xref: /dragonfly/sys/net/ip_mroute/ip_mroute.c (revision 59b0b316)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  * Modified by Ahmed Helmy, SGI, June 1996
11  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
12  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
13  * Modified by Hitoshi Asaeda, WIDE, August 2000
14  * Modified by Pavlin Radoslavov, ICSI, October 2002
15  *
16  * MROUTING Revision: 3.5
17  * and PIM-SMv2 and PIM-DM support, advanced API support,
18  * bandwidth metering and signaling
19  *
20  * $FreeBSD: src/sys/netinet/ip_mroute.c,v 1.56.2.10 2003/08/24 21:37:34 hsu Exp $
21  */
22 
23 #include "opt_mrouting.h"
24 
25 #ifdef PIM
26 #define _PIM_VT 1
27 #endif
28 
29 #include <sys/param.h>
30 #include <sys/kernel.h>
31 #include <sys/malloc.h>
32 #include <sys/mbuf.h>
33 #include <sys/protosw.h>
34 #include <sys/socket.h>
35 #include <sys/socketvar.h>
36 #include <sys/sockio.h>
37 #include <sys/sysctl.h>
38 #include <sys/syslog.h>
39 #include <sys/systm.h>
40 #include <sys/thread2.h>
41 #include <sys/time.h>
42 #include <sys/in_cksum.h>
43 
44 #include <machine/stdarg.h>
45 
46 #include <net/if.h>
47 #include <net/netisr.h>
48 #include <net/route.h>
49 #include <netinet/in.h>
50 #include <netinet/igmp.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/in_var.h>
53 #include <netinet/ip.h>
54 #include "ip_mroute.h"
55 #include <netinet/ip_var.h>
56 #ifdef PIM
57 #include <netinet/pim.h>
58 #include <netinet/pim_var.h>
59 #endif
60 #ifdef ALTQ
61 #include <netinet/in_pcb.h>
62 #endif
63 #include <netinet/udp.h>
64 
65 /*
66  * Control debugging code for rsvp and multicast routing code.
67  * Can only set them with the debugger.
68  */
69 static	u_int	rsvpdebug;		/* non-zero enables debugging   */
70 
71 static	u_int	mrtdebug;		/* any set of the flags below   */
72 
73 #define		DEBUG_MFC	0x02
74 #define		DEBUG_FORWARD	0x04
75 #define		DEBUG_EXPIRE	0x08
76 #define		DEBUG_XMIT	0x10
77 #define		DEBUG_PIM	0x20
78 
79 #define		VIFI_INVALID	((vifi_t) -1)
80 
81 #define M_HASCL(m)	((m)->m_flags & M_EXT)
82 
83 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
84 
85 static struct mrtstat	mrtstat;
86 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
87     &mrtstat, mrtstat,
88     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
89 
90 static struct mfc	*mfctable[MFCTBLSIZ];
91 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
92     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
93     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
94 
95 static struct vif	viftable[MAXVIFS];
96 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
97     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
98     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
99 
100 static u_char		nexpire[MFCTBLSIZ];
101 
102 struct lwkt_token mroute_token = LWKT_TOKEN_INITIALIZER(mroute_token);
103 
104 
105 static struct callout expire_upcalls_ch;
106 static struct callout tbf_reprocess_q_ch;
107 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
108 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
109 
110 /*
111  * Define the token bucket filter structures
112  * tbftable -> each vif has one of these for storing info
113  */
114 
115 static struct tbf tbftable[MAXVIFS];
116 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
117 
118 /*
119  * 'Interfaces' associated with decapsulator (so we can tell
120  * packets that went through it from ones that get reflected
121  * by a broken gateway).  These interfaces are never linked into
122  * the system ifnet list & no routes point to them.  I.e., packets
123  * can't be sent this way.  They only exist as a placeholder for
124  * multicast source verification.
125  */
126 static struct ifnet multicast_decap_if[MAXVIFS];
127 
128 #define ENCAP_TTL 64
129 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
130 
131 /* prototype IP hdr for encapsulated packets */
132 static struct ip multicast_encap_iphdr = {
133 #if BYTE_ORDER == LITTLE_ENDIAN
134 	sizeof(struct ip) >> 2, IPVERSION,
135 #else
136 	IPVERSION, sizeof(struct ip) >> 2,
137 #endif
138 	0,				/* tos */
139 	sizeof(struct ip),		/* total length */
140 	0,				/* id */
141 	0,				/* frag offset */
142 	ENCAP_TTL, ENCAP_PROTO,
143 	0,				/* checksum */
144 };
145 
146 /*
147  * Bandwidth meter variables and constants
148  */
149 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
150 /*
151  * Pending timeouts are stored in a hash table, the key being the
152  * expiration time. Periodically, the entries are analysed and processed.
153  */
154 #define BW_METER_BUCKETS	1024
155 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
156 static struct callout bw_meter_ch;
157 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
158 
159 /*
160  * Pending upcalls are stored in a vector which is flushed when
161  * full, or periodically
162  */
163 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
164 static u_int	bw_upcalls_n; /* # of pending upcalls */
165 static struct callout bw_upcalls_ch;
166 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
167 
168 #ifdef PIM
169 static struct pimstat pimstat;
170 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
171     &pimstat, pimstat,
172     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
173 
174 /*
175  * Note: the PIM Register encapsulation adds the following in front of a
176  * data packet:
177  *
178  * struct pim_encap_hdr {
179  *    struct ip ip;
180  *    struct pim_encap_pimhdr  pim;
181  * }
182  *
183  */
184 
185 struct pim_encap_pimhdr {
186 	struct pim pim;
187 	uint32_t   flags;
188 };
189 
190 static struct ip pim_encap_iphdr = {
191 #if BYTE_ORDER == LITTLE_ENDIAN
192 	sizeof(struct ip) >> 2,
193 	IPVERSION,
194 #else
195 	IPVERSION,
196 	sizeof(struct ip) >> 2,
197 #endif
198 	0,			/* tos */
199 	sizeof(struct ip),	/* total length */
200 	0,			/* id */
201 	0,			/* frag offset */
202 	ENCAP_TTL,
203 	IPPROTO_PIM,
204 	0,			/* checksum */
205 };
206 
207 static struct pim_encap_pimhdr pim_encap_pimhdr = {
208     {
209 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
210 	0,			/* reserved */
211 	0,			/* checksum */
212     },
213     0				/* flags */
214 };
215 
216 static struct ifnet multicast_register_if;
217 static vifi_t reg_vif_num = VIFI_INVALID;
218 #endif /* PIM */
219 
220 /*
221  * Private variables.
222  */
223 static vifi_t	   numvifs;
224 static int have_encap_tunnel;
225 
226 /*
227  * one-back cache used by ipip_input to locate a tunnel's vif
228  * given a datagram's src ip address.
229  */
230 static u_long last_encap_src;
231 static struct vif *last_encap_vif;
232 
233 static u_long	X_ip_mcast_src(int vifi);
234 static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
235 			struct mbuf *m, struct ip_moptions *imo);
236 static int	X_ip_mrouter_done(void);
237 static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
238 static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
239 static int	X_legal_vif_num(int vif);
240 static int	X_mrt_ioctl(u_long cmd, caddr_t data);
241 
242 static int get_sg_cnt(struct sioc_sg_req *);
243 static int get_vif_cnt(struct sioc_vif_req *);
244 static int ip_mrouter_init(struct socket *, int);
245 static int add_vif(struct vifctl *);
246 static int del_vif(vifi_t);
247 static int add_mfc(struct mfcctl2 *);
248 static int del_mfc(struct mfcctl2 *);
249 static int set_api_config(uint32_t *); /* chose API capabilities */
250 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
251 static int set_assert(int);
252 static void expire_upcalls(void *);
253 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
254 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
255 static void encap_send(struct ip *, struct vif *, struct mbuf *);
256 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
257 static void tbf_queue(struct vif *, struct mbuf *);
258 static void tbf_process_q(struct vif *);
259 static void tbf_reprocess_q(void *);
260 static int tbf_dq_sel(struct vif *, struct ip *);
261 static void tbf_send_packet(struct vif *, struct mbuf *);
262 static void tbf_update_tokens(struct vif *);
263 static int priority(struct vif *, struct ip *);
264 
265 /*
266  * Bandwidth monitoring
267  */
268 static void free_bw_list(struct bw_meter *list);
269 static int add_bw_upcall(struct bw_upcall *);
270 static int del_bw_upcall(struct bw_upcall *);
271 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
272 		struct timeval *nowp);
273 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
274 static void bw_upcalls_send(void);
275 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
276 static void unschedule_bw_meter(struct bw_meter *x);
277 static void bw_meter_process(void);
278 static void expire_bw_upcalls_send(void *);
279 static void expire_bw_meter_process(void *);
280 
281 #ifdef PIM
282 static int pim_register_send(struct ip *, struct vif *,
283 		struct mbuf *, struct mfc *);
284 static int pim_register_send_rp(struct ip *, struct vif *,
285 		struct mbuf *, struct mfc *);
286 static int pim_register_send_upcall(struct ip *, struct vif *,
287 		struct mbuf *, struct mfc *);
288 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
289 #endif
290 
291 /*
292  * whether or not special PIM assert processing is enabled.
293  */
294 static int pim_assert;
295 /*
296  * Rate limit for assert notification messages, in usec
297  */
298 #define ASSERT_MSG_TIME		3000000
299 
300 /*
301  * Kernel multicast routing API capabilities and setup.
302  * If more API capabilities are added to the kernel, they should be
303  * recorded in `mrt_api_support'.
304  */
305 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
306 					 MRT_MFC_FLAGS_BORDER_VIF |
307 					 MRT_MFC_RP |
308 					 MRT_MFC_BW_UPCALL);
309 static uint32_t mrt_api_config = 0;
310 
311 /*
312  * Hash function for a source, group entry
313  */
314 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
315 			((g) >> 20) ^ ((g) >> 10) ^ (g))
316 
317 /*
318  * Find a route for a given origin IP address and Multicast group address
319  * Type of service parameter to be added in the future!!!
320  * Statistics are updated by the caller if needed
321  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
322  */
323 static struct mfc *
324 mfc_find(in_addr_t o, in_addr_t g)
325 {
326     struct mfc *rt;
327 
328     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
329 	if ((rt->mfc_origin.s_addr == o) &&
330 		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
331 	    break;
332     return rt;
333 }
334 
335 /*
336  * Macros to compute elapsed time efficiently
337  * Borrowed from Van Jacobson's scheduling code
338  */
339 #define TV_DELTA(a, b, delta) {					\
340 	int xxs;						\
341 	delta = (a).tv_usec - (b).tv_usec;			\
342 	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
343 		switch (xxs) {					\
344 		case 2:						\
345 			delta += 1000000;			\
346 			/* FALLTHROUGH */			\
347 		case 1:						\
348 			delta += 1000000;			\
349 			break;					\
350 		default:					\
351 			delta += (1000000 * xxs);		\
352 		}						\
353 	}							\
354 }
355 
356 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
357 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
358 
359 /*
360  * Handle MRT setsockopt commands to modify the multicast routing tables.
361  */
362 static int
363 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
364 {
365     int	error, optval;
366     vifi_t	vifi;
367     struct	vifctl vifc;
368     struct	mfcctl2 mfc;
369     struct	bw_upcall bw_upcall;
370     uint32_t	i;
371 
372     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
373 	return EPERM;
374 
375     error = 0;
376     switch (sopt->sopt_name) {
377     case MRT_INIT:
378 	error = soopt_to_kbuf(sopt, &optval, sizeof optval, sizeof optval);
379 	if (error)
380 	    break;
381 	error = ip_mrouter_init(so, optval);
382 	break;
383 
384     case MRT_DONE:
385 	error = ip_mrouter_done();
386 	break;
387 
388     case MRT_ADD_VIF:
389 	error = soopt_to_kbuf(sopt, &vifc, sizeof vifc, sizeof vifc);
390 	if (error)
391 	    break;
392 	error = add_vif(&vifc);
393 	break;
394 
395     case MRT_DEL_VIF:
396 	error = soopt_to_kbuf(sopt, &vifi, sizeof vifi, sizeof vifi);
397 	if (error)
398 	    break;
399 	error = del_vif(vifi);
400 	break;
401 
402     case MRT_ADD_MFC:
403     case MRT_DEL_MFC:
404 	/*
405 	 * select data size depending on API version.
