xref: /dragonfly/sys/net/ip_mroute/ip_mroute.c (revision 92fc8b5c)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  * Modified by Ahmed Helmy, SGI, June 1996
11  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
12  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
13  * Modified by Hitoshi Asaeda, WIDE, August 2000
14  * Modified by Pavlin Radoslavov, ICSI, October 2002
15  *
16  * MROUTING Revision: 3.5
17  * and PIM-SMv2 and PIM-DM support, advanced API support,
18  * bandwidth metering and signaling
19  *
20  * $FreeBSD: src/sys/netinet/ip_mroute.c,v 1.56.2.10 2003/08/24 21:37:34 hsu Exp $
21  * $DragonFly: src/sys/net/ip_mroute/ip_mroute.c,v 1.23 2008/06/17 20:50:11 aggelos Exp $
22  */
23 
24 #include "opt_mrouting.h"
25 
26 #ifdef PIM
27 #define _PIM_VT 1
28 #endif
29 
30 #include <sys/param.h>
31 #include <sys/kernel.h>
32 #include <sys/malloc.h>
33 #include <sys/mbuf.h>
34 #include <sys/protosw.h>
35 #include <sys/socket.h>
36 #include <sys/socketvar.h>
37 #include <sys/sockio.h>
38 #include <sys/sysctl.h>
39 #include <sys/syslog.h>
40 #include <sys/systm.h>
41 #include <sys/thread2.h>
42 #include <sys/time.h>
43 #include <sys/in_cksum.h>
44 
45 #include <machine/stdarg.h>
46 
47 #include <net/if.h>
48 #include <net/netisr.h>
49 #include <net/route.h>
50 #include <netinet/in.h>
51 #include <netinet/igmp.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include "ip_mroute.h"
56 #include <netinet/ip_var.h>
57 #ifdef PIM
58 #include <netinet/pim.h>
59 #include <netinet/pim_var.h>
60 #endif
61 #ifdef ALTQ
62 #include <netinet/in_pcb.h>
63 #endif
64 #include <netinet/udp.h>
65 
66 /*
67  * Control debugging code for rsvp and multicast routing code.
68  * Can only set them with the debugger.
69  */
70 static	u_int	rsvpdebug;		/* non-zero enables debugging   */
71 
72 static	u_int	mrtdebug;		/* any set of the flags below   */
73 
74 #define		DEBUG_MFC	0x02
75 #define		DEBUG_FORWARD	0x04
76 #define		DEBUG_EXPIRE	0x08
77 #define		DEBUG_XMIT	0x10
78 #define		DEBUG_PIM	0x20
79 
80 #define		VIFI_INVALID	((vifi_t) -1)
81 
82 #define M_HASCL(m)	((m)->m_flags & M_EXT)
83 
84 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
85 
86 static struct mrtstat	mrtstat;
87 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
88     &mrtstat, mrtstat,
89     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
90 
91 static struct mfc	*mfctable[MFCTBLSIZ];
92 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
93     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
94     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
95 
96 static struct vif	viftable[MAXVIFS];
97 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
98     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
99     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
100 
101 static u_char		nexpire[MFCTBLSIZ];
102 
103 struct lwkt_token mroute_token = LWKT_TOKEN_INITIALIZER(mroute_token);
104 
105 
106 static struct callout expire_upcalls_ch;
107 static struct callout tbf_reprocess_q_ch;
108 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
109 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
110 
111 /*
112  * Define the token bucket filter structures
113  * tbftable -> each vif has one of these for storing info
114  */
115 
116 static struct tbf tbftable[MAXVIFS];
117 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
118 
119 /*
120  * 'Interfaces' associated with decapsulator (so we can tell
121  * packets that went through it from ones that get reflected
122  * by a broken gateway).  These interfaces are never linked into
123  * the system ifnet list & no routes point to them.  I.e., packets
124  * can't be sent this way.  They only exist as a placeholder for
125  * multicast source verification.
126  */
127 static struct ifnet multicast_decap_if[MAXVIFS];
128 
129 #define ENCAP_TTL 64
130 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
131 
132 /* prototype IP hdr for encapsulated packets */
133 static struct ip multicast_encap_iphdr = {
134 #if BYTE_ORDER == LITTLE_ENDIAN
135 	sizeof(struct ip) >> 2, IPVERSION,
136 #else
137 	IPVERSION, sizeof(struct ip) >> 2,
138 #endif
139 	0,				/* tos */
140 	sizeof(struct ip),		/* total length */
141 	0,				/* id */
142 	0,				/* frag offset */
143 	ENCAP_TTL, ENCAP_PROTO,
144 	0,				/* checksum */
145 };
146 
147 /*
148  * Bandwidth meter variables and constants
149  */
150 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
151 /*
152  * Pending timeouts are stored in a hash table, the key being the
153  * expiration time. Periodically, the entries are analysed and processed.
154  */
155 #define BW_METER_BUCKETS	1024
156 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
157 static struct callout bw_meter_ch;
158 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
159 
160 /*
161  * Pending upcalls are stored in a vector which is flushed when
162  * full, or periodically
163  */
164 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
165 static u_int	bw_upcalls_n; /* # of pending upcalls */
166 static struct callout bw_upcalls_ch;
167 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
168 
169 #ifdef PIM
170 static struct pimstat pimstat;
171 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
172     &pimstat, pimstat,
173     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
174 
175 /*
176  * Note: the PIM Register encapsulation adds the following in front of a
177  * data packet:
178  *
179  * struct pim_encap_hdr {
180  *    struct ip ip;
181  *    struct pim_encap_pimhdr  pim;
182  * }
183  *
184  */
185 
186 struct pim_encap_pimhdr {
187 	struct pim pim;
188 	uint32_t   flags;
189 };
190 
191 static struct ip pim_encap_iphdr = {
192 #if BYTE_ORDER == LITTLE_ENDIAN
193 	sizeof(struct ip) >> 2,
194 	IPVERSION,
195 #else
196 	IPVERSION,
197 	sizeof(struct ip) >> 2,
198 #endif
199 	0,			/* tos */
200 	sizeof(struct ip),	/* total length */
201 	0,			/* id */
202 	0,			/* frag offset */
203 	ENCAP_TTL,
204 	IPPROTO_PIM,
205 	0,			/* checksum */
206 };
207 
208 static struct pim_encap_pimhdr pim_encap_pimhdr = {
209     {
210 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
211 	0,			/* reserved */
212 	0,			/* checksum */
213     },
214     0				/* flags */
215 };
216 
217 static struct ifnet multicast_register_if;
218 static vifi_t reg_vif_num = VIFI_INVALID;
219 #endif /* PIM */
220 
221 /*
222  * Private variables.
223  */
224 static vifi_t	   numvifs;
225 static int have_encap_tunnel;
226 
227 /*
228  * one-back cache used by ipip_input to locate a tunnel's vif
229  * given a datagram's src ip address.
230  */
231 static u_long last_encap_src;
232 static struct vif *last_encap_vif;
233 
234 static u_long	X_ip_mcast_src(int vifi);
235 static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
236 			struct mbuf *m, struct ip_moptions *imo);
237 static int	X_ip_mrouter_done(void);
238 static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
239 static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
240 static int	X_legal_vif_num(int vif);
241 static int	X_mrt_ioctl(int cmd, caddr_t data);
242 
243 static int get_sg_cnt(struct sioc_sg_req *);
244 static int get_vif_cnt(struct sioc_vif_req *);
245 static int ip_mrouter_init(struct socket *, int);
246 static int add_vif(struct vifctl *);
247 static int del_vif(vifi_t);
248 static int add_mfc(struct mfcctl2 *);
249 static int del_mfc(struct mfcctl2 *);
250 static int set_api_config(uint32_t *); /* chose API capabilities */
251 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
252 static int set_assert(int);
253 static void expire_upcalls(void *);
254 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
255 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
256 static void encap_send(struct ip *, struct vif *, struct mbuf *);
257 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
258 static void tbf_queue(struct vif *, struct mbuf *);
259 static void tbf_process_q(struct vif *);
260 static void tbf_reprocess_q(void *);
261 static int tbf_dq_sel(struct vif *, struct ip *);
262 static void tbf_send_packet(struct vif *, struct mbuf *);
263 static void tbf_update_tokens(struct vif *);
264 static int priority(struct vif *, struct ip *);
265 
266 /*
267  * Bandwidth monitoring
268  */
269 static void free_bw_list(struct bw_meter *list);
270 static int add_bw_upcall(struct bw_upcall *);
271 static int del_bw_upcall(struct bw_upcall *);
272 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
273 		struct timeval *nowp);
274 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
275 static void bw_upcalls_send(void);
276 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
277 static void unschedule_bw_meter(struct bw_meter *x);
278 static void bw_meter_process(void);
279 static void expire_bw_upcalls_send(void *);
280 static void expire_bw_meter_process(void *);
281 
282 #ifdef PIM
283 static int pim_register_send(struct ip *, struct vif *,
284 		struct mbuf *, struct mfc *);
285 static int pim_register_send_rp(struct ip *, struct vif *,
286 		struct mbuf *, struct mfc *);
287 static int pim_register_send_upcall(struct ip *, struct vif *,
288 		struct mbuf *, struct mfc *);
289 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
290 #endif
291 
292 /*
293  * whether or not special PIM assert processing is enabled.
294  */
295 static int pim_assert;
296 /*
297  * Rate limit for assert notification messages, in usec
298  */
299 #define ASSERT_MSG_TIME		3000000
300 
301 /*
302  * Kernel multicast routing API capabilities and setup.
303  * If more API capabilities are added to the kernel, they should be
304  * recorded in `mrt_api_support'.
305  */
306 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
307 					 MRT_MFC_FLAGS_BORDER_VIF |
308 					 MRT_MFC_RP |
309 					 MRT_MFC_BW_UPCALL);
310 static uint32_t mrt_api_config = 0;
311 
312 /*
313  * Hash function for a source, group entry
314  */
315 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
316 			((g) >> 20) ^ ((g) >> 10) ^ (g))
317 
318 /*
319  * Find a route for a given origin IP address and Multicast group address
320  * Type of service parameter to be added in the future!!!
321  * Statistics are updated by the caller if needed
322  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
323  */
324 static struct mfc *
325 mfc_find(in_addr_t o, in_addr_t g)
326 {
327     struct mfc *rt;
328 
329     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
330 	if ((rt->mfc_origin.s_addr == o) &&
331 		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
332 	    break;
333     return rt;
334 }
335 
336 /*
337  * Macros to compute elapsed time efficiently
338  * Borrowed from Van Jacobson's scheduling code
339  */
340 #define TV_DELTA(a, b, delta) {					\
341 	int xxs;						\
342 	delta = (a).tv_usec - (b).tv_usec;			\
343 	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
344 		switch (xxs) {					\
345 		case 2:						\
346 			delta += 1000000;			\
347 			/* FALLTHROUGH */			\
348 		case 1:						\
349 			delta += 1000000;			\
350 			break;					\
351 		default:					\
352 			delta += (1000000 * xxs);		\
353 		}						\
354 	}							\
355 }
356 
357 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
358 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
359 
360 /*
361  * Handle MRT setsockopt commands to modify the multicast routing tables.
362  */
363 static int
364 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
365 {
366     int	error, optval;
367     vifi_t	vifi;
368     struct	vifctl vifc;
369     struct	mfcctl2 mfc;
370     struct	bw_upcall bw_upcall;
371     uint32_t	i;
372 
373     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
374 	return EPERM;
375 
376     error = 0;
377     switch (sopt->sopt_name) {
378     case MRT_INIT:
379 	error = soopt_to_kbuf(sopt, &optval, sizeof optval, sizeof optval);
380 	if (error)
381 	    break;
382 	error = ip_mrouter_init(so, optval);
383 	break;
384 
385     case MRT_DONE:
386 	error = ip_mrouter_done();
387 	break;
388 
389     case MRT_ADD_VIF:
390 	error = soopt_to_kbuf(sopt, &vifc, sizeof vifc, sizeof vifc);
391 	if (error)
392 	    break;
393 	error = add_vif(&vifc);
394 	break;
395 
396     case MRT_DEL_VIF:
397 	error = soopt_to_kbuf(sopt, &vifi, sizeof vifi, sizeof vifi);
398 	if (error)
399 	    break;
400 	error = del_vif(vifi);
401 	break;
402 
403     case MRT_ADD_MFC:
404     case MRT_DEL_MFC:
405 	/*
406 	 * select data size depending on API version.
