xref: /dragonfly/sys/net/ip_mroute/ip_mroute.c (revision 8af44722)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  * Modified by Ahmed Helmy, SGI, June 1996
11  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
12  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
13  * Modified by Hitoshi Asaeda, WIDE, August 2000
14  * Modified by Pavlin Radoslavov, ICSI, October 2002
15  *
16  * MROUTING Revision: 3.5
17  * and PIM-SMv2 and PIM-DM support, advanced API support,
18  * bandwidth metering and signaling
19  *
20  * $FreeBSD: src/sys/netinet/ip_mroute.c,v 1.56.2.10 2003/08/24 21:37:34 hsu Exp $
21  */
22 
23 #include "opt_mrouting.h"
24 
25 #ifdef PIM
26 #define _PIM_VT 1
27 #endif
28 
29 #include <sys/param.h>
30 #include <sys/kernel.h>
31 #include <sys/malloc.h>
32 #include <sys/mbuf.h>
33 #include <sys/protosw.h>
34 #include <sys/socket.h>
35 #include <sys/socketvar.h>
36 #include <sys/sockio.h>
37 #include <sys/sysctl.h>
38 #include <sys/syslog.h>
39 #include <sys/systm.h>
40 #include <sys/time.h>
41 #include <sys/in_cksum.h>
42 
43 #include <machine/stdarg.h>
44 
45 #include <net/if.h>
46 #include <net/netisr.h>
47 #include <net/route.h>
48 #include <netinet/in.h>
49 #include <netinet/igmp.h>
50 #include <netinet/in_systm.h>
51 #include <netinet/in_var.h>
52 #include <netinet/ip.h>
53 #include "ip_mroute.h"
54 #include <netinet/ip_var.h>
55 #ifdef PIM
56 #include <netinet/pim.h>
57 #include <netinet/pim_var.h>
58 #endif
59 #ifdef ALTQ
60 #include <netinet/in_pcb.h>
61 #endif
62 #include <netinet/udp.h>
63 
64 /*
65  * Control debugging code for rsvp and multicast routing code.
66  * Can only set them with the debugger.
67  */
68 static	u_int	rsvpdebug;		/* non-zero enables debugging   */
69 
70 static	u_int	mrtdebug;		/* any set of the flags below   */
71 
72 #define		DEBUG_MFC	0x02
73 #define		DEBUG_FORWARD	0x04
74 #define		DEBUG_EXPIRE	0x08
75 #define		DEBUG_XMIT	0x10
76 #define		DEBUG_PIM	0x20
77 
78 #define		VIFI_INVALID	((vifi_t) -1)
79 
80 #define M_HASCL(m)	((m)->m_flags & M_EXT)
81 
82 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
83 
84 static struct mrtstat	mrtstat;
85 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
86     &mrtstat, mrtstat,
87     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
88 
89 static struct mfc	*mfctable[MFCTBLSIZ];
90 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
91     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
92     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
93 
94 static struct vif	viftable[MAXVIFS];
95 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
96     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
97     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
98 
99 static u_char		nexpire[MFCTBLSIZ];
100 
101 struct lwkt_token mroute_token = LWKT_TOKEN_INITIALIZER(mroute_token);
102 
103 
104 static struct callout expire_upcalls_ch;
105 static struct callout tbf_reprocess_q_ch;
106 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
107 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
108 
109 /*
110  * Define the token bucket filter structures
111  * tbftable -> each vif has one of these for storing info
112  */
113 
114 static struct tbf tbftable[MAXVIFS];
115 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
116 
117 /*
118  * 'Interfaces' associated with decapsulator (so we can tell
119  * packets that went through it from ones that get reflected
120  * by a broken gateway).  These interfaces are never linked into
121  * the system ifnet list & no routes point to them.  I.e., packets
122  * can't be sent this way.  They only exist as a placeholder for
123  * multicast source verification.
124  */
125 static struct ifnet multicast_decap_if[MAXVIFS];
126 
127 #define ENCAP_TTL 64
128 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
129 
130 /* prototype IP hdr for encapsulated packets */
131 static struct ip multicast_encap_iphdr = {
132 #if BYTE_ORDER == LITTLE_ENDIAN
133 	sizeof(struct ip) >> 2, IPVERSION,
134 #else
135 	IPVERSION, sizeof(struct ip) >> 2,
136 #endif
137 	0,				/* tos */
138 	sizeof(struct ip),		/* total length */
139 	0,				/* id */
140 	0,				/* frag offset */
141 	ENCAP_TTL, ENCAP_PROTO,
142 	0,				/* checksum */
143 };
144 
145 /*
146  * Bandwidth meter variables and constants
147  */
148 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
149 /*
150  * Pending timeouts are stored in a hash table, the key being the
151  * expiration time. Periodically, the entries are analysed and processed.
152  */
153 #define BW_METER_BUCKETS	1024
154 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
155 static struct callout bw_meter_ch;
156 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
157 
158 /*
159  * Pending upcalls are stored in a vector which is flushed when
160  * full, or periodically
161  */
162 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
163 static u_int	bw_upcalls_n; /* # of pending upcalls */
164 static struct callout bw_upcalls_ch;
165 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
166 
167 #ifdef PIM
168 static struct pimstat pimstat;
169 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
170     &pimstat, pimstat,
171     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
172 
173 /*
174  * Note: the PIM Register encapsulation adds the following in front of a
175  * data packet:
176  *
177  * struct pim_encap_hdr {
178  *    struct ip ip;
179  *    struct pim_encap_pimhdr  pim;
180  * }
181  *
182  */
183 
184 struct pim_encap_pimhdr {
185 	struct pim pim;
186 	uint32_t   flags;
187 };
188 
189 static struct ip pim_encap_iphdr = {
190 #if BYTE_ORDER == LITTLE_ENDIAN
191 	sizeof(struct ip) >> 2,
192 	IPVERSION,
193 #else
194 	IPVERSION,
195 	sizeof(struct ip) >> 2,
196 #endif
197 	0,			/* tos */
198 	sizeof(struct ip),	/* total length */
199 	0,			/* id */
200 	0,			/* frag offset */
201 	ENCAP_TTL,
202 	IPPROTO_PIM,
203 	0,			/* checksum */
204 };
205 
206 static struct pim_encap_pimhdr pim_encap_pimhdr = {
207     {
208 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
209 	0,			/* reserved */
210 	0,			/* checksum */
211     },
212     0				/* flags */
213 };
214 
215 static struct ifnet multicast_register_if;
216 static vifi_t reg_vif_num = VIFI_INVALID;
217 #endif /* PIM */
218 
219 /*
220  * Private variables.
221  */
222 static vifi_t	   numvifs;
223 static int have_encap_tunnel;
224 
225 /*
226  * one-back cache used by ipip_input to locate a tunnel's vif
227  * given a datagram's src ip address.
228  */
229 static u_long last_encap_src;
230 static struct vif *last_encap_vif;
231 
232 static u_long	X_ip_mcast_src(int vifi);
233 static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
234 			struct mbuf *m, struct ip_moptions *imo);
235 static int	X_ip_mrouter_done(void);
236 static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
237 static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
238 static int	X_legal_vif_num(int vif);
239 static int	X_mrt_ioctl(u_long cmd, caddr_t data);
240 
241 static int get_sg_cnt(struct sioc_sg_req *);
242 static int get_vif_cnt(struct sioc_vif_req *);
243 static int ip_mrouter_init(struct socket *, int);
244 static int add_vif(struct vifctl *);
245 static int del_vif(vifi_t);
246 static int add_mfc(struct mfcctl2 *);
247 static int del_mfc(struct mfcctl2 *);
248 static int set_api_config(uint32_t *); /* chose API capabilities */
249 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
250 static int set_assert(int);
251 static void expire_upcalls(void *);
252 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
253 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
254 static void encap_send(struct ip *, struct vif *, struct mbuf *);
255 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
256 static void tbf_queue(struct vif *, struct mbuf *);
257 static void tbf_process_q(struct vif *);
258 static void tbf_reprocess_q(void *);
259 static int tbf_dq_sel(struct vif *, struct ip *);
260 static void tbf_send_packet(struct vif *, struct mbuf *);
261 static void tbf_update_tokens(struct vif *);
262 static int priority(struct vif *, struct ip *);
263 
264 /*
265  * Bandwidth monitoring
266  */
267 static void free_bw_list(struct bw_meter *list);
268 static int add_bw_upcall(struct bw_upcall *);
269 static int del_bw_upcall(struct bw_upcall *);
270 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
271 		struct timeval *nowp);
272 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
273 static void bw_upcalls_send(void);
274 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
275 static void unschedule_bw_meter(struct bw_meter *x);
276 static void bw_meter_process(void);
277 static void expire_bw_upcalls_send(void *);
278 static void expire_bw_meter_process(void *);
279 
280 #ifdef PIM
281 static int pim_register_send(struct ip *, struct vif *,
282 		struct mbuf *, struct mfc *);
283 static int pim_register_send_rp(struct ip *, struct vif *,
284 		struct mbuf *, struct mfc *);
285 static int pim_register_send_upcall(struct ip *, struct vif *,
286 		struct mbuf *, struct mfc *);
287 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
288 #endif
289 
290 /*
291  * whether or not special PIM assert processing is enabled.
292  */
293 static int pim_assert;
294 /*
295  * Rate limit for assert notification messages, in usec
296  */
297 #define ASSERT_MSG_TIME		3000000
298 
299 /*
300  * Kernel multicast routing API capabilities and setup.
301  * If more API capabilities are added to the kernel, they should be
302  * recorded in `mrt_api_support'.
303  */
304 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
305 					 MRT_MFC_FLAGS_BORDER_VIF |
306 					 MRT_MFC_RP |
307 					 MRT_MFC_BW_UPCALL);
308 static uint32_t mrt_api_config = 0;
309 
310 /*
311  * Hash function for a source, group entry
312  */
313 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
314 			((g) >> 20) ^ ((g) >> 10) ^ (g))
315 
316 /*
317  * Find a route for a given origin IP address and Multicast group address
318  * Type of service parameter to be added in the future!!!
319  * Statistics are updated by the caller if needed
320  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
321  */
322 static struct mfc *
323 mfc_find(in_addr_t o, in_addr_t g)
324 {
325     struct mfc *rt;
326 
327     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
328 	if ((rt->mfc_origin.s_addr == o) &&
329 		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
330 	    break;
331     return rt;
332 }
333 
334 /*
335  * Macros to compute elapsed time efficiently
336  * Borrowed from Van Jacobson's scheduling code
337  */
338 #define TV_DELTA(a, b, delta) {					\
339 	int xxs;						\
340 	delta = (a).tv_usec - (b).tv_usec;			\
341 	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
342 		switch (xxs) {					\
343 		case 2:						\
344 			delta += 1000000;			\
345 			/* FALLTHROUGH */			\
346 		case 1:						\
347 			delta += 1000000;			\
348 			break;					\
349 		default:					\
350 			delta += (1000000 * xxs);		\
351 		}						\
352 	}							\
353 }
354 
355 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
356 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
357 
358 /*
359  * Handle MRT setsockopt commands to modify the multicast routing tables.
360  */
361 static int
362 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
363 {
364     int	error, optval;
365     vifi_t	vifi;
366     struct	vifctl vifc;
367     struct	mfcctl2 mfc;
368     struct	bw_upcall bw_upcall;
369     uint32_t	i;
370 
371     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
372 	return EPERM;
373 
374     error = 0;
375     switch (sopt->sopt_name) {
376     case MRT_INIT:
377 	error = soopt_to_kbuf(sopt, &optval, sizeof optval, sizeof optval);
378 	if (error)
379 	    break;
380 	error = ip_mrouter_init(so, optval);
381 	break;
382 
383     case MRT_DONE:
384 	error = ip_mrouter_done();
385 	break;
386 
387     case MRT_ADD_VIF:
388 	error = soopt_to_kbuf(sopt, &vifc, sizeof vifc, sizeof vifc);
389 	if (error)
390 	    break;
391 	error = add_vif(&vifc);
392 	break;
393 
394     case MRT_DEL_VIF:
395 	error = soopt_to_kbuf(sopt, &vifi, sizeof vifi, sizeof vifi);
396 	if (error)
397 	    break;
398 	error = del_vif(vifi);
399 	break;
400 
401     case MRT_ADD_MFC:
402     case MRT_DEL_MFC:
403 	/*
404 	 * select data size depending on API version.