406 	 */
407 	if (sopt->sopt_name == MRT_ADD_MFC &&
408 	        mrt_api_config & MRT_API_FLAGS_ALL) {
409 	    error = soopt_to_kbuf(sopt, &mfc, sizeof(struct mfcctl2),
410 				sizeof(struct mfcctl2));
411 	} else {
412 	    error = soopt_to_kbuf(sopt, &mfc, sizeof(struct mfcctl),
413 				sizeof(struct mfcctl));
414 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
415 			sizeof(mfc) - sizeof(struct mfcctl));
416 	}
417 	if (error)
418 	    break;
419 	if (sopt->sopt_name == MRT_ADD_MFC)
420 	    error = add_mfc(&mfc);
421 	else
422 	    error = del_mfc(&mfc);
423 	break;
424 
425     case MRT_ASSERT:
426 	error = soopt_to_kbuf(sopt, &optval, sizeof optval, sizeof optval);
427 	if (error)
428 	    break;
429 	set_assert(optval);
430 	break;
431 
432     case MRT_API_CONFIG:
433 	error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
434 	if (!error)
435 	    error = set_api_config(&i);
436 	if (!error)
437 	    soopt_from_kbuf(sopt, &i, sizeof i);
438 	break;
439 
440     case MRT_ADD_BW_UPCALL:
441     case MRT_DEL_BW_UPCALL:
442 	error = soopt_to_kbuf(sopt, &bw_upcall, sizeof bw_upcall, sizeof bw_upcall);
443 	if (error)
444 	    break;
445 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
446 	    error = add_bw_upcall(&bw_upcall);
447 	else
448 	    error = del_bw_upcall(&bw_upcall);
449 	break;
450 
451     default:
452 	error = EOPNOTSUPP;
453 	break;
454     }
455     return error;
456 }
457 
458 /*
459  * Handle MRT getsockopt commands
460  */
461 static int
462 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
463 {
464     int error;
465     static int version = 0x0305; /* !!! why is this here? XXX */
466 
467     error = 0;
468     switch (sopt->sopt_name) {
469     case MRT_VERSION:
470 	soopt_from_kbuf(sopt, &version, sizeof version);
471 	break;
472 
473     case MRT_ASSERT:
474 	soopt_from_kbuf(sopt, &pim_assert, sizeof pim_assert);
475 	break;
476 
477     case MRT_API_SUPPORT:
478 	soopt_from_kbuf(sopt, &mrt_api_support, sizeof mrt_api_support);
479 	break;
480 
481     case MRT_API_CONFIG:
482 	soopt_from_kbuf(sopt, &mrt_api_config, sizeof mrt_api_config);
483 	break;
484 
485     default:
486 	error = EOPNOTSUPP;
487 	break;
488     }
489     return error;
490 }
491 
492 /*
493  * Handle ioctl commands to obtain information from the cache
494  */
495 static int
496 X_mrt_ioctl(u_long cmd, caddr_t data)
497 {
498     int error = 0;
499 
500     switch (cmd) {
501     case SIOCGETVIFCNT:
502 	error = get_vif_cnt((struct sioc_vif_req *)data);
503 	break;
504 
505     case SIOCGETSGCNT:
506 	error = get_sg_cnt((struct sioc_sg_req *)data);
507 	break;
508 
509     default:
510 	error = EINVAL;
511 	break;
512     }
513     return error;
514 }
515 
516 /*
517  * returns the packet, byte, rpf-failure count for the source group provided
518  */
519 static int
520 get_sg_cnt(struct sioc_sg_req *req)
521 {
522     struct mfc *rt;
523 
524     lwkt_gettoken(&mroute_token);
525     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
526     if (rt == NULL) {
527 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
528 	lwkt_reltoken(&mroute_token);
529 	return EADDRNOTAVAIL;
530     }
531     req->pktcnt = rt->mfc_pkt_cnt;
532     req->bytecnt = rt->mfc_byte_cnt;
533     req->wrong_if = rt->mfc_wrong_if;
534     lwkt_reltoken(&mroute_token);
535     return 0;
536 }
537 
538 /*
539  * returns the input and output packet and byte counts on the vif provided
540  */
541 static int
542 get_vif_cnt(struct sioc_vif_req *req)
543 {
544     vifi_t vifi = req->vifi;
545 
546     if (vifi >= numvifs)
547 	return EINVAL;
548 
549     req->icount = viftable[vifi].v_pkt_in;
550     req->ocount = viftable[vifi].v_pkt_out;
551     req->ibytes = viftable[vifi].v_bytes_in;
552     req->obytes = viftable[vifi].v_bytes_out;
553 
554     return 0;
555 }
556 
557 /*
558  * Enable multicast routing
559  */
560 static int
561 ip_mrouter_init(struct socket *so, int version)
562 {
563     if (mrtdebug)
564 	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
565 	    so->so_type, so->so_proto->pr_protocol);
566 
567     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
568 	return EOPNOTSUPP;
569 
570     if (version != 1)
571 	return ENOPROTOOPT;
572 
573     if (ip_mrouter != NULL)
574 	return EADDRINUSE;
575 
576     ip_mrouter = so;
577 
578     bzero((caddr_t)mfctable, sizeof(mfctable));
579     bzero((caddr_t)nexpire, sizeof(nexpire));
580 
581     pim_assert = 0;
582     bw_upcalls_n = 0;
583     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
584 
585     callout_init(&expire_upcalls_ch);
586     callout_init(&bw_upcalls_ch);
587     callout_init(&bw_meter_ch);
588     callout_init(&tbf_reprocess_q_ch);
589 
590     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
591     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
592 		  expire_bw_upcalls_send, NULL);
593     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
594 
595     mrt_api_config = 0;
596 
597     if (mrtdebug)
598 	log(LOG_DEBUG, "ip_mrouter_init\n");
599 
600     return 0;
601 }
602 
603 /*
604  * Disable multicast routing
605  */
606 static int
607 X_ip_mrouter_done(void)
608 {
609     vifi_t vifi;
610     int i;
611     struct ifnet *ifp;
612     struct ifreq ifr;
613     struct mfc *rt;
614     struct rtdetq *rte;
615 
616     lwkt_gettoken(&mroute_token);
617 
618     /*
619      * For each phyint in use, disable promiscuous reception of all IP
620      * multicasts.
621      */
622     for (vifi = 0; vifi < numvifs; vifi++) {
623 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
624 		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
625 	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
626 
627 	    so->sin_len = sizeof(struct sockaddr_in);
628 	    so->sin_family = AF_INET;
629 	    so->sin_addr.s_addr = INADDR_ANY;
630 	    ifp = viftable[vifi].v_ifp;
631 	    if_allmulti(ifp, 0);
632 	}
633     }
634     bzero((caddr_t)tbftable, sizeof(tbftable));
635     bzero((caddr_t)viftable, sizeof(viftable));
636     numvifs = 0;
637     pim_assert = 0;
638 
639     callout_stop(&expire_upcalls_ch);
640 
641     mrt_api_config = 0;
642     bw_upcalls_n = 0;
643     callout_stop(&bw_upcalls_ch);
644     callout_stop(&bw_meter_ch);
645     callout_stop(&tbf_reprocess_q_ch);
646 
647     /*
648      * Free all multicast forwarding cache entries.
649      */
650     for (i = 0; i < MFCTBLSIZ; i++) {
651 	for (rt = mfctable[i]; rt != NULL; ) {
652 	    struct mfc *nr = rt->mfc_next;
653 
654 	    for (rte = rt->mfc_stall; rte != NULL; ) {
655 		struct rtdetq *n = rte->next;
656 
657 		m_freem(rte->m);
658 		kfree(rte, M_MRTABLE);
659 		rte = n;
660 	    }
661 	    free_bw_list(rt->mfc_bw_meter);
662 	    kfree(rt, M_MRTABLE);
663 	    rt = nr;
664 	}
665     }
666 
667     bzero((caddr_t)mfctable, sizeof(mfctable));
668 
669     bzero(bw_meter_timers, sizeof(bw_meter_timers));
670 
671     /*
672      * Reset de-encapsulation cache
673      */
674     last_encap_src = INADDR_ANY;
675     last_encap_vif = NULL;
676 #ifdef PIM
677     reg_vif_num = VIFI_INVALID;
678 #endif
679     have_encap_tunnel = 0;
680 
681     ip_mrouter = NULL;
682 
683     lwkt_reltoken(&mroute_token);
684 
685     if (mrtdebug)
686 	log(LOG_DEBUG, "ip_mrouter_done\n");
687 
688     return 0;
689 }
690 
691 /*
692  * Set PIM assert processing global
693  */
694 static int
695 set_assert(int i)
696 {
697     if ((i != 1) && (i != 0))
698 	return EINVAL;
699 
700     pim_assert = i;
701 
702     return 0;
703 }
704 
705 /*
706  * Configure API capabilities
707  */
708 static int
709 set_api_config(uint32_t *apival)
710 {
711     int i;
712 
713     /*
714      * We can set the API capabilities only if it is the first operation
715      * after MRT_INIT. I.e.:
716      *  - there are no vifs installed
717      *  - pim_assert is not enabled
718      *  - the MFC table is empty
719      */
720     if (numvifs > 0) {
721 	*apival = 0;
722 	return EPERM;
723     }
724     if (pim_assert) {
725 	*apival = 0;
726 	return EPERM;
727     }
728     for (i = 0; i < MFCTBLSIZ; i++) {
729 	if (mfctable[i] != NULL) {
730 	    *apival = 0;
731 	    return EPERM;
732 	}
733     }
734 
735     mrt_api_config = *apival & mrt_api_support;
736     *apival = mrt_api_config;
737 
738     return 0;
739 }
740 
741 /*
742  * Add a vif to the vif table
743  */
744 static int
745 add_vif(struct vifctl *vifcp)
746 {
747     struct vif *vifp = viftable + vifcp->vifc_vifi;
748     struct sockaddr_in sin = {sizeof sin, AF_INET};
749     struct ifaddr *ifa;
750     struct ifnet *ifp;
751     int error, i;
752     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
753 
754     if (vifcp->vifc_vifi >= MAXVIFS)
755 	return EINVAL;
756     if (vifp->v_lcl_addr.s_addr != INADDR_ANY)
757 	return EADDRINUSE;
758     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY)
759 	return EADDRNOTAVAIL;
760 
761     /* Find the interface with an address in AF_INET family */
762 #ifdef PIM
763     if (vifcp->vifc_flags & VIFF_REGISTER) {
764 	/*
765 	 * XXX: Because VIFF_REGISTER does not really need a valid
766 	 * local interface (e.g. it could be 127.0.0.2), we don't
767 	 * check its address.
768 	 */
769 	ifp = NULL;
770     } else
771 #endif
772     {
773 	sin.sin_addr = vifcp->vifc_lcl_addr;
774 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
775 	if (ifa == NULL)
776 	    return EADDRNOTAVAIL;
777 	ifp = ifa->ifa_ifp;
778     }
779 
780     if (vifcp->vifc_flags & VIFF_TUNNEL) {
781 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
782 	    /*
783 	     * An encapsulating tunnel is wanted.  Tell ipip_input() to
784 	     * start paying attention to encapsulated packets.
785 	     */
786 	    if (have_encap_tunnel == 0) {
787 		have_encap_tunnel = 1;
788 		for (i = 0; i < MAXVIFS; i++) {
789 		    if_initname(&multicast_decap_if[i], "mdecap", i);
790 		}
791 	    }
792 	    /*
793 	     * Set interface to fake encapsulator interface
794 	     */
795 	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
796 	    /*
797 	     * Prepare cached route entry
798 	     */
799 	    bzero(&vifp->v_route, sizeof(vifp->v_route));
800 	} else {
801 	    log(LOG_ERR, "source routed tunnels not supported\n");
802 	    return EOPNOTSUPP;
803 	}
804 #ifdef PIM
805     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
806 	ifp = &multicast_register_if;
807 	if (mrtdebug)
808 	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
809 		    (void *)&multicast_register_if);
810 	if (reg_vif_num == VIFI_INVALID) {
811 	    if_initname(&multicast_register_if, "register_vif", 0);
812 	    multicast_register_if.if_flags = IFF_LOOPBACK;
813 	    bzero(&vifp->v_route, sizeof(vifp->v_route));
814 	    reg_vif_num = vifcp->vifc_vifi;
815 	}
816 #endif
817     } else {		/* Make sure the interface supports multicast */
818 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
819 	    return EOPNOTSUPP;
820 
821 	/* Enable promiscuous reception of all IP multicasts from the if */
822 	lwkt_gettoken(&mroute_token);
823 	error = if_allmulti(ifp, 1);
824 	lwkt_reltoken(&mroute_token);
825 	if (error)
826 	    return error;
827     }
828 
829     lwkt_gettoken(&mroute_token);
830     /* define parameters for the tbf structure */
831     vifp->v_tbf = v_tbf;
832     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
833     vifp->v_tbf->tbf_n_tok = 0;
834     vifp->v_tbf->tbf_q_len = 0;
835     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
836     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
837 
838     vifp->v_flags     = vifcp->vifc_flags;
839     vifp->v_threshold = vifcp->vifc_threshold;
840     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
841     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
842     vifp->v_ifp       = ifp;
843     /* scaling up here allows division by 1024 in critical code */
844     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
845     vifp->v_rsvp_on   = 0;
846     vifp->v_rsvpd     = NULL;
847     /* initialize per vif pkt counters */
848     vifp->v_pkt_in    = 0;
849     vifp->v_pkt_out   = 0;
850     vifp->v_bytes_in  = 0;
851     vifp->v_bytes_out = 0;
852 
853     /* Adjust numvifs up if the vifi is higher than numvifs */
854     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
855 
856     lwkt_reltoken(&mroute_token);
857 
858     if (mrtdebug)
859 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
860 	    vifcp->vifc_vifi,
861 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
862 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
863 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
864 	    vifcp->vifc_threshold,
865 	    vifcp->vifc_rate_limit);
866 
867     return 0;
868 }
869 
870 /*
871  * Delete a vif from the vif table
872  */
873 static int
874 del_vif(vifi_t vifi)
875 {
876     struct vif *vifp;
877 
878     if (vifi >= numvifs)
879 	return EINVAL;
880     vifp = &viftable[vifi];
881     if (vifp->v_lcl_addr.s_addr == INADDR_ANY)
882 	return EADDRNOTAVAIL;
883 
884     lwkt_gettoken(&mroute_token);
885 
886     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
887 	if_allmulti(vifp->v_ifp, 0);
888 
889     if (vifp == last_encap_vif) {
890 	last_encap_vif = NULL;
891 	last_encap_src = INADDR_ANY;
892     }
893 
894     /*
895      * Free packets queued at the interface
896      */
897     while (vifp->v_tbf->tbf_q) {
898 	struct mbuf *m = vifp->v_tbf->tbf_q;
899 
900 	vifp->v_tbf->tbf_q = m->m_nextpkt;
901 	m_freem(m);
902     }
903 
904 #ifdef PIM
905     if (vifp->v_flags & VIFF_REGISTER)
906 	reg_vif_num = VIFI_INVALID;
907 #endif
908 
909     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
910     bzero((caddr_t)vifp, sizeof (*vifp));
911 
912     if (mrtdebug)
913 	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
914 
915     /* Adjust numvifs down */
916     for (vifi = numvifs; vifi > 0; vifi--)
917 	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
918 	    break;
919     numvifs = vifi;
920 
921     lwkt_reltoken(&mroute_token);
922 
923     return 0;
924 }
925 
926 /*
927  * update an mfc entry without resetting counters and S,G addresses.