407 	 */
408 	if (sopt->sopt_name == MRT_ADD_MFC &&
409 	        mrt_api_config & MRT_API_FLAGS_ALL) {
410 	    error = soopt_to_kbuf(sopt, &mfc, sizeof(struct mfcctl2),
411 				sizeof(struct mfcctl2));
412 	} else {
413 	    error = soopt_to_kbuf(sopt, &mfc, sizeof(struct mfcctl),
414 				sizeof(struct mfcctl));
415 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
416 			sizeof(mfc) - sizeof(struct mfcctl));
417 	}
418 	if (error)
419 	    break;
420 	if (sopt->sopt_name == MRT_ADD_MFC)
421 	    error = add_mfc(&mfc);
422 	else
423 	    error = del_mfc(&mfc);
424 	break;
425 
426     case MRT_ASSERT:
427 	error = soopt_to_kbuf(sopt, &optval, sizeof optval, sizeof optval);
428 	if (error)
429 	    break;
430 	set_assert(optval);
431 	break;
432 
433     case MRT_API_CONFIG:
434 	error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
435 	if (!error)
436 	    error = set_api_config(&i);
437 	if (!error)
438 	    soopt_from_kbuf(sopt, &i, sizeof i);
439 	break;
440 
441     case MRT_ADD_BW_UPCALL:
442     case MRT_DEL_BW_UPCALL:
443 	error = soopt_to_kbuf(sopt, &bw_upcall, sizeof bw_upcall, sizeof bw_upcall);
444 	if (error)
445 	    break;
446 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
447 	    error = add_bw_upcall(&bw_upcall);
448 	else
449 	    error = del_bw_upcall(&bw_upcall);
450 	break;
451 
452     default:
453 	error = EOPNOTSUPP;
454 	break;
455     }
456     return error;
457 }
458 
459 /*
460  * Handle MRT getsockopt commands
461  */
462 static int
463 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
464 {
465     int error;
466     static int version = 0x0305; /* !!! why is this here? XXX */
467 
468     error = 0;
469     switch (sopt->sopt_name) {
470     case MRT_VERSION:
471 	soopt_from_kbuf(sopt, &version, sizeof version);
472 	break;
473 
474     case MRT_ASSERT:
475 	soopt_from_kbuf(sopt, &pim_assert, sizeof pim_assert);
476 	break;
477 
478     case MRT_API_SUPPORT:
479 	soopt_from_kbuf(sopt, &mrt_api_support, sizeof mrt_api_support);
480 	break;
481 
482     case MRT_API_CONFIG:
483 	soopt_from_kbuf(sopt, &mrt_api_config, sizeof mrt_api_config);
484 	break;
485 
486     default:
487 	error = EOPNOTSUPP;
488 	break;
489     }
490     return error;
491 }
492 
493 /*
494  * Handle ioctl commands to obtain information from the cache
495  */
496 static int
497 X_mrt_ioctl(int cmd, caddr_t data)
498 {
499     int error = 0;
500 
501     switch (cmd) {
502     case SIOCGETVIFCNT:
503 	error = get_vif_cnt((struct sioc_vif_req *)data);
504 	break;
505 
506     case SIOCGETSGCNT:
507 	error = get_sg_cnt((struct sioc_sg_req *)data);
508 	break;
509 
510     default:
511 	error = EINVAL;
512 	break;
513     }
514     return error;
515 }
516 
517 /*
518  * returns the packet, byte, rpf-failure count for the source group provided
519  */
520 static int
521 get_sg_cnt(struct sioc_sg_req *req)
522 {
523     struct mfc *rt;
524 
525     lwkt_gettoken(&mroute_token);
526     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
527     if (rt == NULL) {
528 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
529 	lwkt_reltoken(&mroute_token);
530 	return EADDRNOTAVAIL;
531     }
532     req->pktcnt = rt->mfc_pkt_cnt;
533     req->bytecnt = rt->mfc_byte_cnt;
534     req->wrong_if = rt->mfc_wrong_if;
535     lwkt_reltoken(&mroute_token);
536     return 0;
537 }
538 
539 /*
540  * returns the input and output packet and byte counts on the vif provided
541  */
542 static int
543 get_vif_cnt(struct sioc_vif_req *req)
544 {
545     vifi_t vifi = req->vifi;
546 
547     if (vifi >= numvifs)
548 	return EINVAL;
549 
550     req->icount = viftable[vifi].v_pkt_in;
551     req->ocount = viftable[vifi].v_pkt_out;
552     req->ibytes = viftable[vifi].v_bytes_in;
553     req->obytes = viftable[vifi].v_bytes_out;
554 
555     return 0;
556 }
557 
558 /*
559  * Enable multicast routing
560  */
561 static int
562 ip_mrouter_init(struct socket *so, int version)
563 {
564     if (mrtdebug)
565 	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
566 	    so->so_type, so->so_proto->pr_protocol);
567 
568     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
569 	return EOPNOTSUPP;
570 
571     if (version != 1)
572 	return ENOPROTOOPT;
573 
574     if (ip_mrouter != NULL)
575 	return EADDRINUSE;
576 
577     ip_mrouter = so;
578 
579     bzero((caddr_t)mfctable, sizeof(mfctable));
580     bzero((caddr_t)nexpire, sizeof(nexpire));
581 
582     pim_assert = 0;
583     bw_upcalls_n = 0;
584     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
585 
586     callout_init(&expire_upcalls_ch);
587     callout_init(&bw_upcalls_ch);
588     callout_init(&bw_meter_ch);
589     callout_init(&tbf_reprocess_q_ch);
590 
591     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
592     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
593 		  expire_bw_upcalls_send, NULL);
594     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
595 
596     mrt_api_config = 0;
597 
598     if (mrtdebug)
599 	log(LOG_DEBUG, "ip_mrouter_init\n");
600 
601     return 0;
602 }
603 
604 /*
605  * Disable multicast routing
606  */
607 static int
608 X_ip_mrouter_done(void)
609 {
610     vifi_t vifi;
611     int i;
612     struct ifnet *ifp;
613     struct ifreq ifr;
614     struct mfc *rt;
615     struct rtdetq *rte;
616 
617     lwkt_gettoken(&mroute_token);
618 
619     /*
620      * For each phyint in use, disable promiscuous reception of all IP
621      * multicasts.
622      */
623     for (vifi = 0; vifi < numvifs; vifi++) {
624 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
625 		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
626 	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
627 
628 	    so->sin_len = sizeof(struct sockaddr_in);
629 	    so->sin_family = AF_INET;
630 	    so->sin_addr.s_addr = INADDR_ANY;
631 	    ifp = viftable[vifi].v_ifp;
632 	    if_allmulti(ifp, 0);
633 	}
634     }
635     bzero((caddr_t)tbftable, sizeof(tbftable));
636     bzero((caddr_t)viftable, sizeof(viftable));
637     numvifs = 0;
638     pim_assert = 0;
639 
640     callout_stop(&expire_upcalls_ch);
641 
642     mrt_api_config = 0;
643     bw_upcalls_n = 0;
644     callout_stop(&bw_upcalls_ch);
645     callout_stop(&bw_meter_ch);
646     callout_stop(&tbf_reprocess_q_ch);
647 
648     /*
649      * Free all multicast forwarding cache entries.
650      */
651     for (i = 0; i < MFCTBLSIZ; i++) {
652 	for (rt = mfctable[i]; rt != NULL; ) {
653 	    struct mfc *nr = rt->mfc_next;
654 
655 	    for (rte = rt->mfc_stall; rte != NULL; ) {
656 		struct rtdetq *n = rte->next;
657 
658 		m_freem(rte->m);
659 		kfree(rte, M_MRTABLE);
660 		rte = n;
661 	    }
662 	    free_bw_list(rt->mfc_bw_meter);
663 	    kfree(rt, M_MRTABLE);
664 	    rt = nr;
665 	}
666     }
667 
668     bzero((caddr_t)mfctable, sizeof(mfctable));
669 
670     bzero(bw_meter_timers, sizeof(bw_meter_timers));
671 
672     /*
673      * Reset de-encapsulation cache
674      */
675     last_encap_src = INADDR_ANY;
676     last_encap_vif = NULL;
677 #ifdef PIM
678     reg_vif_num = VIFI_INVALID;
679 #endif
680     have_encap_tunnel = 0;
681 
682     ip_mrouter = NULL;
683 
684     lwkt_reltoken(&mroute_token);
685 
686     if (mrtdebug)
687 	log(LOG_DEBUG, "ip_mrouter_done\n");
688 
689     return 0;
690 }
691 
692 /*
693  * Set PIM assert processing global
694  */
695 static int
696 set_assert(int i)
697 {
698     if ((i != 1) && (i != 0))
699 	return EINVAL;
700 
701     pim_assert = i;
702 
703     return 0;
704 }
705 
706 /*
707  * Configure API capabilities
708  */
709 int
710 set_api_config(uint32_t *apival)
711 {
712     int i;
713 
714     /*
715      * We can set the API capabilities only if it is the first operation
716      * after MRT_INIT. I.e.:
717      *  - there are no vifs installed
718      *  - pim_assert is not enabled
719      *  - the MFC table is empty
720      */
721     if (numvifs > 0) {
722 	*apival = 0;
723 	return EPERM;
724     }
725     if (pim_assert) {
726 	*apival = 0;
727 	return EPERM;
728     }
729     for (i = 0; i < MFCTBLSIZ; i++) {
730 	if (mfctable[i] != NULL) {
731 	    *apival = 0;
732 	    return EPERM;
733 	}
734     }
735 
736     mrt_api_config = *apival & mrt_api_support;
737     *apival = mrt_api_config;
738 
739     return 0;
740 }
741 
742 /*
743  * Add a vif to the vif table
744  */
745 static int
746 add_vif(struct vifctl *vifcp)
747 {
748     struct vif *vifp = viftable + vifcp->vifc_vifi;
749     struct sockaddr_in sin = {sizeof sin, AF_INET};
750     struct ifaddr *ifa;
751     struct ifnet *ifp;
752     int error, i;
753     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
754 
755     if (vifcp->vifc_vifi >= MAXVIFS)
756 	return EINVAL;
757     if (vifp->v_lcl_addr.s_addr != INADDR_ANY)
758 	return EADDRINUSE;
759     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY)
760 	return EADDRNOTAVAIL;
761 
762     /* Find the interface with an address in AF_INET family */
763 #ifdef PIM
764     if (vifcp->vifc_flags & VIFF_REGISTER) {
765 	/*
766 	 * XXX: Because VIFF_REGISTER does not really need a valid
767 	 * local interface (e.g. it could be 127.0.0.2), we don't
768 	 * check its address.
769 	 */
770 	ifp = NULL;
771     } else
772 #endif
773     {
774 	sin.sin_addr = vifcp->vifc_lcl_addr;
775 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
776 	if (ifa == NULL)
777 	    return EADDRNOTAVAIL;
778 	ifp = ifa->ifa_ifp;
779     }
780 
781     if (vifcp->vifc_flags & VIFF_TUNNEL) {
782 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
783 	    /*
784 	     * An encapsulating tunnel is wanted.  Tell ipip_input() to
785 	     * start paying attention to encapsulated packets.
786 	     */
787 	    if (have_encap_tunnel == 0) {
788 		have_encap_tunnel = 1;
789 		for (i = 0; i < MAXVIFS; i++) {
790 		    if_initname(&multicast_decap_if[i], "mdecap", i);
791 		}
792 	    }
793 	    /*
794 	     * Set interface to fake encapsulator interface
795 	     */
796 	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
797 	    /*
798 	     * Prepare cached route entry
799 	     */
800 	    bzero(&vifp->v_route, sizeof(vifp->v_route));
801 	} else {
802 	    log(LOG_ERR, "source routed tunnels not supported\n");
803 	    return EOPNOTSUPP;
804 	}
805 #ifdef PIM
806     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
807 	ifp = &multicast_register_if;
808 	if (mrtdebug)
809 	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
810 		    (void *)&multicast_register_if);
811 	if (reg_vif_num == VIFI_INVALID) {
812 	    if_initname(&multicast_register_if, "register_vif", 0);
813 	    multicast_register_if.if_flags = IFF_LOOPBACK;
814 	    bzero(&vifp->v_route, sizeof(vifp->v_route));
815 	    reg_vif_num = vifcp->vifc_vifi;
816 	}
817 #endif
818     } else {		/* Make sure the interface supports multicast */
819 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
820 	    return EOPNOTSUPP;
821 
822 	/* Enable promiscuous reception of all IP multicasts from the if */
823 	lwkt_gettoken(&mroute_token);
824 	error = if_allmulti(ifp, 1);
825 	lwkt_reltoken(&mroute_token);
826 	if (error)
827 	    return error;
828     }
829 
830     lwkt_gettoken(&mroute_token);
831     /* define parameters for the tbf structure */
832     vifp->v_tbf = v_tbf;
833     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
834     vifp->v_tbf->tbf_n_tok = 0;
835     vifp->v_tbf->tbf_q_len = 0;
836     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
837     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
838 
839     vifp->v_flags     = vifcp->vifc_flags;
840     vifp->v_threshold = vifcp->vifc_threshold;
841     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
842     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
843     vifp->v_ifp       = ifp;
844     /* scaling up here allows division by 1024 in critical code */
845     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
846     vifp->v_rsvp_on   = 0;
847     vifp->v_rsvpd     = NULL;
848     /* initialize per vif pkt counters */
849     vifp->v_pkt_in    = 0;
850     vifp->v_pkt_out   = 0;
851     vifp->v_bytes_in  = 0;
852     vifp->v_bytes_out = 0;
853 
854     /* Adjust numvifs up if the vifi is higher than numvifs */
855     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
856 
857     lwkt_reltoken(&mroute_token);
858 
859     if (mrtdebug)
860 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
861 	    vifcp->vifc_vifi,
862 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
863 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
864 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
865 	    vifcp->vifc_threshold,
866 	    vifcp->vifc_rate_limit);
867 
868     return 0;
869 }
870 
871 /*
872  * Delete a vif from the vif table
873  */
874 static int
875 del_vif(vifi_t vifi)
876 {
877     struct vif *vifp;
878 
879     if (vifi >= numvifs)
880 	return EINVAL;
881     vifp = &viftable[vifi];
882     if (vifp->v_lcl_addr.s_addr == INADDR_ANY)
883 	return EADDRNOTAVAIL;
884 
885     lwkt_gettoken(&mroute_token);
886 
887     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
888 	if_allmulti(vifp->v_ifp, 0);
889 
890     if (vifp == last_encap_vif) {
891 	last_encap_vif = NULL;
892 	last_encap_src = INADDR_ANY;
893     }
894 
895     /*
896      * Free packets queued at the interface
897      */
898     while (vifp->v_tbf->tbf_q) {
899 	struct mbuf *m = vifp->v_tbf->tbf_q;
900 
901 	vifp->v_tbf->tbf_q = m->m_nextpkt;
902 	m_freem(m);
903     }
904 
905 #ifdef PIM
906     if (vifp->v_flags & VIFF_REGISTER)
907 	reg_vif_num = VIFI_INVALID;
908 #endif
909 
910     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
911     bzero((caddr_t)vifp, sizeof (*vifp));
912 
913     if (mrtdebug)
914 	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
915 
916     /* Adjust numvifs down */
917     for (vifi = numvifs; vifi > 0; vifi--)
918 	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
919 	    break;
920     numvifs = vifi;
921 
922     lwkt_reltoken(&mroute_token);
923 
924     return 0;
925 }
926 
927 /*
928  * update an mfc entry without resetting counters and S,G addresses.