405 	 */
406 	if (sopt->sopt_name == MRT_ADD_MFC &&
407 	        mrt_api_config & MRT_API_FLAGS_ALL) {
408 	    error = soopt_to_kbuf(sopt, &mfc, sizeof(struct mfcctl2),
409 				sizeof(struct mfcctl2));
410 	} else {
411 	    error = soopt_to_kbuf(sopt, &mfc, sizeof(struct mfcctl),
412 				sizeof(struct mfcctl));
413 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
414 			sizeof(mfc) - sizeof(struct mfcctl));
415 	}
416 	if (error)
417 	    break;
418 	if (sopt->sopt_name == MRT_ADD_MFC)
419 	    error = add_mfc(&mfc);
420 	else
421 	    error = del_mfc(&mfc);
422 	break;
423 
424     case MRT_ASSERT:
425 	error = soopt_to_kbuf(sopt, &optval, sizeof optval, sizeof optval);
426 	if (error)
427 	    break;
428 	set_assert(optval);
429 	break;
430 
431     case MRT_API_CONFIG:
432 	error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
433 	if (!error)
434 	    error = set_api_config(&i);
435 	if (!error)
436 	    soopt_from_kbuf(sopt, &i, sizeof i);
437 	break;
438 
439     case MRT_ADD_BW_UPCALL:
440     case MRT_DEL_BW_UPCALL:
441 	error = soopt_to_kbuf(sopt, &bw_upcall, sizeof bw_upcall, sizeof bw_upcall);
442 	if (error)
443 	    break;
444 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
445 	    error = add_bw_upcall(&bw_upcall);
446 	else
447 	    error = del_bw_upcall(&bw_upcall);
448 	break;
449 
450     default:
451 	error = EOPNOTSUPP;
452 	break;
453     }
454     return error;
455 }
456 
457 /*
458  * Handle MRT getsockopt commands
459  */
460 static int
461 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
462 {
463     int error;
464     static int version = 0x0305; /* !!! why is this here? XXX */
465 
466     error = 0;
467     switch (sopt->sopt_name) {
468     case MRT_VERSION:
469 	soopt_from_kbuf(sopt, &version, sizeof version);
470 	break;
471 
472     case MRT_ASSERT:
473 	soopt_from_kbuf(sopt, &pim_assert, sizeof pim_assert);
474 	break;
475 
476     case MRT_API_SUPPORT:
477 	soopt_from_kbuf(sopt, &mrt_api_support, sizeof mrt_api_support);
478 	break;
479 
480     case MRT_API_CONFIG:
481 	soopt_from_kbuf(sopt, &mrt_api_config, sizeof mrt_api_config);
482 	break;
483 
484     default:
485 	error = EOPNOTSUPP;
486 	break;
487     }
488     return error;
489 }
490 
491 /*
492  * Handle ioctl commands to obtain information from the cache
493  */
494 static int
495 X_mrt_ioctl(u_long cmd, caddr_t data)
496 {
497     int error = 0;
498 
499     switch (cmd) {
500     case SIOCGETVIFCNT:
501 	error = get_vif_cnt((struct sioc_vif_req *)data);
502 	break;
503 
504     case SIOCGETSGCNT:
505 	error = get_sg_cnt((struct sioc_sg_req *)data);
506 	break;
507 
508     default:
509 	error = EINVAL;
510 	break;
511     }
512     return error;
513 }
514 
515 /*
516  * returns the packet, byte, rpf-failure count for the source group provided
517  */
518 static int
519 get_sg_cnt(struct sioc_sg_req *req)
520 {
521     struct mfc *rt;
522 
523     lwkt_gettoken(&mroute_token);
524     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
525     if (rt == NULL) {
526 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
527 	lwkt_reltoken(&mroute_token);
528 	return EADDRNOTAVAIL;
529     }
530     req->pktcnt = rt->mfc_pkt_cnt;
531     req->bytecnt = rt->mfc_byte_cnt;
532     req->wrong_if = rt->mfc_wrong_if;
533     lwkt_reltoken(&mroute_token);
534     return 0;
535 }
536 
537 /*
538  * returns the input and output packet and byte counts on the vif provided
539  */
540 static int
541 get_vif_cnt(struct sioc_vif_req *req)
542 {
543     vifi_t vifi = req->vifi;
544 
545     if (vifi >= numvifs)
546 	return EINVAL;
547 
548     req->icount = viftable[vifi].v_pkt_in;
549     req->ocount = viftable[vifi].v_pkt_out;
550     req->ibytes = viftable[vifi].v_bytes_in;
551     req->obytes = viftable[vifi].v_bytes_out;
552 
553     return 0;
554 }
555 
556 /*
557  * Enable multicast routing
558  */
559 static int
560 ip_mrouter_init(struct socket *so, int version)
561 {
562     if (mrtdebug)
563 	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
564 	    so->so_type, so->so_proto->pr_protocol);
565 
566     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
567 	return EOPNOTSUPP;
568 
569     if (version != 1)
570 	return ENOPROTOOPT;
571 
572     if (ip_mrouter != NULL)
573 	return EADDRINUSE;
574 
575     ip_mrouter = so;
576 
577     bzero((caddr_t)mfctable, sizeof(mfctable));
578     bzero((caddr_t)nexpire, sizeof(nexpire));
579 
580     pim_assert = 0;
581     bw_upcalls_n = 0;
582     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
583 
584     callout_init(&expire_upcalls_ch);
585     callout_init(&bw_upcalls_ch);
586     callout_init(&bw_meter_ch);
587     callout_init(&tbf_reprocess_q_ch);
588 
589     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
590     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
591 		  expire_bw_upcalls_send, NULL);
592     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
593 
594     mrt_api_config = 0;
595 
596     if (mrtdebug)
597 	log(LOG_DEBUG, "ip_mrouter_init\n");
598 
599     return 0;
600 }
601 
602 /*
603  * Disable multicast routing
604  */
605 static int
606 X_ip_mrouter_done(void)
607 {
608     vifi_t vifi;
609     int i;
610     struct ifnet *ifp;
611     struct ifreq ifr;
612     struct mfc *rt;
613     struct rtdetq *rte;
614 
615     lwkt_gettoken(&mroute_token);
616 
617     /*
618      * For each phyint in use, disable promiscuous reception of all IP
619      * multicasts.
620      */
621     for (vifi = 0; vifi < numvifs; vifi++) {
622 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
623 		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
624 	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
625 
626 	    so->sin_len = sizeof(struct sockaddr_in);
627 	    so->sin_family = AF_INET;
628 	    so->sin_addr.s_addr = INADDR_ANY;
629 	    ifp = viftable[vifi].v_ifp;
630 	    if_allmulti(ifp, 0);
631 	}
632     }
633     bzero((caddr_t)tbftable, sizeof(tbftable));
634     bzero((caddr_t)viftable, sizeof(viftable));
635     numvifs = 0;
636     pim_assert = 0;
637 
638     callout_stop(&expire_upcalls_ch);
639 
640     mrt_api_config = 0;
641     bw_upcalls_n = 0;
642     callout_stop(&bw_upcalls_ch);
643     callout_stop(&bw_meter_ch);
644     callout_stop(&tbf_reprocess_q_ch);
645 
646     /*
647      * Free all multicast forwarding cache entries.
648      */
649     for (i = 0; i < MFCTBLSIZ; i++) {
650 	for (rt = mfctable[i]; rt != NULL; ) {
651 	    struct mfc *nr = rt->mfc_next;
652 
653 	    for (rte = rt->mfc_stall; rte != NULL; ) {
654 		struct rtdetq *n = rte->next;
655 
656 		m_freem(rte->m);
657 		kfree(rte, M_MRTABLE);
658 		rte = n;
659 	    }
660 	    free_bw_list(rt->mfc_bw_meter);
661 	    kfree(rt, M_MRTABLE);
662 	    rt = nr;
663 	}
664     }
665 
666     bzero((caddr_t)mfctable, sizeof(mfctable));
667 
668     bzero(bw_meter_timers, sizeof(bw_meter_timers));
669 
670     /*
671      * Reset de-encapsulation cache
672      */
673     last_encap_src = INADDR_ANY;
674     last_encap_vif = NULL;
675 #ifdef PIM
676     reg_vif_num = VIFI_INVALID;
677 #endif
678     have_encap_tunnel = 0;
679 
680     ip_mrouter = NULL;
681 
682     lwkt_reltoken(&mroute_token);
683 
684     if (mrtdebug)
685 	log(LOG_DEBUG, "ip_mrouter_done\n");
686 
687     return 0;
688 }
689 
690 /*
691  * Set PIM assert processing global
692  */
693 static int
694 set_assert(int i)
695 {
696     if ((i != 1) && (i != 0))
697 	return EINVAL;
698 
699     pim_assert = i;
700 
701     return 0;
702 }
703 
704 /*
705  * Configure API capabilities
706  */
707 static int
708 set_api_config(uint32_t *apival)
709 {
710     int i;
711 
712     /*
713      * We can set the API capabilities only if it is the first operation
714      * after MRT_INIT. I.e.:
715      *  - there are no vifs installed
716      *  - pim_assert is not enabled
717      *  - the MFC table is empty
718      */
719     if (numvifs > 0) {
720 	*apival = 0;
721 	return EPERM;
722     }
723     if (pim_assert) {
724 	*apival = 0;
725 	return EPERM;
726     }
727     for (i = 0; i < MFCTBLSIZ; i++) {
728 	if (mfctable[i] != NULL) {
729 	    *apival = 0;
730 	    return EPERM;
731 	}
732     }
733 
734     mrt_api_config = *apival & mrt_api_support;
735     *apival = mrt_api_config;
736 
737     return 0;
738 }
739 
740 /*
741  * Add a vif to the vif table
742  */
743 static int
744 add_vif(struct vifctl *vifcp)
745 {
746     struct vif *vifp = viftable + vifcp->vifc_vifi;
747     struct sockaddr_in sin = {sizeof sin, AF_INET};
748     struct ifaddr *ifa;
749     struct ifnet *ifp;
750     int error, i;
751     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
752 
753     if (vifcp->vifc_vifi >= MAXVIFS)
754 	return EINVAL;
755     if (vifp->v_lcl_addr.s_addr != INADDR_ANY)
756 	return EADDRINUSE;
757     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY)
758 	return EADDRNOTAVAIL;
759 
760     /* Find the interface with an address in AF_INET family */
761 #ifdef PIM
762     if (vifcp->vifc_flags & VIFF_REGISTER) {
763 	/*
764 	 * XXX: Because VIFF_REGISTER does not really need a valid
765 	 * local interface (e.g. it could be 127.0.0.2), we don't
766 	 * check its address.
767 	 */
768 	ifp = NULL;
769     } else
770 #endif
771     {
772 	sin.sin_addr = vifcp->vifc_lcl_addr;
773 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
774 	if (ifa == NULL)
775 	    return EADDRNOTAVAIL;
776 	ifp = ifa->ifa_ifp;
777     }
778 
779     if (vifcp->vifc_flags & VIFF_TUNNEL) {
780 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
781 	    /*
782 	     * An encapsulating tunnel is wanted.  Tell ipip_input() to
783 	     * start paying attention to encapsulated packets.
784 	     */
785 	    if (have_encap_tunnel == 0) {
786 		have_encap_tunnel = 1;
787 		for (i = 0; i < MAXVIFS; i++) {
788 		    if_initname(&multicast_decap_if[i], "mdecap", i);
789 		}
790 	    }
791 	    /*
792 	     * Set interface to fake encapsulator interface
793 	     */
794 	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
795 	    /*
796 	     * Prepare cached route entry
797 	     */
798 	    bzero(&vifp->v_route, sizeof(vifp->v_route));
799 	} else {
800 	    log(LOG_ERR, "source routed tunnels not supported\n");
801 	    return EOPNOTSUPP;
802 	}
803 #ifdef PIM
804     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
805 	ifp = &multicast_register_if;
806 	if (mrtdebug)
807 	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
808 		    (void *)&multicast_register_if);
809 	if (reg_vif_num == VIFI_INVALID) {
810 	    if_initname(&multicast_register_if, "register_vif", 0);
811 	    multicast_register_if.if_flags = IFF_LOOPBACK;
812 	    bzero(&vifp->v_route, sizeof(vifp->v_route));
813 	    reg_vif_num = vifcp->vifc_vifi;
814 	}
815 #endif
816     } else {		/* Make sure the interface supports multicast */
817 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
818 	    return EOPNOTSUPP;
819 
820 	/* Enable promiscuous reception of all IP multicasts from the if */
821 	lwkt_gettoken(&mroute_token);
822 	error = if_allmulti(ifp, 1);
823 	lwkt_reltoken(&mroute_token);
824 	if (error)
825 	    return error;
826     }
827 
828     lwkt_gettoken(&mroute_token);
829     /* define parameters for the tbf structure */
830     vifp->v_tbf = v_tbf;
831     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
832     vifp->v_tbf->tbf_n_tok = 0;
833     vifp->v_tbf->tbf_q_len = 0;
834     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
835     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
836 
837     vifp->v_flags     = vifcp->vifc_flags;
838     vifp->v_threshold = vifcp->vifc_threshold;
839     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
840     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
841     vifp->v_ifp       = ifp;
842     /* scaling up here allows division by 1024 in critical code */
843     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
844     vifp->v_rsvp_on   = 0;
845     vifp->v_rsvpd     = NULL;
846     /* initialize per vif pkt counters */
847     vifp->v_pkt_in    = 0;
848     vifp->v_pkt_out   = 0;
849     vifp->v_bytes_in  = 0;
850     vifp->v_bytes_out = 0;
851 
852     /* Adjust numvifs up if the vifi is higher than numvifs */
853     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
854 
855     lwkt_reltoken(&mroute_token);
856 
857     if (mrtdebug)
858 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
859 	    vifcp->vifc_vifi,
860 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
861 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
862 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
863 	    vifcp->vifc_threshold,
864 	    vifcp->vifc_rate_limit);
865 
866     return 0;
867 }
868 
869 /*
870  * Delete a vif from the vif table
871  */
872 static int
873 del_vif(vifi_t vifi)
874 {
875     struct vif *vifp;
876 
877     if (vifi >= numvifs)
878 	return EINVAL;
879     vifp = &viftable[vifi];
880     if (vifp->v_lcl_addr.s_addr == INADDR_ANY)
881 	return EADDRNOTAVAIL;
882 
883     lwkt_gettoken(&mroute_token);
884 
885     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
886 	if_allmulti(vifp->v_ifp, 0);
887 
888     if (vifp == last_encap_vif) {
889 	last_encap_vif = NULL;
890 	last_encap_src = INADDR_ANY;
891     }
892 
893     /*
894      * Free packets queued at the interface
895      */
896     while (vifp->v_tbf->tbf_q) {
897 	struct mbuf *m = vifp->v_tbf->tbf_q;
898 
899 	vifp->v_tbf->tbf_q = m->m_nextpkt;
900 	m_freem(m);
901     }
902 
903 #ifdef PIM
904     if (vifp->v_flags & VIFF_REGISTER)
905 	reg_vif_num = VIFI_INVALID;
906 #endif
907 
908     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
909     bzero((caddr_t)vifp, sizeof (*vifp));
910 
911     if (mrtdebug)
912 	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
913 
914     /* Adjust numvifs down */
915     for (vifi = numvifs; vifi > 0; vifi--)
916 	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
917 	    break;
918     numvifs = vifi;
919 
920     lwkt_reltoken(&mroute_token);
921 
922     return 0;
923 }
924 
925 /*
926  * update an mfc entry without resetting counters and S,G addresses.