928  */
929 static void
930 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
931 {
932     int i;
933 
934     rt->mfc_parent = mfccp->mfcc_parent;
935     for (i = 0; i < numvifs; i++) {
936 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
937 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
938 	    MRT_MFC_FLAGS_ALL;
939     }
940     /* set the RP address */
941     if (mrt_api_config & MRT_MFC_RP)
942 	rt->mfc_rp = mfccp->mfcc_rp;
943     else
944 	rt->mfc_rp.s_addr = INADDR_ANY;
945 }
946 
947 /*
948  * fully initialize an mfc entry from the parameter.
949  */
950 static void
951 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
952 {
953     rt->mfc_origin     = mfccp->mfcc_origin;
954     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
955 
956     update_mfc_params(rt, mfccp);
957 
958     /* initialize pkt counters per src-grp */
959     rt->mfc_pkt_cnt    = 0;
960     rt->mfc_byte_cnt   = 0;
961     rt->mfc_wrong_if   = 0;
962     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
963 }
964 
965 
966 /*
967  * Add an mfc entry
968  */
969 static int
970 add_mfc(struct mfcctl2 *mfccp)
971 {
972     struct mfc *rt;
973     u_long hash;
974     struct rtdetq *rte;
975     u_short nstl;
976 
977     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
978 
979     /* If an entry already exists, just update the fields */
980     if (rt) {
981 	if (mrtdebug & DEBUG_MFC)
982 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
983 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
984 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
985 		mfccp->mfcc_parent);
986 
987 	lwkt_gettoken(&mroute_token);
988 	update_mfc_params(rt, mfccp);
989 	lwkt_reltoken(&mroute_token);
990 	return 0;
991     }
992 
993     /*
994      * Find the entry for which the upcall was made and update
995      */
996     lwkt_gettoken(&mroute_token);
997     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
998     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
999 
1000 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1001 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1002 		(rt->mfc_stall != NULL)) {
1003 
1004 	    if (nstl++)
1005 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1006 		    "multiple kernel entries",
1007 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1008 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1009 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1010 
1011 	    if (mrtdebug & DEBUG_MFC)
1012 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1013 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1014 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1015 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1016 
1017 	    init_mfc_params(rt, mfccp);
1018 
1019 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1020 	    nexpire[hash]--;
1021 
1022 	    /* free packets Qed at the end of this entry */
1023 	    for (rte = rt->mfc_stall; rte != NULL; ) {
1024 		struct rtdetq *n = rte->next;
1025 
1026 		ip_mdq(rte->m, rte->ifp, rt, -1);
1027 		m_freem(rte->m);
1028 		kfree(rte, M_MRTABLE);
1029 		rte = n;
1030 	    }
1031 	    rt->mfc_stall = NULL;
1032 	}
1033     }
1034 
1035     /*
1036      * It is possible that an entry is being inserted without an upcall
1037      */
1038     if (nstl == 0) {
1039 	if (mrtdebug & DEBUG_MFC)
1040 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1041 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1042 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1043 		mfccp->mfcc_parent);
1044 
1045 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1046 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1047 		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1048 		init_mfc_params(rt, mfccp);
1049 		if (rt->mfc_expire)
1050 		    nexpire[hash]--;
1051 		rt->mfc_expire = 0;
1052 		break; /* XXX */
1053 	    }
1054 	}
1055 	if (rt == NULL) {		/* no upcall, so make a new entry */
1056 	    rt = kmalloc(sizeof(*rt), M_MRTABLE, M_INTWAIT | M_NULLOK);
1057 	    if (rt == NULL) {
1058 		    lwkt_reltoken(&mroute_token);
1059 		    return ENOBUFS;
1060 	    }
1061 
1062 	    init_mfc_params(rt, mfccp);
1063 	    rt->mfc_expire     = 0;
1064 	    rt->mfc_stall      = NULL;
1065 
1066 	    rt->mfc_bw_meter = NULL;
1067 	    /* insert new entry at head of hash chain */
1068 	    rt->mfc_next = mfctable[hash];
1069 	    mfctable[hash] = rt;
1070 	}
1071     }
1072     lwkt_reltoken(&mroute_token);
1073     return 0;
1074 }
1075 
1076 /*
1077  * Delete an mfc entry
1078  */
1079 static int
1080 del_mfc(struct mfcctl2 *mfccp)
1081 {
1082     struct in_addr 	origin;
1083     struct in_addr 	mcastgrp;
1084     struct mfc 		*rt;
1085     struct mfc	 	**nptr;
1086     u_long 		hash;
1087     struct bw_meter	*list;
1088 
1089     origin = mfccp->mfcc_origin;
1090     mcastgrp = mfccp->mfcc_mcastgrp;
1091 
1092     if (mrtdebug & DEBUG_MFC)
1093 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1094 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1095 
1096     lwkt_gettoken(&mroute_token);
1097 
1098     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1099     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1100 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1101 		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1102 		rt->mfc_stall == NULL)
1103 	    break;
1104     if (rt == NULL) {
1105 	lwkt_reltoken(&mroute_token);
1106 	return EADDRNOTAVAIL;
1107     }
1108 
1109     *nptr = rt->mfc_next;
1110 
1111     /*
1112      * free the bw_meter entries
1113      */
1114     list = rt->mfc_bw_meter;
1115     rt->mfc_bw_meter = NULL;
1116     lwkt_reltoken(&mroute_token);
1117 
1118     kfree(rt, M_MRTABLE);
1119     free_bw_list(list);
1120 
1121     return 0;
1122 }
1123 
1124 /*
1125  * Send a message to mrouted on the multicast routing socket
1126  */
1127 static int
1128 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1129 {
1130     if (s) {
1131 	if (ssb_appendaddr(&s->so_rcv, (struct sockaddr *)src, mm, NULL) != 0) {
1132 	    sorwakeup(s);
1133 	    return 0;
1134 	}
1135     }
1136     m_freem(mm);
1137     return -1;
1138 }
1139 
1140 /*
1141  * IP multicast forwarding function. This function assumes that the packet
1142  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1143  * pointed to by "ifp", and the packet is to be relayed to other networks
1144  * that have members of the packet's destination IP multicast group.
1145  *
1146  * The packet is returned unscathed to the caller, unless it is
1147  * erroneous, in which case a non-zero return value tells the caller to
1148  * discard it.
1149  */
1150 
1151 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1152 
1153 static int
1154 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1155     struct ip_moptions *imo)
1156 {
1157     struct mfc *rt;
1158     vifi_t vifi;
1159 
1160     if (mrtdebug & DEBUG_FORWARD)
1161 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1162 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1163 	    (void *)ifp);
1164 
1165     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1166 		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1167 	/*
1168 	 * Packet arrived via a physical interface or
1169 	 * an encapsulated tunnel or a register_vif.
1170 	 */
1171     } else {
1172 	/*
1173 	 * Packet arrived through a source-route tunnel.
1174 	 * Source-route tunnels are no longer supported.
1175 	 */
1176 	static time_t last_log;
1177 	if (last_log != time_uptime) {
1178 	    last_log = time_uptime;
1179 	    log(LOG_ERR,
1180 		"ip_mforward: received source-routed packet from %lx\n",
1181 		(u_long)ntohl(ip->ip_src.s_addr));
1182 	}
1183 	return 1;
1184     }
1185 
1186     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1187 	if (ip->ip_ttl < 255)
1188 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1189 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1190 	    struct vif *vifp = viftable + vifi;
1191 
1192 	    kprintf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1193 		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1194 		vifi,
1195 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1196 		vifp->v_ifp->if_xname);
1197 	}
1198 	return ip_mdq(m, ifp, NULL, vifi);
1199     }
1200     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1201 	kprintf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1202 	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1203 	if (!imo)
1204 	    kprintf("In fact, no options were specified at all\n");
1205     }
1206 
1207     /*
1208      * Don't forward a packet with time-to-live of zero or one,
1209      * or a packet destined to a local-only group.
1210      */
1211     if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1212 	return 0;
1213 
1214     /*
1215      * Determine forwarding vifs from the forwarding cache table
1216      */
1217     lwkt_gettoken(&mroute_token);
1218     ++mrtstat.mrts_mfc_lookups;
1219     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1220 
1221     /* Entry exists, so forward if necessary */
1222     if (rt != NULL) {
1223 	int ipres = ip_mdq(m, ifp, rt, -1);
1224 	lwkt_reltoken(&mroute_token);
1225 	return ipres;
1226     } else {
1227 	/*
1228 	 * If we don't have a route for packet's origin,
1229 	 * Make a copy of the packet & send message to routing daemon
1230 	 */
1231 
1232 	struct mbuf *mb0;
1233 	struct rtdetq *rte;
1234 	u_long hash;
1235 	int hlen = ip->ip_hl << 2;
1236 
1237 	++mrtstat.mrts_mfc_misses;
1238 
1239 	mrtstat.mrts_no_route++;
1240 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1241 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1242 		(u_long)ntohl(ip->ip_src.s_addr),
1243 		(u_long)ntohl(ip->ip_dst.s_addr));
1244 
1245 	/*
1246 	 * Allocate mbufs early so that we don't do extra work if we are
1247 	 * just going to fail anyway.  Make sure to pullup the header so
1248 	 * that other people can't step on it.
1249 	 */
1250 	rte = kmalloc((sizeof *rte), M_MRTABLE, M_INTWAIT | M_NULLOK);
1251 	if (rte == NULL) {
1252 		lwkt_reltoken(&mroute_token);
1253 		return ENOBUFS;
1254 	}
1255 
1256 	mb0 = m_copypacket(m, M_NOWAIT);
1257 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1258 	    mb0 = m_pullup(mb0, hlen);
1259 	if (mb0 == NULL) {
1260 	    kfree(rte, M_MRTABLE);
1261 	    lwkt_reltoken(&mroute_token);
1262 	    return ENOBUFS;
1263 	}
1264 
1265 	/* is there an upcall waiting for this flow ? */
1266 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1267 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1268 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1269 		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1270 		    (rt->mfc_stall != NULL))
1271 		break;
1272 	}
1273 
1274 	if (rt == NULL) {
1275 	    int i;
1276 	    struct igmpmsg *im;
1277 	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1278 	    struct mbuf *mm;
1279 
1280 	    /*
1281 	     * Locate the vifi for the incoming interface for this packet.
1282 	     * If none found, drop packet.
