xref: /dragonfly/sys/net/ip_mroute/ip_mroute.c (revision 9ddb8543)
1 /*
2  * IP multicast forwarding procedures
3  *
4  * Written by David Waitzman, BBN Labs, August 1988.
5  * Modified by Steve Deering, Stanford, February 1989.
6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
7  * Modified by Van Jacobson, LBL, January 1993
8  * Modified by Ajit Thyagarajan, PARC, August 1993
9  * Modified by Bill Fenner, PARC, April 1995
10  * Modified by Ahmed Helmy, SGI, June 1996
11  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
12  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
13  * Modified by Hitoshi Asaeda, WIDE, August 2000
14  * Modified by Pavlin Radoslavov, ICSI, October 2002
15  *
16  * MROUTING Revision: 3.5
17  * and PIM-SMv2 and PIM-DM support, advanced API support,
18  * bandwidth metering and signaling
19  *
20  * $FreeBSD: src/sys/netinet/ip_mroute.c,v 1.56.2.10 2003/08/24 21:37:34 hsu Exp $
21  * $DragonFly: src/sys/net/ip_mroute/ip_mroute.c,v 1.23 2008/06/17 20:50:11 aggelos Exp $
22  */
23 
24 #include "opt_mrouting.h"
25 
26 #ifdef PIM
27 #define _PIM_VT 1
28 #endif
29 
30 #include <sys/param.h>
31 #include <sys/kernel.h>
32 #include <sys/malloc.h>
33 #include <sys/mbuf.h>
34 #include <sys/protosw.h>
35 #include <sys/socket.h>
36 #include <sys/socketvar.h>
37 #include <sys/sockio.h>
38 #include <sys/sysctl.h>
39 #include <sys/syslog.h>
40 #include <sys/systm.h>
41 #include <sys/thread2.h>
42 #include <sys/time.h>
43 #include <sys/in_cksum.h>
44 
45 #include <machine/stdarg.h>
46 
47 #include <net/if.h>
48 #include <net/netisr.h>
49 #include <net/route.h>
50 #include <netinet/in.h>
51 #include <netinet/igmp.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include "ip_mroute.h"
56 #include <netinet/ip_var.h>
57 #ifdef PIM
58 #include <netinet/pim.h>
59 #include <netinet/pim_var.h>
60 #endif
61 #ifdef ALTQ
62 #include <netinet/in_pcb.h>
63 #endif
64 #include <netinet/udp.h>
65 
66 /*
67  * Control debugging code for rsvp and multicast routing code.
68  * Can only set them with the debugger.
69  */
70 static	u_int	rsvpdebug;		/* non-zero enables debugging   */
71 
72 static	u_int	mrtdebug;		/* any set of the flags below   */
73 
74 #define		DEBUG_MFC	0x02
75 #define		DEBUG_FORWARD	0x04
76 #define		DEBUG_EXPIRE	0x08
77 #define		DEBUG_XMIT	0x10
78 #define		DEBUG_PIM	0x20
79 
80 #define		VIFI_INVALID	((vifi_t) -1)
81 
82 #define M_HASCL(m)	((m)->m_flags & M_EXT)
83 
84 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
85 
86 static struct mrtstat	mrtstat;
87 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
88     &mrtstat, mrtstat,
89     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
90 
91 static struct mfc	*mfctable[MFCTBLSIZ];
92 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
93     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
94     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
95 
96 static struct vif	viftable[MAXVIFS];
97 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
98     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
99     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
100 
101 static u_char		nexpire[MFCTBLSIZ];
102 
103 static struct callout expire_upcalls_ch;
104 static struct callout tbf_reprocess_q_ch;
105 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
106 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
107 
108 /*
109  * Define the token bucket filter structures
110  * tbftable -> each vif has one of these for storing info
111  */
112 
113 static struct tbf tbftable[MAXVIFS];
114 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
115 
116 /*
117  * 'Interfaces' associated with decapsulator (so we can tell
118  * packets that went through it from ones that get reflected
119  * by a broken gateway).  These interfaces are never linked into
120  * the system ifnet list & no routes point to them.  I.e., packets
121  * can't be sent this way.  They only exist as a placeholder for
122  * multicast source verification.