927  */
928 static void
929 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
930 {
931     int i;
932 
933     rt->mfc_parent = mfccp->mfcc_parent;
934     for (i = 0; i < numvifs; i++) {
935 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
936 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
937 	    MRT_MFC_FLAGS_ALL;
938     }
939     /* set the RP address */
940     if (mrt_api_config & MRT_MFC_RP)
941 	rt->mfc_rp = mfccp->mfcc_rp;
942     else
943 	rt->mfc_rp.s_addr = INADDR_ANY;
944 }
945 
946 /*
947  * fully initialize an mfc entry from the parameter.
948  */
949 static void
950 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
951 {
952     rt->mfc_origin     = mfccp->mfcc_origin;
953     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
954 
955     update_mfc_params(rt, mfccp);
956 
957     /* initialize pkt counters per src-grp */
958     rt->mfc_pkt_cnt    = 0;
959     rt->mfc_byte_cnt   = 0;
960     rt->mfc_wrong_if   = 0;
961     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
962 }
963 
964 
965 /*
966  * Add an mfc entry
967  */
968 static int
969 add_mfc(struct mfcctl2 *mfccp)
970 {
971     struct mfc *rt;
972     u_long hash;
973     struct rtdetq *rte;
974     u_short nstl;
975 
976     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
977 
978     /* If an entry already exists, just update the fields */
979     if (rt) {
980 	if (mrtdebug & DEBUG_MFC)
981 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
982 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
983 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
984 		mfccp->mfcc_parent);
985 
986 	lwkt_gettoken(&mroute_token);
987 	update_mfc_params(rt, mfccp);
988 	lwkt_reltoken(&mroute_token);
989 	return 0;
990     }
991 
992     /*
993      * Find the entry for which the upcall was made and update
994      */
995     lwkt_gettoken(&mroute_token);
996     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
997     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
998 
999 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1000 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1001 		(rt->mfc_stall != NULL)) {
1002 
1003 	    if (nstl++)
1004 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1005 		    "multiple kernel entries",
1006 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1007 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1008 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1009 
1010 	    if (mrtdebug & DEBUG_MFC)
1011 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1012 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1013 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1014 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1015 
1016 	    init_mfc_params(rt, mfccp);
1017 
1018 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1019 	    nexpire[hash]--;
1020 
1021 	    /* free packets Qed at the end of this entry */
1022 	    for (rte = rt->mfc_stall; rte != NULL; ) {
1023 		struct rtdetq *n = rte->next;
1024 
1025 		ip_mdq(rte->m, rte->ifp, rt, -1);
1026 		m_freem(rte->m);
1027 		kfree(rte, M_MRTABLE);
1028 		rte = n;
1029 	    }
1030 	    rt->mfc_stall = NULL;
1031 	}
1032     }
1033 
1034     /*
1035      * It is possible that an entry is being inserted without an upcall
1036      */
1037     if (nstl == 0) {
1038 	if (mrtdebug & DEBUG_MFC)
1039 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1040 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1041 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1042 		mfccp->mfcc_parent);
1043 
1044 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1045 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1046 		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1047 		init_mfc_params(rt, mfccp);
1048 		if (rt->mfc_expire)
1049 		    nexpire[hash]--;
1050 		rt->mfc_expire = 0;
1051 		break; /* XXX */
1052 	    }
1053 	}
1054 	if (rt == NULL) {		/* no upcall, so make a new entry */
1055 	    rt = kmalloc(sizeof(*rt), M_MRTABLE, M_INTWAIT | M_NULLOK);
1056 	    if (rt == NULL) {
1057 		    lwkt_reltoken(&mroute_token);
1058 		    return ENOBUFS;
1059 	    }
1060 
1061 	    init_mfc_params(rt, mfccp);
1062 	    rt->mfc_expire     = 0;
1063 	    rt->mfc_stall      = NULL;
1064 
1065 	    rt->mfc_bw_meter = NULL;
1066 	    /* insert new entry at head of hash chain */
1067 	    rt->mfc_next = mfctable[hash];
1068 	    mfctable[hash] = rt;
1069 	}
1070     }
1071     lwkt_reltoken(&mroute_token);
1072     return 0;
1073 }
1074 
1075 /*
1076  * Delete an mfc entry
1077  */
1078 static int
1079 del_mfc(struct mfcctl2 *mfccp)
1080 {
1081     struct in_addr 	origin;
1082     struct in_addr 	mcastgrp;
1083     struct mfc 		*rt;
1084     struct mfc	 	**nptr;
1085     u_long 		hash;
1086     struct bw_meter	*list;
1087 
1088     origin = mfccp->mfcc_origin;
1089     mcastgrp = mfccp->mfcc_mcastgrp;
1090 
1091     if (mrtdebug & DEBUG_MFC)
1092 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1093 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1094 
1095     lwkt_gettoken(&mroute_token);
1096 
1097     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1098     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1099 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1100 		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1101 		rt->mfc_stall == NULL)
1102 	    break;
1103     if (rt == NULL) {
1104 	lwkt_reltoken(&mroute_token);
1105 	return EADDRNOTAVAIL;
1106     }
1107 
1108     *nptr = rt->mfc_next;
1109 
1110     /*
1111      * free the bw_meter entries
1112      */
1113     list = rt->mfc_bw_meter;
1114     rt->mfc_bw_meter = NULL;
1115     lwkt_reltoken(&mroute_token);
1116 
1117     kfree(rt, M_MRTABLE);
1118     free_bw_list(list);
1119 
1120     return 0;
1121 }
1122 
1123 /*
1124  * Send a message to mrouted on the multicast routing socket
1125  */
1126 static int
1127 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1128 {
1129     if (s) {
1130 	if (ssb_appendaddr(&s->so_rcv, (struct sockaddr *)src, mm, NULL) != 0) {
1131 	    sorwakeup(s);
1132 	    return 0;
1133 	} else
1134 	    soroverflow(s);
1135     }
1136     m_freem(mm);
1137     return -1;
1138 }
1139 
1140 /*
1141  * IP multicast forwarding function. This function assumes that the packet
1142  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1143  * pointed to by "ifp", and the packet is to be relayed to other networks
1144  * that have members of the packet's destination IP multicast group.
1145  *
1146  * The packet is returned unscathed to the caller, unless it is
1147  * erroneous, in which case a non-zero return value tells the caller to
1148  * discard it.
1149  */
1150 
1151 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1152 
1153 static int
1154 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1155     struct ip_moptions *imo)
1156 {
1157     struct mfc *rt;
1158     vifi_t vifi;
1159 
1160     if (mrtdebug & DEBUG_FORWARD)
1161 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1162 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1163 	    (void *)ifp);
1164 
1165     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1166 		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1167 	/*
1168 	 * Packet arrived via a physical interface or
1169 	 * an encapsulated tunnel or a register_vif.
1170 	 */
1171     } else {
1172 	/*
1173 	 * Packet arrived through a source-route tunnel.
1174 	 * Source-route tunnels are no longer supported.
1175 	 */
1176 	static time_t last_log;
1177 	if (last_log != time_uptime) {
1178 	    last_log = time_uptime;
1179 	    log(LOG_ERR,
1180 		"ip_mforward: received source-routed packet from %lx\n",
1181 		(u_long)ntohl(ip->ip_src.s_addr));
1182 	}
1183 	return 1;
1184     }
1185 
1186     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1187 	if (ip->ip_ttl < 255)
1188 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1189 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1190 	    struct vif *vifp = viftable + vifi;
1191 
1192 	    kprintf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1193 		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1194 		vifi,
1195 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1196 		vifp->v_ifp->if_xname);
1197 	}
1198 	return ip_mdq(m, ifp, NULL, vifi);
1199     }
1200     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1201 	kprintf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1202 	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1203 	if (!imo)
1204 	    kprintf("In fact, no options were specified at all\n");
1205     }
1206 
1207     /*
1208      * Don't forward a packet with time-to-live of zero or one,
1209      * or a packet destined to a local-only group.
1210      */
1211     if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1212 	return 0;
1213 
1214     /*
1215      * Determine forwarding vifs from the forwarding cache table
1216      */
1217     lwkt_gettoken(&mroute_token);
1218     ++mrtstat.mrts_mfc_lookups;
1219     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1220 
1221     /* Entry exists, so forward if necessary */
1222     if (rt != NULL) {
1223 	int ipres = ip_mdq(m, ifp, rt, -1);
1224 	lwkt_reltoken(&mroute_token);
1225 	return ipres;
1226     } else {
1227 	/*
1228 	 * If we don't have a route for packet's origin,
1229 	 * Make a copy of the packet & send message to routing daemon
1230 	 */
1231 
1232 	struct mbuf *mb0;
1233 	struct rtdetq *rte;
1234 	u_long hash;
1235 	int hlen = ip->ip_hl << 2;
1236 
1237 	++mrtstat.mrts_mfc_misses;
1238 
1239 	mrtstat.mrts_no_route++;
1240 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1241 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1242 		(u_long)ntohl(ip->ip_src.s_addr),
1243 		(u_long)ntohl(ip->ip_dst.s_addr));
1244 
1245 	/*
1246 	 * Allocate mbufs early so that we don't do extra work if we are
1247 	 * just going to fail anyway.  Make sure to pullup the header so
1248 	 * that other people can't step on it.
1249 	 */
1250 	rte = kmalloc((sizeof *rte), M_MRTABLE, M_INTWAIT | M_NULLOK);
1251 	if (rte == NULL) {
1252 		lwkt_reltoken(&mroute_token);
1253 		return ENOBUFS;
1254 	}
1255 
1256 	mb0 = m_copypacket(m, M_NOWAIT);
1257 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1258 	    mb0 = m_pullup(mb0, hlen);
1259 	if (mb0 == NULL) {
1260 	    kfree(rte, M_MRTABLE);
1261 	    lwkt_reltoken(&mroute_token);
1262 	    return ENOBUFS;
1263 	}
1264 
1265 	/* is there an upcall waiting for this flow ? */
1266 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1267 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1268 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1269 		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1270 		    (rt->mfc_stall != NULL))
1271 		break;
1272 	}
1273 
1274 	if (rt == NULL) {
1275 	    int i;
1276 	    struct igmpmsg *im;
1277 	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1278 	    struct mbuf *mm;
1279 
1280 	    /*
1281 	     * Locate the vifi for the incoming interface for this packet.
1282 	     * If none found, drop packet.