1283 	     */
1284 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1285 		;
1286 	    if (vifi >= numvifs)	/* vif not found, drop packet */
1287 		goto non_fatal;
1288 
1289 	    /* no upcall, so make a new entry */
1290 	    rt = kmalloc(sizeof(*rt), M_MRTABLE, M_INTWAIT | M_NULLOK);
1291 	    if (rt == NULL)
1292 		    goto fail;
1293 
1294 	    /* Make a copy of the header to send to the user level process */
1295 	    mm = m_copy(mb0, 0, hlen);
1296 	    if (mm == NULL)
1297 		goto fail1;
1298 
1299 	    /*
1300 	     * Send message to routing daemon to install
1301 	     * a route into the kernel table
1302 	     */
1303 
1304 	    im = mtod(mm, struct igmpmsg *);
1305 	    im->im_msgtype = IGMPMSG_NOCACHE;
1306 	    im->im_mbz = 0;
1307 	    im->im_vif = vifi;
1308 
1309 	    mrtstat.mrts_upcalls++;
1310 
1311 	    k_igmpsrc.sin_addr = ip->ip_src;
1312 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1313 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1314 		++mrtstat.mrts_upq_sockfull;
1315 fail1:
1316 		kfree(rt, M_MRTABLE);
1317 fail:
1318 		kfree(rte, M_MRTABLE);
1319 		m_freem(mb0);
1320 		lwkt_reltoken(&mroute_token);
1321 		return ENOBUFS;
1322 	    }
1323 
1324 	    /* insert new entry at head of hash chain */
1325 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1326 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1327 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1328 	    nexpire[hash]++;
1329 	    for (i = 0; i < numvifs; i++) {
1330 		rt->mfc_ttls[i] = 0;
1331 		rt->mfc_flags[i] = 0;
1332 	    }
1333 	    rt->mfc_parent = -1;
1334 
1335 	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1336 
1337 	    rt->mfc_bw_meter = NULL;
1338 
1339 	    /* link into table */
1340 	    rt->mfc_next   = mfctable[hash];
1341 	    mfctable[hash] = rt;
1342 	    rt->mfc_stall = rte;
1343 
1344 	} else {
1345 	    /* determine if q has overflowed */
1346 	    int npkts = 0;
1347 	    struct rtdetq **p;
1348 
1349 	    /*
1350 	     * XXX ouch! we need to append to the list, but we
1351 	     * only have a pointer to the front, so we have to
1352 	     * scan the entire list every time.
1353 	     */
1354 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1355 		npkts++;
1356 
1357 	    if (npkts > MAX_UPQ) {
1358 		mrtstat.mrts_upq_ovflw++;
1359 non_fatal:
1360 		kfree(rte, M_MRTABLE);
1361 		m_freem(mb0);
1362 		lwkt_reltoken(&mroute_token);
1363 		return 0;
1364 	    }
1365 
1366 	    /* Add this entry to the end of the queue */
1367 	    *p = rte;
1368 	}
1369 
1370 	rte->m 			= mb0;
1371 	rte->ifp 		= ifp;
1372 	rte->next		= NULL;
1373 
1374 	lwkt_reltoken(&mroute_token);
1375 	return 0;
1376     }
1377 }
1378 
1379 /*
1380  * Clean up the cache entry if upcall is not serviced
1381  */
1382 static void
1383 expire_upcalls(void *unused)
1384 {
1385     struct rtdetq *rte;
1386     struct mfc *mfc, **nptr;
1387     int i;
1388 
1389     lwkt_gettoken(&mroute_token);
1390     for (i = 0; i < MFCTBLSIZ; i++) {
1391 	if (nexpire[i] == 0)
1392 	    continue;
1393 	nptr = &mfctable[i];
1394 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1395 	    /*
1396 	     * Skip real cache entries
1397 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1398 	     * If it expires now
1399 	     */
1400 	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1401 		    --mfc->mfc_expire == 0) {
1402 		if (mrtdebug & DEBUG_EXPIRE)
1403 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1404 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1405 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1406 		/*
1407 		 * drop all the packets
1408 		 * free the mbuf with the pkt, if, timing info
1409 		 */
1410 		for (rte = mfc->mfc_stall; rte; ) {
1411 		    struct rtdetq *n = rte->next;
1412 
1413 		    m_freem(rte->m);
1414 		    kfree(rte, M_MRTABLE);
1415 		    rte = n;
1416 		}
1417 		++mrtstat.mrts_cache_cleanups;
1418 		nexpire[i]--;
1419 
1420 		/*
1421 		 * free the bw_meter entries
1422 		 */
1423 		while (mfc->mfc_bw_meter != NULL) {
1424 		    struct bw_meter *x = mfc->mfc_bw_meter;
1425 
1426 		    mfc->mfc_bw_meter = x->bm_mfc_next;
1427 		    kfree(x, M_BWMETER);
1428 		}
1429 
1430 		*nptr = mfc->mfc_next;
1431 		kfree(mfc, M_MRTABLE);
1432 	    } else {
1433 		nptr = &mfc->mfc_next;
1434 	    }
1435 	}
1436     }
1437     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1438     lwkt_reltoken(&mroute_token);
1439 }
1440 
1441 /*
1442  * Packet forwarding routine once entry in the cache is made
1443  */
1444 static int
1445 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1446 {
1447     struct ip  *ip = mtod(m, struct ip *);
1448     vifi_t vifi;
1449     int plen = ip->ip_len;
1450 
1451 /*
1452  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1453  * input, they shouldn't get counted on output, so statistics keeping is
1454  * separate.
1455  */
1456 #define MC_SEND(ip,vifp,m) {				\
1457 		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1458 		    encap_send((ip), (vifp), (m));	\
1459 		else					\
1460 		    phyint_send((ip), (vifp), (m));	\
1461 }
1462 
1463     /*
1464      * If xmt_vif is not -1, send on only the requested vif.
1465      *
1466      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1467      */
1468     if (xmt_vif < numvifs) {
1469 #ifdef PIM
1470 	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1471 	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1472         else
1473 #endif
1474 	MC_SEND(ip, viftable + xmt_vif, m);
1475 	return 1;
1476     }
1477 
1478     /*
1479      * Don't forward if it didn't arrive from the parent vif for its origin.
1480      */
1481     vifi = rt->mfc_parent;
1482     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1483 	/* came in the wrong interface */
1484 	if (mrtdebug & DEBUG_FORWARD)
1485 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1486 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1487 	++mrtstat.mrts_wrong_if;
1488 	++rt->mfc_wrong_if;
1489 	/*
1490 	 * If we are doing PIM assert processing, send a message
1491 	 * to the routing daemon.
1492 	 *
1493 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1494 	 * can complete the SPT switch, regardless of the type
1495 	 * of the iif (broadcast media, GRE tunnel, etc).
1496 	 */
1497 	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1498 	    struct timeval now;
1499 	    u_long delta;
1500 
1501 #ifdef PIM
1502 	    if (ifp == &multicast_register_if)
1503 		pimstat.pims_rcv_registers_wrongiif++;
1504 #endif
1505 
1506 	    /* Get vifi for the incoming packet */
1507 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1508 		;
1509 	    if (vifi >= numvifs)
1510 		return 0;	/* The iif is not found: ignore the packet. */
1511 
1512 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1513 		return 0;	/* WRONGVIF disabled: ignore the packet */
1514 
1515 	    GET_TIME(now);
1516 
1517 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1518 
1519 	    if (delta > ASSERT_MSG_TIME) {
1520 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1521 		struct igmpmsg *im;
1522 		int hlen = ip->ip_hl << 2;
1523 		struct mbuf *mm = m_copy(m, 0, hlen);
1524 
1525 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1526 		    mm = m_pullup(mm, hlen);
1527 		if (mm == NULL)
1528 		    return ENOBUFS;
1529 
1530 		rt->mfc_last_assert = now;
1531 
1532 		im = mtod(mm, struct igmpmsg *);
1533 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1534 		im->im_mbz		= 0;
1535 		im->im_vif		= vifi;
1536 
1537 		mrtstat.mrts_upcalls++;
1538 
1539 		k_igmpsrc.sin_addr = im->im_src;
1540 		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1541 		    log(LOG_WARNING,
1542 			"ip_mforward: ip_mrouter socket queue full\n");
1543 		    ++mrtstat.mrts_upq_sockfull;
1544 		    return ENOBUFS;
1545 		}
1546 	    }
1547 	}
1548 	return 0;
1549     }
1550 
1551     /* If I sourced this packet, it counts as output, else it was input. */
1552     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1553 	viftable[vifi].v_pkt_out++;
1554 	viftable[vifi].v_bytes_out += plen;
1555     } else {
1556 	viftable[vifi].v_pkt_in++;
1557 	viftable[vifi].v_bytes_in += plen;
1558     }
1559     rt->mfc_pkt_cnt++;
1560     rt->mfc_byte_cnt += plen;
1561 
1562     /*
1563      * For each vif, decide if a copy of the packet should be forwarded.
1564      * Forward if:
1565      *		- the ttl exceeds the vif's threshold
1566      *		- there are group members downstream on interface
1567      */
1568     for (vifi = 0; vifi < numvifs; vifi++)
1569 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1570 	    viftable[vifi].v_pkt_out++;
1571 	    viftable[vifi].v_bytes_out += plen;
1572 #ifdef PIM
1573 	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1574 		pim_register_send(ip, viftable + vifi, m, rt);
1575 	    else
1576 #endif
1577 	    MC_SEND(ip, viftable+vifi, m);
1578 	}
1579 
1580     /*
1581      * Perform upcall-related bw measuring.
1582      */
1583     if (rt->mfc_bw_meter != NULL) {
1584 	struct bw_meter *x;
1585 	struct timeval now;
1586 
1587 	GET_TIME(now);
1588 	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1589 	    bw_meter_receive_packet(x, plen, &now);
1590     }
1591 
1592     return 0;
1593 }
1594 
1595 /*
1596  * check if a vif number is legal/ok. This is used by ip_output.
1597  */
1598 static int
1599 X_legal_vif_num(int vif)
1600 {
1601     return (vif >= 0 && vif < numvifs);
1602 }
1603 
1604 /*
1605  * Return the local address used by this vif
1606  */
1607 static u_long
1608 X_ip_mcast_src(int vifi)
1609 {
1610     if (vifi >= 0 && vifi < numvifs)
1611 	return viftable[vifi].v_lcl_addr.s_addr;
1612     else
1613 	return INADDR_ANY;
1614 }
1615 
1616 static void
1617 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1618 {
1619     struct mbuf *mb_copy;
1620     int hlen = ip->ip_hl << 2;
1621 
1622     /*
1623      * Make a new reference to the packet; make sure that
1624      * the IP header is actually copied, not just referenced,
1625      * so that ip_output() only scribbles on the copy.
1626      */
1627     mb_copy = m_copypacket(m, M_NOWAIT);
1628     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1629 	mb_copy = m_pullup(mb_copy, hlen);
1630     if (mb_copy == NULL)
1631 	return;
1632 
1633     if (vifp->v_rate_limit == 0)
1634 	tbf_send_packet(vifp, mb_copy);
1635     else
1636 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1637 }
1638 
1639 static void
1640 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1641 {
1642     struct mbuf *mb_copy;
1643     struct ip *ip_copy;
1644     int i, len = ip->ip_len;
1645 
1646     /* Take care of delayed checksums */
1647     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1648 	in_delayed_cksum(m);
1649 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1650     }
1651 
1652     /*
1653      * copy the old packet & pullup its IP header into the
1654      * new mbuf so we can modify it.  Try to fill the new
1655      * mbuf since if we don't the ethernet driver will.
1656      */
1657     MGETHDR(mb_copy, M_NOWAIT, MT_HEADER);
1658     if (mb_copy == NULL)
1659 	return;
1660     mb_copy->m_data += max_linkhdr;
1661     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1662 
1663     if ((mb_copy->m_next = m_copypacket(m, M_NOWAIT)) == NULL) {
1664 	m_freem(mb_copy);
1665 	return;
1666     }
1667     i = MHLEN - M_LEADINGSPACE(mb_copy);
1668     if (i > len)
1669 	i = len;
1670     mb_copy = m_pullup(mb_copy, i);
1671     if (mb_copy == NULL)
1672 	return;
1673     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1674 
1675     /*
1676      * fill in the encapsulating IP header.
1677      */
1678     ip_copy = mtod(mb_copy, struct ip *);
1679     *ip_copy = multicast_encap_iphdr;
1680     ip_copy->ip_id = ip_newid();
1681     ip_copy->ip_len += len;
1682     ip_copy->ip_src = vifp->v_lcl_addr;
1683     ip_copy->ip_dst = vifp->v_rmt_addr;
1684 
1685     /*
1686      * turn the encapsulated IP header back into a valid one.
1687      */
1688     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1689     --ip->ip_ttl;
1690     ip->ip_len = htons(ip->ip_len);
1691     ip->ip_off = htons(ip->ip_off);
1692     ip->ip_sum = 0;
1693     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1694     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1695     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1696 
1697     if (vifp->v_rate_limit == 0)
1698 	tbf_send_packet(vifp, mb_copy);
1699     else
1700 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1701 }
1702 
1703 /*
1704  * De-encapsulate a packet and feed it back through ip input (this
1705  * routine is called whenever IP gets a packet with proto type
1706  * ENCAP_PROTO and a local destination address).
1707  *
1708  * This is similar to mroute_encapcheck() + mroute_encap_input() in -current.
1709  */
1710 static int
1711 X_ipip_input(struct mbuf **mp, int *offp, int proto)
1712 {
1713     struct mbuf *m = *mp;
1714     struct ip *ip = mtod(m, struct ip *);
1715     int hlen = ip->ip_hl << 2;
1716 
1717     if (!have_encap_tunnel) {
1718 	rip_input(mp, offp, proto);
1719 	return(IPPROTO_DONE);
1720     }
1721     *mp = NULL;
1722 
1723     /*
1724      * dump the packet if it's not to a multicast destination or if
1725      * we don't have an encapsulating tunnel with the source.
1726      * Note:  This code assumes that the remote site IP address
1727      * uniquely identifies the tunnel (i.e., that this site has
1728      * at most one tunnel with the remote site).