929  */
930 static void
931 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
932 {
933     int i;
934 
935     rt->mfc_parent = mfccp->mfcc_parent;
936     for (i = 0; i < numvifs; i++) {
937 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
938 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
939 	    MRT_MFC_FLAGS_ALL;
940     }
941     /* set the RP address */
942     if (mrt_api_config & MRT_MFC_RP)
943 	rt->mfc_rp = mfccp->mfcc_rp;
944     else
945 	rt->mfc_rp.s_addr = INADDR_ANY;
946 }
947 
948 /*
949  * fully initialize an mfc entry from the parameter.
950  */
951 static void
952 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
953 {
954     rt->mfc_origin     = mfccp->mfcc_origin;
955     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
956 
957     update_mfc_params(rt, mfccp);
958 
959     /* initialize pkt counters per src-grp */
960     rt->mfc_pkt_cnt    = 0;
961     rt->mfc_byte_cnt   = 0;
962     rt->mfc_wrong_if   = 0;
963     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
964 }
965 
966 
967 /*
968  * Add an mfc entry
969  */
970 static int
971 add_mfc(struct mfcctl2 *mfccp)
972 {
973     struct mfc *rt;
974     u_long hash;
975     struct rtdetq *rte;
976     u_short nstl;
977 
978     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
979 
980     /* If an entry already exists, just update the fields */
981     if (rt) {
982 	if (mrtdebug & DEBUG_MFC)
983 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
984 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
985 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
986 		mfccp->mfcc_parent);
987 
988 	lwkt_gettoken(&mroute_token);
989 	update_mfc_params(rt, mfccp);
990 	lwkt_reltoken(&mroute_token);
991 	return 0;
992     }
993 
994     /*
995      * Find the entry for which the upcall was made and update
996      */
997     lwkt_gettoken(&mroute_token);
998     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
999     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1000 
1001 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1002 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1003 		(rt->mfc_stall != NULL)) {
1004 
1005 	    if (nstl++)
1006 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1007 		    "multiple kernel entries",
1008 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1009 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1010 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1011 
1012 	    if (mrtdebug & DEBUG_MFC)
1013 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1014 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1015 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1016 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1017 
1018 	    init_mfc_params(rt, mfccp);
1019 
1020 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1021 	    nexpire[hash]--;
1022 
1023 	    /* free packets Qed at the end of this entry */
1024 	    for (rte = rt->mfc_stall; rte != NULL; ) {
1025 		struct rtdetq *n = rte->next;
1026 
1027 		ip_mdq(rte->m, rte->ifp, rt, -1);
1028 		m_freem(rte->m);
1029 		kfree(rte, M_MRTABLE);
1030 		rte = n;
1031 	    }
1032 	    rt->mfc_stall = NULL;
1033 	}
1034     }
1035 
1036     /*
1037      * It is possible that an entry is being inserted without an upcall
1038      */
1039     if (nstl == 0) {
1040 	if (mrtdebug & DEBUG_MFC)
1041 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1042 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1043 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1044 		mfccp->mfcc_parent);
1045 
1046 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1047 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1048 		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1049 		init_mfc_params(rt, mfccp);
1050 		if (rt->mfc_expire)
1051 		    nexpire[hash]--;
1052 		rt->mfc_expire = 0;
1053 		break; /* XXX */
1054 	    }
1055 	}
1056 	if (rt == NULL) {		/* no upcall, so make a new entry */
1057 	    rt = kmalloc(sizeof(*rt), M_MRTABLE, M_INTWAIT | M_NULLOK);
1058 	    if (rt == NULL) {
1059 		    lwkt_reltoken(&mroute_token);
1060 		    return ENOBUFS;
1061 	    }
1062 
1063 	    init_mfc_params(rt, mfccp);
1064 	    rt->mfc_expire     = 0;
1065 	    rt->mfc_stall      = NULL;
1066 
1067 	    rt->mfc_bw_meter = NULL;
1068 	    /* insert new entry at head of hash chain */
1069 	    rt->mfc_next = mfctable[hash];
1070 	    mfctable[hash] = rt;
1071 	}
1072     }
1073     lwkt_reltoken(&mroute_token);
1074     return 0;
1075 }
1076 
1077 /*
1078  * Delete an mfc entry
1079  */
1080 static int
1081 del_mfc(struct mfcctl2 *mfccp)
1082 {
1083     struct in_addr 	origin;
1084     struct in_addr 	mcastgrp;
1085     struct mfc 		*rt;
1086     struct mfc	 	**nptr;
1087     u_long 		hash;
1088     struct bw_meter	*list;
1089 
1090     origin = mfccp->mfcc_origin;
1091     mcastgrp = mfccp->mfcc_mcastgrp;
1092 
1093     if (mrtdebug & DEBUG_MFC)
1094 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1095 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1096 
1097     lwkt_gettoken(&mroute_token);
1098 
1099     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1100     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1101 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1102 		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1103 		rt->mfc_stall == NULL)
1104 	    break;
1105     if (rt == NULL) {
1106 	lwkt_reltoken(&mroute_token);
1107 	return EADDRNOTAVAIL;
1108     }
1109 
1110     *nptr = rt->mfc_next;
1111 
1112     /*
1113      * free the bw_meter entries
1114      */
1115     list = rt->mfc_bw_meter;
1116     rt->mfc_bw_meter = NULL;
1117     lwkt_reltoken(&mroute_token);
1118 
1119     kfree(rt, M_MRTABLE);
1120     free_bw_list(list);
1121 
1122     return 0;
1123 }
1124 
1125 /*
1126  * Send a message to mrouted on the multicast routing socket
1127  */
1128 static int
1129 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1130 {
1131     if (s) {
1132 	if (ssb_appendaddr(&s->so_rcv, (struct sockaddr *)src, mm, NULL) != 0) {
1133 	    sorwakeup(s);
1134 	    return 0;
1135 	}
1136     }
1137     m_freem(mm);
1138     return -1;
1139 }
1140 
1141 /*
1142  * IP multicast forwarding function. This function assumes that the packet
1143  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1144  * pointed to by "ifp", and the packet is to be relayed to other networks
1145  * that have members of the packet's destination IP multicast group.
1146  *
1147  * The packet is returned unscathed to the caller, unless it is
1148  * erroneous, in which case a non-zero return value tells the caller to
1149  * discard it.
1150  */
1151 
1152 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1153 
1154 static int
1155 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1156     struct ip_moptions *imo)
1157 {
1158     struct mfc *rt;
1159     vifi_t vifi;
1160 
1161     if (mrtdebug & DEBUG_FORWARD)
1162 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1163 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1164 	    (void *)ifp);
1165 
1166     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1167 		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1168 	/*
1169 	 * Packet arrived via a physical interface or
1170 	 * an encapsulated tunnel or a register_vif.
1171 	 */
1172     } else {
1173 	/*
1174 	 * Packet arrived through a source-route tunnel.
1175 	 * Source-route tunnels are no longer supported.
1176 	 */
1177 	static int last_log;
1178 	if (last_log != time_second) {
1179 	    last_log = time_second;
1180 	    log(LOG_ERR,
1181 		"ip_mforward: received source-routed packet from %lx\n",
1182 		(u_long)ntohl(ip->ip_src.s_addr));
1183 	}
1184 	return 1;
1185     }
1186 
1187     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1188 	if (ip->ip_ttl < 255)
1189 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1190 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1191 	    struct vif *vifp = viftable + vifi;
1192 
1193 	    kprintf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1194 		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1195 		vifi,
1196 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1197 		vifp->v_ifp->if_xname);
1198 	}
1199 	return ip_mdq(m, ifp, NULL, vifi);
1200     }
1201     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1202 	kprintf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1203 	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1204 	if (!imo)
1205 	    kprintf("In fact, no options were specified at all\n");
1206     }
1207 
1208     /*
1209      * Don't forward a packet with time-to-live of zero or one,
1210      * or a packet destined to a local-only group.
1211      */
1212     if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1213 	return 0;
1214 
1215     /*
1216      * Determine forwarding vifs from the forwarding cache table
1217      */
1218     lwkt_gettoken(&mroute_token);
1219     ++mrtstat.mrts_mfc_lookups;
1220     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1221 
1222     /* Entry exists, so forward if necessary */
1223     if (rt != NULL) {
1224 	int ipres = ip_mdq(m, ifp, rt, -1);
1225 	lwkt_reltoken(&mroute_token);
1226 	return ipres;
1227     } else {
1228 	/*
1229 	 * If we don't have a route for packet's origin,
1230 	 * Make a copy of the packet & send message to routing daemon
1231 	 */
1232 
1233 	struct mbuf *mb0;
1234 	struct rtdetq *rte;
1235 	u_long hash;
1236 	int hlen = ip->ip_hl << 2;
1237 
1238 	++mrtstat.mrts_mfc_misses;
1239 
1240 	mrtstat.mrts_no_route++;
1241 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1242 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1243 		(u_long)ntohl(ip->ip_src.s_addr),
1244 		(u_long)ntohl(ip->ip_dst.s_addr));
1245 
1246 	/*
1247 	 * Allocate mbufs early so that we don't do extra work if we are
1248 	 * just going to fail anyway.  Make sure to pullup the header so
1249 	 * that other people can't step on it.
1250 	 */
1251 	rte = kmalloc((sizeof *rte), M_MRTABLE, M_INTWAIT | M_NULLOK);
1252 	if (rte == NULL) {
1253 		lwkt_reltoken(&mroute_token);
1254 		return ENOBUFS;
1255 	}
1256 
1257 	mb0 = m_copypacket(m, MB_DONTWAIT);
1258 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1259 	    mb0 = m_pullup(mb0, hlen);
1260 	if (mb0 == NULL) {
1261 	    kfree(rte, M_MRTABLE);
1262 	    lwkt_reltoken(&mroute_token);
1263 	    return ENOBUFS;
1264 	}
1265 
1266 	/* is there an upcall waiting for this flow ? */
1267 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1268 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1269 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1270 		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1271 		    (rt->mfc_stall != NULL))
1272 		break;
1273 	}
1274 
1275 	if (rt == NULL) {
1276 	    int i;
1277 	    struct igmpmsg *im;
1278 	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1279 	    struct mbuf *mm;
1280 
1281 	    /*
1282 	     * Locate the vifi for the incoming interface for this packet.
1283 	     * If none found, drop packet.