123  */
124 static struct ifnet multicast_decap_if[MAXVIFS];
125 
126 #define ENCAP_TTL 64
127 #define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
128 
129 /* prototype IP hdr for encapsulated packets */
130 static struct ip multicast_encap_iphdr = {
131 #if BYTE_ORDER == LITTLE_ENDIAN
132 	sizeof(struct ip) >> 2, IPVERSION,
133 #else
134 	IPVERSION, sizeof(struct ip) >> 2,
135 #endif
136 	0,				/* tos */
137 	sizeof(struct ip),		/* total length */
138 	0,				/* id */
139 	0,				/* frag offset */
140 	ENCAP_TTL, ENCAP_PROTO,
141 	0,				/* checksum */
142 };
143 
144 /*
145  * Bandwidth meter variables and constants
146  */
147 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
148 /*
149  * Pending timeouts are stored in a hash table, the key being the
150  * expiration time. Periodically, the entries are analysed and processed.
151  */
152 #define BW_METER_BUCKETS	1024
153 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
154 static struct callout bw_meter_ch;
155 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
156 
157 /*
158  * Pending upcalls are stored in a vector which is flushed when
159  * full, or periodically
160  */
161 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
162 static u_int	bw_upcalls_n; /* # of pending upcalls */
163 static struct callout bw_upcalls_ch;
164 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
165 
166 #ifdef PIM
167 static struct pimstat pimstat;
168 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
169     &pimstat, pimstat,
170     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
171 
172 /*
173  * Note: the PIM Register encapsulation adds the following in front of a
174  * data packet:
175  *
176  * struct pim_encap_hdr {
177  *    struct ip ip;
178  *    struct pim_encap_pimhdr  pim;
179  * }
180  *
181  */
182 
183 struct pim_encap_pimhdr {
184 	struct pim pim;
185 	uint32_t   flags;
186 };
187 
188 static struct ip pim_encap_iphdr = {
189 #if BYTE_ORDER == LITTLE_ENDIAN
190 	sizeof(struct ip) >> 2,
191 	IPVERSION,
192 #else
193 	IPVERSION,
194 	sizeof(struct ip) >> 2,
195 #endif
196 	0,			/* tos */
197 	sizeof(struct ip),	/* total length */
198 	0,			/* id */
199 	0,			/* frag offset */
200 	ENCAP_TTL,
201 	IPPROTO_PIM,
202 	0,			/* checksum */
203 };
204 
205 static struct pim_encap_pimhdr pim_encap_pimhdr = {
206     {
207 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
208 	0,			/* reserved */
209 	0,			/* checksum */
210     },
211     0				/* flags */
212 };
213 
214 static struct ifnet multicast_register_if;
215 static vifi_t reg_vif_num = VIFI_INVALID;
216 #endif /* PIM */
217 
218 /*
219  * Private variables.
220  */
221 static vifi_t	   numvifs;
222 static int have_encap_tunnel;
223 
224 /*
225  * one-back cache used by ipip_input to locate a tunnel's vif
226  * given a datagram's src ip address.