1283 	     */
1284 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1285 		;
1286 	    if (vifi >= numvifs)	/* vif not found, drop packet */
1287 		goto non_fatal;
1288 
1289 	    /* no upcall, so make a new entry */
1290 	    rt = kmalloc(sizeof(*rt), M_MRTABLE, M_INTWAIT | M_NULLOK);
1291 	    if (rt == NULL)
1292 		    goto fail;
1293 
1294 	    /* Make a copy of the header to send to the user level process */
1295 	    mm = m_copy(mb0, 0, hlen);
1296 	    if (mm == NULL)
1297 		goto fail1;
1298 
1299 	    /*
1300 	     * Send message to routing daemon to install
1301 	     * a route into the kernel table
1302 	     */
1303 
1304 	    im = mtod(mm, struct igmpmsg *);
1305 	    im->im_msgtype = IGMPMSG_NOCACHE;
1306 	    im->im_mbz = 0;
1307 	    im->im_vif = vifi;
1308 
1309 	    mrtstat.mrts_upcalls++;
1310 
1311 	    k_igmpsrc.sin_addr = ip->ip_src;
1312 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1313 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1314 		++mrtstat.mrts_upq_sockfull;
1315 fail1:
1316 		kfree(rt, M_MRTABLE);
1317 fail:
1318 		kfree(rte, M_MRTABLE);
1319 		m_freem(mb0);
1320 		lwkt_reltoken(&mroute_token);
1321 		return ENOBUFS;
1322 	    }
1323 
1324 	    /* insert new entry at head of hash chain */
1325 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1326 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1327 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1328 	    nexpire[hash]++;
1329 	    for (i = 0; i < numvifs; i++) {
1330 		rt->mfc_ttls[i] = 0;
1331 		rt->mfc_flags[i] = 0;
1332 	    }
1333 	    rt->mfc_parent = -1;
1334 
1335 	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1336 
1337 	    rt->mfc_bw_meter = NULL;
1338 
1339 	    /* link into table */
1340 	    rt->mfc_next   = mfctable[hash];
1341 	    mfctable[hash] = rt;
1342 	    rt->mfc_stall = rte;
1343 
1344 	} else {
1345 	    /* determine if q has overflowed */
1346 	    int npkts = 0;
1347 	    struct rtdetq **p;
1348 
1349 	    /*
1350 	     * XXX ouch! we need to append to the list, but we
1351 	     * only have a pointer to the front, so we have to
1352 	     * scan the entire list every time.
1353 	     */
1354 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1355 		npkts++;
1356 
1357 	    if (npkts > MAX_UPQ) {
1358 		mrtstat.mrts_upq_ovflw++;
1359 non_fatal:
1360 		kfree(rte, M_MRTABLE);
1361 		m_freem(mb0);
1362 		lwkt_reltoken(&mroute_token);
1363 		return 0;
1364 	    }
1365 
1366 	    /* Add this entry to the end of the queue */
1367 	    *p = rte;
1368 	}
1369 
1370 	rte->m 			= mb0;
1371 	rte->ifp 		= ifp;
1372 	rte->next		= NULL;
1373 
1374 	lwkt_reltoken(&mroute_token);
1375 	return 0;
1376     }
1377 }
1378 
1379 /*
1380  * Clean up the cache entry if upcall is not serviced
1381  */
1382 static void
1383 expire_upcalls(void *unused)
1384 {
1385     struct rtdetq *rte;
1386     struct mfc *mfc, **nptr;
1387     int i;
1388 
1389     lwkt_gettoken(&mroute_token);
1390     for (i = 0; i < MFCTBLSIZ; i++) {
1391 	if (nexpire[i] == 0)
1392 	    continue;
1393 	nptr = &mfctable[i];
1394 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1395 	    /*
1396 	     * Skip real cache entries
1397 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1398 	     * If it expires now
1399 	     */
1400 	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1401 		    --mfc->mfc_expire == 0) {
1402 		if (mrtdebug & DEBUG_EXPIRE)
1403 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1404 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1405 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1406 		/*
1407 		 * drop all the packets
1408 		 * free the mbuf with the pkt, if, timing info
1409 		 */
1410 		for (rte = mfc->mfc_stall; rte; ) {
1411 		    struct rtdetq *n = rte->next;
1412 
1413 		    m_freem(rte->m);
1414 		    kfree(rte, M_MRTABLE);
1415 		    rte = n;
1416 		}
1417 		++mrtstat.mrts_cache_cleanups;
1418 		nexpire[i]--;
1419 
1420 		/*
1421 		 * free the bw_meter entries
1422 		 */
1423 		while (mfc->mfc_bw_meter != NULL) {
1424 		    struct bw_meter *x = mfc->mfc_bw_meter;
1425 
1426 		    mfc->mfc_bw_meter = x->bm_mfc_next;
1427 		    kfree(x, M_BWMETER);
1428 		}
1429 
1430 		*nptr = mfc->mfc_next;
1431 		kfree(mfc, M_MRTABLE);
1432 	    } else {
1433 		nptr = &mfc->mfc_next;
1434 	    }
1435 	}
1436     }
1437     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1438     lwkt_reltoken(&mroute_token);
1439 }
1440 
1441 /*
1442  * Packet forwarding routine once entry in the cache is made
1443  */
1444 static int
1445 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1446 {
1447     struct ip  *ip = mtod(m, struct ip *);
1448     vifi_t vifi;
1449     int plen = ip->ip_len;
1450 
1451 /*
1452  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1453  * input, they shouldn't get counted on output, so statistics keeping is
1454  * separate.
1455  */
1456 #define MC_SEND(ip,vifp,m) {				\
1457 		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1458 		    encap_send((ip), (vifp), (m));	\
1459 		else					\
1460 		    phyint_send((ip), (vifp), (m));	\
1461 }
1462 
1463     /*
1464      * If xmt_vif is not -1, send on only the requested vif.
1465      *
1466      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1467      */
1468     if (xmt_vif < numvifs) {
1469 #ifdef PIM
1470 	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1471 	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1472         else
1473 #endif
1474 	MC_SEND(ip, viftable + xmt_vif, m);
1475 	return 1;
1476     }
1477 
1478     /*
1479      * Don't forward if it didn't arrive from the parent vif for its origin.
1480      */
1481     vifi = rt->mfc_parent;
1482     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1483 	/* came in the wrong interface */
1484 	if (mrtdebug & DEBUG_FORWARD)
1485 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1486 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1487 	++mrtstat.mrts_wrong_if;
1488 	++rt->mfc_wrong_if;
1489 	/*
1490 	 * If we are doing PIM assert processing, send a message
1491 	 * to the routing daemon.
1492 	 *
1493 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1494 	 * can complete the SPT switch, regardless of the type
1495 	 * of the iif (broadcast media, GRE tunnel, etc).
1496 	 */
1497 	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1498 	    struct timeval now;
1499 	    u_long delta;
1500 
1501 #ifdef PIM
1502 	    if (ifp == &multicast_register_if)
1503 		pimstat.pims_rcv_registers_wrongiif++;
1504 #endif
1505 
1506 	    /* Get vifi for the incoming packet */
1507 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1508 		;
1509 	    if (vifi >= numvifs)
1510 		return 0;	/* The iif is not found: ignore the packet. */
1511 
1512 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1513 		return 0;	/* WRONGVIF disabled: ignore the packet */
1514 
1515 	    GET_TIME(now);
1516 
1517 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1518 
1519 	    if (delta > ASSERT_MSG_TIME) {
1520 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1521 		struct igmpmsg *im;
1522 		int hlen = ip->ip_hl << 2;
1523 		struct mbuf *mm = m_copy(m, 0, hlen);
1524 
1525 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1526 		    mm = m_pullup(mm, hlen);
1527 		if (mm == NULL)
1528 		    return ENOBUFS;
1529 
1530 		rt->mfc_last_assert = now;
1531 
1532 		im = mtod(mm, struct igmpmsg *);
1533 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1534 		im->im_mbz		= 0;
1535 		im->im_vif		= vifi;
1536 
1537 		mrtstat.mrts_upcalls++;
1538 
1539 		k_igmpsrc.sin_addr = im->im_src;
1540 		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1541 		    log(LOG_WARNING,
1542 			"ip_mforward: ip_mrouter socket queue full\n");
1543 		    ++mrtstat.mrts_upq_sockfull;
1544 		    return ENOBUFS;
1545 		}
1546 	    }
1547 	}
1548 	return 0;
1549     }
1550 
1551     /* If I sourced this packet, it counts as output, else it was input. */
1552     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1553 	viftable[vifi].v_pkt_out++;
1554 	viftable[vifi].v_bytes_out += plen;
1555     } else {
1556 	viftable[vifi].v_pkt_in++;
1557 	viftable[vifi].v_bytes_in += plen;
1558     }
1559     rt->mfc_pkt_cnt++;
1560     rt->mfc_byte_cnt += plen;
1561 
1562     /*
1563      * For each vif, decide if a copy of the packet should be forwarded.
1564      * Forward if:
1565      *		- the ttl exceeds the vif's threshold
1566      *		- there are group members downstream on interface
1567      */
1568     for (vifi = 0; vifi < numvifs; vifi++)
1569 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1570 	    viftable[vifi].v_pkt_out++;
1571 	    viftable[vifi].v_bytes_out += plen;
1572 #ifdef PIM
1573 	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1574 		pim_register_send(ip, viftable + vifi, m, rt);
1575 	    else
1576 #endif
1577 	    MC_SEND(ip, viftable+vifi, m);
1578 	}
1579 
1580     /*
1581      * Perform upcall-related bw measuring.
1582      */
1583     if (rt->mfc_bw_meter != NULL) {
1584 	struct bw_meter *x;
1585 	struct timeval now;
1586 
1587 	GET_TIME(now);
1588 	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1589 	    bw_meter_receive_packet(x, plen, &now);
1590     }
1591 
1592     return 0;
1593 }
1594 
1595 /*
1596  * check if a vif number is legal/ok. This is used by ip_output.
1597  */
1598 static int
1599 X_legal_vif_num(int vif)
1600 {
1601     return (vif >= 0 && vif < numvifs);
1602 }
1603 
1604 /*
1605  * Return the local address used by this vif
1606  */
1607 static u_long
1608 X_ip_mcast_src(int vifi)
1609 {
1610     if (vifi >= 0 && vifi < numvifs)
1611 	return viftable[vifi].v_lcl_addr.s_addr;
1612     else
1613 	return INADDR_ANY;
1614 }
1615 
1616 static void
1617 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1618 {
1619     struct mbuf *mb_copy;
1620     int hlen = ip->ip_hl << 2;
1621 
1622     /*
1623      * Make a new reference to the packet; make sure that
1624      * the IP header is actually copied, not just referenced,
1625      * so that ip_output() only scribbles on the copy.
1626      */
1627     mb_copy = m_copypacket(m, M_NOWAIT);
1628     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1629 	mb_copy = m_pullup(mb_copy, hlen);
1630     if (mb_copy == NULL)
1631 	return;
1632 
1633     if (vifp->v_rate_limit == 0)
1634 	tbf_send_packet(vifp, mb_copy);
1635     else
1636 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1637 }
1638 
1639 static void
1640 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1641 {
1642     struct mbuf *mb_copy;
1643     struct ip *ip_copy;
1644     int i, len = ip->ip_len;
1645 
1646     /* Take care of delayed checksums */
1647     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1648 	in_delayed_cksum(m);
1649 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1650     }
1651 
1652     /*
1653      * copy the old packet & pullup its IP header into the
1654      * new mbuf so we can modify it.  Try to fill the new
1655      * mbuf since if we don't the ethernet driver will.
1656      */
1657     MGETHDR(mb_copy, M_NOWAIT, MT_HEADER);
1658     if (mb_copy == NULL)
1659 	return;
1660     mb_copy->m_data += max_linkhdr;
1661     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1662 
1663     if ((mb_copy->m_next = m_copypacket(m, M_NOWAIT)) == NULL) {
1664 	m_freem(mb_copy);
1665 	return;
1666     }
1667     i = MHLEN - M_LEADINGSPACE(mb_copy);
1668     if (i > len)
1669 	i = len;
1670     mb_copy = m_pullup(mb_copy, i);
1671     if (mb_copy == NULL)
1672 	return;
1673     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1674 
1675     /*
1676      * fill in the encapsulating IP header.
1677      */
1678     ip_copy = mtod(mb_copy, struct ip *);
1679     *ip_copy = multicast_encap_iphdr;
1680     ip_copy->ip_id = ip_newid();
1681     ip_copy->ip_len += len;
1682     ip_copy->ip_src = vifp->v_lcl_addr;
1683     ip_copy->ip_dst = vifp->v_rmt_addr;
1684 
1685     /*
1686      * turn the encapsulated IP header back into a valid one.
1687      */
1688     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1689     --ip->ip_ttl;
1690     ip->ip_len = htons(ip->ip_len);
1691     ip->ip_off = htons(ip->ip_off);
1692     ip->ip_sum = 0;
1693     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1694     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1695     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1696 
1697     if (vifp->v_rate_limit == 0)
1698 	tbf_send_packet(vifp, mb_copy);
1699     else
1700 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1701 }
1702 
1703 /*
1704  * De-encapsulate a packet and feed it back through ip input (this
1705  * routine is called whenever IP gets a packet with proto type
1706  * ENCAP_PROTO and a local destination address).
1707  *
1708  * This is similar to mroute_encapcheck() + mroute_encap_input() in -current.
1709  */
1710 static int
1711 X_ipip_input(struct mbuf **mp, int *offp, int proto)
1712 {
1713     struct mbuf *m = *mp;
1714     struct ip *ip = mtod(m, struct ip *);
1715     int hlen = ip->ip_hl << 2;
1716 
1717     if (!have_encap_tunnel) {
1718 	rip_input(mp, offp, proto);
1719 	return(IPPROTO_DONE);
1720     }
1721     *mp = NULL;
1722 
1723     /*
1724      * dump the packet if it's not to a multicast destination or if
1725      * we don't have an encapsulating tunnel with the source.