1729      */
1730     if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr))) {
1731 	++mrtstat.mrts_bad_tunnel;
1732 	m_freem(m);
1733 	return(IPPROTO_DONE);
1734     }
1735     if (ip->ip_src.s_addr != last_encap_src) {
1736 	struct vif *vifp = viftable;
1737 	struct vif *vife = vifp + numvifs;
1738 
1739 	last_encap_src = ip->ip_src.s_addr;
1740 	last_encap_vif = NULL;
1741 	for ( ; vifp < vife; ++vifp)
1742 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1743 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1744 		    == VIFF_TUNNEL)
1745 		    last_encap_vif = vifp;
1746 		break;
1747 	    }
1748     }
1749     if (last_encap_vif == NULL) {
1750 	last_encap_src = INADDR_ANY;
1751 	mrtstat.mrts_cant_tunnel++; /*XXX*/
1752 	m_freem(m);
1753 	if (mrtdebug)
1754 	    log(LOG_DEBUG, "ip_mforward: no tunnel with %lx\n",
1755 		(u_long)ntohl(ip->ip_src.s_addr));
1756 	return(IPPROTO_DONE);
1757     }
1758 
1759     if (hlen > sizeof(struct ip))
1760 	ip_stripoptions(m);
1761     m->m_data += sizeof(struct ip);
1762     m->m_len -= sizeof(struct ip);
1763     m->m_pkthdr.len -= sizeof(struct ip);
1764     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
1765 
1766     netisr_queue(NETISR_IP, m);
1767     return(IPPROTO_DONE);
1768 }
1769 
1770 /*
1771  * Token bucket filter module
1772  */
1773 
1774 static void
1775 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1776 {
1777     struct tbf *t = vifp->v_tbf;
1778 
1779     if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
1780 	mrtstat.mrts_pkt2large++;
1781 	m_freem(m);
1782 	return;
1783     }
1784 
1785     tbf_update_tokens(vifp);
1786 
1787     if (t->tbf_q_len == 0) {		/* queue empty...		*/
1788 	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens	*/
1789 	    t->tbf_n_tok -= p_len;
1790 	    tbf_send_packet(vifp, m);
1791 	} else {			/* no, queue packet and try later */
1792 	    tbf_queue(vifp, m);
1793 	    callout_reset(&tbf_reprocess_q_ch, TBF_REPROCESS,
1794 	    		  tbf_reprocess_q, vifp);
1795 	}
1796     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1797 	/* finite queue length, so queue pkts and process queue */
1798 	tbf_queue(vifp, m);
1799 	tbf_process_q(vifp);
1800     } else {
1801 	/* queue full, try to dq and queue and process */
1802 	if (!tbf_dq_sel(vifp, ip)) {
1803 	    mrtstat.mrts_q_overflow++;
1804 	    m_freem(m);
1805 	} else {
1806 	    tbf_queue(vifp, m);
1807 	    tbf_process_q(vifp);
1808 	}
1809     }
1810 }
1811 
1812 /*
1813  * adds a packet to the queue at the interface
1814  */
1815 static void
1816 tbf_queue(struct vif *vifp, struct mbuf *m)
1817 {
1818     struct tbf *t = vifp->v_tbf;
1819 
1820     lwkt_gettoken(&mroute_token);
1821 
1822     if (t->tbf_t == NULL)	/* Queue was empty */
1823 	t->tbf_q = m;
1824     else			/* Insert at tail */
1825 	t->tbf_t->m_nextpkt = m;
1826 
1827     t->tbf_t = m;		/* Set new tail pointer */
1828 
1829 #ifdef DIAGNOSTIC
1830     /* Make sure we didn't get fed a bogus mbuf */
1831     if (m->m_nextpkt)
1832 	panic("tbf_queue: m_nextpkt");
1833 #endif
1834     m->m_nextpkt = NULL;
1835 
1836     t->tbf_q_len++;
1837 
1838     lwkt_reltoken(&mroute_token);
1839 }
1840 
1841 /*
1842  * processes the queue at the interface
1843  */
1844 static void
1845 tbf_process_q(struct vif *vifp)
1846 {
1847     struct tbf *t = vifp->v_tbf;
1848 
1849     lwkt_gettoken(&mroute_token);
1850 
1851     /* loop through the queue at the interface and send as many packets
1852      * as possible
1853      */
1854     while (t->tbf_q_len > 0) {
1855 	struct mbuf *m = t->tbf_q;
1856 	int len = mtod(m, struct ip *)->ip_len;
1857 
1858 	/* determine if the packet can be sent */
1859 	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
1860 	    break;
1861 	/* ok, reduce no of tokens, dequeue and send the packet. */
1862 	t->tbf_n_tok -= len;
1863 
1864 	t->tbf_q = m->m_nextpkt;
1865 	if (--t->tbf_q_len == 0)
1866 	    t->tbf_t = NULL;
1867 
1868 	m->m_nextpkt = NULL;
1869 	tbf_send_packet(vifp, m);
1870     }
1871     lwkt_reltoken(&mroute_token);
1872 }
1873 
1874 static void
1875 tbf_reprocess_q(void *xvifp)
1876 {
1877     struct vif *vifp = xvifp;
1878 
1879     if (ip_mrouter == NULL)
1880 	return;
1881     tbf_update_tokens(vifp);
1882     tbf_process_q(vifp);
1883     if (vifp->v_tbf->tbf_q_len)
1884 	callout_reset(&tbf_reprocess_q_ch, TBF_REPROCESS,
1885 		      tbf_reprocess_q, vifp);
1886 }
1887 
1888 /* function that will selectively discard a member of the queue
1889  * based on the precedence value and the priority
1890  */
1891 static int
1892 tbf_dq_sel(struct vif *vifp, struct ip *ip)
1893 {
1894     u_int p;
1895     struct mbuf *m, *last;
1896     struct mbuf **np;
1897     struct tbf *t = vifp->v_tbf;
1898 
1899     lwkt_gettoken(&mroute_token);
1900 
1901     p = priority(vifp, ip);
1902 
1903     np = &t->tbf_q;
1904     last = NULL;
1905     while ((m = *np) != NULL) {
1906 	if (p > priority(vifp, mtod(m, struct ip *))) {
1907 	    *np = m->m_nextpkt;
1908 	    /* If we're removing the last packet, fix the tail pointer */
1909 	    if (m == t->tbf_t)
1910 		t->tbf_t = last;
1911 	    m_freem(m);
1912 	    /* It's impossible for the queue to be empty, but check anyways. */
1913 	    if (--t->tbf_q_len == 0)
1914 		t->tbf_t = NULL;
1915 	    mrtstat.mrts_drop_sel++;
1916 	    lwkt_reltoken(&mroute_token);
1917 	    return 1;
1918 	}
1919 	np = &m->m_nextpkt;
1920 	last = m;
1921     }
1922     lwkt_reltoken(&mroute_token);
1923     return 0;
1924 }
1925 
1926 static void
1927 tbf_send_packet(struct vif *vifp, struct mbuf *m)
1928 {
1929     lwkt_gettoken(&mroute_token);
1930 
1931     if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
1932 	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
1933     else {
1934 	struct ip_moptions imo;
1935 	int error;
1936 	static struct route ro; /* XXX check this */
1937 
1938 	imo.imo_multicast_ifp  = vifp->v_ifp;
1939 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1940 	imo.imo_multicast_loop = 1;
1941 	imo.imo_multicast_vif  = -1;
1942 
1943 	/*
1944 	 * Re-entrancy should not be a problem here, because
1945 	 * the packets that we send out and are looped back at us
1946 	 * should get rejected because they appear to come from
1947 	 * the loopback interface, thus preventing looping.
1948 	 */
1949 	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
1950 
1951 	if (mrtdebug & DEBUG_XMIT)
1952 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1953 		(int)(vifp - viftable), error);
1954     }
1955     lwkt_reltoken(&mroute_token);
1956 }
1957 
1958 /* determine the current time and then
1959  * the elapsed time (between the last time and time now)
1960  * in milliseconds & update the no. of tokens in the bucket
1961  */
1962 static void
1963 tbf_update_tokens(struct vif *vifp)
1964 {
1965     struct timeval tp;
1966     u_long tm;
1967     struct tbf *t = vifp->v_tbf;
1968 
1969     lwkt_gettoken(&mroute_token);
1970 
1971     GET_TIME(tp);
1972 
1973     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1974 
1975     /*
1976      * This formula is actually
1977      * "time in seconds" * "bytes/second".
1978      *
1979      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1980      *
1981      * The (1000/1024) was introduced in add_vif to optimize
1982      * this divide into a shift.
1983      */
1984     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1985     t->tbf_last_pkt_t = tp;
1986 
1987     if (t->tbf_n_tok > MAX_BKT_SIZE)
1988 	t->tbf_n_tok = MAX_BKT_SIZE;
1989 
1990     lwkt_reltoken(&mroute_token);
1991 }
1992 
1993 static int
1994 priority(struct vif *vifp, struct ip *ip)
1995 {
1996     int prio = 50; /* the lowest priority -- default case */
1997 
1998     /* temporary hack; may add general packet classifier some day */
1999 
2000     /*
2001      * The UDP port space is divided up into four priority ranges:
2002      * [0, 16384)     : unclassified - lowest priority
2003      * [16384, 32768) : audio - highest priority
2004      * [32768, 49152) : whiteboard - medium priority
2005      * [49152, 65536) : video - low priority
2006      *
2007      * Everything else gets lowest priority.
2008      */
2009     if (ip->ip_p == IPPROTO_UDP) {
2010 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2011 	switch (ntohs(udp->uh_dport) & 0xc000) {
2012 	case 0x4000:
2013 	    prio = 70;
2014 	    break;
2015 	case 0x8000:
2016 	    prio = 60;
2017 	    break;
2018 	case 0xc000:
2019 	    prio = 55;
2020 	    break;
2021 	}
2022     }
2023     return prio;
2024 }
2025 
2026 /*
2027  * End of token bucket filter modifications
2028  */
2029 
2030 static int
2031 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2032 {
2033     int error, vifi;
2034 
2035     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2036 	return EOPNOTSUPP;
2037 
2038     error = soopt_to_kbuf(sopt, &vifi, sizeof vifi, sizeof vifi);
2039     if (error)
2040 	return error;
2041 
2042     lwkt_gettoken(&mroute_token);
2043 
2044     if (vifi < 0 || vifi >= numvifs) { /* Error if vif is invalid */
2045 	lwkt_reltoken(&mroute_token);
2046 	return EADDRNOTAVAIL;
2047     }
2048 
2049     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2050 	/* Check if socket is available. */
2051 	if (viftable[vifi].v_rsvpd != NULL) {
2052 	    lwkt_reltoken(&mroute_token);
2053 	    return EADDRINUSE;
2054 	}
2055 
2056 	viftable[vifi].v_rsvpd = so;
2057 	/* This may seem silly, but we need to be sure we don't over-increment
2058 	 * the RSVP counter, in case something slips up.
2059 	 */
2060 	if (!viftable[vifi].v_rsvp_on) {
2061 	    viftable[vifi].v_rsvp_on = 1;
2062 	    rsvp_on++;
2063 	}
2064     } else { /* must be VIF_OFF */
2065 	/*
2066 	 * XXX as an additional consistency check, one could make sure
2067 	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2068 	 * first parameter is pretty useless.
2069 	 */
2070 	viftable[vifi].v_rsvpd = NULL;
2071 	/*
2072 	 * This may seem silly, but we need to be sure we don't over-decrement
2073 	 * the RSVP counter, in case something slips up.
2074 	 */
2075 	if (viftable[vifi].v_rsvp_on) {
2076 	    viftable[vifi].v_rsvp_on = 0;
2077 	    rsvp_on--;
2078 	}
2079     }
2080     lwkt_reltoken(&mroute_token);
2081     return 0;
2082 }
2083 
2084 static void
2085 X_ip_rsvp_force_done(struct socket *so)
2086 {
2087     int vifi;
2088 
2089     /* Don't bother if it is not the right type of socket. */
2090     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2091 	return;
2092 
2093     lwkt_gettoken(&mroute_token);
2094 
2095     /* The socket may be attached to more than one vif...this
2096      * is perfectly legal.
2097      */
2098     for (vifi = 0; vifi < numvifs; vifi++) {
2099 	if (viftable[vifi].v_rsvpd == so) {
2100 	    viftable[vifi].v_rsvpd = NULL;
2101 	    /* This may seem silly, but we need to be sure we don't
2102 	     * over-decrement the RSVP counter, in case something slips up.