1284 	     */
1285 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1286 		;
1287 	    if (vifi >= numvifs)	/* vif not found, drop packet */
1288 		goto non_fatal;
1289 
1290 	    /* no upcall, so make a new entry */
1291 	    rt = kmalloc(sizeof(*rt), M_MRTABLE, M_INTWAIT | M_NULLOK);
1292 	    if (rt == NULL)
1293 		    goto fail;
1294 
1295 	    /* Make a copy of the header to send to the user level process */
1296 	    mm = m_copy(mb0, 0, hlen);
1297 	    if (mm == NULL)
1298 		goto fail1;
1299 
1300 	    /*
1301 	     * Send message to routing daemon to install
1302 	     * a route into the kernel table
1303 	     */
1304 
1305 	    im = mtod(mm, struct igmpmsg *);
1306 	    im->im_msgtype = IGMPMSG_NOCACHE;
1307 	    im->im_mbz = 0;
1308 	    im->im_vif = vifi;
1309 
1310 	    mrtstat.mrts_upcalls++;
1311 
1312 	    k_igmpsrc.sin_addr = ip->ip_src;
1313 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1314 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1315 		++mrtstat.mrts_upq_sockfull;
1316 fail1:
1317 		kfree(rt, M_MRTABLE);
1318 fail:
1319 		kfree(rte, M_MRTABLE);
1320 		m_freem(mb0);
1321 		lwkt_reltoken(&mroute_token);
1322 		return ENOBUFS;
1323 	    }
1324 
1325 	    /* insert new entry at head of hash chain */
1326 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1327 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1328 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1329 	    nexpire[hash]++;
1330 	    for (i = 0; i < numvifs; i++) {
1331 		rt->mfc_ttls[i] = 0;
1332 		rt->mfc_flags[i] = 0;
1333 	    }
1334 	    rt->mfc_parent = -1;
1335 
1336 	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1337 
1338 	    rt->mfc_bw_meter = NULL;
1339 
1340 	    /* link into table */
1341 	    rt->mfc_next   = mfctable[hash];
1342 	    mfctable[hash] = rt;
1343 	    rt->mfc_stall = rte;
1344 
1345 	} else {
1346 	    /* determine if q has overflowed */
1347 	    int npkts = 0;
1348 	    struct rtdetq **p;
1349 
1350 	    /*
1351 	     * XXX ouch! we need to append to the list, but we
1352 	     * only have a pointer to the front, so we have to
1353 	     * scan the entire list every time.
1354 	     */
1355 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1356 		npkts++;
1357 
1358 	    if (npkts > MAX_UPQ) {
1359 		mrtstat.mrts_upq_ovflw++;
1360 non_fatal:
1361 		kfree(rte, M_MRTABLE);
1362 		m_freem(mb0);
1363 		lwkt_reltoken(&mroute_token);
1364 		return 0;
1365 	    }
1366 
1367 	    /* Add this entry to the end of the queue */
1368 	    *p = rte;
1369 	}
1370 
1371 	rte->m 			= mb0;
1372 	rte->ifp 		= ifp;
1373 	rte->next		= NULL;
1374 
1375 	lwkt_reltoken(&mroute_token);
1376 	return 0;
1377     }
1378 }
1379 
1380 /*
1381  * Clean up the cache entry if upcall is not serviced
1382  */
1383 static void
1384 expire_upcalls(void *unused)
1385 {
1386     struct rtdetq *rte;
1387     struct mfc *mfc, **nptr;
1388     int i;
1389 
1390     lwkt_gettoken(&mroute_token);
1391     for (i = 0; i < MFCTBLSIZ; i++) {
1392 	if (nexpire[i] == 0)
1393 	    continue;
1394 	nptr = &mfctable[i];
1395 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1396 	    /*
1397 	     * Skip real cache entries
1398 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1399 	     * If it expires now
1400 	     */
1401 	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1402 		    --mfc->mfc_expire == 0) {
1403 		if (mrtdebug & DEBUG_EXPIRE)
1404 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1405 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1406 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1407 		/*
1408 		 * drop all the packets
1409 		 * free the mbuf with the pkt, if, timing info
1410 		 */
1411 		for (rte = mfc->mfc_stall; rte; ) {
1412 		    struct rtdetq *n = rte->next;
1413 
1414 		    m_freem(rte->m);
1415 		    kfree(rte, M_MRTABLE);
1416 		    rte = n;
1417 		}
1418 		++mrtstat.mrts_cache_cleanups;
1419 		nexpire[i]--;
1420 
1421 		/*
1422 		 * free the bw_meter entries
1423 		 */
1424 		while (mfc->mfc_bw_meter != NULL) {
1425 		    struct bw_meter *x = mfc->mfc_bw_meter;
1426 
1427 		    mfc->mfc_bw_meter = x->bm_mfc_next;
1428 		    kfree(x, M_BWMETER);
1429 		}
1430 
1431 		*nptr = mfc->mfc_next;
1432 		kfree(mfc, M_MRTABLE);
1433 	    } else {
1434 		nptr = &mfc->mfc_next;
1435 	    }
1436 	}
1437     }
1438     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1439     lwkt_reltoken(&mroute_token);
1440 }
1441 
1442 /*
1443  * Packet forwarding routine once entry in the cache is made
1444  */
1445 static int
1446 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1447 {
1448     struct ip  *ip = mtod(m, struct ip *);
1449     vifi_t vifi;
1450     int plen = ip->ip_len;
1451 
1452 /*
1453  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1454  * input, they shouldn't get counted on output, so statistics keeping is
1455  * separate.
1456  */
1457 #define MC_SEND(ip,vifp,m) {				\
1458 		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1459 		    encap_send((ip), (vifp), (m));	\
1460 		else					\
1461 		    phyint_send((ip), (vifp), (m));	\
1462 }
1463 
1464     /*
1465      * If xmt_vif is not -1, send on only the requested vif.
1466      *
1467      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1468      */
1469     if (xmt_vif < numvifs) {
1470 #ifdef PIM
1471 	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1472 	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1473         else
1474 #endif
1475 	MC_SEND(ip, viftable + xmt_vif, m);
1476 	return 1;
1477     }
1478 
1479     /*
1480      * Don't forward if it didn't arrive from the parent vif for its origin.
1481      */
1482     vifi = rt->mfc_parent;
1483     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1484 	/* came in the wrong interface */
1485 	if (mrtdebug & DEBUG_FORWARD)
1486 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1487 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1488 	++mrtstat.mrts_wrong_if;
1489 	++rt->mfc_wrong_if;
1490 	/*
1491 	 * If we are doing PIM assert processing, send a message
1492 	 * to the routing daemon.
1493 	 *
1494 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1495 	 * can complete the SPT switch, regardless of the type
1496 	 * of the iif (broadcast media, GRE tunnel, etc).
1497 	 */
1498 	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1499 	    struct timeval now;
1500 	    u_long delta;
1501 
1502 #ifdef PIM
1503 	    if (ifp == &multicast_register_if)
1504 		pimstat.pims_rcv_registers_wrongiif++;
1505 #endif
1506 
1507 	    /* Get vifi for the incoming packet */
1508 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1509 		;
1510 	    if (vifi >= numvifs)
1511 		return 0;	/* The iif is not found: ignore the packet. */
1512 
1513 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1514 		return 0;	/* WRONGVIF disabled: ignore the packet */
1515 
1516 	    GET_TIME(now);
1517 
1518 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1519 
1520 	    if (delta > ASSERT_MSG_TIME) {
1521 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1522 		struct igmpmsg *im;
1523 		int hlen = ip->ip_hl << 2;
1524 		struct mbuf *mm = m_copy(m, 0, hlen);
1525 
1526 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1527 		    mm = m_pullup(mm, hlen);
1528 		if (mm == NULL)
1529 		    return ENOBUFS;
1530 
1531 		rt->mfc_last_assert = now;
1532 
1533 		im = mtod(mm, struct igmpmsg *);
1534 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1535 		im->im_mbz		= 0;
1536 		im->im_vif		= vifi;
1537 
1538 		mrtstat.mrts_upcalls++;
1539 
1540 		k_igmpsrc.sin_addr = im->im_src;
1541 		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1542 		    log(LOG_WARNING,
1543 			"ip_mforward: ip_mrouter socket queue full\n");
1544 		    ++mrtstat.mrts_upq_sockfull;
1545 		    return ENOBUFS;
1546 		}
1547 	    }
1548 	}
1549 	return 0;
1550     }
1551 
1552     /* If I sourced this packet, it counts as output, else it was input. */
1553     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1554 	viftable[vifi].v_pkt_out++;
1555 	viftable[vifi].v_bytes_out += plen;
1556     } else {
1557 	viftable[vifi].v_pkt_in++;
1558 	viftable[vifi].v_bytes_in += plen;
1559     }
1560     rt->mfc_pkt_cnt++;
1561     rt->mfc_byte_cnt += plen;
1562 
1563     /*
1564      * For each vif, decide if a copy of the packet should be forwarded.
1565      * Forward if:
1566      *		- the ttl exceeds the vif's threshold
1567      *		- there are group members downstream on interface
1568      */
1569     for (vifi = 0; vifi < numvifs; vifi++)
1570 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1571 	    viftable[vifi].v_pkt_out++;
1572 	    viftable[vifi].v_bytes_out += plen;
1573 #ifdef PIM
1574 	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1575 		pim_register_send(ip, viftable + vifi, m, rt);
1576 	    else
1577 #endif
1578 	    MC_SEND(ip, viftable+vifi, m);
1579 	}
1580 
1581     /*
1582      * Perform upcall-related bw measuring.
1583      */
1584     if (rt->mfc_bw_meter != NULL) {
1585 	struct bw_meter *x;
1586 	struct timeval now;
1587 
1588 	GET_TIME(now);
1589 	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1590 	    bw_meter_receive_packet(x, plen, &now);
1591     }
1592 
1593     return 0;
1594 }
1595 
1596 /*
1597  * check if a vif number is legal/ok. This is used by ip_output.
1598  */
1599 static int
1600 X_legal_vif_num(int vif)
1601 {
1602     return (vif >= 0 && vif < numvifs);
1603 }
1604 
1605 /*
1606  * Return the local address used by this vif
1607  */
1608 static u_long
1609 X_ip_mcast_src(int vifi)
1610 {
1611     if (vifi >= 0 && vifi < numvifs)
1612 	return viftable[vifi].v_lcl_addr.s_addr;
1613     else
1614 	return INADDR_ANY;
1615 }
1616 
1617 static void
1618 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1619 {
1620     struct mbuf *mb_copy;
1621     int hlen = ip->ip_hl << 2;
1622 
1623     /*
1624      * Make a new reference to the packet; make sure that
1625      * the IP header is actually copied, not just referenced,
1626      * so that ip_output() only scribbles on the copy.
1627      */
1628     mb_copy = m_copypacket(m, MB_DONTWAIT);
1629     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1630 	mb_copy = m_pullup(mb_copy, hlen);
1631     if (mb_copy == NULL)
1632 	return;
1633 
1634     if (vifp->v_rate_limit == 0)
1635 	tbf_send_packet(vifp, mb_copy);
1636     else
1637 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1638 }
1639 
1640 static void
1641 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1642 {
1643     struct mbuf *mb_copy;
1644     struct ip *ip_copy;
1645     int i, len = ip->ip_len;
1646 
1647     /* Take care of delayed checksums */
1648     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1649 	in_delayed_cksum(m);
1650 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1651     }
1652 
1653     /*
1654      * copy the old packet & pullup its IP header into the
1655      * new mbuf so we can modify it.  Try to fill the new
1656      * mbuf since if we don't the ethernet driver will.
1657      */
1658     MGETHDR(mb_copy, MB_DONTWAIT, MT_HEADER);
1659     if (mb_copy == NULL)
1660 	return;
1661     mb_copy->m_data += max_linkhdr;
1662     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1663 
1664     if ((mb_copy->m_next = m_copypacket(m, MB_DONTWAIT)) == NULL) {
1665 	m_freem(mb_copy);
1666 	return;
1667     }
1668     i = MHLEN - M_LEADINGSPACE(mb_copy);
1669     if (i > len)
1670 	i = len;
1671     mb_copy = m_pullup(mb_copy, i);
1672     if (mb_copy == NULL)
1673 	return;
1674     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1675 
1676     /*
1677      * fill in the encapsulating IP header.
1678      */
1679     ip_copy = mtod(mb_copy, struct ip *);
1680     *ip_copy = multicast_encap_iphdr;
1681     ip_copy->ip_id = ip_newid();
1682     ip_copy->ip_len += len;
1683     ip_copy->ip_src = vifp->v_lcl_addr;
1684     ip_copy->ip_dst = vifp->v_rmt_addr;
1685 
1686     /*
1687      * turn the encapsulated IP header back into a valid one.
1688      */
1689     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1690     --ip->ip_ttl;
1691     ip->ip_len = htons(ip->ip_len);
1692     ip->ip_off = htons(ip->ip_off);
1693     ip->ip_sum = 0;
1694     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1695     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1696     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1697 
1698     if (vifp->v_rate_limit == 0)
1699 	tbf_send_packet(vifp, mb_copy);
1700     else
1701 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1702 }
1703 
1704 /*
1705  * De-encapsulate a packet and feed it back through ip input (this
1706  * routine is called whenever IP gets a packet with proto type
1707  * ENCAP_PROTO and a local destination address).
1708  *
1709  * This is similar to mroute_encapcheck() + mroute_encap_input() in -current.
1710  */
1711 static int
1712 X_ipip_input(struct mbuf **mp, int *offp, int proto)
1713 {
1714     struct mbuf *m = *mp;
1715     struct ip *ip = mtod(m, struct ip *);
1716     int hlen = ip->ip_hl << 2;
1717 
1718     if (!have_encap_tunnel) {
1719 	rip_input(mp, offp, proto);
1720 	return(IPPROTO_DONE);
1721     }
1722     *mp = NULL;
1723 
1724     /*
1725      * dump the packet if it's not to a multicast destination or if
1726      * we don't have an encapsulating tunnel with the source.