1726      * Note:  This code assumes that the remote site IP address
1727      * uniquely identifies the tunnel (i.e., that this site has
1728      * at most one tunnel with the remote site).
1729      */
1730     if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr))) {
1731 	++mrtstat.mrts_bad_tunnel;
1732 	m_freem(m);
1733 	return(IPPROTO_DONE);
1734     }
1735     if (ip->ip_src.s_addr != last_encap_src) {
1736 	struct vif *vifp = viftable;
1737 	struct vif *vife = vifp + numvifs;
1738 
1739 	last_encap_src = ip->ip_src.s_addr;
1740 	last_encap_vif = NULL;
1741 	for ( ; vifp < vife; ++vifp)
1742 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1743 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1744 		    == VIFF_TUNNEL)
1745 		    last_encap_vif = vifp;
1746 		break;
1747 	    }
1748     }
1749     if (last_encap_vif == NULL) {
1750 	last_encap_src = INADDR_ANY;
1751 	mrtstat.mrts_cant_tunnel++; /*XXX*/
1752 	m_freem(m);
1753 	if (mrtdebug)
1754 	    log(LOG_DEBUG, "ip_mforward: no tunnel with %lx\n",
1755 		(u_long)ntohl(ip->ip_src.s_addr));
1756 	return(IPPROTO_DONE);
1757     }
1758 
1759     if (hlen > sizeof(struct ip))
1760 	ip_stripoptions(m);
1761     m->m_data += sizeof(struct ip);
1762     m->m_len -= sizeof(struct ip);
1763     m->m_pkthdr.len -= sizeof(struct ip);
1764     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
1765 
1766     netisr_queue(NETISR_IP, m);
1767     return(IPPROTO_DONE);
1768 }
1769 
1770 /*
1771  * Token bucket filter module
1772  */
1773 
1774 static void
1775 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1776 {
1777     struct tbf *t = vifp->v_tbf;
1778 
1779     if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
1780 	mrtstat.mrts_pkt2large++;
1781 	m_freem(m);
1782 	return;
1783     }
1784 
1785     tbf_update_tokens(vifp);
1786 
1787     if (t->tbf_q_len == 0) {		/* queue empty...		*/
1788 	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens	*/
1789 	    t->tbf_n_tok -= p_len;
1790 	    tbf_send_packet(vifp, m);
1791 	} else {			/* no, queue packet and try later */
1792 	    tbf_queue(vifp, m);
1793 	    callout_reset(&tbf_reprocess_q_ch, TBF_REPROCESS,
1794 	    		  tbf_reprocess_q, vifp);
1795 	}
1796     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1797 	/* finite queue length, so queue pkts and process queue */
1798 	tbf_queue(vifp, m);
1799 	tbf_process_q(vifp);
1800     } else {
1801 	/* queue full, try to dq and queue and process */
1802 	if (!tbf_dq_sel(vifp, ip)) {
1803 	    mrtstat.mrts_q_overflow++;
1804 	    m_freem(m);
1805 	} else {
1806 	    tbf_queue(vifp, m);
1807 	    tbf_process_q(vifp);
1808 	}
1809     }
1810 }
1811 
1812 /*
1813  * adds a packet to the queue at the interface
1814  */
1815 static void
1816 tbf_queue(struct vif *vifp, struct mbuf *m)
1817 {
1818     struct tbf *t = vifp->v_tbf;
1819 
1820     lwkt_gettoken(&mroute_token);
1821 
1822     if (t->tbf_t == NULL)	/* Queue was empty */
1823 	t->tbf_q = m;
1824     else			/* Insert at tail */
1825 	t->tbf_t->m_nextpkt = m;
1826 
1827     t->tbf_t = m;		/* Set new tail pointer */
1828 
1829 #ifdef DIAGNOSTIC
1830     /* Make sure we didn't get fed a bogus mbuf */
1831     if (m->m_nextpkt)
1832 	panic("tbf_queue: m_nextpkt");
1833 #endif
1834     m->m_nextpkt = NULL;
1835 
1836     t->tbf_q_len++;
1837 
1838     lwkt_reltoken(&mroute_token);
1839 }
1840 
1841 /*
1842  * processes the queue at the interface
1843  */
1844 static void
1845 tbf_process_q(struct vif *vifp)
1846 {
1847     struct tbf *t = vifp->v_tbf;
1848 
1849     lwkt_gettoken(&mroute_token);
1850 
1851     /* loop through the queue at the interface and send as many packets
1852      * as possible
1853      */
1854     while (t->tbf_q_len > 0) {
1855 	struct mbuf *m = t->tbf_q;
1856 	int len = mtod(m, struct ip *)->ip_len;
1857 
1858 	/* determine if the packet can be sent */
1859 	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
1860 	    break;
1861 	/* ok, reduce no of tokens, dequeue and send the packet. */
1862 	t->tbf_n_tok -= len;
1863 
1864 	t->tbf_q = m->m_nextpkt;
1865 	if (--t->tbf_q_len == 0)
1866 	    t->tbf_t = NULL;
1867 
1868 	m->m_nextpkt = NULL;
1869 	tbf_send_packet(vifp, m);
1870     }
1871     lwkt_reltoken(&mroute_token);
1872 }
1873 
1874 static void
1875 tbf_reprocess_q(void *xvifp)
1876 {
1877     struct vif *vifp = xvifp;
1878 
1879     if (ip_mrouter == NULL)
1880 	return;
1881     tbf_update_tokens(vifp);
1882     tbf_process_q(vifp);
1883     if (vifp->v_tbf->tbf_q_len)
1884 	callout_reset(&tbf_reprocess_q_ch, TBF_REPROCESS,
1885 		      tbf_reprocess_q, vifp);
1886 }
1887 
1888 /* function that will selectively discard a member of the queue
1889  * based on the precedence value and the priority
1890  */
1891 static int
1892 tbf_dq_sel(struct vif *vifp, struct ip *ip)
1893 {
1894     u_int p;
1895     struct mbuf *m, *last;
1896     struct mbuf **np;
1897     struct tbf *t = vifp->v_tbf;
1898 
1899     lwkt_gettoken(&mroute_token);
1900 
1901     p = priority(vifp, ip);
1902 
1903     np = &t->tbf_q;
1904     last = NULL;
1905     while ((m = *np) != NULL) {
1906 	if (p > priority(vifp, mtod(m, struct ip *))) {
1907 	    *np = m->m_nextpkt;
1908 	    /* If we're removing the last packet, fix the tail pointer */
1909 	    if (m == t->tbf_t)
1910 		t->tbf_t = last;
1911 	    m_freem(m);
1912 	    /* It's impossible for the queue to be empty, but check anyways. */
1913 	    if (--t->tbf_q_len == 0)
1914 		t->tbf_t = NULL;
1915 	    mrtstat.mrts_drop_sel++;
1916 	    lwkt_reltoken(&mroute_token);
1917 	    return 1;
1918 	}
1919 	np = &m->m_nextpkt;
1920 	last = m;
1921     }
1922     lwkt_reltoken(&mroute_token);
1923     return 0;
1924 }
1925 
1926 static void
1927 tbf_send_packet(struct vif *vifp, struct mbuf *m)
1928 {
1929     lwkt_gettoken(&mroute_token);
1930 
1931     if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
1932 	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
1933     else {
1934 	struct ip_moptions imo;
1935 	int error;
1936 	static struct route ro; /* XXX check this */
1937 
1938 	imo.imo_multicast_ifp  = vifp->v_ifp;
1939 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1940 	imo.imo_multicast_loop = 1;
1941 	imo.imo_multicast_vif  = -1;
1942 
1943 	/*
1944 	 * Re-entrancy should not be a problem here, because
1945 	 * the packets that we send out and are looped back at us
1946 	 * should get rejected because they appear to come from
1947 	 * the loopback interface, thus preventing looping.
1948 	 */
1949 	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
1950 
1951 	if (mrtdebug & DEBUG_XMIT)
1952 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1953 		(int)(vifp - viftable), error);
1954     }
1955     lwkt_reltoken(&mroute_token);
1956 }
1957 
1958 /* determine the current time and then
1959  * the elapsed time (between the last time and time now)
1960  * in milliseconds & update the no. of tokens in the bucket
1961  */
1962 static void
1963 tbf_update_tokens(struct vif *vifp)
1964 {
1965     struct timeval tp;
1966     u_long tm;
1967     struct tbf *t = vifp->v_tbf;
1968 
1969     lwkt_gettoken(&mroute_token);
1970 
1971     GET_TIME(tp);
1972 
1973     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1974 
1975     /*
1976      * This formula is actually
1977      * "time in seconds" * "bytes/second".
1978      *
1979      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1980      *
1981      * The (1000/1024) was introduced in add_vif to optimize
1982      * this divide into a shift.
1983      */
1984     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1985     t->tbf_last_pkt_t = tp;
1986 
1987     if (t->tbf_n_tok > MAX_BKT_SIZE)
1988 	t->tbf_n_tok = MAX_BKT_SIZE;
1989 
1990     lwkt_reltoken(&mroute_token);
1991 }
1992 
1993 static int
1994 priority(struct vif *vifp, struct ip *ip)
1995 {
1996     int prio = 50; /* the lowest priority -- default case */
1997 
1998     /* temporary hack; may add general packet classifier some day */
1999 
2000     /*
2001      * The UDP port space is divided up into four priority ranges:
2002      * [0, 16384)     : unclassified - lowest priority
2003      * [16384, 32768) : audio - highest priority
2004      * [32768, 49152) : whiteboard - medium priority
2005      * [49152, 65536) : video - low priority
2006      *
2007      * Everything else gets lowest priority.
2008      */
2009     if (ip->ip_p == IPPROTO_UDP) {
2010 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2011 	switch (ntohs(udp->uh_dport) & 0xc000) {
2012 	case 0x4000:
2013 	    prio = 70;
2014 	    break;
2015 	case 0x8000:
2016 	    prio = 60;
2017 	    break;
2018 	case 0xc000:
2019 	    prio = 55;
2020 	    break;
2021 	}
2022     }
2023     return prio;
2024 }
2025 
2026 /*
2027  * End of token bucket filter modifications
2028  */
2029 
2030 static int
2031 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2032 {
2033     int error, vifi;
2034 
2035     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2036 	return EOPNOTSUPP;
2037 
2038     error = soopt_to_kbuf(sopt, &vifi, sizeof vifi, sizeof vifi);
2039     if (error)
2040 	return error;
2041 
2042     lwkt_gettoken(&mroute_token);
2043 
2044     if (vifi < 0 || vifi >= numvifs) { /* Error if vif is invalid */
2045 	lwkt_reltoken(&mroute_token);
2046 	return EADDRNOTAVAIL;
2047     }
2048 
2049     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2050 	/* Check if socket is available. */
2051 	if (viftable[vifi].v_rsvpd != NULL) {
2052 	    lwkt_reltoken(&mroute_token);
2053 	    return EADDRINUSE;
2054 	}
2055 
2056 	viftable[vifi].v_rsvpd = so;
2057 	/* This may seem silly, but we need to be sure we don't over-increment
2058 	 * the RSVP counter, in case something slips up.
2059 	 */
2060 	if (!viftable[vifi].v_rsvp_on) {
2061 	    viftable[vifi].v_rsvp_on = 1;
2062 	    rsvp_on++;
2063 	}
2064     } else { /* must be VIF_OFF */
2065 	/*
2066 	 * XXX as an additional consistency check, one could make sure
2067 	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2068 	 * first parameter is pretty useless.
2069 	 */
2070 	viftable[vifi].v_rsvpd = NULL;
2071 	/*
2072 	 * This may seem silly, but we need to be sure we don't over-decrement
2073 	 * the RSVP counter, in case something slips up.
2074 	 */
2075 	if (viftable[vifi].v_rsvp_on) {
2076 	    viftable[vifi].v_rsvp_on = 0;
2077 	    rsvp_on--;
2078 	}
2079     }
2080     lwkt_reltoken(&mroute_token);
2081     return 0;
2082 }
2083 
2084 static void
2085 X_ip_rsvp_force_done(struct socket *so)
2086 {
2087     int vifi;
2088 
2089     /* Don't bother if it is not the right type of socket. */
2090     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2091 	return;
2092 
2093     lwkt_gettoken(&mroute_token);
2094 
2095     /* The socket may be attached to more than one vif...this
2096      * is perfectly legal.
2097      */
2098     for (vifi = 0; vifi < numvifs; vifi++) {
2099 	if (viftable[vifi].v_rsvpd == so) {
2100 	    viftable[vifi].v_rsvpd = NULL;
2101 	    /* This may seem silly, but we need to be sure we don't
2102 	     * over-decrement the RSVP counter, in case something slips up.