2103 	     */
2104 	    if (viftable[vifi].v_rsvp_on) {
2105 		viftable[vifi].v_rsvp_on = 0;
2106 		rsvp_on--;
2107 	    }
2108 	}
2109     }
2110 
2111     lwkt_reltoken(&mroute_token);
2112 }
2113 
2114 static int
2115 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
2116 {
2117     int vifi;
2118     struct mbuf *m = *mp;
2119     struct ip *ip = mtod(m, struct ip *);
2120     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2121     struct ifnet *ifp;
2122 #ifdef ALTQ
2123     /* support IP_RECVIF used by rsvpd rel4.2a1 */
2124     struct inpcb *inp;
2125     struct socket *so;
2126     struct mbuf *opts;
2127 #endif
2128 
2129     *mp = NULL;
2130 
2131     if (rsvpdebug)
2132 	kprintf("rsvp_input: rsvp_on %d\n",rsvp_on);
2133 
2134     /* Can still get packets with rsvp_on = 0 if there is a local member
2135      * of the group to which the RSVP packet is addressed.  But in this
2136      * case we want to throw the packet away.
2137      */
2138     if (!rsvp_on) {
2139 	m_freem(m);
2140 	return(IPPROTO_DONE);
2141     }
2142 
2143     lwkt_gettoken(&mroute_token);
2144 
2145     if (rsvpdebug)
2146 	kprintf("rsvp_input: check vifs\n");
2147 
2148 #ifdef DIAGNOSTIC
2149     if (!(m->m_flags & M_PKTHDR))
2150 	panic("rsvp_input no hdr");
2151 #endif
2152 
2153     ifp = m->m_pkthdr.rcvif;
2154     /* Find which vif the packet arrived on. */
2155     for (vifi = 0; vifi < numvifs; vifi++)
2156 	if (viftable[vifi].v_ifp == ifp)
2157 	    break;
2158 
2159 #ifdef ALTQ
2160     if (vifi == numvifs || (so = viftable[vifi].v_rsvpd) == NULL) {
2161 #else
2162     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2163 #endif
2164 	/*
2165 	 * If the old-style non-vif-associated socket is set,
2166 	 * then use it.  Otherwise, drop packet since there
2167 	 * is no specific socket for this vif.
2168 	 */
2169 	if (ip_rsvpd != NULL) {
2170 	    if (rsvpdebug)
2171 		kprintf("rsvp_input: Sending packet up old-style socket\n");
2172 	    *mp = m;
2173 	    rip_input(mp, offp, proto);  /* xxx */
2174 	} else {
2175 	    if (rsvpdebug && vifi == numvifs)
2176 		kprintf("rsvp_input: Can't find vif for packet.\n");
2177 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2178 		kprintf("rsvp_input: No socket defined for vif %d\n",vifi);
2179 	    m_freem(m);
2180 	}
2181 	lwkt_reltoken(&mroute_token);
2182 	return(IPPROTO_DONE);
2183     }
2184     rsvp_src.sin_addr = ip->ip_src;
2185 
2186     if (rsvpdebug && m)
2187 	kprintf("rsvp_input: m->m_len = %d, ssb_space() = %ld\n",
2188 	       m->m_len,ssb_space(&(viftable[vifi].v_rsvpd->so_rcv)));
2189 
2190 #ifdef ALTQ
2191     opts = NULL;
2192     inp = (struct inpcb *)so->so_pcb;
2193     if (inp->inp_flags & INP_CONTROLOPTS ||
2194 	inp->inp_socket->so_options & SO_TIMESTAMP) {
2195 	ip_savecontrol(inp, &opts, ip, m);
2196     }
2197     if (ssb_appendaddr(&so->so_rcv,
2198 		     (struct sockaddr *)&rsvp_src,m, opts) == 0) {
2199 	m_freem(m);
2200 	if (opts)
2201 	    m_freem(opts);
2202 	if (rsvpdebug)
2203 	    kprintf("rsvp_input: Failed to append to socket\n");
2204     }
2205     else {
2206 	sorwakeup(so);
2207 	if (rsvpdebug)
2208 	    kprintf("rsvp_input: send packet up\n");
2209     }
2210 #else /* !ALTQ */
2211     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2212 	if (rsvpdebug)
2213 	    kprintf("rsvp_input: Failed to append to socket\n");
2214     } else {
2215 	if (rsvpdebug)
2216 	    kprintf("rsvp_input: send packet up\n");
2217     }
2218 #endif /* !ALTQ */
2219     lwkt_reltoken(&mroute_token);
2220     return(IPPROTO_DONE);
2221 }
2222 
2223 /*
2224  * Code for bandwidth monitors
2225  */
2226 
2227 /*
2228  * Define common interface for timeval-related methods
2229  */
2230 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2231 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2232 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2233 
2234 static uint32_t
2235 compute_bw_meter_flags(struct bw_upcall *req)
2236 {
2237     uint32_t flags = 0;
2238 
2239     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2240 	flags |= BW_METER_UNIT_PACKETS;
2241     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2242 	flags |= BW_METER_UNIT_BYTES;
2243     if (req->bu_flags & BW_UPCALL_GEQ)
2244 	flags |= BW_METER_GEQ;
2245     if (req->bu_flags & BW_UPCALL_LEQ)
2246 	flags |= BW_METER_LEQ;
2247 
2248     return flags;
2249 }
2250 
2251 /*
2252  * Add a bw_meter entry
2253  */
2254 static int
2255 add_bw_upcall(struct bw_upcall *req)
2256 {
2257     struct mfc *mfc;
2258     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2259 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2260     struct timeval now;
2261     struct bw_meter *x;
2262     uint32_t flags;
2263 
2264     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2265 	return EOPNOTSUPP;
2266 
2267     /* Test if the flags are valid */
2268     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2269 	return EINVAL;
2270     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2271 	return EINVAL;
2272     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2273 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2274 	return EINVAL;
2275 
2276     /* Test if the threshold time interval is valid */
2277     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2278 	return EINVAL;
2279 
2280     flags = compute_bw_meter_flags(req);
2281 
2282     /*
2283      * Find if we have already same bw_meter entry
2284      */
2285     lwkt_gettoken(&mroute_token);
2286     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2287     if (mfc == NULL) {
2288 	lwkt_reltoken(&mroute_token);
2289 	return EADDRNOTAVAIL;
2290     }
2291     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2292 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2293 			   &req->bu_threshold.b_time, ==)) &&
2294 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2295 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2296 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2297 	    lwkt_reltoken(&mroute_token);
2298 	    return 0;		/* XXX Already installed */
2299 	}
2300     }
2301     lwkt_reltoken(&mroute_token);
2302 
2303     /* Allocate the new bw_meter entry */
2304     x = kmalloc(sizeof(*x), M_BWMETER, M_INTWAIT);
2305 
2306     /* Set the new bw_meter entry */
2307     x->bm_threshold.b_time = req->bu_threshold.b_time;
2308     GET_TIME(now);
2309     x->bm_start_time = now;
2310     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2311     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2312     x->bm_measured.b_packets = 0;
2313     x->bm_measured.b_bytes = 0;
2314     x->bm_flags = flags;
2315     x->bm_time_next = NULL;
2316     x->bm_time_hash = BW_METER_BUCKETS;
2317 
2318     /* Add the new bw_meter entry to the front of entries for this MFC */
2319     lwkt_gettoken(&mroute_token);
2320     x->bm_mfc = mfc;
2321     x->bm_mfc_next = mfc->mfc_bw_meter;
2322     mfc->mfc_bw_meter = x;
2323     schedule_bw_meter(x, &now);
2324     lwkt_reltoken(&mroute_token);
2325 
2326     return 0;
2327 }
2328 
2329 static void
2330 free_bw_list(struct bw_meter *list)
2331 {
2332     while (list != NULL) {
2333 	struct bw_meter *x = list;
2334 
2335 	list = list->bm_mfc_next;
2336 	unschedule_bw_meter(x);
2337 	kfree(x, M_BWMETER);
2338     }
2339 }
2340 
2341 /*
2342  * Delete one or multiple bw_meter entries
2343  */
2344 static int
2345 del_bw_upcall(struct bw_upcall *req)
2346 {
2347     struct mfc *mfc;
2348     struct bw_meter *x;
2349 
2350     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2351 	return EOPNOTSUPP;
2352 
2353     lwkt_gettoken(&mroute_token);
2354     /* Find the corresponding MFC entry */
2355     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2356     if (mfc == NULL) {
2357 	lwkt_reltoken(&mroute_token);
2358 	return EADDRNOTAVAIL;
2359     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2360 	/*
2361 	 * Delete all bw_meter entries for this mfc
2362 	 */
2363 	struct bw_meter *list;
2364 
2365 	list = mfc->mfc_bw_meter;
2366 	mfc->mfc_bw_meter = NULL;
2367 	lwkt_reltoken(&mroute_token);
2368 	free_bw_list(list);
2369 	return 0;
2370     } else {			/* Delete a single bw_meter entry */
2371 	struct bw_meter *prev;
2372 	uint32_t flags = 0;
2373 
2374 	flags = compute_bw_meter_flags(req);
2375 
2376 	/* Find the bw_meter entry to delete */
2377 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2378 	     prev = x, x = x->bm_mfc_next) {
2379 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2380 			       &req->bu_threshold.b_time, ==)) &&
2381 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2382 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2383 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2384 		break;
2385 	}
2386 	if (x != NULL) { /* Delete entry from the list for this MFC */
2387 	    if (prev != NULL)
2388 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2389 	    else
2390 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2391 	    unschedule_bw_meter(x);
2392 	    lwkt_reltoken(&mroute_token);
2393 	    /* Free the bw_meter entry */
2394 	    kfree(x, M_BWMETER);
2395 	    return 0;
2396 	} else {
2397 	    lwkt_reltoken(&mroute_token);
2398 	    return EINVAL;
2399 	}
2400     }
2401     /* NOTREACHED */
2402 }
2403 
2404 /*
2405  * Perform bandwidth measurement processing that may result in an upcall
2406  */
2407 static void
2408 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2409 {
2410     struct timeval delta;
2411 
2412     lwkt_gettoken(&mroute_token);
2413     delta = *nowp;
2414     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2415 
2416     if (x->bm_flags & BW_METER_GEQ) {
2417 	/*
2418 	 * Processing for ">=" type of bw_meter entry
2419 	 */
2420 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2421 	    /* Reset the bw_meter entry */
2422 	    x->bm_start_time = *nowp;
2423 	    x->bm_measured.b_packets = 0;
2424 	    x->bm_measured.b_bytes = 0;
2425 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2426 	}
2427 
2428 	/* Record that a packet is received */
2429 	x->bm_measured.b_packets++;
2430 	x->bm_measured.b_bytes += plen;
2431 
2432 	/*
2433 	 * Test if we should deliver an upcall
2434 	 */
2435 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2436 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2437 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2438 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2439 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2440 		/* Prepare an upcall for delivery */
2441 		bw_meter_prepare_upcall(x, nowp);
2442 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2443 	    }
2444 	}
2445     } else if (x->bm_flags & BW_METER_LEQ) {
2446 	/*
2447 	 * Processing for "<=" type of bw_meter entry
2448 	 */
2449 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2450 	    /*
2451 	     * We are behind time with the multicast forwarding table
2452 	     * scanning for "<=" type of bw_meter entries, so test now
2453 	     * if we should deliver an upcall.
2454 	     */
2455 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2456 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2457 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2458 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2459 		/* Prepare an upcall for delivery */
2460 		bw_meter_prepare_upcall(x, nowp);
2461 	    }
2462 	    /* Reschedule the bw_meter entry */
2463 	    unschedule_bw_meter(x);
2464 	    schedule_bw_meter(x, nowp);
2465 	}
2466 
2467 	/* Record that a packet is received */
2468 	x->bm_measured.b_packets++;
2469 	x->bm_measured.b_bytes += plen;
2470 
2471 	/*
2472 	 * Test if we should restart the measuring interval
2473 	 */
2474 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2475 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2476 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2477 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2478 	    /* Don't restart the measuring interval */
2479 	} else {
2480 	    /* Do restart the measuring interval */
2481 	    /*
2482 	     * XXX: note that we don't unschedule and schedule, because this
2483 	     * might be too much overhead per packet. Instead, when we process
2484 	     * all entries for a given timer hash bin, we check whether it is
2485 	     * really a timeout. If not, we reschedule at that time.