1727      * Note:  This code assumes that the remote site IP address
1728      * uniquely identifies the tunnel (i.e., that this site has
1729      * at most one tunnel with the remote site).
1730      */
1731     if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr))) {
1732 	++mrtstat.mrts_bad_tunnel;
1733 	m_freem(m);
1734 	return(IPPROTO_DONE);
1735     }
1736     if (ip->ip_src.s_addr != last_encap_src) {
1737 	struct vif *vifp = viftable;
1738 	struct vif *vife = vifp + numvifs;
1739 
1740 	last_encap_src = ip->ip_src.s_addr;
1741 	last_encap_vif = NULL;
1742 	for ( ; vifp < vife; ++vifp)
1743 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1744 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1745 		    == VIFF_TUNNEL)
1746 		    last_encap_vif = vifp;
1747 		break;
1748 	    }
1749     }
1750     if (last_encap_vif == NULL) {
1751 	last_encap_src = INADDR_ANY;
1752 	mrtstat.mrts_cant_tunnel++; /*XXX*/
1753 	m_freem(m);
1754 	if (mrtdebug)
1755 	    log(LOG_DEBUG, "ip_mforward: no tunnel with %lx\n",
1756 		(u_long)ntohl(ip->ip_src.s_addr));
1757 	return(IPPROTO_DONE);
1758     }
1759 
1760     if (hlen > sizeof(struct ip))
1761 	ip_stripoptions(m);
1762     m->m_data += sizeof(struct ip);
1763     m->m_len -= sizeof(struct ip);
1764     m->m_pkthdr.len -= sizeof(struct ip);
1765     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
1766 
1767     netisr_queue(NETISR_IP, m);
1768     return(IPPROTO_DONE);
1769 }
1770 
1771 /*
1772  * Token bucket filter module
1773  */
1774 
1775 static void
1776 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1777 {
1778     struct tbf *t = vifp->v_tbf;
1779 
1780     if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
1781 	mrtstat.mrts_pkt2large++;
1782 	m_freem(m);
1783 	return;
1784     }
1785 
1786     tbf_update_tokens(vifp);
1787 
1788     if (t->tbf_q_len == 0) {		/* queue empty...		*/
1789 	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens	*/
1790 	    t->tbf_n_tok -= p_len;
1791 	    tbf_send_packet(vifp, m);
1792 	} else {			/* no, queue packet and try later */
1793 	    tbf_queue(vifp, m);
1794 	    callout_reset(&tbf_reprocess_q_ch, TBF_REPROCESS,
1795 	    		  tbf_reprocess_q, vifp);
1796 	}
1797     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1798 	/* finite queue length, so queue pkts and process queue */
1799 	tbf_queue(vifp, m);
1800 	tbf_process_q(vifp);
1801     } else {
1802 	/* queue full, try to dq and queue and process */
1803 	if (!tbf_dq_sel(vifp, ip)) {
1804 	    mrtstat.mrts_q_overflow++;
1805 	    m_freem(m);
1806 	} else {
1807 	    tbf_queue(vifp, m);
1808 	    tbf_process_q(vifp);
1809 	}
1810     }
1811 }
1812 
1813 /*
1814  * adds a packet to the queue at the interface
1815  */
1816 static void
1817 tbf_queue(struct vif *vifp, struct mbuf *m)
1818 {
1819     struct tbf *t = vifp->v_tbf;
1820 
1821     lwkt_gettoken(&mroute_token);
1822 
1823     if (t->tbf_t == NULL)	/* Queue was empty */
1824 	t->tbf_q = m;
1825     else			/* Insert at tail */
1826 	t->tbf_t->m_nextpkt = m;
1827 
1828     t->tbf_t = m;		/* Set new tail pointer */
1829 
1830 #ifdef DIAGNOSTIC
1831     /* Make sure we didn't get fed a bogus mbuf */
1832     if (m->m_nextpkt)
1833 	panic("tbf_queue: m_nextpkt");
1834 #endif
1835     m->m_nextpkt = NULL;
1836 
1837     t->tbf_q_len++;
1838 
1839     lwkt_reltoken(&mroute_token);
1840 }
1841 
1842 /*
1843  * processes the queue at the interface
1844  */
1845 static void
1846 tbf_process_q(struct vif *vifp)
1847 {
1848     struct tbf *t = vifp->v_tbf;
1849 
1850     lwkt_gettoken(&mroute_token);
1851 
1852     /* loop through the queue at the interface and send as many packets
1853      * as possible
1854      */
1855     while (t->tbf_q_len > 0) {
1856 	struct mbuf *m = t->tbf_q;
1857 	int len = mtod(m, struct ip *)->ip_len;
1858 
1859 	/* determine if the packet can be sent */
1860 	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
1861 	    break;
1862 	/* ok, reduce no of tokens, dequeue and send the packet. */
1863 	t->tbf_n_tok -= len;
1864 
1865 	t->tbf_q = m->m_nextpkt;
1866 	if (--t->tbf_q_len == 0)
1867 	    t->tbf_t = NULL;
1868 
1869 	m->m_nextpkt = NULL;
1870 	tbf_send_packet(vifp, m);
1871     }
1872     lwkt_reltoken(&mroute_token);
1873 }
1874 
1875 static void
1876 tbf_reprocess_q(void *xvifp)
1877 {
1878     struct vif *vifp = xvifp;
1879 
1880     if (ip_mrouter == NULL)
1881 	return;
1882     tbf_update_tokens(vifp);
1883     tbf_process_q(vifp);
1884     if (vifp->v_tbf->tbf_q_len)
1885 	callout_reset(&tbf_reprocess_q_ch, TBF_REPROCESS,
1886 		      tbf_reprocess_q, vifp);
1887 }
1888 
1889 /* function that will selectively discard a member of the queue
1890  * based on the precedence value and the priority
1891  */
1892 static int
1893 tbf_dq_sel(struct vif *vifp, struct ip *ip)
1894 {
1895     u_int p;
1896     struct mbuf *m, *last;
1897     struct mbuf **np;
1898     struct tbf *t = vifp->v_tbf;
1899 
1900     lwkt_gettoken(&mroute_token);
1901 
1902     p = priority(vifp, ip);
1903 
1904     np = &t->tbf_q;
1905     last = NULL;
1906     while ((m = *np) != NULL) {
1907 	if (p > priority(vifp, mtod(m, struct ip *))) {
1908 	    *np = m->m_nextpkt;
1909 	    /* If we're removing the last packet, fix the tail pointer */
1910 	    if (m == t->tbf_t)
1911 		t->tbf_t = last;
1912 	    m_freem(m);
1913 	    /* It's impossible for the queue to be empty, but check anyways. */
1914 	    if (--t->tbf_q_len == 0)
1915 		t->tbf_t = NULL;
1916 	    mrtstat.mrts_drop_sel++;
1917 	    lwkt_reltoken(&mroute_token);
1918 	    return 1;
1919 	}
1920 	np = &m->m_nextpkt;
1921 	last = m;
1922     }
1923     lwkt_reltoken(&mroute_token);
1924     return 0;
1925 }
1926 
1927 static void
1928 tbf_send_packet(struct vif *vifp, struct mbuf *m)
1929 {
1930     lwkt_gettoken(&mroute_token);
1931 
1932     if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
1933 	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
1934     else {
1935 	struct ip_moptions imo;
1936 	int error;
1937 	static struct route ro; /* XXX check this */
1938 
1939 	imo.imo_multicast_ifp  = vifp->v_ifp;
1940 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1941 	imo.imo_multicast_loop = 1;
1942 	imo.imo_multicast_vif  = -1;
1943 
1944 	/*
1945 	 * Re-entrancy should not be a problem here, because
1946 	 * the packets that we send out and are looped back at us
1947 	 * should get rejected because they appear to come from
1948 	 * the loopback interface, thus preventing looping.
1949 	 */
1950 	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
1951 
1952 	if (mrtdebug & DEBUG_XMIT)
1953 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1954 		(int)(vifp - viftable), error);
1955     }
1956     lwkt_reltoken(&mroute_token);
1957 }
1958 
1959 /* determine the current time and then
1960  * the elapsed time (between the last time and time now)
1961  * in milliseconds & update the no. of tokens in the bucket
1962  */
1963 static void
1964 tbf_update_tokens(struct vif *vifp)
1965 {
1966     struct timeval tp;
1967     u_long tm;
1968     struct tbf *t = vifp->v_tbf;
1969 
1970     lwkt_gettoken(&mroute_token);
1971 
1972     GET_TIME(tp);
1973 
1974     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1975 
1976     /*
1977      * This formula is actually
1978      * "time in seconds" * "bytes/second".
1979      *
1980      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1981      *
1982      * The (1000/1024) was introduced in add_vif to optimize
1983      * this divide into a shift.
1984      */
1985     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1986     t->tbf_last_pkt_t = tp;
1987 
1988     if (t->tbf_n_tok > MAX_BKT_SIZE)
1989 	t->tbf_n_tok = MAX_BKT_SIZE;
1990 
1991     lwkt_reltoken(&mroute_token);
1992 }
1993 
1994 static int
1995 priority(struct vif *vifp, struct ip *ip)
1996 {
1997     int prio = 50; /* the lowest priority -- default case */
1998 
1999     /* temporary hack; may add general packet classifier some day */
2000 
2001     /*
2002      * The UDP port space is divided up into four priority ranges:
2003      * [0, 16384)     : unclassified - lowest priority
2004      * [16384, 32768) : audio - highest priority
2005      * [32768, 49152) : whiteboard - medium priority
2006      * [49152, 65536) : video - low priority
2007      *
2008      * Everything else gets lowest priority.
2009      */
2010     if (ip->ip_p == IPPROTO_UDP) {
2011 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2012 	switch (ntohs(udp->uh_dport) & 0xc000) {
2013 	case 0x4000:
2014 	    prio = 70;
2015 	    break;
2016 	case 0x8000:
2017 	    prio = 60;
2018 	    break;
2019 	case 0xc000:
2020 	    prio = 55;
2021 	    break;
2022 	}
2023     }
2024     return prio;
2025 }
2026 
2027 /*
2028  * End of token bucket filter modifications
2029  */
2030 
2031 static int
2032 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2033 {
2034     int error, vifi;
2035 
2036     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2037 	return EOPNOTSUPP;
2038 
2039     error = soopt_to_kbuf(sopt, &vifi, sizeof vifi, sizeof vifi);
2040     if (error)
2041 	return error;
2042 
2043     lwkt_gettoken(&mroute_token);
2044 
2045     if (vifi < 0 || vifi >= numvifs) { /* Error if vif is invalid */
2046 	lwkt_reltoken(&mroute_token);
2047 	return EADDRNOTAVAIL;
2048     }
2049 
2050     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2051 	/* Check if socket is available. */
2052 	if (viftable[vifi].v_rsvpd != NULL) {
2053 	    lwkt_reltoken(&mroute_token);
2054 	    return EADDRINUSE;
2055 	}
2056 
2057 	viftable[vifi].v_rsvpd = so;
2058 	/* This may seem silly, but we need to be sure we don't over-increment
2059 	 * the RSVP counter, in case something slips up.
2060 	 */
2061 	if (!viftable[vifi].v_rsvp_on) {
2062 	    viftable[vifi].v_rsvp_on = 1;
2063 	    rsvp_on++;
2064 	}
2065     } else { /* must be VIF_OFF */
2066 	/*
2067 	 * XXX as an additional consistency check, one could make sure
2068 	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2069 	 * first parameter is pretty useless.
2070 	 */
2071 	viftable[vifi].v_rsvpd = NULL;
2072 	/*
2073 	 * This may seem silly, but we need to be sure we don't over-decrement
2074 	 * the RSVP counter, in case something slips up.
2075 	 */
2076 	if (viftable[vifi].v_rsvp_on) {
2077 	    viftable[vifi].v_rsvp_on = 0;
2078 	    rsvp_on--;
2079 	}
2080     }
2081     lwkt_reltoken(&mroute_token);
2082     return 0;
2083 }
2084 
2085 static void
2086 X_ip_rsvp_force_done(struct socket *so)
2087 {
2088     int vifi;
2089 
2090     /* Don't bother if it is not the right type of socket. */
2091     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2092 	return;
2093 
2094     lwkt_gettoken(&mroute_token);
2095 
2096     /* The socket may be attached to more than one vif...this
2097      * is perfectly legal.
2098      */
2099     for (vifi = 0; vifi < numvifs; vifi++) {
2100 	if (viftable[vifi].v_rsvpd == so) {
2101 	    viftable[vifi].v_rsvpd = NULL;
2102 	    /* This may seem silly, but we need to be sure we don't
2103 	     * over-decrement the RSVP counter, in case something slips up.