227  */
228 static u_long last_encap_src;
229 static struct vif *last_encap_vif;
230 
231 static u_long	X_ip_mcast_src(int vifi);
232 static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
233 			struct mbuf *m, struct ip_moptions *imo);
234 static int	X_ip_mrouter_done(void);
235 static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
236 static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
237 static int	X_legal_vif_num(int vif);
238 static int	X_mrt_ioctl(int cmd, caddr_t data);
239 
240 static int get_sg_cnt(struct sioc_sg_req *);
241 static int get_vif_cnt(struct sioc_vif_req *);
242 static int ip_mrouter_init(struct socket *, int);
243 static int add_vif(struct vifctl *);
244 static int del_vif(vifi_t);
245 static int add_mfc(struct mfcctl2 *);
246 static int del_mfc(struct mfcctl2 *);
247 static int set_api_config(uint32_t *); /* chose API capabilities */
248 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
249 static int set_assert(int);
250 static void expire_upcalls(void *);
251 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
252 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
253 static void encap_send(struct ip *, struct vif *, struct mbuf *);
254 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
255 static void tbf_queue(struct vif *, struct mbuf *);
256 static void tbf_process_q(struct vif *);
257 static void tbf_reprocess_q(void *);
258 static int tbf_dq_sel(struct vif *, struct ip *);
259 static void tbf_send_packet(struct vif *, struct mbuf *);
260 static void tbf_update_tokens(struct vif *);
261 static int priority(struct vif *, struct ip *);
262 
263 /*
264  * Bandwidth monitoring
265  */
266 static void free_bw_list(struct bw_meter *list);
267 static int add_bw_upcall(struct bw_upcall *);
268 static int del_bw_upcall(struct bw_upcall *);
269 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
270 		struct timeval *nowp);
271 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
272 static void bw_upcalls_send(void);
273 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
274 static void unschedule_bw_meter(struct bw_meter *x);
275 static void bw_meter_process(void);
276 static void expire_bw_upcalls_send(void *);
277 static void expire_bw_meter_process(void *);
278 
279 #ifdef PIM
280 static int pim_register_send(struct ip *, struct vif *,
281 		struct mbuf *, struct mfc *);
282 static int pim_register_send_rp(struct ip *, struct vif *,
283 		struct mbuf *, struct mfc *);
284 static int pim_register_send_upcall(struct ip *, struct vif *,
285 		struct mbuf *, struct mfc *);
286 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
287 #endif
288 
289 /*
290  * whether or not special PIM assert processing is enabled.
291  */
292 static int pim_assert;
293 /*
294  * Rate limit for assert notification messages, in usec
295  */
296 #define ASSERT_MSG_TIME		3000000
297 
298 /*
299  * Kernel multicast routing API capabilities and setup.
300  * If more API capabilities are added to the kernel, they should be
301  * recorded in `mrt_api_support'.
302  */
303 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
304 					 MRT_MFC_FLAGS_BORDER_VIF |
305 					 MRT_MFC_RP |
306 					 MRT_MFC_BW_UPCALL);
307 static uint32_t mrt_api_config = 0;
308 
309 /*
310  * Hash function for a source, group entry
311  */
312 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
313 			((g) >> 20) ^ ((g) >> 10) ^ (g))
314 
315 /*
316  * Find a route for a given origin IP address and Multicast group address
317  * Type of service parameter to be added in the future!!!
318  * Statistics are updated by the caller if needed
319  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
320  */
321 static struct mfc *
322 mfc_find(in_addr_t o, in_addr_t g)
323 {
324     struct mfc *rt;
325 
326     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
327 	if ((rt->mfc_origin.s_addr == o) &&
328 		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
329 	    break;
330     return rt;
331 }
332 
333 /*
334  * Macros to compute elapsed time efficiently
335  * Borrowed from Van Jacobson's scheduling code
336  */
337 #define TV_DELTA(a, b, delta) {					\
338 	int xxs;						\
339 	delta = (a).tv_usec - (b).tv_usec;			\
340 	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
341 		switch (xxs) {					\
342 		case 2:						\
343 			delta += 1000000;			\
344 			/* FALLTHROUGH */			\
345 		case 1:						\
346 			delta += 1000000;			\
347 			break;					\
348 		default:					\
349 			delta += (1000000 * xxs);		\
350 		}						\
351 	}							\
352 }
353 
354 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
355 	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
356 
357 /*
358  * Handle MRT setsockopt commands to modify the multicast routing tables.