2486 	     */
2487 	    x->bm_start_time = *nowp;
2488 	    x->bm_measured.b_packets = 0;
2489 	    x->bm_measured.b_bytes = 0;
2490 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2491 	}
2492     }
2493     lwkt_reltoken(&mroute_token);
2494 }
2495 
2496 /*
2497  * Prepare a bandwidth-related upcall
2498  */
2499 static void
2500 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2501 {
2502     struct timeval delta;
2503     struct bw_upcall *u;
2504 
2505     lwkt_gettoken(&mroute_token);
2506 
2507     /*
2508      * Compute the measured time interval
2509      */
2510     delta = *nowp;
2511     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2512 
2513     /*
2514      * If there are too many pending upcalls, deliver them now
2515      */
2516     if (bw_upcalls_n >= BW_UPCALLS_MAX)
2517 	bw_upcalls_send();
2518 
2519     /*
2520      * Set the bw_upcall entry
2521      */
2522     u = &bw_upcalls[bw_upcalls_n++];
2523     u->bu_src = x->bm_mfc->mfc_origin;
2524     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2525     u->bu_threshold.b_time = x->bm_threshold.b_time;
2526     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2527     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2528     u->bu_measured.b_time = delta;
2529     u->bu_measured.b_packets = x->bm_measured.b_packets;
2530     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2531     u->bu_flags = 0;
2532     if (x->bm_flags & BW_METER_UNIT_PACKETS)
2533 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2534     if (x->bm_flags & BW_METER_UNIT_BYTES)
2535 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2536     if (x->bm_flags & BW_METER_GEQ)
2537 	u->bu_flags |= BW_UPCALL_GEQ;
2538     if (x->bm_flags & BW_METER_LEQ)
2539 	u->bu_flags |= BW_UPCALL_LEQ;
2540 
2541     lwkt_reltoken(&mroute_token);
2542 }
2543 
2544 /*
2545  * Send the pending bandwidth-related upcalls
2546  */
2547 static void
2548 bw_upcalls_send(void)
2549 {
2550     struct mbuf *m;
2551     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2552     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2553     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2554 				      0,		/* unused2 */
2555 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2556 				      0,		/* im_mbz  */
2557 				      0,		/* im_vif  */
2558 				      0,		/* unused3 */
2559 				      { 0 },		/* im_src  */
2560 				      { 0 } };		/* im_dst  */
2561 
2562     if (bw_upcalls_n == 0)
2563 	return;			/* No pending upcalls */
2564 
2565     bw_upcalls_n = 0;
2566 
2567     /*
2568      * Allocate a new mbuf, initialize it with the header and
2569      * the payload for the pending calls.
2570      */
2571     MGETHDR(m, M_NOWAIT, MT_HEADER);
2572     if (m == NULL) {
2573 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2574 	return;
2575     }
2576 
2577     m->m_len = m->m_pkthdr.len = 0;
2578     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2579     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2580 
2581     /*
2582      * Send the upcalls
2583      * XXX do we need to set the address in k_igmpsrc ?
2584      */
2585     mrtstat.mrts_upcalls++;
2586     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2587 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2588 	++mrtstat.mrts_upq_sockfull;
2589     }
2590 }
2591 
2592 /*
2593  * Compute the timeout hash value for the bw_meter entries
2594  */
2595 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2596     do {								\
2597 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2598 									\
2599 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2600 	(hash) = next_timeval.tv_sec;					\
2601 	if (next_timeval.tv_usec)					\
2602 	    (hash)++; /* XXX: make sure we don't timeout early */	\
2603 	(hash) %= BW_METER_BUCKETS;					\
2604     } while (0)
2605 
2606 /*
2607  * Schedule a timer to process periodically bw_meter entry of type "<="
2608  * by linking the entry in the proper hash bucket.
2609  */
2610 static void
2611 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2612 {
2613     int time_hash;
2614 
2615     if (!(x->bm_flags & BW_METER_LEQ))
2616 	return;		/* XXX: we schedule timers only for "<=" entries */
2617 
2618     /*
2619      * Reset the bw_meter entry
2620      */
2621     lwkt_gettoken(&mroute_token);
2622     x->bm_start_time = *nowp;
2623     x->bm_measured.b_packets = 0;
2624     x->bm_measured.b_bytes = 0;
2625     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2626 
2627     /*
2628      * Compute the timeout hash value and insert the entry
2629      */
2630     BW_METER_TIMEHASH(x, time_hash);
2631     x->bm_time_next = bw_meter_timers[time_hash];
2632     bw_meter_timers[time_hash] = x;
2633     x->bm_time_hash = time_hash;
2634 
2635     lwkt_reltoken(&mroute_token);
2636 }
2637 
2638 /*
2639  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2640  * by removing the entry from the proper hash bucket.
2641  */
2642 static void
2643 unschedule_bw_meter(struct bw_meter *x)
2644 {
2645     int time_hash;
2646     struct bw_meter *prev, *tmp;
2647 
2648     if (!(x->bm_flags & BW_METER_LEQ))
2649 	return;		/* XXX: we schedule timers only for "<=" entries */
2650 
2651     /*
2652      * Compute the timeout hash value and delete the entry
2653      */
2654     time_hash = x->bm_time_hash;
2655     if (time_hash >= BW_METER_BUCKETS)
2656 	return;		/* Entry was not scheduled */
2657 
2658     for (prev = NULL, tmp = bw_meter_timers[time_hash];
2659 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2660 	if (tmp == x)
2661 	    break;
2662 
2663     if (tmp == NULL)
2664 	panic("unschedule_bw_meter: bw_meter entry not found");
2665 
2666     if (prev != NULL)
2667 	prev->bm_time_next = x->bm_time_next;
2668     else
2669 	bw_meter_timers[time_hash] = x->bm_time_next;
2670 
2671     x->bm_time_next = NULL;
2672     x->bm_time_hash = BW_METER_BUCKETS;
2673 }
2674 
2675 
2676 /*
2677  * Process all "<=" type of bw_meter that should be processed now,
2678  * and for each entry prepare an upcall if necessary. Each processed
2679  * entry is rescheduled again for the (periodic) processing.
2680  *
2681  * This is run periodically (once per second normally). On each round,
2682  * all the potentially matching entries are in the hash slot that we are
2683  * looking at.
2684  */
2685 static void
2686 bw_meter_process(void)
2687 {
2688     static uint32_t last_tv_sec;	/* last time we processed this */
2689 
2690     uint32_t loops;
2691     int i;
2692     struct timeval now, process_endtime;
2693 
2694     GET_TIME(now);
2695     if (last_tv_sec == now.tv_sec)
2696 	return;		/* nothing to do */
2697 
2698     lwkt_gettoken(&mroute_token);
2699     loops = now.tv_sec - last_tv_sec;
2700     last_tv_sec = now.tv_sec;
2701     if (loops > BW_METER_BUCKETS)
2702 	loops = BW_METER_BUCKETS;
2703 
2704     /*
2705      * Process all bins of bw_meter entries from the one after the last
2706      * processed to the current one. On entry, i points to the last bucket
2707      * visited, so we need to increment i at the beginning of the loop.
2708      */
2709     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2710 	struct bw_meter *x, *tmp_list;
2711 
2712 	if (++i >= BW_METER_BUCKETS)
2713 	    i = 0;
2714 
2715 	/* Disconnect the list of bw_meter entries from the bin */
2716 	tmp_list = bw_meter_timers[i];
2717 	bw_meter_timers[i] = NULL;
2718 
2719 	/* Process the list of bw_meter entries */
2720 	while (tmp_list != NULL) {
2721 	    x = tmp_list;
2722 	    tmp_list = tmp_list->bm_time_next;
2723 
2724 	    /* Test if the time interval is over */
2725 	    process_endtime = x->bm_start_time;
2726 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2727 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2728 		/* Not yet: reschedule, but don't reset */
2729 		int time_hash;
2730 
2731 		BW_METER_TIMEHASH(x, time_hash);
2732 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2733 		    /*
2734 		     * XXX: somehow the bin processing is a bit ahead of time.
2735 		     * Put the entry in the next bin.
2736 		     */
2737 		    if (++time_hash >= BW_METER_BUCKETS)
2738 			time_hash = 0;
2739 		}
2740 		x->bm_time_next = bw_meter_timers[time_hash];
2741 		bw_meter_timers[time_hash] = x;
2742 		x->bm_time_hash = time_hash;
2743 
2744 		continue;
2745 	    }
2746 
2747 	    /*
2748 	     * Test if we should deliver an upcall
2749 	     */
2750 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2751 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2752 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2753 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2754 		/* Prepare an upcall for delivery */
2755 		bw_meter_prepare_upcall(x, &now);
2756 	    }
2757 
2758 	    /*
2759 	     * Reschedule for next processing
2760 	     */
2761 	    schedule_bw_meter(x, &now);
2762 	}
2763     }
2764     /* Send all upcalls that are pending delivery */
2765     bw_upcalls_send();
2766     lwkt_reltoken(&mroute_token);
2767 }
2768 
2769 /*
2770  * A periodic function for sending all upcalls that are pending delivery
2771  */
2772 static void
2773 expire_bw_upcalls_send(void *unused)
2774 {
2775     bw_upcalls_send();
2776 
2777     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2778     		  expire_bw_upcalls_send, NULL);
2779 }
2780 
2781 /*
2782  * A periodic function for periodic scanning of the multicast forwarding
2783  * table for processing all "<=" bw_meter entries.
2784  */
2785 static void
2786 expire_bw_meter_process(void *unused)
2787 {
2788     if (mrt_api_config & MRT_MFC_BW_UPCALL)
2789 	bw_meter_process();
2790 
2791     callout_reset(&bw_meter_ch, BW_METER_PERIOD,
2792     		  expire_bw_meter_process, NULL);
2793 }
2794 
2795 /*
2796  * End of bandwidth monitoring code
2797  */
2798 
2799 #ifdef PIM
2800 /*
2801  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2802  *
2803  */
2804 static int
2805 pim_register_send(struct ip *ip, struct vif *vifp,
2806 	struct mbuf *m, struct mfc *rt)
2807 {
2808     struct mbuf *mb_copy, *mm;
2809 
2810     if (mrtdebug & DEBUG_PIM)
2811         log(LOG_DEBUG, "pim_register_send: ");
2812 
2813     mb_copy = pim_register_prepare(ip, m);
2814     if (mb_copy == NULL)
2815 	return ENOBUFS;
2816 
2817     /*
2818      * Send all the fragments. Note that the mbuf for each fragment
2819      * is freed by the sending machinery.
2820      */
2821     for (mm = mb_copy; mm; mm = mb_copy) {
2822 	mb_copy = mm->m_nextpkt;
2823 	mm->m_nextpkt = 0;
2824 	mm = m_pullup(mm, sizeof(struct ip));
2825 	if (mm != NULL) {
2826 	    ip = mtod(mm, struct ip *);
2827 	    if ((mrt_api_config & MRT_MFC_RP) &&
2828 		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2829 		pim_register_send_rp(ip, vifp, mm, rt);
2830 	    } else {
2831 		pim_register_send_upcall(ip, vifp, mm, rt);
2832 	    }
2833 	}
2834     }
2835 
2836     return 0;
2837 }
2838 
2839 /*
2840  * Return a copy of the data packet that is ready for PIM Register
2841  * encapsulation.
2842  * XXX: Note that in the returned copy the IP header is a valid one.
2843  */
2844 static struct mbuf *
2845 pim_register_prepare(struct ip *ip, struct mbuf *m)
2846 {
2847     struct mbuf *mb_copy = NULL;
2848     int mtu;
2849 
2850     /* Take care of delayed checksums */
2851     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2852 	in_delayed_cksum(m);
2853 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2854     }
2855 
2856     /*
2857      * Copy the old packet & pullup its IP header into the
2858      * new mbuf so we can modify it.
2859      */
2860     mb_copy = m_copypacket(m, M_NOWAIT);
2861     if (mb_copy == NULL)
2862 	return NULL;
2863     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2864     if (mb_copy == NULL)
2865 	return NULL;
2866 
2867     /* take care of the TTL */
2868     ip = mtod(mb_copy, struct ip *);
2869     --ip->ip_ttl;
2870 
2871     /* Compute the MTU after the PIM Register encapsulation */
2872     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2873 
2874     if (ip->ip_len <= mtu) {
2875 	/* Turn the IP header into a valid one */
2876 	ip->ip_len = htons(ip->ip_len);
2877 	ip->ip_off = htons(ip->ip_off);
2878 	ip->ip_sum = 0;
2879 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2880     } else {
2881 	/* Fragment the packet */
2882 	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2883 	    m_freem(mb_copy);
2884 	    return NULL;
2885 	}
2886     }
2887     return mb_copy;
2888 }
2889 
2890 /*
2891  * Send an upcall with the data packet to the user-level process.
2892  */
2893 static int
2894 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2895 	struct mbuf *mb_copy, struct mfc *rt)
2896 {
2897     struct mbuf *mb_first;
2898     int len = ntohs(ip->ip_len);
2899     struct igmpmsg *im;
2900     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2901 
2902     /*
2903      * Add a new mbuf with an upcall header
2904      */
2905     MGETHDR(mb_first, M_NOWAIT, MT_HEADER);
2906     if (mb_first == NULL) {
2907 	m_freem(mb_copy);
2908 	return ENOBUFS;
2909     }
2910     mb_first->m_data += max_linkhdr;
2911     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2912     mb_first->m_len = sizeof(struct igmpmsg);
2913     mb_first->m_next = mb_copy;
2914 
2915     /* Send message to routing daemon */
2916     im = mtod(mb_first, struct igmpmsg *);
2917     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2918     im->im_mbz		= 0;
2919     im->im_vif		= vifp - viftable;
2920     im->im_src		= ip->ip_src;
2921     im->im_dst		= ip->ip_dst;
2922 
2923     k_igmpsrc.sin_addr	= ip->ip_src;
2924 
2925     mrtstat.mrts_upcalls++;
2926 
2927     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2928 	if (mrtdebug & DEBUG_PIM)
2929 	    log(LOG_WARNING,
2930 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2931 	++mrtstat.mrts_upq_sockfull;
2932 	return ENOBUFS;
2933     }
2934 
2935     /* Keep statistics */
2936     pimstat.pims_snd_registers_msgs++;
2937     pimstat.pims_snd_registers_bytes += len;
2938 
2939     return 0;
2940 }
2941 
2942 /*
2943  * Encapsulate the data packet in PIM Register message and send it to the RP.
