832 		bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen);
833 	bpfattach(ifp, dlt, hdrlen);
834 	if (ng_ether_attach_p != NULL)
835 		(*ng_ether_attach_p)(ifp);
836 
837 	if_printf(ifp, "MAC address: %6D\n", lla, ":");
838 }
839 
840 /*
841  * Perform common duties while detaching an Ethernet interface
842  */
843 void
844 ether_ifdetach(struct ifnet *ifp)
845 {
846 	if_down(ifp);
847 
848 	if (ng_ether_detach_p != NULL)
849 		(*ng_ether_detach_p)(ifp);
850 	bpfdetach(ifp);
851 	if_detach(ifp);
852 }
853 
854 int
855 ether_ioctl(struct ifnet *ifp, int command, caddr_t data)
856 {
857 	struct ifaddr *ifa = (struct ifaddr *) data;
858 	struct ifreq *ifr = (struct ifreq *) data;
859 	int error = 0;
860 
861 	ASSERT_SERIALIZED(ifp->if_serializer);
862 
863 	switch (command) {
864 	case SIOCSIFADDR:
865 		ifp->if_flags |= IFF_UP;
866 
867 		switch (ifa->ifa_addr->sa_family) {
868 #ifdef INET
869 		case AF_INET:
870 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
871 			arp_ifinit(ifp, ifa);
872 			break;
873 #endif
874 #ifdef IPX
875 		/*
876 		 * XXX - This code is probably wrong
877 		 */
878 		case AF_IPX:
879 			{
880 			struct ipx_addr *ina = &IA_SIPX(ifa)->sipx_addr;
881 			struct arpcom *ac = IFP2AC(ifp);
882 
883 			if (ipx_nullhost(*ina))
884 				ina->x_host = *(union ipx_host *) ac->ac_enaddr;
885 			else
886 				bcopy(ina->x_host.c_host, ac->ac_enaddr,
887 				      sizeof ac->ac_enaddr);
888 
889 			ifp->if_init(ifp->if_softc);	/* Set new address. */
890 			break;
891 			}
892 #endif
893 #ifdef NS
894 		/*
895 		 * XXX - This code is probably wrong
896 		 */
897 		case AF_NS:
898 		{
899 			struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
900 			struct arpcom *ac = IFP2AC(ifp);
901 
902 			if (ns_nullhost(*ina))
903 				ina->x_host = *(union ns_host *)(ac->ac_enaddr);
904 			else
905 				bcopy(ina->x_host.c_host, ac->ac_enaddr,
906 				      sizeof ac->ac_enaddr);
907 
908 			/*
909 			 * Set new address
910 			 */
911 			ifp->if_init(ifp->if_softc);
912 			break;
913 		}
914 #endif
915 		default:
916 			ifp->if_init(ifp->if_softc);
917 			break;
918 		}
919 		break;
920 
921 	case SIOCGIFADDR:
922 		bcopy(IFP2AC(ifp)->ac_enaddr,
923 		      ((struct sockaddr *)ifr->ifr_data)->sa_data,
924 		      ETHER_ADDR_LEN);
925 		break;
926 
927 	case SIOCSIFMTU:
928 		/*
929 		 * Set the interface MTU.
930 		 */
931 		if (ifr->ifr_mtu > ETHERMTU) {
932 			error = EINVAL;
933 		} else {
934 			ifp->if_mtu = ifr->ifr_mtu;
935 		}
936 		break;
937 	default:
938 		error = EINVAL;
939 		break;
940 	}
941 	return (error);
942 }
943 
944 int
945 ether_resolvemulti(
946 	struct ifnet *ifp,
947 	struct sockaddr **llsa,
948 	struct sockaddr *sa)
949 {
950 	struct sockaddr_dl *sdl;
951 	struct sockaddr_in *sin;
952 #ifdef INET6
953 	struct sockaddr_in6 *sin6;
954 #endif
955 	u_char *e_addr;
956 
957 	switch(sa->sa_family) {
958 	case AF_LINK:
959 		/*
960 		 * No mapping needed. Just check that it's a valid MC address.
961 		 */
962 		sdl = (struct sockaddr_dl *)sa;
963 		e_addr = LLADDR(sdl);
964 		if ((e_addr[0] & 1) != 1)
965 			return EADDRNOTAVAIL;
966 		*llsa = 0;
967 		return 0;
968 
969 #ifdef INET
970 	case AF_INET:
971 		sin = (struct sockaddr_in *)sa;
972 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
973 			return EADDRNOTAVAIL;
974 		MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR,
975 		       M_WAITOK | M_ZERO);
976 		sdl->sdl_len = sizeof *sdl;
977 		sdl->sdl_family = AF_LINK;
978 		sdl->sdl_index = ifp->if_index;
979 		sdl->sdl_type = IFT_ETHER;
980 		sdl->sdl_alen = ETHER_ADDR_LEN;
981 		e_addr = LLADDR(sdl);
982 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
983 		*llsa = (struct sockaddr *)sdl;
984 		return 0;
985 #endif
986 #ifdef INET6
987 	case AF_INET6:
988 		sin6 = (struct sockaddr_in6 *)sa;
989 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
990 			/*
991 			 * An IP6 address of 0 means listen to all
992 			 * of the Ethernet multicast address used for IP6.
993 			 * (This is used for multicast routers.)