359  */
360 static int
361 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
362 {
363     int	error, optval;
364     vifi_t	vifi;
365     struct	vifctl vifc;
366     struct	mfcctl2 mfc;
367     struct	bw_upcall bw_upcall;
368     uint32_t	i;
369 
370     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
371 	return EPERM;
372 
373     error = 0;
374     switch (sopt->sopt_name) {
375     case MRT_INIT:
376 	error = soopt_to_kbuf(sopt, &optval, sizeof optval, sizeof optval);
377 	if (error)
378 	    break;
379 	error = ip_mrouter_init(so, optval);
380 	break;
381 
382     case MRT_DONE:
383 	error = ip_mrouter_done();
384 	break;
385 
386     case MRT_ADD_VIF:
387 	error = soopt_to_kbuf(sopt, &vifc, sizeof vifc, sizeof vifc);
388 	if (error)
389 	    break;
390 	error = add_vif(&vifc);
391 	break;
392 
393     case MRT_DEL_VIF:
394 	error = soopt_to_kbuf(sopt, &vifi, sizeof vifi, sizeof vifi);
395 	if (error)
396 	    break;
397 	error = del_vif(vifi);
398 	break;
399 
400     case MRT_ADD_MFC:
401     case MRT_DEL_MFC:
402 	/*
403 	 * select data size depending on API version.
404 	 */
405 	if (sopt->sopt_name == MRT_ADD_MFC &&
406 	        mrt_api_config & MRT_API_FLAGS_ALL) {
407 	    error = soopt_to_kbuf(sopt, &mfc, sizeof(struct mfcctl2),
408 				sizeof(struct mfcctl2));
409 	} else {
410 	    error = soopt_to_kbuf(sopt, &mfc, sizeof(struct mfcctl),
411 				sizeof(struct mfcctl));
412 	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
413 			sizeof(mfc) - sizeof(struct mfcctl));
414 	}
415 	if (error)
416 	    break;
417 	if (sopt->sopt_name == MRT_ADD_MFC)
418 	    error = add_mfc(&mfc);
419 	else
420 	    error = del_mfc(&mfc);
421 	break;
422 
423     case MRT_ASSERT:
424 	error = soopt_to_kbuf(sopt, &optval, sizeof optval, sizeof optval);
425 	if (error)
426 	    break;
427 	set_assert(optval);
428 	break;
429 
430     case MRT_API_CONFIG:
431 	error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
432 	if (!error)
433 	    error = set_api_config(&i);
434 	if (!error)
435 	    soopt_from_kbuf(sopt, &i, sizeof i);
436 	break;
437 
438     case MRT_ADD_BW_UPCALL:
439     case MRT_DEL_BW_UPCALL:
440 	error = soopt_to_kbuf(sopt, &bw_upcall, sizeof bw_upcall, sizeof bw_upcall);
441 	if (error)
442 	    break;
443 	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
444 	    error = add_bw_upcall(&bw_upcall);
445 	else
446 	    error = del_bw_upcall(&bw_upcall);
447 	break;
448 
449     default:
450 	error = EOPNOTSUPP;
451 	break;
452     }
453     return error;
454 }
455 
456 /*
457  * Handle MRT getsockopt commands
458  */
459 static int
460 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
461 {
462     int error;
463     static int version = 0x0305; /* !!! why is this here? XXX */
464 
465     error = 0;
466     switch (sopt->sopt_name) {
467     case MRT_VERSION:
468 	soopt_from_kbuf(sopt, &version, sizeof version);
469 	break;
470 
471     case MRT_ASSERT:
472 	soopt_from_kbuf(sopt, &pim_assert, sizeof pim_assert);
473 	break;
474 
475     case MRT_API_SUPPORT:
476 	soopt_from_kbuf(sopt, &mrt_api_support, sizeof mrt_api_support);
477 	break;
478 
479     case MRT_API_CONFIG:
480 	soopt_from_kbuf(sopt, &mrt_api_config, sizeof mrt_api_config);
481 	break;
482 
483     default:
484 	error = EOPNOTSUPP;
485 	break;
486     }
487     return error;
488 }
489 
490 /*
491  * Handle ioctl commands to obtain information from the cache
492  */
493 static int
494 X_mrt_ioctl(int cmd, caddr_t data)
495 {
496     int error = 0;
497 
498     switch (cmd) {
499     case SIOCGETVIFCNT:
500 	error = get_vif_cnt((struct sioc_vif_req *)data);
501 	break;
502 
503     case SIOCGETSGCNT:
504 	error = get_sg_cnt((struct sioc_sg_req *)data);