2103 	     */
2104 	    if (viftable[vifi].v_rsvp_on) {
2105 		viftable[vifi].v_rsvp_on = 0;
2106 		rsvp_on--;
2107 	    }
2108 	}
2109     }
2110 
2111     lwkt_reltoken(&mroute_token);
2112 }
2113 
2114 static int
2115 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
2116 {
2117     int vifi;
2118     struct mbuf *m = *mp;
2119     struct ip *ip = mtod(m, struct ip *);
2120     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2121     struct ifnet *ifp;
2122 #ifdef ALTQ
2123     /* support IP_RECVIF used by rsvpd rel4.2a1 */
2124     struct inpcb *inp;
2125     struct socket *so;
2126     struct mbuf *opts;
2127 #endif
2128 
2129     *mp = NULL;
2130 
2131     if (rsvpdebug)
2132 	kprintf("rsvp_input: rsvp_on %d\n",rsvp_on);
2133 
2134     /* Can still get packets with rsvp_on = 0 if there is a local member
2135      * of the group to which the RSVP packet is addressed.  But in this
2136      * case we want to throw the packet away.
2137      */
2138     if (!rsvp_on) {
2139 	m_freem(m);
2140 	return(IPPROTO_DONE);
2141     }
2142 
2143     lwkt_gettoken(&mroute_token);
2144 
2145     if (rsvpdebug)
2146 	kprintf("rsvp_input: check vifs\n");
2147 
2148 #ifdef DIAGNOSTIC
2149     if (!(m->m_flags & M_PKTHDR))
2150 	panic("rsvp_input no hdr");
2151 #endif
2152 
2153     ifp = m->m_pkthdr.rcvif;
2154     /* Find which vif the packet arrived on. */
2155     for (vifi = 0; vifi < numvifs; vifi++)
2156 	if (viftable[vifi].v_ifp == ifp)
2157 	    break;
2158 
2159 #ifdef ALTQ
2160     if (vifi == numvifs || (so = viftable[vifi].v_rsvpd) == NULL) {
2161 #else
2162     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2163 #endif
2164 	/*
2165 	 * If the old-style non-vif-associated socket is set,
2166 	 * then use it.  Otherwise, drop packet since there
2167 	 * is no specific socket for this vif.
2168 	 */
2169 	if (ip_rsvpd != NULL) {
2170 	    if (rsvpdebug)
2171 		kprintf("rsvp_input: Sending packet up old-style socket\n");
2172 	    *mp = m;
2173 	    rip_input(mp, offp, proto);  /* xxx */
2174 	} else {
2175 	    if (rsvpdebug && vifi == numvifs)
2176 		kprintf("rsvp_input: Can't find vif for packet.\n");
2177 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2178 		kprintf("rsvp_input: No socket defined for vif %d\n",vifi);
2179 	    m_freem(m);
2180 	}
2181 	lwkt_reltoken(&mroute_token);
2182 	return(IPPROTO_DONE);
2183     }
2184     rsvp_src.sin_addr = ip->ip_src;
2185 
2186     if (rsvpdebug && m)
2187 	kprintf("rsvp_input: m->m_len = %d, ssb_space() = %ld\n",
2188 	       m->m_len,ssb_space(&(viftable[vifi].v_rsvpd->so_rcv)));
2189 
2190 #ifdef ALTQ
2191     opts = NULL;
2192     inp = (struct inpcb *)so->so_pcb;
2193     if (inp->inp_flags & INP_CONTROLOPTS ||
2194 	inp->inp_socket->so_options & SO_TIMESTAMP) {
2195 	ip_savecontrol(inp, &opts, ip, m);
2196     }
2197     if (ssb_appendaddr(&so->so_rcv,
2198 		     (struct sockaddr *)&rsvp_src,m, opts) == 0) {
2199 	m_freem(m);
2200 	if (opts)
2201 	    m_freem(opts);
2202 	soroverflow(so);
2203 	if (rsvpdebug)
2204 	    kprintf("rsvp_input: Failed to append to socket\n");
2205     }
2206     else {
2207 	sorwakeup(so);
2208 	if (rsvpdebug)
2209 	    kprintf("rsvp_input: send packet up\n");
2210     }
2211 #else /* !ALTQ */
2212     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2213 	if (rsvpdebug)
2214 	    kprintf("rsvp_input: Failed to append to socket\n");
2215     } else {
2216 	if (rsvpdebug)
2217 	    kprintf("rsvp_input: send packet up\n");
2218     }
2219 #endif /* !ALTQ */
2220     lwkt_reltoken(&mroute_token);
2221     return(IPPROTO_DONE);
2222 }
2223 
2224 /*
2225  * Code for bandwidth monitors
2226  */
2227 
2228 /*
2229  * Define common interface for timeval-related methods
2230  */
2231 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2232 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2233 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2234 
2235 static uint32_t
2236 compute_bw_meter_flags(struct bw_upcall *req)
2237 {
2238     uint32_t flags = 0;
2239 
2240     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2241 	flags |= BW_METER_UNIT_PACKETS;
2242     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2243 	flags |= BW_METER_UNIT_BYTES;
2244     if (req->bu_flags & BW_UPCALL_GEQ)
2245 	flags |= BW_METER_GEQ;
2246     if (req->bu_flags & BW_UPCALL_LEQ)
2247 	flags |= BW_METER_LEQ;
2248 
2249     return flags;
2250 }
2251 
2252 /*
2253  * Add a bw_meter entry
2254  */
2255 static int
2256 add_bw_upcall(struct bw_upcall *req)
2257 {
2258     struct mfc *mfc;
2259     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2260 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2261     struct timeval now;
2262     struct bw_meter *x;
2263     uint32_t flags;
2264 
2265     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2266 	return EOPNOTSUPP;
2267 
2268     /* Test if the flags are valid */
2269     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2270 	return EINVAL;
2271     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2272 	return EINVAL;
2273     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2274 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2275 	return EINVAL;
2276 
2277     /* Test if the threshold time interval is valid */
2278     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2279 	return EINVAL;
2280 
2281     flags = compute_bw_meter_flags(req);
2282 
2283     /*
2284      * Find if we have already same bw_meter entry
2285      */
2286     lwkt_gettoken(&mroute_token);
2287     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2288     if (mfc == NULL) {
2289 	lwkt_reltoken(&mroute_token);
2290 	return EADDRNOTAVAIL;
2291     }
2292     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2293 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2294 			   &req->bu_threshold.b_time, ==)) &&
2295 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2296 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2297 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2298 	    lwkt_reltoken(&mroute_token);
2299 	    return 0;		/* XXX Already installed */
2300 	}
2301     }
2302     lwkt_reltoken(&mroute_token);
2303 
2304     /* Allocate the new bw_meter entry */
2305     x = kmalloc(sizeof(*x), M_BWMETER, M_INTWAIT);
2306 
2307     /* Set the new bw_meter entry */
2308     x->bm_threshold.b_time = req->bu_threshold.b_time;
2309     GET_TIME(now);
2310     x->bm_start_time = now;
2311     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2312     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2313     x->bm_measured.b_packets = 0;
2314     x->bm_measured.b_bytes = 0;
2315     x->bm_flags = flags;
2316     x->bm_time_next = NULL;
2317     x->bm_time_hash = BW_METER_BUCKETS;
2318 
2319     /* Add the new bw_meter entry to the front of entries for this MFC */
2320     lwkt_gettoken(&mroute_token);
2321     x->bm_mfc = mfc;
2322     x->bm_mfc_next = mfc->mfc_bw_meter;
2323     mfc->mfc_bw_meter = x;
2324     schedule_bw_meter(x, &now);
2325     lwkt_reltoken(&mroute_token);
2326 
2327     return 0;
2328 }
2329 
2330 static void
2331 free_bw_list(struct bw_meter *list)
2332 {
2333     while (list != NULL) {
2334 	struct bw_meter *x = list;
2335 
2336 	list = list->bm_mfc_next;
2337 	unschedule_bw_meter(x);
2338 	kfree(x, M_BWMETER);
2339     }
2340 }
2341 
2342 /*
2343  * Delete one or multiple bw_meter entries
2344  */
2345 static int
2346 del_bw_upcall(struct bw_upcall *req)
2347 {
2348     struct mfc *mfc;
2349     struct bw_meter *x;
2350 
2351     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2352 	return EOPNOTSUPP;
2353 
2354     lwkt_gettoken(&mroute_token);
2355     /* Find the corresponding MFC entry */
2356     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2357     if (mfc == NULL) {
2358 	lwkt_reltoken(&mroute_token);
2359 	return EADDRNOTAVAIL;
2360     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2361 	/*
2362 	 * Delete all bw_meter entries for this mfc
2363 	 */
2364 	struct bw_meter *list;
2365 
2366 	list = mfc->mfc_bw_meter;
2367 	mfc->mfc_bw_meter = NULL;
2368 	lwkt_reltoken(&mroute_token);
2369 	free_bw_list(list);
2370 	return 0;
2371     } else {			/* Delete a single bw_meter entry */
2372 	struct bw_meter *prev;
2373 	uint32_t flags = 0;
2374 
2375 	flags = compute_bw_meter_flags(req);
2376 
2377 	/* Find the bw_meter entry to delete */
2378 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2379 	     prev = x, x = x->bm_mfc_next) {
2380 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2381 			       &req->bu_threshold.b_time, ==)) &&
2382 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2383 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2384 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2385 		break;
2386 	}
2387 	if (x != NULL) { /* Delete entry from the list for this MFC */
2388 	    if (prev != NULL)
2389 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2390 	    else
2391 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2392 	    unschedule_bw_meter(x);
2393 	    lwkt_reltoken(&mroute_token);
2394 	    /* Free the bw_meter entry */
2395 	    kfree(x, M_BWMETER);
2396 	    return 0;
2397 	} else {
2398 	    lwkt_reltoken(&mroute_token);
2399 	    return EINVAL;
2400 	}
2401     }
2402     /* NOTREACHED */
2403 }
2404 
2405 /*
2406  * Perform bandwidth measurement processing that may result in an upcall
2407  */
2408 static void
2409 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2410 {
2411     struct timeval delta;
2412 
2413     lwkt_gettoken(&mroute_token);
2414     delta = *nowp;
2415     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2416 
2417     if (x->bm_flags & BW_METER_GEQ) {
2418 	/*
2419 	 * Processing for ">=" type of bw_meter entry
2420 	 */
2421 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2422 	    /* Reset the bw_meter entry */
2423 	    x->bm_start_time = *nowp;
2424 	    x->bm_measured.b_packets = 0;
2425 	    x->bm_measured.b_bytes = 0;
2426 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2427 	}
2428 
2429 	/* Record that a packet is received */
2430 	x->bm_measured.b_packets++;
2431 	x->bm_measured.b_bytes += plen;
2432 
2433 	/*
2434 	 * Test if we should deliver an upcall
2435 	 */
2436 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2437 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2438 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2439 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2440 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2441 		/* Prepare an upcall for delivery */
2442 		bw_meter_prepare_upcall(x, nowp);
2443 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2444 	    }
2445 	}
2446     } else if (x->bm_flags & BW_METER_LEQ) {
2447 	/*
2448 	 * Processing for "<=" type of bw_meter entry
2449 	 */
2450 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2451 	    /*
2452 	     * We are behind time with the multicast forwarding table
2453 	     * scanning for "<=" type of bw_meter entries, so test now
2454 	     * if we should deliver an upcall.
2455 	     */
2456 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2457 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2458 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2459 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2460 		/* Prepare an upcall for delivery */
2461 		bw_meter_prepare_upcall(x, nowp);
2462 	    }
2463 	    /* Reschedule the bw_meter entry */
2464 	    unschedule_bw_meter(x);
2465 	    schedule_bw_meter(x, nowp);
2466 	}
2467 
2468 	/* Record that a packet is received */
2469 	x->bm_measured.b_packets++;
2470 	x->bm_measured.b_bytes += plen;
2471 
2472 	/*
2473 	 * Test if we should restart the measuring interval
2474 	 */
2475 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2476 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2477 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2478 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2479 	    /* Don't restart the measuring interval */
2480 	} else {
2481 	    /* Do restart the measuring interval */
2482 	    /*
2483 	     * XXX: note that we don't unschedule and schedule, because this
2484 	     * might be too much overhead per packet. Instead, when we process
2485 	     * all entries for a given timer hash bin, we check whether it is
2486 	     * really a timeout. If not, we reschedule at that time.