2104 	     */
2105 	    if (viftable[vifi].v_rsvp_on) {
2106 		viftable[vifi].v_rsvp_on = 0;
2107 		rsvp_on--;
2108 	    }
2109 	}
2110     }
2111 
2112     lwkt_reltoken(&mroute_token);
2113 }
2114 
2115 static int
2116 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
2117 {
2118     int vifi;
2119     struct mbuf *m = *mp;
2120     struct ip *ip = mtod(m, struct ip *);
2121     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2122     struct ifnet *ifp;
2123     int off;
2124 #ifdef ALTQ
2125     /* support IP_RECVIF used by rsvpd rel4.2a1 */
2126     struct inpcb *inp;
2127     struct socket *so;
2128     struct mbuf *opts;
2129 #endif
2130 
2131     off = *offp;
2132     *mp = NULL;
2133 
2134     if (rsvpdebug)
2135 	kprintf("rsvp_input: rsvp_on %d\n",rsvp_on);
2136 
2137     /* Can still get packets with rsvp_on = 0 if there is a local member
2138      * of the group to which the RSVP packet is addressed.  But in this
2139      * case we want to throw the packet away.
2140      */
2141     if (!rsvp_on) {
2142 	m_freem(m);
2143 	return(IPPROTO_DONE);
2144     }
2145 
2146     lwkt_gettoken(&mroute_token);
2147 
2148     if (rsvpdebug)
2149 	kprintf("rsvp_input: check vifs\n");
2150 
2151 #ifdef DIAGNOSTIC
2152     if (!(m->m_flags & M_PKTHDR))
2153 	panic("rsvp_input no hdr");
2154 #endif
2155 
2156     ifp = m->m_pkthdr.rcvif;
2157     /* Find which vif the packet arrived on. */
2158     for (vifi = 0; vifi < numvifs; vifi++)
2159 	if (viftable[vifi].v_ifp == ifp)
2160 	    break;
2161 
2162 #ifdef ALTQ
2163     if (vifi == numvifs || (so = viftable[vifi].v_rsvpd) == NULL) {
2164 #else
2165     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2166 #endif
2167 	/*
2168 	 * If the old-style non-vif-associated socket is set,
2169 	 * then use it.  Otherwise, drop packet since there
2170 	 * is no specific socket for this vif.
2171 	 */
2172 	if (ip_rsvpd != NULL) {
2173 	    if (rsvpdebug)
2174 		kprintf("rsvp_input: Sending packet up old-style socket\n");
2175 	    *mp = m;
2176 	    rip_input(mp, offp, proto);  /* xxx */
2177 	} else {
2178 	    if (rsvpdebug && vifi == numvifs)
2179 		kprintf("rsvp_input: Can't find vif for packet.\n");
2180 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2181 		kprintf("rsvp_input: No socket defined for vif %d\n",vifi);
2182 	    m_freem(m);
2183 	}
2184 	lwkt_reltoken(&mroute_token);
2185 	return(IPPROTO_DONE);
2186     }
2187     rsvp_src.sin_addr = ip->ip_src;
2188 
2189     if (rsvpdebug && m)
2190 	kprintf("rsvp_input: m->m_len = %d, ssb_space() = %ld\n",
2191 	       m->m_len,ssb_space(&(viftable[vifi].v_rsvpd->so_rcv)));
2192 
2193 #ifdef ALTQ
2194     opts = NULL;
2195     inp = (struct inpcb *)so->so_pcb;
2196     if (inp->inp_flags & INP_CONTROLOPTS ||
2197 	inp->inp_socket->so_options & SO_TIMESTAMP) {
2198 	ip_savecontrol(inp, &opts, ip, m);
2199     }
2200     if (ssb_appendaddr(&so->so_rcv,
2201 		     (struct sockaddr *)&rsvp_src,m, opts) == 0) {
2202 	m_freem(m);
2203 	if (opts)
2204 	    m_freem(opts);
2205 	if (rsvpdebug)
2206 	    kprintf("rsvp_input: Failed to append to socket\n");
2207     }
2208     else {
2209 	sorwakeup(so);
2210 	if (rsvpdebug)
2211 	    kprintf("rsvp_input: send packet up\n");
2212     }
2213 #else /* !ALTQ */
2214     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2215 	if (rsvpdebug)
2216 	    kprintf("rsvp_input: Failed to append to socket\n");
2217     } else {
2218 	if (rsvpdebug)
2219 	    kprintf("rsvp_input: send packet up\n");
2220     }
2221 #endif /* !ALTQ */
2222     lwkt_reltoken(&mroute_token);
2223     return(IPPROTO_DONE);
2224 }
2225 
2226 /*
2227  * Code for bandwidth monitors
2228  */
2229 
2230 /*
2231  * Define common interface for timeval-related methods
2232  */
2233 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2234 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2235 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2236 
2237 static uint32_t
2238 compute_bw_meter_flags(struct bw_upcall *req)
2239 {
2240     uint32_t flags = 0;
2241 
2242     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2243 	flags |= BW_METER_UNIT_PACKETS;
2244     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2245 	flags |= BW_METER_UNIT_BYTES;
2246     if (req->bu_flags & BW_UPCALL_GEQ)
2247 	flags |= BW_METER_GEQ;
2248     if (req->bu_flags & BW_UPCALL_LEQ)
2249 	flags |= BW_METER_LEQ;
2250 
2251     return flags;
2252 }
2253 
2254 /*
2255  * Add a bw_meter entry
2256  */
2257 static int
2258 add_bw_upcall(struct bw_upcall *req)
2259 {
2260     struct mfc *mfc;
2261     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2262 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2263     struct timeval now;
2264     struct bw_meter *x;
2265     uint32_t flags;
2266 
2267     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2268 	return EOPNOTSUPP;
2269 
2270     /* Test if the flags are valid */
2271     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2272 	return EINVAL;
2273     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2274 	return EINVAL;
2275     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2276 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2277 	return EINVAL;
2278 
2279     /* Test if the threshold time interval is valid */
2280     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2281 	return EINVAL;
2282 
2283     flags = compute_bw_meter_flags(req);
2284 
2285     /*
2286      * Find if we have already same bw_meter entry
2287      */
2288     lwkt_gettoken(&mroute_token);
2289     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2290     if (mfc == NULL) {
2291 	lwkt_reltoken(&mroute_token);
2292 	return EADDRNOTAVAIL;
2293     }
2294     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2295 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2296 			   &req->bu_threshold.b_time, ==)) &&
2297 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2298 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2299 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2300 	    lwkt_reltoken(&mroute_token);
2301 	    return 0;		/* XXX Already installed */
2302 	}
2303     }
2304     lwkt_reltoken(&mroute_token);
2305 
2306     /* Allocate the new bw_meter entry */
2307     x = kmalloc(sizeof(*x), M_BWMETER, M_INTWAIT);
2308 
2309     /* Set the new bw_meter entry */
2310     x->bm_threshold.b_time = req->bu_threshold.b_time;
2311     GET_TIME(now);
2312     x->bm_start_time = now;
2313     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2314     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2315     x->bm_measured.b_packets = 0;
2316     x->bm_measured.b_bytes = 0;
2317     x->bm_flags = flags;
2318     x->bm_time_next = NULL;
2319     x->bm_time_hash = BW_METER_BUCKETS;
2320 
2321     /* Add the new bw_meter entry to the front of entries for this MFC */
2322     lwkt_gettoken(&mroute_token);
2323     x->bm_mfc = mfc;
2324     x->bm_mfc_next = mfc->mfc_bw_meter;
2325     mfc->mfc_bw_meter = x;
2326     schedule_bw_meter(x, &now);
2327     lwkt_reltoken(&mroute_token);
2328 
2329     return 0;
2330 }
2331 
2332 static void
2333 free_bw_list(struct bw_meter *list)
2334 {
2335     while (list != NULL) {
2336 	struct bw_meter *x = list;
2337 
2338 	list = list->bm_mfc_next;
2339 	unschedule_bw_meter(x);
2340 	kfree(x, M_BWMETER);
2341     }
2342 }
2343 
2344 /*
2345  * Delete one or multiple bw_meter entries
2346  */
2347 static int
2348 del_bw_upcall(struct bw_upcall *req)
2349 {
2350     struct mfc *mfc;
2351     struct bw_meter *x;
2352 
2353     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2354 	return EOPNOTSUPP;
2355 
2356     lwkt_gettoken(&mroute_token);
2357     /* Find the corresponding MFC entry */
2358     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2359     if (mfc == NULL) {
2360 	lwkt_reltoken(&mroute_token);
2361 	return EADDRNOTAVAIL;
2362     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2363 	/*
2364 	 * Delete all bw_meter entries for this mfc
2365 	 */
2366 	struct bw_meter *list;
2367 
2368 	list = mfc->mfc_bw_meter;
2369 	mfc->mfc_bw_meter = NULL;
2370 	lwkt_reltoken(&mroute_token);
2371 	free_bw_list(list);
2372 	return 0;
2373     } else {			/* Delete a single bw_meter entry */
2374 	struct bw_meter *prev;
2375 	uint32_t flags = 0;
2376 
2377 	flags = compute_bw_meter_flags(req);
2378 
2379 	/* Find the bw_meter entry to delete */
2380 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2381 	     prev = x, x = x->bm_mfc_next) {
2382 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2383 			       &req->bu_threshold.b_time, ==)) &&
2384 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2385 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2386 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2387 		break;
2388 	}
2389 	if (x != NULL) { /* Delete entry from the list for this MFC */
2390 	    if (prev != NULL)
2391 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2392 	    else
2393 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2394 	    unschedule_bw_meter(x);
2395 	    lwkt_reltoken(&mroute_token);
2396 	    /* Free the bw_meter entry */
2397 	    kfree(x, M_BWMETER);
2398 	    return 0;
2399 	} else {
2400 	    lwkt_reltoken(&mroute_token);
2401 	    return EINVAL;
2402 	}
2403     }
2404     /* NOTREACHED */
2405 }
2406 
2407 /*
2408  * Perform bandwidth measurement processing that may result in an upcall
2409  */
2410 static void
2411 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2412 {
2413     struct timeval delta;
2414 
2415     lwkt_gettoken(&mroute_token);
2416     delta = *nowp;
2417     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2418 
2419     if (x->bm_flags & BW_METER_GEQ) {
2420 	/*
2421 	 * Processing for ">=" type of bw_meter entry
2422 	 */
2423 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2424 	    /* Reset the bw_meter entry */
2425 	    x->bm_start_time = *nowp;
2426 	    x->bm_measured.b_packets = 0;
2427 	    x->bm_measured.b_bytes = 0;
2428 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2429 	}
2430 
2431 	/* Record that a packet is received */
2432 	x->bm_measured.b_packets++;
2433 	x->bm_measured.b_bytes += plen;
2434 
2435 	/*
2436 	 * Test if we should deliver an upcall
2437 	 */
2438 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2439 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2440 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2441 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2442 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2443 		/* Prepare an upcall for delivery */
2444 		bw_meter_prepare_upcall(x, nowp);
2445 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2446 	    }
2447 	}
2448     } else if (x->bm_flags & BW_METER_LEQ) {
2449 	/*
2450 	 * Processing for "<=" type of bw_meter entry
2451 	 */
2452 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2453 	    /*
2454 	     * We are behind time with the multicast forwarding table
2455 	     * scanning for "<=" type of bw_meter entries, so test now
2456 	     * if we should deliver an upcall.
2457 	     */
2458 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2459 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2460 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2461 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2462 		/* Prepare an upcall for delivery */
2463 		bw_meter_prepare_upcall(x, nowp);
2464 	    }
2465 	    /* Reschedule the bw_meter entry */
2466 	    unschedule_bw_meter(x);
2467 	    schedule_bw_meter(x, nowp);
2468 	}
2469 
2470 	/* Record that a packet is received */
2471 	x->bm_measured.b_packets++;
2472 	x->bm_measured.b_bytes += plen;
2473 
2474 	/*
2475 	 * Test if we should restart the measuring interval
2476 	 */
2477 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2478 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2479 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2480 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2481 	    /* Don't restart the measuring interval */
2482 	} else {
2483 	    /* Do restart the measuring interval */
2484 	    /*
2485 	     * XXX: note that we don't unschedule and schedule, because this
2486 	     * might be too much overhead per packet. Instead, when we process
2487 	     * all entries for a given timer hash bin, we check whether it is
2488 	     * really a timeout. If not, we reschedule at that time.