505 	break;
506 
507     default:
508 	error = EINVAL;
509 	break;
510     }
511     return error;
512 }
513 
514 /*
515  * returns the packet, byte, rpf-failure count for the source group provided
516  */
517 static int
518 get_sg_cnt(struct sioc_sg_req *req)
519 {
520     struct mfc *rt;
521 
522     crit_enter();
523     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
524     crit_exit();
525     if (rt == NULL) {
526 	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
527 	return EADDRNOTAVAIL;
528     }
529     req->pktcnt = rt->mfc_pkt_cnt;
530     req->bytecnt = rt->mfc_byte_cnt;
531     req->wrong_if = rt->mfc_wrong_if;
532     return 0;
533 }
534 
535 /*
536  * returns the input and output packet and byte counts on the vif provided
537  */
538 static int
539 get_vif_cnt(struct sioc_vif_req *req)
540 {
541     vifi_t vifi = req->vifi;
542 
543     if (vifi >= numvifs)
544 	return EINVAL;
545 
546     req->icount = viftable[vifi].v_pkt_in;
547     req->ocount = viftable[vifi].v_pkt_out;
548     req->ibytes = viftable[vifi].v_bytes_in;
549     req->obytes = viftable[vifi].v_bytes_out;
550 
551     return 0;
552 }
553 
554 /*
555  * Enable multicast routing
556  */
557 static int
558 ip_mrouter_init(struct socket *so, int version)
559 {
560     if (mrtdebug)
561 	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
562 	    so->so_type, so->so_proto->pr_protocol);
563 
564     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
565 	return EOPNOTSUPP;
566 
567     if (version != 1)
568 	return ENOPROTOOPT;
569 
570     if (ip_mrouter != NULL)
571 	return EADDRINUSE;
572 
573     ip_mrouter = so;
574 
575     bzero((caddr_t)mfctable, sizeof(mfctable));
576     bzero((caddr_t)nexpire, sizeof(nexpire));
577 
578     pim_assert = 0;
579     bw_upcalls_n = 0;
580     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
581 
582     callout_init(&expire_upcalls_ch);
583     callout_init(&bw_upcalls_ch);
584     callout_init(&bw_meter_ch);
585     callout_init(&tbf_reprocess_q_ch);
586 
587     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
588     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
589 		  expire_bw_upcalls_send, NULL);
590     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
591 
592     mrt_api_config = 0;
593 
594     if (mrtdebug)
595 	log(LOG_DEBUG, "ip_mrouter_init\n");
596 
597     return 0;
598 }
599 
600 /*
601  * Disable multicast routing
602  */
603 static int
604 X_ip_mrouter_done(void)
605 {
606     vifi_t vifi;
607     int i;
608     struct ifnet *ifp;
609     struct ifreq ifr;
610     struct mfc *rt;
611     struct rtdetq *rte;
612 
613     crit_enter();
614 
615     /*
616      * For each phyint in use, disable promiscuous reception of all IP
617      * multicasts.
618      */
619     for (vifi = 0; vifi < numvifs; vifi++) {
620 	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
621 		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
622 	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
623 
624 	    so->sin_len = sizeof(struct sockaddr_in);
625 	    so->sin_family = AF_INET;
626 	    so->sin_addr.s_addr = INADDR_ANY;
627 	    ifp = viftable[vifi].v_ifp;
628 	    if_allmulti(ifp, 0);
629 	}
630     }
631     bzero((caddr_t)tbftable, sizeof(tbftable));
632     bzero((caddr_t)viftable, sizeof(viftable));
633     numvifs = 0;
634     pim_assert = 0;
635 
636     callout_stop(&expire_upcalls_ch);
637 
638     mrt_api_config = 0;
639     bw_upcalls_n = 0;
640     callout_stop(&bw_upcalls_ch);
641     callout_stop(&bw_meter_ch);
642     callout_stop(&tbf_reprocess_q_ch);
643 
644     /*
645      * Free all multicast forwarding cache entries.