994 			 */
995 			ifp->if_flags |= IFF_ALLMULTI;
996 			*llsa = 0;
997 			return 0;
998 		}
999 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1000 			return EADDRNOTAVAIL;
1001 		MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR,
1002 		       M_WAITOK | M_ZERO);
1003 		sdl->sdl_len = sizeof *sdl;
1004 		sdl->sdl_family = AF_LINK;
1005 		sdl->sdl_index = ifp->if_index;
1006 		sdl->sdl_type = IFT_ETHER;
1007 		sdl->sdl_alen = ETHER_ADDR_LEN;
1008 		e_addr = LLADDR(sdl);
1009 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1010 		*llsa = (struct sockaddr *)sdl;
1011 		return 0;
1012 #endif
1013 
1014 	default:
1015 		/*
1016 		 * Well, the text isn't quite right, but it's the name
1017 		 * that counts...
1018 		 */
1019 		return EAFNOSUPPORT;
1020 	}
1021 }
1022 
1023 #if 0
1024 /*
1025  * This is for reference.  We have a table-driven version
1026  * of the little-endian crc32 generator, which is faster
1027  * than the double-loop.
1028  */
1029 uint32_t
1030 ether_crc32_le(const uint8_t *buf, size_t len)
1031 {
1032 	uint32_t c, crc, carry;
1033 	size_t i, j;
1034 
1035 	crc = 0xffffffffU;	/* initial value */
1036 
1037 	for (i = 0; i < len; i++) {
1038 		c = buf[i];
1039 		for (j = 0; j < 8; j++) {
1040 			carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1041 			crc >>= 1;
1042 			c >>= 1;
1043 			if (carry)
1044 				crc = (crc ^ ETHER_CRC_POLY_LE);
1045 		}
1046 	}
1047 
1048 	return (crc);
1049 }
1050 #else
1051 uint32_t
1052 ether_crc32_le(const uint8_t *buf, size_t len)
1053 {
1054 	static const uint32_t crctab[] = {
1055 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1056 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1057 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1058 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1059 	};
1060 	uint32_t crc;
1061 	size_t i;
1062 
1063 	crc = 0xffffffffU;	/* initial value */
1064 
1065 	for (i = 0; i < len; i++) {
1066 		crc ^= buf[i];
1067 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1068 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1069 	}
1070 
1071 	return (crc);
1072 }
1073 #endif
1074 
1075 uint32_t
1076 ether_crc32_be(const uint8_t *buf, size_t len)
1077 {
1078 	uint32_t c, crc, carry;
1079 	size_t i, j;
1080 
1081 	crc = 0xffffffffU;	/* initial value */
1082 
1083 	for (i = 0; i < len; i++) {
1084 		c = buf[i];
1085 		for (j = 0; j < 8; j++) {
1086 			carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1087 			crc <<= 1;
1088 			c >>= 1;
1089 			if (carry)
1090 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1091 		}
1092 	}
1093 
1094 	return (crc);
1095 }
1096 
1097 /*
1098  * find the size of ethernet header, and call classifier
1099  */
1100 void
1101 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m,
1102 		   struct altq_pktattr *pktattr)
1103 {
1104 	struct ether_header *eh;
1105 	uint16_t ether_type;
1106 	int hlen, af, hdrsize;
1107 	caddr_t hdr;
1108 
1109 	hlen = sizeof(struct ether_header);
1110 	eh = mtod(m, struct ether_header *);
1111 
1112 	ether_type = ntohs(eh->ether_type);
1113 	if (ether_type < ETHERMTU) {
1114 		/* ick! LLC/SNAP */
1115 		struct llc *llc = (struct llc *)(eh + 1);
1116 		hlen += 8;
1117 
1118 		if (m->m_len < hlen ||
1119 		    llc->llc_dsap != LLC_SNAP_LSAP ||
1120 		    llc->llc_ssap != LLC_SNAP_LSAP ||
1121 		    llc->llc_control != LLC_UI)
1122 			goto bad;  /* not snap! */
1123 
1124 		ether_type = ntohs(llc->llc_un.type_snap.ether_type);
1125 	}
1126 
1127 	if (ether_type == ETHERTYPE_IP) {
1128 		af = AF_INET;
1129 		hdrsize = 20;  /* sizeof(struct ip) */
1130 #ifdef INET6
1131 	} else if (ether_type == ETHERTYPE_IPV6) {
1132 		af = AF_INET6;
1133 		hdrsize = 40;  /* sizeof(struct ip6_hdr) */
1134 #endif
1135 	} else
1136 		goto bad;
1137 
1138 	while (m->m_len <= hlen) {
1139 		hlen -= m->m_len;
1140 		m = m->m_next;
1141 	}
1142 	hdr = m->m_data + hlen;
1143 	if (m->m_len < hlen + hdrsize) {
1144 		/*
1145 		 * ip header is not in a single mbuf.  this should not
1146 		 * happen in the current code.
1147 		 * (todo: use m_pulldown in the future)
1148 		 */
1149 		goto bad;
1150 	}
1151 	m->m_data += hlen;
1152 	m->m_len -= hlen;
1153 	ifq_classify(ifq, m, af, pktattr);
1154 	m->m_data -= hlen;
1155 	m->m_len += hlen;
1156 
1157 	return;
1158 
1159 bad:
1160 	pktattr->pattr_class = NULL;
1161 	pktattr->pattr_hdr = NULL;
1162 	pktattr->pattr_af = AF_UNSPEC;
1163 }
1164