2489 	     */
2490 	    x->bm_start_time = *nowp;
2491 	    x->bm_measured.b_packets = 0;
2492 	    x->bm_measured.b_bytes = 0;
2493 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2494 	}
2495     }
2496     lwkt_reltoken(&mroute_token);
2497 }
2498 
2499 /*
2500  * Prepare a bandwidth-related upcall
2501  */
2502 static void
2503 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2504 {
2505     struct timeval delta;
2506     struct bw_upcall *u;
2507 
2508     lwkt_gettoken(&mroute_token);
2509 
2510     /*
2511      * Compute the measured time interval
2512      */
2513     delta = *nowp;
2514     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2515 
2516     /*
2517      * If there are too many pending upcalls, deliver them now
2518      */
2519     if (bw_upcalls_n >= BW_UPCALLS_MAX)
2520 	bw_upcalls_send();
2521 
2522     /*
2523      * Set the bw_upcall entry
2524      */
2525     u = &bw_upcalls[bw_upcalls_n++];
2526     u->bu_src = x->bm_mfc->mfc_origin;
2527     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2528     u->bu_threshold.b_time = x->bm_threshold.b_time;
2529     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2530     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2531     u->bu_measured.b_time = delta;
2532     u->bu_measured.b_packets = x->bm_measured.b_packets;
2533     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2534     u->bu_flags = 0;
2535     if (x->bm_flags & BW_METER_UNIT_PACKETS)
2536 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2537     if (x->bm_flags & BW_METER_UNIT_BYTES)
2538 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2539     if (x->bm_flags & BW_METER_GEQ)
2540 	u->bu_flags |= BW_UPCALL_GEQ;
2541     if (x->bm_flags & BW_METER_LEQ)
2542 	u->bu_flags |= BW_UPCALL_LEQ;
2543 
2544     lwkt_reltoken(&mroute_token);
2545 }
2546 
2547 /*
2548  * Send the pending bandwidth-related upcalls
2549  */
2550 static void
2551 bw_upcalls_send(void)
2552 {
2553     struct mbuf *m;
2554     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2555     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2556     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2557 				      0,		/* unused2 */
2558 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2559 				      0,		/* im_mbz  */
2560 				      0,		/* im_vif  */
2561 				      0,		/* unused3 */
2562 				      { 0 },		/* im_src  */
2563 				      { 0 } };		/* im_dst  */
2564 
2565     if (bw_upcalls_n == 0)
2566 	return;			/* No pending upcalls */
2567 
2568     bw_upcalls_n = 0;
2569 
2570     /*
2571      * Allocate a new mbuf, initialize it with the header and
2572      * the payload for the pending calls.
2573      */
2574     MGETHDR(m, MB_DONTWAIT, MT_HEADER);
2575     if (m == NULL) {
2576 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2577 	return;
2578     }
2579 
2580     m->m_len = m->m_pkthdr.len = 0;
2581     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2582     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2583 
2584     /*
2585      * Send the upcalls
2586      * XXX do we need to set the address in k_igmpsrc ?
2587      */
2588     mrtstat.mrts_upcalls++;
2589     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2590 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2591 	++mrtstat.mrts_upq_sockfull;
2592     }
2593 }
2594 
2595 /*
2596  * Compute the timeout hash value for the bw_meter entries
2597  */
2598 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2599     do {								\
2600 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2601 									\
2602 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2603 	(hash) = next_timeval.tv_sec;					\
2604 	if (next_timeval.tv_usec)					\
2605 	    (hash)++; /* XXX: make sure we don't timeout early */	\
2606 	(hash) %= BW_METER_BUCKETS;					\
2607     } while (0)
2608 
2609 /*
2610  * Schedule a timer to process periodically bw_meter entry of type "<="
2611  * by linking the entry in the proper hash bucket.
2612  */
2613 static void
2614 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2615 {
2616     int time_hash;
2617 
2618     if (!(x->bm_flags & BW_METER_LEQ))
2619 	return;		/* XXX: we schedule timers only for "<=" entries */
2620 
2621     /*
2622      * Reset the bw_meter entry
2623      */
2624     lwkt_gettoken(&mroute_token);
2625     x->bm_start_time = *nowp;
2626     x->bm_measured.b_packets = 0;
2627     x->bm_measured.b_bytes = 0;
2628     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2629 
2630     /*
2631      * Compute the timeout hash value and insert the entry
2632      */
2633     BW_METER_TIMEHASH(x, time_hash);
2634     x->bm_time_next = bw_meter_timers[time_hash];
2635     bw_meter_timers[time_hash] = x;
2636     x->bm_time_hash = time_hash;
2637 
2638     lwkt_reltoken(&mroute_token);
2639 }
2640 
2641 /*
2642  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2643  * by removing the entry from the proper hash bucket.
2644  */
2645 static void
2646 unschedule_bw_meter(struct bw_meter *x)
2647 {
2648     int time_hash;
2649     struct bw_meter *prev, *tmp;
2650 
2651     if (!(x->bm_flags & BW_METER_LEQ))
2652 	return;		/* XXX: we schedule timers only for "<=" entries */
2653 
2654     /*
2655      * Compute the timeout hash value and delete the entry
2656      */
2657     time_hash = x->bm_time_hash;
2658     if (time_hash >= BW_METER_BUCKETS)
2659 	return;		/* Entry was not scheduled */
2660 
2661     for (prev = NULL, tmp = bw_meter_timers[time_hash];
2662 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2663 	if (tmp == x)
2664 	    break;
2665 
2666     if (tmp == NULL)
2667 	panic("unschedule_bw_meter: bw_meter entry not found");
2668 
2669     if (prev != NULL)
2670 	prev->bm_time_next = x->bm_time_next;
2671     else
2672 	bw_meter_timers[time_hash] = x->bm_time_next;
2673 
2674     x->bm_time_next = NULL;
2675     x->bm_time_hash = BW_METER_BUCKETS;
2676 }
2677 
2678 
2679 /*
2680  * Process all "<=" type of bw_meter that should be processed now,
2681  * and for each entry prepare an upcall if necessary. Each processed
2682  * entry is rescheduled again for the (periodic) processing.
2683  *
2684  * This is run periodically (once per second normally). On each round,
2685  * all the potentially matching entries are in the hash slot that we are
2686  * looking at.
2687  */
2688 static void
2689 bw_meter_process(void)
2690 {
2691     static uint32_t last_tv_sec;	/* last time we processed this */
2692 
2693     uint32_t loops;
2694     int i;
2695     struct timeval now, process_endtime;
2696 
2697     GET_TIME(now);
2698     if (last_tv_sec == now.tv_sec)
2699 	return;		/* nothing to do */
2700 
2701     lwkt_gettoken(&mroute_token);
2702     loops = now.tv_sec - last_tv_sec;
2703     last_tv_sec = now.tv_sec;
2704     if (loops > BW_METER_BUCKETS)
2705 	loops = BW_METER_BUCKETS;
2706 
2707     /*
2708      * Process all bins of bw_meter entries from the one after the last
2709      * processed to the current one. On entry, i points to the last bucket
2710      * visited, so we need to increment i at the beginning of the loop.
2711      */
2712     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2713 	struct bw_meter *x, *tmp_list;
2714 
2715 	if (++i >= BW_METER_BUCKETS)
2716 	    i = 0;
2717 
2718 	/* Disconnect the list of bw_meter entries from the bin */
2719 	tmp_list = bw_meter_timers[i];
2720 	bw_meter_timers[i] = NULL;
2721 
2722 	/* Process the list of bw_meter entries */
2723 	while (tmp_list != NULL) {
2724 	    x = tmp_list;
2725 	    tmp_list = tmp_list->bm_time_next;
2726 
2727 	    /* Test if the time interval is over */
2728 	    process_endtime = x->bm_start_time;
2729 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2730 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2731 		/* Not yet: reschedule, but don't reset */
2732 		int time_hash;
2733 
2734 		BW_METER_TIMEHASH(x, time_hash);
2735 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2736 		    /*
2737 		     * XXX: somehow the bin processing is a bit ahead of time.
2738 		     * Put the entry in the next bin.
2739 		     */
2740 		    if (++time_hash >= BW_METER_BUCKETS)
2741 			time_hash = 0;
2742 		}
2743 		x->bm_time_next = bw_meter_timers[time_hash];
2744 		bw_meter_timers[time_hash] = x;
2745 		x->bm_time_hash = time_hash;
2746 
2747 		continue;
2748 	    }
2749 
2750 	    /*
2751 	     * Test if we should deliver an upcall
2752 	     */
2753 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2754 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2755 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2756 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2757 		/* Prepare an upcall for delivery */
2758 		bw_meter_prepare_upcall(x, &now);
2759 	    }
2760 
2761 	    /*
2762 	     * Reschedule for next processing
2763 	     */
2764 	    schedule_bw_meter(x, &now);
2765 	}
2766     }
2767     /* Send all upcalls that are pending delivery */
2768     bw_upcalls_send();
2769     lwkt_reltoken(&mroute_token);
2770 }
2771 
2772 /*
2773  * A periodic function for sending all upcalls that are pending delivery
2774  */
2775 static void
2776 expire_bw_upcalls_send(void *unused)
2777 {
2778     bw_upcalls_send();
2779 
2780     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2781     		  expire_bw_upcalls_send, NULL);
2782 }
2783 
2784 /*
2785  * A periodic function for periodic scanning of the multicast forwarding
2786  * table for processing all "<=" bw_meter entries.
2787  */
2788 static void
2789 expire_bw_meter_process(void *unused)
2790 {
2791     if (mrt_api_config & MRT_MFC_BW_UPCALL)
2792 	bw_meter_process();
2793 
2794     callout_reset(&bw_meter_ch, BW_METER_PERIOD,
2795     		  expire_bw_meter_process, NULL);
2796 }
2797 
2798 /*
2799  * End of bandwidth monitoring code
2800  */
2801 
2802 #ifdef PIM
2803 /*
2804  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2805  *
2806  */
2807 static int
2808 pim_register_send(struct ip *ip, struct vif *vifp,
2809 	struct mbuf *m, struct mfc *rt)
2810 {
2811     struct mbuf *mb_copy, *mm;
2812 
2813     if (mrtdebug & DEBUG_PIM)
2814         log(LOG_DEBUG, "pim_register_send: ");
2815 
2816     mb_copy = pim_register_prepare(ip, m);
2817     if (mb_copy == NULL)
2818 	return ENOBUFS;
2819 
2820     /*
2821      * Send all the fragments. Note that the mbuf for each fragment
2822      * is freed by the sending machinery.
2823      */
2824     for (mm = mb_copy; mm; mm = mb_copy) {
2825 	mb_copy = mm->m_nextpkt;
2826 	mm->m_nextpkt = 0;
2827 	mm = m_pullup(mm, sizeof(struct ip));
2828 	if (mm != NULL) {
2829 	    ip = mtod(mm, struct ip *);
2830 	    if ((mrt_api_config & MRT_MFC_RP) &&
2831 		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2832 		pim_register_send_rp(ip, vifp, mm, rt);
2833 	    } else {
2834 		pim_register_send_upcall(ip, vifp, mm, rt);
2835 	    }
2836 	}
2837     }
2838 
2839     return 0;
2840 }
2841 
2842 /*
2843  * Return a copy of the data packet that is ready for PIM Register
2844  * encapsulation.
2845  * XXX: Note that in the returned copy the IP header is a valid one.
2846  */
2847 static struct mbuf *
2848 pim_register_prepare(struct ip *ip, struct mbuf *m)
2849 {
2850     struct mbuf *mb_copy = NULL;
2851     int mtu;
2852 
2853     /* Take care of delayed checksums */
2854     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2855 	in_delayed_cksum(m);
2856 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2857     }
2858 
2859     /*
2860      * Copy the old packet & pullup its IP header into the
2861      * new mbuf so we can modify it.
2862      */
2863     mb_copy = m_copypacket(m, MB_DONTWAIT);
2864     if (mb_copy == NULL)
2865 	return NULL;
2866     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2867     if (mb_copy == NULL)
2868 	return NULL;
2869 
2870     /* take care of the TTL */
2871     ip = mtod(mb_copy, struct ip *);
2872     --ip->ip_ttl;
2873 
2874     /* Compute the MTU after the PIM Register encapsulation */
2875     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2876 
2877     if (ip->ip_len <= mtu) {
2878 	/* Turn the IP header into a valid one */
2879 	ip->ip_len = htons(ip->ip_len);
2880 	ip->ip_off = htons(ip->ip_off);
2881 	ip->ip_sum = 0;
2882 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2883     } else {
2884 	/* Fragment the packet */
2885 	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2886 	    m_freem(mb_copy);
2887 	    return NULL;
2888 	}
2889     }
2890     return mb_copy;
2891 }
2892 
2893 /*
2894  * Send an upcall with the data packet to the user-level process.
2895  */
2896 static int
2897 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2898 	struct mbuf *mb_copy, struct mfc *rt)
2899 {
2900     struct mbuf *mb_first;
2901     int len = ntohs(ip->ip_len);
2902     struct igmpmsg *im;
2903     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2904 
2905     /*
2906      * Add a new mbuf with an upcall header
2907      */
2908     MGETHDR(mb_first, MB_DONTWAIT, MT_HEADER);
2909     if (mb_first == NULL) {
2910 	m_freem(mb_copy);
2911 	return ENOBUFS;
2912     }
2913     mb_first->m_data += max_linkhdr;
2914     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2915     mb_first->m_len = sizeof(struct igmpmsg);
2916     mb_first->m_next = mb_copy;
2917 
2918     /* Send message to routing daemon */
2919     im = mtod(mb_first, struct igmpmsg *);
2920     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2921     im->im_mbz		= 0;
2922     im->im_vif		= vifp - viftable;
2923     im->im_src		= ip->ip_src;
2924     im->im_dst		= ip->ip_dst;
2925 
2926     k_igmpsrc.sin_addr	= ip->ip_src;
2927 
2928     mrtstat.mrts_upcalls++;
2929 
2930     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2931 	if (mrtdebug & DEBUG_PIM)
2932 	    log(LOG_WARNING,
2933 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2934 	++mrtstat.mrts_upq_sockfull;
2935 	return ENOBUFS;
2936     }
2937 
2938     /* Keep statistics */
2939     pimstat.pims_snd_registers_msgs++;
2940     pimstat.pims_snd_registers_bytes += len;
2941 
2942     return 0;
2943 }
2944 
2945 /*
2946  * Encapsulate the data packet in PIM Register message and send it to the RP.