646      */
647     for (i = 0; i < MFCTBLSIZ; i++) {
648 	for (rt = mfctable[i]; rt != NULL; ) {
649 	    struct mfc *nr = rt->mfc_next;
650 
651 	    for (rte = rt->mfc_stall; rte != NULL; ) {
652 		struct rtdetq *n = rte->next;
653 
654 		m_freem(rte->m);
655 		kfree(rte, M_MRTABLE);
656 		rte = n;
657 	    }
658 	    free_bw_list(rt->mfc_bw_meter);
659 	    kfree(rt, M_MRTABLE);
660 	    rt = nr;
661 	}
662     }
663 
664     bzero((caddr_t)mfctable, sizeof(mfctable));
665 
666     bzero(bw_meter_timers, sizeof(bw_meter_timers));
667 
668     /*
669      * Reset de-encapsulation cache
670      */
671     last_encap_src = INADDR_ANY;
672     last_encap_vif = NULL;
673 #ifdef PIM
674     reg_vif_num = VIFI_INVALID;
675 #endif
676     have_encap_tunnel = 0;
677 
678     ip_mrouter = NULL;
679 
680     crit_exit();
681 
682     if (mrtdebug)
683 	log(LOG_DEBUG, "ip_mrouter_done\n");
684 
685     return 0;
686 }
687 
688 /*
689  * Set PIM assert processing global
690  */
691 static int
692 set_assert(int i)
693 {
694     if ((i != 1) && (i != 0))
695 	return EINVAL;
696 
697     pim_assert = i;
698 
699     return 0;
700 }
701 
702 /*
703  * Configure API capabilities
704  */
705 int
706 set_api_config(uint32_t *apival)
707 {
708     int i;
709 
710     /*
711      * We can set the API capabilities only if it is the first operation
712      * after MRT_INIT. I.e.:
713      *  - there are no vifs installed
714      *  - pim_assert is not enabled
715      *  - the MFC table is empty
716      */
717     if (numvifs > 0) {
718 	*apival = 0;
719 	return EPERM;
720     }
721     if (pim_assert) {
722 	*apival = 0;
723 	return EPERM;
724     }
725     for (i = 0; i < MFCTBLSIZ; i++) {
726 	if (mfctable[i] != NULL) {
727 	    *apival = 0;
728 	    return EPERM;
729 	}
730     }
731 
732     mrt_api_config = *apival & mrt_api_support;
733     *apival = mrt_api_config;
734 
735     return 0;
736 }
737 
738 /*
739  * Add a vif to the vif table
740  */
741 static int
742 add_vif(struct vifctl *vifcp)
743 {
744     struct vif *vifp = viftable + vifcp->vifc_vifi;
745     struct sockaddr_in sin = {sizeof sin, AF_INET};
746     struct ifaddr *ifa;
747     struct ifnet *ifp;
748     int error, i;
749     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
750 
751     if (vifcp->vifc_vifi >= MAXVIFS)
752 	return EINVAL;
753     if (vifp->v_lcl_addr.s_addr != INADDR_ANY)
754 	return EADDRINUSE;
755     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY)
756 	return EADDRNOTAVAIL;
757 
758     /* Find the interface with an address in AF_INET family */
759 #ifdef PIM
760     if (vifcp->vifc_flags & VIFF_REGISTER) {
761 	/*
762 	 * XXX: Because VIFF_REGISTER does not really need a valid
763 	 * local interface (e.g. it could be 127.0.0.2), we don't
764 	 * check its address.
765 	 */
766 	ifp = NULL;
767     } else
768 #endif
769     {
770 	sin.sin_addr = vifcp->vifc_lcl_addr;
771 	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
772 	if (ifa == NULL)
773 	    return EADDRNOTAVAIL;
774 	ifp = ifa->ifa_ifp;
775     }
776 
777     if (vifcp->vifc_flags & VIFF_TUNNEL) {
778 	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
779 	    /*
780 	     * An encapsulating tunnel is wanted.  Tell ipip_input() to
781 	     * start paying attention to encapsulated packets.