2944  */
2945 static int
2946 pim_register_send_rp(struct ip *ip, struct vif *vifp,
2947 	struct mbuf *mb_copy, struct mfc *rt)
2948 {
2949     struct mbuf *mb_first;
2950     struct ip *ip_outer;
2951     struct pim_encap_pimhdr *pimhdr;
2952     int len = ntohs(ip->ip_len);
2953     vifi_t vifi = rt->mfc_parent;
2954 
2955     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2956 	m_freem(mb_copy);
2957 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2958     }
2959 
2960     /*
2961      * Add a new mbuf with the encapsulating header
2962      */
2963     MGETHDR(mb_first, M_NOWAIT, MT_HEADER);
2964     if (mb_first == NULL) {
2965 	m_freem(mb_copy);
2966 	return ENOBUFS;
2967     }
2968     mb_first->m_data += max_linkhdr;
2969     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2970     mb_first->m_next = mb_copy;
2971 
2972     mb_first->m_pkthdr.len = len + mb_first->m_len;
2973 
2974     /*
2975      * Fill in the encapsulating IP and PIM header
2976      */
2977     ip_outer = mtod(mb_first, struct ip *);
2978     *ip_outer = pim_encap_iphdr;
2979     ip_outer->ip_id = ip_newid();
2980     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2981     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2982     ip_outer->ip_dst = rt->mfc_rp;
2983     /*
2984      * Copy the inner header TOS to the outer header, and take care of the
2985      * IP_DF bit.
2986      */
2987     ip_outer->ip_tos = ip->ip_tos;
2988     if (ntohs(ip->ip_off) & IP_DF)
2989 	ip_outer->ip_off |= IP_DF;
2990     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2991 					 + sizeof(pim_encap_iphdr));
2992     *pimhdr = pim_encap_pimhdr;
2993     /* If the iif crosses a border, set the Border-bit */
2994     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2995 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2996 
2997     mb_first->m_data += sizeof(pim_encap_iphdr);
2998     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2999     mb_first->m_data -= sizeof(pim_encap_iphdr);
3000 
3001     if (vifp->v_rate_limit == 0)
3002 	tbf_send_packet(vifp, mb_first);
3003     else
3004 	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3005 
3006     /* Keep statistics */
3007     pimstat.pims_snd_registers_msgs++;
3008     pimstat.pims_snd_registers_bytes += len;
3009 
3010     return 0;
3011 }
3012 
3013 /*
3014  * PIM-SMv2 and PIM-DM messages processing.
3015  * Receives and verifies the PIM control messages, and passes them
3016  * up to the listening socket, using rip_input().
3017  * The only message with special processing is the PIM_REGISTER message
3018  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3019  * is passed to if_simloop().
3020  */
3021 int
3022 pim_input(struct mbuf **mp, int *offp, int proto)
3023 {
3024     struct mbuf *m = *mp;
3025     struct ip *ip = mtod(m, struct ip *);
3026     struct pim *pim;
3027     int minlen;
3028     int datalen = ip->ip_len;
3029     int ip_tos;
3030     int iphlen;
3031 
3032     iphlen = *offp;
3033     *mp = NULL;
3034 
3035     /* Keep statistics */
3036     pimstat.pims_rcv_total_msgs++;
3037     pimstat.pims_rcv_total_bytes += datalen;
3038 
3039     /*
3040      * Validate lengths
3041      */
3042     if (datalen < PIM_MINLEN) {
3043 	pimstat.pims_rcv_tooshort++;
3044 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3045 	    datalen, (u_long)ip->ip_src.s_addr);
3046 	m_freem(m);
3047 	return(IPPROTO_DONE);
3048     }
3049 
3050     /*
3051      * If the packet is at least as big as a REGISTER, go agead
3052      * and grab the PIM REGISTER header size, to avoid another
3053      * possible m_pullup() later.
3054      *
3055      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3056      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3057      */
3058     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3059     /*
3060      * Get the IP and PIM headers in contiguous memory, and
3061      * possibly the PIM REGISTER header.
3062      */
3063     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3064 	(m = m_pullup(m, minlen)) == NULL) {
3065 	log(LOG_ERR, "pim_input: m_pullup failure\n");
3066 	return(IPPROTO_DONE);
3067     }
3068     /* m_pullup() may have given us a new mbuf so reset ip. */
3069     ip = mtod(m, struct ip *);
3070     ip_tos = ip->ip_tos;
3071 
3072     /* adjust mbuf to point to the PIM header */
3073     m->m_data += iphlen;
3074     m->m_len  -= iphlen;
3075     pim = mtod(m, struct pim *);
3076 
3077     /*
3078      * Validate checksum. If PIM REGISTER, exclude the data packet.
3079      *
3080      * XXX: some older PIMv2 implementations don't make this distinction,
3081      * so for compatibility reason perform the checksum over part of the
3082      * message, and if error, then over the whole message.
3083      */
3084     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3085 	/* do nothing, checksum okay */
3086     } else if (in_cksum(m, datalen)) {
3087 	pimstat.pims_rcv_badsum++;
3088 	if (mrtdebug & DEBUG_PIM)
3089 	    log(LOG_DEBUG, "pim_input: invalid checksum");
3090 	m_freem(m);
3091 	return(IPPROTO_DONE);
3092     }
3093 
3094     /* PIM version check */
3095     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3096 	pimstat.pims_rcv_badversion++;
3097 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3098 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3099 	m_freem(m);
3100 	return(IPPROTO_DONE);
3101     }
3102 
3103     /* restore mbuf back to the outer IP */
3104     m->m_data -= iphlen;
3105     m->m_len  += iphlen;
3106 
3107     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3108 	/*
3109 	 * Since this is a REGISTER, we'll make a copy of the register
3110 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3111 	 * routing daemon.
3112 	 */
3113 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3114 	struct mbuf *mcp;
3115 	struct ip *encap_ip;
3116 	u_int32_t *reghdr;
3117 
3118 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3119 	    if (mrtdebug & DEBUG_PIM)
3120 		log(LOG_DEBUG,
3121 		    "pim_input: register vif not set: %d\n", reg_vif_num);
3122 	    m_freem(m);
3123 	    return(IPPROTO_DONE);
3124 	}
3125 
3126 	/*
3127 	 * Validate length
3128 	 */
3129 	if (datalen < PIM_REG_MINLEN) {
3130 	    pimstat.pims_rcv_tooshort++;
3131 	    pimstat.pims_rcv_badregisters++;
3132 	    log(LOG_ERR,
3133 		"pim_input: register packet size too small %d from %lx\n",
3134 		datalen, (u_long)ip->ip_src.s_addr);
3135 	    m_freem(m);
3136 	    return(IPPROTO_DONE);
3137 	}
3138 
3139 	reghdr = (u_int32_t *)(pim + 1);
3140 	encap_ip = (struct ip *)(reghdr + 1);
3141 
3142 	if (mrtdebug & DEBUG_PIM) {
3143 	    log(LOG_DEBUG,
3144 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3145 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3146 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3147 		ntohs(encap_ip->ip_len));
3148 	}
3149 
3150 	/* verify the version number of the inner packet */
3151 	if (encap_ip->ip_v != IPVERSION) {
3152 	    pimstat.pims_rcv_badregisters++;
3153 	    if (mrtdebug & DEBUG_PIM) {
3154 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3155 		    "of the inner packet\n", encap_ip->ip_v);
3156 	    }
3157 	    m_freem(m);
3158 	    return(IPPROTO_DONE);
3159 	}
3160 
3161 	/* verify the inner packet is destined to a mcast group */
3162 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3163 	    pimstat.pims_rcv_badregisters++;
3164 	    if (mrtdebug & DEBUG_PIM)
3165 		log(LOG_DEBUG,
3166 		    "pim_input: inner packet of register is not "
3167 		    "multicast %lx\n",
3168 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3169 	    m_freem(m);
3170 	    return(IPPROTO_DONE);
3171 	}
3172 
3173 	/* If a NULL_REGISTER, pass it to the daemon */
3174 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3175 		goto pim_input_to_daemon;
3176 
3177 	/*
3178 	 * Copy the TOS from the outer IP header to the inner IP header.
3179 	 */
3180 	if (encap_ip->ip_tos != ip_tos) {
3181 	    /* Outer TOS -> inner TOS */
3182 	    encap_ip->ip_tos = ip_tos;
3183 	    /* Recompute the inner header checksum. Sigh... */
3184 
3185 	    /* adjust mbuf to point to the inner IP header */
3186 	    m->m_data += (iphlen + PIM_MINLEN);
3187 	    m->m_len  -= (iphlen + PIM_MINLEN);
3188 
3189 	    encap_ip->ip_sum = 0;
3190 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3191 
3192 	    /* restore mbuf to point back to the outer IP header */
3193 	    m->m_data -= (iphlen + PIM_MINLEN);
3194 	    m->m_len  += (iphlen + PIM_MINLEN);
3195 	}
3196 
3197 	/*
3198 	 * Decapsulate the inner IP packet and loopback to forward it
3199 	 * as a normal multicast packet. Also, make a copy of the
3200 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3201 	 * to pass to the daemon later, so it can take the appropriate
3202 	 * actions (e.g., send back PIM_REGISTER_STOP).
3203 	 * XXX: here m->m_data points to the outer IP header.
3204 	 */
3205 	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3206 	if (mcp == NULL) {
3207 	    log(LOG_ERR,
3208 		"pim_input: pim register: could not copy register head\n");
3209 	    m_freem(m);
3210 	    return(IPPROTO_DONE);
3211 	}
3212 
3213 	/* Keep statistics */
3214 	/* XXX: registers_bytes include only the encap. mcast pkt */
3215 	pimstat.pims_rcv_registers_msgs++;
3216 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3217 
3218 	/*
3219 	 * forward the inner ip packet; point m_data at the inner ip.
3220 	 */
3221 	m_adj(m, iphlen + PIM_MINLEN);
3222 
3223 	if (mrtdebug & DEBUG_PIM) {
3224 	    log(LOG_DEBUG,
3225 		"pim_input: forwarding decapsulated register: "
3226 		"src %lx, dst %lx, vif %d\n",
3227 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3228 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3229 		reg_vif_num);
3230 	}
3231 	if_simloop(viftable[reg_vif_num].v_ifp, m, dst.sin_family, 0);
3232 
3233 	/* prepare the register head to send to the mrouting daemon */
3234 	m = mcp;
3235     }
3236 
3237 pim_input_to_daemon:
3238     /*
3239      * Pass the PIM message up to the daemon; if it is a Register message,
3240      * pass the 'head' only up to the daemon. This includes the
3241      * outer IP header, PIM header, PIM-Register header and the
3242      * inner IP header.
3243      * XXX: the outer IP header pkt size of a Register is not adjust to
3244      * reflect the fact that the inner multicast data is truncated.
3245      */
3246     *mp = m;
3247     *offp = iphlen;
3248     rip_input(mp, offp, proto);
3249     return(IPPROTO_DONE);
3250 }
3251 #endif /* PIM */
3252 
3253 static int
3254 ip_mroute_modevent(module_t mod, int type, void *unused)
3255 {
3256     switch (type) {
3257     case MOD_LOAD:
3258 	lwkt_gettoken(&mroute_token);
3259 	/* XXX Protect against multiple loading */
3260 	ip_mcast_src = X_ip_mcast_src;
3261 	ip_mforward = X_ip_mforward;
3262 	ip_mrouter_done = X_ip_mrouter_done;
3263 	ip_mrouter_get = X_ip_mrouter_get;
3264 	ip_mrouter_set = X_ip_mrouter_set;
3265 	ip_rsvp_force_done = X_ip_rsvp_force_done;
3266 	ip_rsvp_vif = X_ip_rsvp_vif;
3267 	ipip_input = X_ipip_input;
3268 	legal_vif_num = X_legal_vif_num;
3269 	mrt_ioctl = X_mrt_ioctl;
3270 	rsvp_input_p = X_rsvp_input;
3271 	lwkt_reltoken(&mroute_token);
3272 	break;
3273 
3274     case MOD_UNLOAD:
3275 	if (ip_mrouter)
3276 	    return EINVAL;
3277 
3278 	lwkt_gettoken(&mroute_token);
3279 	ip_mcast_src = NULL;
3280 	ip_mforward = NULL;
3281 	ip_mrouter_done = NULL;
3282 	ip_mrouter_get = NULL;
3283 	ip_mrouter_set = NULL;
3284 	ip_rsvp_force_done = NULL;
3285 	ip_rsvp_vif = NULL;
3286 	ipip_input = NULL;
3287 	legal_vif_num = NULL;
3288 	mrt_ioctl = NULL;
3289 	rsvp_input_p = NULL;
3290 	lwkt_reltoken(&mroute_token);
3291 	break;
3292     }
3293     return 0;
3294 }
3295 
3296 static moduledata_t ip_mroutemod = {
3297     "ip_mroute",
3298     ip_mroute_modevent,
3299     0
3300 };
3301 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3302