2487 	     */
2488 	    x->bm_start_time = *nowp;
2489 	    x->bm_measured.b_packets = 0;
2490 	    x->bm_measured.b_bytes = 0;
2491 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2492 	}
2493     }
2494     lwkt_reltoken(&mroute_token);
2495 }
2496 
2497 /*
2498  * Prepare a bandwidth-related upcall
2499  */
2500 static void
2501 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2502 {
2503     struct timeval delta;
2504     struct bw_upcall *u;
2505 
2506     lwkt_gettoken(&mroute_token);
2507 
2508     /*
2509      * Compute the measured time interval
2510      */
2511     delta = *nowp;
2512     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2513 
2514     /*
2515      * If there are too many pending upcalls, deliver them now
2516      */
2517     if (bw_upcalls_n >= BW_UPCALLS_MAX)
2518 	bw_upcalls_send();
2519 
2520     /*
2521      * Set the bw_upcall entry
2522      */
2523     u = &bw_upcalls[bw_upcalls_n++];
2524     u->bu_src = x->bm_mfc->mfc_origin;
2525     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2526     u->bu_threshold.b_time = x->bm_threshold.b_time;
2527     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2528     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2529     u->bu_measured.b_time = delta;
2530     u->bu_measured.b_packets = x->bm_measured.b_packets;
2531     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2532     u->bu_flags = 0;
2533     if (x->bm_flags & BW_METER_UNIT_PACKETS)
2534 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2535     if (x->bm_flags & BW_METER_UNIT_BYTES)
2536 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2537     if (x->bm_flags & BW_METER_GEQ)
2538 	u->bu_flags |= BW_UPCALL_GEQ;
2539     if (x->bm_flags & BW_METER_LEQ)
2540 	u->bu_flags |= BW_UPCALL_LEQ;
2541 
2542     lwkt_reltoken(&mroute_token);
2543 }
2544 
2545 /*
2546  * Send the pending bandwidth-related upcalls
2547  */
2548 static void
2549 bw_upcalls_send(void)
2550 {
2551     struct mbuf *m;
2552     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2553     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2554     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2555 				      0,		/* unused2 */
2556 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2557 				      0,		/* im_mbz  */
2558 				      0,		/* im_vif  */
2559 				      0,		/* unused3 */
2560 				      { 0 },		/* im_src  */
2561 				      { 0 } };		/* im_dst  */
2562 
2563     if (bw_upcalls_n == 0)
2564 	return;			/* No pending upcalls */
2565 
2566     bw_upcalls_n = 0;
2567 
2568     /*
2569      * Allocate a new mbuf, initialize it with the header and
2570      * the payload for the pending calls.
2571      */
2572     MGETHDR(m, M_NOWAIT, MT_HEADER);
2573     if (m == NULL) {
2574 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2575 	return;
2576     }
2577 
2578     m->m_len = m->m_pkthdr.len = 0;
2579     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2580     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2581 
2582     /*
2583      * Send the upcalls
2584      * XXX do we need to set the address in k_igmpsrc ?
2585      */
2586     mrtstat.mrts_upcalls++;
2587     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2588 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2589 	++mrtstat.mrts_upq_sockfull;
2590     }
2591 }
2592 
2593 /*
2594  * Compute the timeout hash value for the bw_meter entries
2595  */
2596 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2597     do {								\
2598 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2599 									\
2600 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2601 	(hash) = next_timeval.tv_sec;					\
2602 	if (next_timeval.tv_usec)					\
2603 	    (hash)++; /* XXX: make sure we don't timeout early */	\
2604 	(hash) %= BW_METER_BUCKETS;					\
2605     } while (0)
2606 
2607 /*
2608  * Schedule a timer to process periodically bw_meter entry of type "<="
2609  * by linking the entry in the proper hash bucket.
2610  */
2611 static void
2612 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2613 {
2614     int time_hash;
2615 
2616     if (!(x->bm_flags & BW_METER_LEQ))
2617 	return;		/* XXX: we schedule timers only for "<=" entries */
2618 
2619     /*
2620      * Reset the bw_meter entry
2621      */
2622     lwkt_gettoken(&mroute_token);
2623     x->bm_start_time = *nowp;
2624     x->bm_measured.b_packets = 0;
2625     x->bm_measured.b_bytes = 0;
2626     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2627 
2628     /*
2629      * Compute the timeout hash value and insert the entry
2630      */
2631     BW_METER_TIMEHASH(x, time_hash);
2632     x->bm_time_next = bw_meter_timers[time_hash];
2633     bw_meter_timers[time_hash] = x;
2634     x->bm_time_hash = time_hash;
2635 
2636     lwkt_reltoken(&mroute_token);
2637 }
2638 
2639 /*
2640  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2641  * by removing the entry from the proper hash bucket.
2642  */
2643 static void
2644 unschedule_bw_meter(struct bw_meter *x)
2645 {
2646     int time_hash;
2647     struct bw_meter *prev, *tmp;
2648 
2649     if (!(x->bm_flags & BW_METER_LEQ))
2650 	return;		/* XXX: we schedule timers only for "<=" entries */
2651 
2652     /*
2653      * Compute the timeout hash value and delete the entry
2654      */
2655     time_hash = x->bm_time_hash;
2656     if (time_hash >= BW_METER_BUCKETS)
2657 	return;		/* Entry was not scheduled */
2658 
2659     for (prev = NULL, tmp = bw_meter_timers[time_hash];
2660 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2661 	if (tmp == x)
2662 	    break;
2663 
2664     if (tmp == NULL)
2665 	panic("unschedule_bw_meter: bw_meter entry not found");
2666 
2667     if (prev != NULL)
2668 	prev->bm_time_next = x->bm_time_next;
2669     else
2670 	bw_meter_timers[time_hash] = x->bm_time_next;
2671 
2672     x->bm_time_next = NULL;
2673     x->bm_time_hash = BW_METER_BUCKETS;
2674 }
2675 
2676 
2677 /*
2678  * Process all "<=" type of bw_meter that should be processed now,
2679  * and for each entry prepare an upcall if necessary. Each processed
2680  * entry is rescheduled again for the (periodic) processing.
2681  *
2682  * This is run periodically (once per second normally). On each round,
2683  * all the potentially matching entries are in the hash slot that we are
2684  * looking at.
2685  */
2686 static void
2687 bw_meter_process(void)
2688 {
2689     static uint32_t last_tv_sec;	/* last time we processed this */
2690 
2691     uint32_t loops;
2692     int i;
2693     struct timeval now, process_endtime;
2694 
2695     GET_TIME(now);
2696     if (last_tv_sec == now.tv_sec)
2697 	return;		/* nothing to do */
2698 
2699     lwkt_gettoken(&mroute_token);
2700     loops = now.tv_sec - last_tv_sec;
2701     last_tv_sec = now.tv_sec;
2702     if (loops > BW_METER_BUCKETS)
2703 	loops = BW_METER_BUCKETS;
2704 
2705     /*
2706      * Process all bins of bw_meter entries from the one after the last
2707      * processed to the current one. On entry, i points to the last bucket
2708      * visited, so we need to increment i at the beginning of the loop.
2709      */
2710     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2711 	struct bw_meter *x, *tmp_list;
2712 
2713 	if (++i >= BW_METER_BUCKETS)
2714 	    i = 0;
2715 
2716 	/* Disconnect the list of bw_meter entries from the bin */
2717 	tmp_list = bw_meter_timers[i];
2718 	bw_meter_timers[i] = NULL;
2719 
2720 	/* Process the list of bw_meter entries */
2721 	while (tmp_list != NULL) {
2722 	    x = tmp_list;
2723 	    tmp_list = tmp_list->bm_time_next;
2724 
2725 	    /* Test if the time interval is over */
2726 	    process_endtime = x->bm_start_time;
2727 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2728 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2729 		/* Not yet: reschedule, but don't reset */
2730 		int time_hash;
2731 
2732 		BW_METER_TIMEHASH(x, time_hash);
2733 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2734 		    /*
2735 		     * XXX: somehow the bin processing is a bit ahead of time.
2736 		     * Put the entry in the next bin.
2737 		     */
2738 		    if (++time_hash >= BW_METER_BUCKETS)
2739 			time_hash = 0;
2740 		}
2741 		x->bm_time_next = bw_meter_timers[time_hash];
2742 		bw_meter_timers[time_hash] = x;
2743 		x->bm_time_hash = time_hash;
2744 
2745 		continue;
2746 	    }
2747 
2748 	    /*
2749 	     * Test if we should deliver an upcall
2750 	     */
2751 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2752 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2753 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2754 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2755 		/* Prepare an upcall for delivery */
2756 		bw_meter_prepare_upcall(x, &now);
2757 	    }
2758 
2759 	    /*
2760 	     * Reschedule for next processing
2761 	     */
2762 	    schedule_bw_meter(x, &now);
2763 	}
2764     }
2765     /* Send all upcalls that are pending delivery */
2766     bw_upcalls_send();
2767     lwkt_reltoken(&mroute_token);
2768 }
2769 
2770 /*
2771  * A periodic function for sending all upcalls that are pending delivery
2772  */
2773 static void
2774 expire_bw_upcalls_send(void *unused)
2775 {
2776     bw_upcalls_send();
2777 
2778     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2779     		  expire_bw_upcalls_send, NULL);
2780 }
2781 
2782 /*
2783  * A periodic function for periodic scanning of the multicast forwarding
2784  * table for processing all "<=" bw_meter entries.
2785  */
2786 static void
2787 expire_bw_meter_process(void *unused)
2788 {
2789     if (mrt_api_config & MRT_MFC_BW_UPCALL)
2790 	bw_meter_process();
2791 
2792     callout_reset(&bw_meter_ch, BW_METER_PERIOD,
2793     		  expire_bw_meter_process, NULL);
2794 }
2795 
2796 /*
2797  * End of bandwidth monitoring code
2798  */
2799 
2800 #ifdef PIM
2801 /*
2802  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2803  *
2804  */
2805 static int
2806 pim_register_send(struct ip *ip, struct vif *vifp,
2807 	struct mbuf *m, struct mfc *rt)
2808 {
2809     struct mbuf *mb_copy, *mm;
2810 
2811     if (mrtdebug & DEBUG_PIM)
2812         log(LOG_DEBUG, "pim_register_send: ");
2813 
2814     mb_copy = pim_register_prepare(ip, m);
2815     if (mb_copy == NULL)
2816 	return ENOBUFS;
2817 
2818     /*
2819      * Send all the fragments. Note that the mbuf for each fragment
2820      * is freed by the sending machinery.
2821      */
2822     for (mm = mb_copy; mm; mm = mb_copy) {
2823 	mb_copy = mm->m_nextpkt;
2824 	mm->m_nextpkt = 0;
2825 	mm = m_pullup(mm, sizeof(struct ip));
2826 	if (mm != NULL) {
2827 	    ip = mtod(mm, struct ip *);
2828 	    if ((mrt_api_config & MRT_MFC_RP) &&
2829 		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2830 		pim_register_send_rp(ip, vifp, mm, rt);
2831 	    } else {
2832 		pim_register_send_upcall(ip, vifp, mm, rt);
2833 	    }
2834 	}
2835     }
2836 
2837     return 0;
2838 }
2839 
2840 /*
2841  * Return a copy of the data packet that is ready for PIM Register
2842  * encapsulation.
2843  * XXX: Note that in the returned copy the IP header is a valid one.
2844  */
2845 static struct mbuf *
2846 pim_register_prepare(struct ip *ip, struct mbuf *m)
2847 {
2848     struct mbuf *mb_copy = NULL;
2849     int mtu;
2850 
2851     /* Take care of delayed checksums */
2852     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2853 	in_delayed_cksum(m);
2854 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2855     }
2856 
2857     /*
2858      * Copy the old packet & pullup its IP header into the
2859      * new mbuf so we can modify it.
2860      */
2861     mb_copy = m_copypacket(m, M_NOWAIT);
2862     if (mb_copy == NULL)
2863 	return NULL;
2864     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2865     if (mb_copy == NULL)
2866 	return NULL;
2867 
2868     /* take care of the TTL */
2869     ip = mtod(mb_copy, struct ip *);
2870     --ip->ip_ttl;
2871 
2872     /* Compute the MTU after the PIM Register encapsulation */
2873     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2874 
2875     if (ip->ip_len <= mtu) {
2876 	/* Turn the IP header into a valid one */
2877 	ip->ip_len = htons(ip->ip_len);
2878 	ip->ip_off = htons(ip->ip_off);
2879 	ip->ip_sum = 0;
2880 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2881     } else {
2882 	/* Fragment the packet */
2883 	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2884 	    m_freem(mb_copy);
2885 	    return NULL;
2886 	}
2887     }
2888     return mb_copy;
2889 }
2890 
2891 /*
2892  * Send an upcall with the data packet to the user-level process.
2893  */
2894 static int
2895 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2896 	struct mbuf *mb_copy, struct mfc *rt)
2897 {
2898     struct mbuf *mb_first;
2899     int len = ntohs(ip->ip_len);
2900     struct igmpmsg *im;
2901     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2902 
2903     /*
2904      * Add a new mbuf with an upcall header
2905      */
2906     MGETHDR(mb_first, M_NOWAIT, MT_HEADER);
2907     if (mb_first == NULL) {
2908 	m_freem(mb_copy);
2909 	return ENOBUFS;
2910     }
2911     mb_first->m_data += max_linkhdr;
2912     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2913     mb_first->m_len = sizeof(struct igmpmsg);
2914     mb_first->m_next = mb_copy;
2915 
2916     /* Send message to routing daemon */
2917     im = mtod(mb_first, struct igmpmsg *);
2918     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2919     im->im_mbz		= 0;
2920     im->im_vif		= vifp - viftable;
2921     im->im_src		= ip->ip_src;
2922     im->im_dst		= ip->ip_dst;
2923 
2924     k_igmpsrc.sin_addr	= ip->ip_src;
2925 
2926     mrtstat.mrts_upcalls++;
2927 
2928     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2929 	if (mrtdebug & DEBUG_PIM)
2930 	    log(LOG_WARNING,
2931 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2932 	++mrtstat.mrts_upq_sockfull;
2933 	return ENOBUFS;
2934     }
2935 
2936     /* Keep statistics */
2937     pimstat.pims_snd_registers_msgs++;
2938     pimstat.pims_snd_registers_bytes += len;
2939 
2940     return 0;
2941 }
2942 
2943 /*
2944  * Encapsulate the data packet in PIM Register message and send it to the RP.