2947  */
2948 static int
2949 pim_register_send_rp(struct ip *ip, struct vif *vifp,
2950 	struct mbuf *mb_copy, struct mfc *rt)
2951 {
2952     struct mbuf *mb_first;
2953     struct ip *ip_outer;
2954     struct pim_encap_pimhdr *pimhdr;
2955     int len = ntohs(ip->ip_len);
2956     vifi_t vifi = rt->mfc_parent;
2957 
2958     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2959 	m_freem(mb_copy);
2960 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2961     }
2962 
2963     /*
2964      * Add a new mbuf with the encapsulating header
2965      */
2966     MGETHDR(mb_first, MB_DONTWAIT, MT_HEADER);
2967     if (mb_first == NULL) {
2968 	m_freem(mb_copy);
2969 	return ENOBUFS;
2970     }
2971     mb_first->m_data += max_linkhdr;
2972     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2973     mb_first->m_next = mb_copy;
2974 
2975     mb_first->m_pkthdr.len = len + mb_first->m_len;
2976 
2977     /*
2978      * Fill in the encapsulating IP and PIM header
2979      */
2980     ip_outer = mtod(mb_first, struct ip *);
2981     *ip_outer = pim_encap_iphdr;
2982     ip_outer->ip_id = ip_newid();
2983     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2984     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2985     ip_outer->ip_dst = rt->mfc_rp;
2986     /*
2987      * Copy the inner header TOS to the outer header, and take care of the
2988      * IP_DF bit.
2989      */
2990     ip_outer->ip_tos = ip->ip_tos;
2991     if (ntohs(ip->ip_off) & IP_DF)
2992 	ip_outer->ip_off |= IP_DF;
2993     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2994 					 + sizeof(pim_encap_iphdr));
2995     *pimhdr = pim_encap_pimhdr;
2996     /* If the iif crosses a border, set the Border-bit */
2997     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2998 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2999 
3000     mb_first->m_data += sizeof(pim_encap_iphdr);
3001     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3002     mb_first->m_data -= sizeof(pim_encap_iphdr);
3003 
3004     if (vifp->v_rate_limit == 0)
3005 	tbf_send_packet(vifp, mb_first);
3006     else
3007 	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3008 
3009     /* Keep statistics */
3010     pimstat.pims_snd_registers_msgs++;
3011     pimstat.pims_snd_registers_bytes += len;
3012 
3013     return 0;
3014 }
3015 
3016 /*
3017  * PIM-SMv2 and PIM-DM messages processing.
3018  * Receives and verifies the PIM control messages, and passes them
3019  * up to the listening socket, using rip_input().
3020  * The only message with special processing is the PIM_REGISTER message
3021  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3022  * is passed to if_simloop().
3023  */
3024 int
3025 pim_input(struct mbuf **mp, int *offp, int proto)
3026 {
3027     struct mbuf *m = *mp;
3028     struct ip *ip = mtod(m, struct ip *);
3029     struct pim *pim;
3030     int minlen;
3031     int datalen = ip->ip_len;
3032     int ip_tos;
3033     int iphlen;
3034 
3035     iphlen = *offp;
3036     *mp = NULL;
3037 
3038     /* Keep statistics */
3039     pimstat.pims_rcv_total_msgs++;
3040     pimstat.pims_rcv_total_bytes += datalen;
3041 
3042     /*
3043      * Validate lengths
3044      */
3045     if (datalen < PIM_MINLEN) {
3046 	pimstat.pims_rcv_tooshort++;
3047 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3048 	    datalen, (u_long)ip->ip_src.s_addr);
3049 	m_freem(m);
3050 	return(IPPROTO_DONE);
3051     }
3052 
3053     /*
3054      * If the packet is at least as big as a REGISTER, go agead
3055      * and grab the PIM REGISTER header size, to avoid another
3056      * possible m_pullup() later.
3057      *
3058      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3059      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3060      */
3061     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3062     /*
3063      * Get the IP and PIM headers in contiguous memory, and
3064      * possibly the PIM REGISTER header.
3065      */
3066     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3067 	(m = m_pullup(m, minlen)) == 0) {
3068 	log(LOG_ERR, "pim_input: m_pullup failure\n");
3069 	return(IPPROTO_DONE);
3070     }
3071     /* m_pullup() may have given us a new mbuf so reset ip. */
3072     ip = mtod(m, struct ip *);
3073     ip_tos = ip->ip_tos;
3074 
3075     /* adjust mbuf to point to the PIM header */
3076     m->m_data += iphlen;
3077     m->m_len  -= iphlen;
3078     pim = mtod(m, struct pim *);
3079 
3080     /*
3081      * Validate checksum. If PIM REGISTER, exclude the data packet.
3082      *
3083      * XXX: some older PIMv2 implementations don't make this distinction,
3084      * so for compatibility reason perform the checksum over part of the
3085      * message, and if error, then over the whole message.
3086      */
3087     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3088 	/* do nothing, checksum okay */
3089     } else if (in_cksum(m, datalen)) {
3090 	pimstat.pims_rcv_badsum++;
3091 	if (mrtdebug & DEBUG_PIM)
3092 	    log(LOG_DEBUG, "pim_input: invalid checksum");
3093 	m_freem(m);
3094 	return(IPPROTO_DONE);
3095     }
3096 
3097     /* PIM version check */
3098     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3099 	pimstat.pims_rcv_badversion++;
3100 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3101 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3102 	m_freem(m);
3103 	return(IPPROTO_DONE);
3104     }
3105 
3106     /* restore mbuf back to the outer IP */
3107     m->m_data -= iphlen;
3108     m->m_len  += iphlen;
3109 
3110     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3111 	/*
3112 	 * Since this is a REGISTER, we'll make a copy of the register
3113 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3114 	 * routing daemon.
3115 	 */
3116 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3117 	struct mbuf *mcp;
3118 	struct ip *encap_ip;
3119 	u_int32_t *reghdr;
3120 
3121 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3122 	    if (mrtdebug & DEBUG_PIM)
3123 		log(LOG_DEBUG,
3124 		    "pim_input: register vif not set: %d\n", reg_vif_num);
3125 	    m_freem(m);
3126 	    return(IPPROTO_DONE);
3127 	}
3128 
3129 	/*
3130 	 * Validate length
3131 	 */
3132 	if (datalen < PIM_REG_MINLEN) {
3133 	    pimstat.pims_rcv_tooshort++;
3134 	    pimstat.pims_rcv_badregisters++;
3135 	    log(LOG_ERR,
3136 		"pim_input: register packet size too small %d from %lx\n",
3137 		datalen, (u_long)ip->ip_src.s_addr);
3138 	    m_freem(m);
3139 	    return(IPPROTO_DONE);
3140 	}
3141 
3142 	reghdr = (u_int32_t *)(pim + 1);
3143 	encap_ip = (struct ip *)(reghdr + 1);
3144 
3145 	if (mrtdebug & DEBUG_PIM) {
3146 	    log(LOG_DEBUG,
3147 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3148 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3149 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3150 		ntohs(encap_ip->ip_len));
3151 	}
3152 
3153 	/* verify the version number of the inner packet */
3154 	if (encap_ip->ip_v != IPVERSION) {
3155 	    pimstat.pims_rcv_badregisters++;
3156 	    if (mrtdebug & DEBUG_PIM) {
3157 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3158 		    "of the inner packet\n", encap_ip->ip_v);
3159 	    }
3160 	    m_freem(m);
3161 	    return(IPPROTO_DONE);
3162 	}
3163 
3164 	/* verify the inner packet is destined to a mcast group */
3165 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3166 	    pimstat.pims_rcv_badregisters++;
3167 	    if (mrtdebug & DEBUG_PIM)
3168 		log(LOG_DEBUG,
3169 		    "pim_input: inner packet of register is not "
3170 		    "multicast %lx\n",
3171 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3172 	    m_freem(m);
3173 	    return(IPPROTO_DONE);
3174 	}
3175 
3176 	/* If a NULL_REGISTER, pass it to the daemon */
3177 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3178 		goto pim_input_to_daemon;
3179 
3180 	/*
3181 	 * Copy the TOS from the outer IP header to the inner IP header.
3182 	 */
3183 	if (encap_ip->ip_tos != ip_tos) {
3184 	    /* Outer TOS -> inner TOS */
3185 	    encap_ip->ip_tos = ip_tos;
3186 	    /* Recompute the inner header checksum. Sigh... */
3187 
3188 	    /* adjust mbuf to point to the inner IP header */
3189 	    m->m_data += (iphlen + PIM_MINLEN);
3190 	    m->m_len  -= (iphlen + PIM_MINLEN);
3191 
3192 	    encap_ip->ip_sum = 0;
3193 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3194 
3195 	    /* restore mbuf to point back to the outer IP header */
3196 	    m->m_data -= (iphlen + PIM_MINLEN);
3197 	    m->m_len  += (iphlen + PIM_MINLEN);
3198 	}
3199 
3200 	/*
3201 	 * Decapsulate the inner IP packet and loopback to forward it
3202 	 * as a normal multicast packet. Also, make a copy of the
3203 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3204 	 * to pass to the daemon later, so it can take the appropriate
3205 	 * actions (e.g., send back PIM_REGISTER_STOP).
3206 	 * XXX: here m->m_data points to the outer IP header.
3207 	 */
3208 	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3209 	if (mcp == NULL) {
3210 	    log(LOG_ERR,
3211 		"pim_input: pim register: could not copy register head\n");
3212 	    m_freem(m);
3213 	    return(IPPROTO_DONE);
3214 	}
3215 
3216 	/* Keep statistics */
3217 	/* XXX: registers_bytes include only the encap. mcast pkt */
3218 	pimstat.pims_rcv_registers_msgs++;
3219 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3220 
3221 	/*
3222 	 * forward the inner ip packet; point m_data at the inner ip.
3223 	 */
3224 	m_adj(m, iphlen + PIM_MINLEN);
3225 
3226 	if (mrtdebug & DEBUG_PIM) {
3227 	    log(LOG_DEBUG,
3228 		"pim_input: forwarding decapsulated register: "
3229 		"src %lx, dst %lx, vif %d\n",
3230 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3231 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3232 		reg_vif_num);
3233 	}
3234 	if_simloop(viftable[reg_vif_num].v_ifp, m, dst.sin_family, 0);
3235 
3236 	/* prepare the register head to send to the mrouting daemon */
3237 	m = mcp;
3238     }
3239 
3240 pim_input_to_daemon:
3241     /*
3242      * Pass the PIM message up to the daemon; if it is a Register message,
3243      * pass the 'head' only up to the daemon. This includes the
3244      * outer IP header, PIM header, PIM-Register header and the
3245      * inner IP header.
3246      * XXX: the outer IP header pkt size of a Register is not adjust to
3247      * reflect the fact that the inner multicast data is truncated.
3248      */
3249     *mp = m;
3250     *offp = iphlen;
3251     rip_input(mp, offp, proto);
3252     return(IPPROTO_DONE);
3253 }
3254 #endif /* PIM */
3255 
3256 static int
3257 ip_mroute_modevent(module_t mod, int type, void *unused)
3258 {
3259     switch (type) {
3260     case MOD_LOAD:
3261 	lwkt_gettoken(&mroute_token);
3262 	/* XXX Protect against multiple loading */
3263 	ip_mcast_src = X_ip_mcast_src;
3264 	ip_mforward = X_ip_mforward;
3265 	ip_mrouter_done = X_ip_mrouter_done;
3266 	ip_mrouter_get = X_ip_mrouter_get;
3267 	ip_mrouter_set = X_ip_mrouter_set;
3268 	ip_rsvp_force_done = X_ip_rsvp_force_done;
3269 	ip_rsvp_vif = X_ip_rsvp_vif;
3270 	ipip_input = X_ipip_input;
3271 	legal_vif_num = X_legal_vif_num;
3272 	mrt_ioctl = X_mrt_ioctl;
3273 	rsvp_input_p = X_rsvp_input;
3274 	lwkt_reltoken(&mroute_token);
3275 	break;
3276 
3277     case MOD_UNLOAD:
3278 	if (ip_mrouter)
3279 	    return EINVAL;
3280 
3281 	lwkt_gettoken(&mroute_token);
3282 	ip_mcast_src = NULL;
3283 	ip_mforward = NULL;
3284 	ip_mrouter_done = NULL;
3285 	ip_mrouter_get = NULL;
3286 	ip_mrouter_set = NULL;
3287 	ip_rsvp_force_done = NULL;
3288 	ip_rsvp_vif = NULL;
3289 	ipip_input = NULL;
3290 	legal_vif_num = NULL;
3291 	mrt_ioctl = NULL;
3292 	rsvp_input_p = NULL;
3293 	lwkt_reltoken(&mroute_token);
3294 	break;
3295     }
3296     return 0;
3297 }
3298 
3299 static moduledata_t ip_mroutemod = {
3300     "ip_mroute",
3301     ip_mroute_modevent,
3302     0
3303 };
3304 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3305