2945  */
2946 static int
2947 pim_register_send_rp(struct ip *ip, struct vif *vifp,
2948 	struct mbuf *mb_copy, struct mfc *rt)
2949 {
2950     struct mbuf *mb_first;
2951     struct ip *ip_outer;
2952     struct pim_encap_pimhdr *pimhdr;
2953     int len = ntohs(ip->ip_len);
2954     vifi_t vifi = rt->mfc_parent;
2955 
2956     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2957 	m_freem(mb_copy);
2958 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2959     }
2960 
2961     /*
2962      * Add a new mbuf with the encapsulating header
2963      */
2964     MGETHDR(mb_first, M_NOWAIT, MT_HEADER);
2965     if (mb_first == NULL) {
2966 	m_freem(mb_copy);
2967 	return ENOBUFS;
2968     }
2969     mb_first->m_data += max_linkhdr;
2970     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2971     mb_first->m_next = mb_copy;
2972 
2973     mb_first->m_pkthdr.len = len + mb_first->m_len;
2974 
2975     /*
2976      * Fill in the encapsulating IP and PIM header
2977      */
2978     ip_outer = mtod(mb_first, struct ip *);
2979     *ip_outer = pim_encap_iphdr;
2980     ip_outer->ip_id = ip_newid();
2981     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2982     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2983     ip_outer->ip_dst = rt->mfc_rp;
2984     /*
2985      * Copy the inner header TOS to the outer header, and take care of the
2986      * IP_DF bit.
2987      */
2988     ip_outer->ip_tos = ip->ip_tos;
2989     if (ntohs(ip->ip_off) & IP_DF)
2990 	ip_outer->ip_off |= IP_DF;
2991     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2992 					 + sizeof(pim_encap_iphdr));
2993     *pimhdr = pim_encap_pimhdr;
2994     /* If the iif crosses a border, set the Border-bit */
2995     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2996 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2997 
2998     mb_first->m_data += sizeof(pim_encap_iphdr);
2999     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3000     mb_first->m_data -= sizeof(pim_encap_iphdr);
3001 
3002     if (vifp->v_rate_limit == 0)
3003 	tbf_send_packet(vifp, mb_first);
3004     else
3005 	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3006 
3007     /* Keep statistics */
3008     pimstat.pims_snd_registers_msgs++;
3009     pimstat.pims_snd_registers_bytes += len;
3010 
3011     return 0;
3012 }
3013 
3014 /*
3015  * PIM-SMv2 and PIM-DM messages processing.
3016  * Receives and verifies the PIM control messages, and passes them
3017  * up to the listening socket, using rip_input().
3018  * The only message with special processing is the PIM_REGISTER message
3019  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3020  * is passed to if_simloop().
3021  */
3022 int
3023 pim_input(struct mbuf **mp, int *offp, int proto)
3024 {
3025     struct mbuf *m = *mp;
3026     struct ip *ip = mtod(m, struct ip *);
3027     struct pim *pim;
3028     int minlen;
3029     int datalen = ip->ip_len;
3030     int ip_tos;
3031     int iphlen;
3032 
3033     iphlen = *offp;
3034     *mp = NULL;
3035 
3036     /* Keep statistics */
3037     pimstat.pims_rcv_total_msgs++;
3038     pimstat.pims_rcv_total_bytes += datalen;
3039 
3040     /*
3041      * Validate lengths
3042      */
3043     if (datalen < PIM_MINLEN) {
3044 	pimstat.pims_rcv_tooshort++;
3045 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3046 	    datalen, (u_long)ip->ip_src.s_addr);
3047 	m_freem(m);
3048 	return(IPPROTO_DONE);
3049     }
3050 
3051     /*
3052      * If the packet is at least as big as a REGISTER, go agead
3053      * and grab the PIM REGISTER header size, to avoid another
3054      * possible m_pullup() later.
3055      *
3056      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3057      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3058      */
3059     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3060     /*
3061      * Get the IP and PIM headers in contiguous memory, and
3062      * possibly the PIM REGISTER header.
3063      */
3064     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3065 	(m = m_pullup(m, minlen)) == NULL) {
3066 	log(LOG_ERR, "pim_input: m_pullup failure\n");
3067 	return(IPPROTO_DONE);
3068     }
3069     /* m_pullup() may have given us a new mbuf so reset ip. */
3070     ip = mtod(m, struct ip *);
3071     ip_tos = ip->ip_tos;
3072 
3073     /* adjust mbuf to point to the PIM header */
3074     m->m_data += iphlen;
3075     m->m_len  -= iphlen;
3076     pim = mtod(m, struct pim *);
3077 
3078     /*
3079      * Validate checksum. If PIM REGISTER, exclude the data packet.
3080      *
3081      * XXX: some older PIMv2 implementations don't make this distinction,
3082      * so for compatibility reason perform the checksum over part of the
3083      * message, and if error, then over the whole message.
3084      */
3085     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3086 	/* do nothing, checksum okay */
3087     } else if (in_cksum(m, datalen)) {
3088 	pimstat.pims_rcv_badsum++;
3089 	if (mrtdebug & DEBUG_PIM)
3090 	    log(LOG_DEBUG, "pim_input: invalid checksum");
3091 	m_freem(m);
3092 	return(IPPROTO_DONE);
3093     }
3094 
3095     /* PIM version check */
3096     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3097 	pimstat.pims_rcv_badversion++;
3098 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3099 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3100 	m_freem(m);
3101 	return(IPPROTO_DONE);
3102     }
3103 
3104     /* restore mbuf back to the outer IP */
3105     m->m_data -= iphlen;
3106     m->m_len  += iphlen;
3107 
3108     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3109 	/*
3110 	 * Since this is a REGISTER, we'll make a copy of the register
3111 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3112 	 * routing daemon.
3113 	 */
3114 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3115 	struct mbuf *mcp;
3116 	struct ip *encap_ip;
3117 	u_int32_t *reghdr;
3118 
3119 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3120 	    if (mrtdebug & DEBUG_PIM)
3121 		log(LOG_DEBUG,
3122 		    "pim_input: register vif not set: %d\n", reg_vif_num);
3123 	    m_freem(m);
3124 	    return(IPPROTO_DONE);
3125 	}
3126 
3127 	/*
3128 	 * Validate length
3129 	 */
3130 	if (datalen < PIM_REG_MINLEN) {
3131 	    pimstat.pims_rcv_tooshort++;
3132 	    pimstat.pims_rcv_badregisters++;
3133 	    log(LOG_ERR,
3134 		"pim_input: register packet size too small %d from %lx\n",
3135 		datalen, (u_long)ip->ip_src.s_addr);
3136 	    m_freem(m);
3137 	    return(IPPROTO_DONE);
3138 	}
3139 
3140 	reghdr = (u_int32_t *)(pim + 1);
3141 	encap_ip = (struct ip *)(reghdr + 1);
3142 
3143 	if (mrtdebug & DEBUG_PIM) {
3144 	    log(LOG_DEBUG,
3145 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3146 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3147 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3148 		ntohs(encap_ip->ip_len));
3149 	}
3150 
3151 	/* verify the version number of the inner packet */
3152 	if (encap_ip->ip_v != IPVERSION) {
3153 	    pimstat.pims_rcv_badregisters++;
3154 	    if (mrtdebug & DEBUG_PIM) {
3155 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3156 		    "of the inner packet\n", encap_ip->ip_v);
3157 	    }
3158 	    m_freem(m);
3159 	    return(IPPROTO_DONE);
3160 	}
3161 
3162 	/* verify the inner packet is destined to a mcast group */
3163 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3164 	    pimstat.pims_rcv_badregisters++;
3165 	    if (mrtdebug & DEBUG_PIM)
3166 		log(LOG_DEBUG,
3167 		    "pim_input: inner packet of register is not "
3168 		    "multicast %lx\n",
3169 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3170 	    m_freem(m);
3171 	    return(IPPROTO_DONE);
3172 	}
3173 
3174 	/* If a NULL_REGISTER, pass it to the daemon */
3175 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3176 		goto pim_input_to_daemon;
3177 
3178 	/*
3179 	 * Copy the TOS from the outer IP header to the inner IP header.
3180 	 */
3181 	if (encap_ip->ip_tos != ip_tos) {
3182 	    /* Outer TOS -> inner TOS */
3183 	    encap_ip->ip_tos = ip_tos;
3184 	    /* Recompute the inner header checksum. Sigh... */
3185 
3186 	    /* adjust mbuf to point to the inner IP header */
3187 	    m->m_data += (iphlen + PIM_MINLEN);
3188 	    m->m_len  -= (iphlen + PIM_MINLEN);
3189 
3190 	    encap_ip->ip_sum = 0;
3191 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3192 
3193 	    /* restore mbuf to point back to the outer IP header */
3194 	    m->m_data -= (iphlen + PIM_MINLEN);
3195 	    m->m_len  += (iphlen + PIM_MINLEN);
3196 	}
3197 
3198 	/*
3199 	 * Decapsulate the inner IP packet and loopback to forward it
3200 	 * as a normal multicast packet. Also, make a copy of the
3201 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3202 	 * to pass to the daemon later, so it can take the appropriate
3203 	 * actions (e.g., send back PIM_REGISTER_STOP).
3204 	 * XXX: here m->m_data points to the outer IP header.
3205 	 */
3206 	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3207 	if (mcp == NULL) {
3208 	    log(LOG_ERR,
3209 		"pim_input: pim register: could not copy register head\n");
3210 	    m_freem(m);
3211 	    return(IPPROTO_DONE);
3212 	}
3213 
3214 	/* Keep statistics */
3215 	/* XXX: registers_bytes include only the encap. mcast pkt */
3216 	pimstat.pims_rcv_registers_msgs++;
3217 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3218 
3219 	/*
3220 	 * forward the inner ip packet; point m_data at the inner ip.
3221 	 */
3222 	m_adj(m, iphlen + PIM_MINLEN);
3223 
3224 	if (mrtdebug & DEBUG_PIM) {
3225 	    log(LOG_DEBUG,
3226 		"pim_input: forwarding decapsulated register: "
3227 		"src %lx, dst %lx, vif %d\n",
3228 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3229 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3230 		reg_vif_num);
3231 	}
3232 	if_simloop(viftable[reg_vif_num].v_ifp, m, dst.sin_family, 0);
3233 
3234 	/* prepare the register head to send to the mrouting daemon */
3235 	m = mcp;
3236     }
3237 
3238 pim_input_to_daemon:
3239     /*
3240      * Pass the PIM message up to the daemon; if it is a Register message,
3241      * pass the 'head' only up to the daemon. This includes the
3242      * outer IP header, PIM header, PIM-Register header and the
3243      * inner IP header.
3244      * XXX: the outer IP header pkt size of a Register is not adjust to
3245      * reflect the fact that the inner multicast data is truncated.
3246      */
3247     *mp = m;
3248     *offp = iphlen;
3249     rip_input(mp, offp, proto);
3250     return(IPPROTO_DONE);
3251 }
3252 #endif /* PIM */
3253 
3254 static int
3255 ip_mroute_modevent(module_t mod, int type, void *unused)
3256 {
3257     switch (type) {
3258     case MOD_LOAD:
3259 	lwkt_gettoken(&mroute_token);
3260 	/* XXX Protect against multiple loading */
3261 	ip_mcast_src = X_ip_mcast_src;
3262 	ip_mforward = X_ip_mforward;
3263 	ip_mrouter_done = X_ip_mrouter_done;
3264 	ip_mrouter_get = X_ip_mrouter_get;
3265 	ip_mrouter_set = X_ip_mrouter_set;
3266 	ip_rsvp_force_done = X_ip_rsvp_force_done;
3267 	ip_rsvp_vif = X_ip_rsvp_vif;
3268 	ipip_input = X_ipip_input;
3269 	legal_vif_num = X_legal_vif_num;
3270 	mrt_ioctl = X_mrt_ioctl;
3271 	rsvp_input_p = X_rsvp_input;
3272 	lwkt_reltoken(&mroute_token);
3273 	break;
3274 
3275     case MOD_UNLOAD:
3276 	if (ip_mrouter)
3277 	    return EINVAL;
3278 
3279 	lwkt_gettoken(&mroute_token);
3280 	ip_mcast_src = NULL;
3281 	ip_mforward = NULL;
3282 	ip_mrouter_done = NULL;
3283 	ip_mrouter_get = NULL;
3284 	ip_mrouter_set = NULL;
3285 	ip_rsvp_force_done = NULL;
3286 	ip_rsvp_vif = NULL;
3287 	ipip_input = NULL;
3288 	legal_vif_num = NULL;
3289 	mrt_ioctl = NULL;
3290 	rsvp_input_p = NULL;
3291 	lwkt_reltoken(&mroute_token);
3292 	break;
3293     }
3294     return 0;
3295 }
3296 
3297 static moduledata_t ip_mroutemod = {
3298     "ip_mroute",
3299     ip_mroute_modevent,
3300     0
3301 };
3302 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3303