782 	     */
783 	    if (have_encap_tunnel == 0) {
784 		have_encap_tunnel = 1;
785 		for (i = 0; i < MAXVIFS; i++) {
786 		    if_initname(&multicast_decap_if[i], "mdecap", i);
787 		}
788 	    }
789 	    /*
790 	     * Set interface to fake encapsulator interface
791 	     */
792 	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
793 	    /*
794 	     * Prepare cached route entry
795 	     */
796 	    bzero(&vifp->v_route, sizeof(vifp->v_route));
797 	} else {
798 	    log(LOG_ERR, "source routed tunnels not supported\n");
799 	    return EOPNOTSUPP;
800 	}
801 #ifdef PIM
802     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
803 	ifp = &multicast_register_if;
804 	if (mrtdebug)
805 	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
806 		    (void *)&multicast_register_if);
807 	if (reg_vif_num == VIFI_INVALID) {
808 	    if_initname(&multicast_register_if, "register_vif", 0);
809 	    multicast_register_if.if_flags = IFF_LOOPBACK;
810 	    bzero(&vifp->v_route, sizeof(vifp->v_route));
811 	    reg_vif_num = vifcp->vifc_vifi;
812 	}
813 #endif
814     } else {		/* Make sure the interface supports multicast */
815 	if ((ifp->if_flags & IFF_MULTICAST) == 0)
816 	    return EOPNOTSUPP;
817 
818 	/* Enable promiscuous reception of all IP multicasts from the if */
819 	crit_enter();
820 	error = if_allmulti(ifp, 1);
821 	crit_exit();
822 	if (error)
823 	    return error;
824     }
825 
826     crit_enter();
827     /* define parameters for the tbf structure */
828     vifp->v_tbf = v_tbf;
829     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
830     vifp->v_tbf->tbf_n_tok = 0;
831     vifp->v_tbf->tbf_q_len = 0;
832     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
833     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
834 
835     vifp->v_flags     = vifcp->vifc_flags;
836     vifp->v_threshold = vifcp->vifc_threshold;
837     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
838     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
839     vifp->v_ifp       = ifp;
840     /* scaling up here allows division by 1024 in critical code */
841     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
842     vifp->v_rsvp_on   = 0;
843     vifp->v_rsvpd     = NULL;
844     /* initialize per vif pkt counters */
845     vifp->v_pkt_in    = 0;
846     vifp->v_pkt_out   = 0;
847     vifp->v_bytes_in  = 0;
848     vifp->v_bytes_out = 0;
849     crit_exit();
850 
851     /* Adjust numvifs up if the vifi is higher than numvifs */
852     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
853 
854     if (mrtdebug)
855 	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
856 	    vifcp->vifc_vifi,
857 	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
858 	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
859 	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
860 	    vifcp->vifc_threshold,
861 	    vifcp->vifc_rate_limit);
862 
863     return 0;
864 }
865 
866 /*
867  * Delete a vif from the vif table
868  */
869 static int
870 del_vif(vifi_t vifi)
871 {
872     struct vif *vifp;
873 
874     if (vifi >= numvifs)
875 	return EINVAL;
876     vifp = &viftable[vifi];
877     if (vifp->v_lcl_addr.s_addr == INADDR_ANY)
878 	return EADDRNOTAVAIL;
879 
880     crit_enter();
881 
882     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
883 	if_allmulti(vifp->v_ifp, 0);
884 
885     if (vifp == last_encap_vif) {
886 	last_encap_vif = NULL;
887 	last_encap_src = INADDR_ANY;
888     }
889 
890     /*
891      * Free packets queued at the interface
892      */
893     while (vifp->v_tbf->tbf_q) {
894 	struct mbuf *m = vifp->v_tbf->tbf_q;
895 
896 	vifp->v_tbf->tbf_q = m->m_nextpkt;
897 	m_freem(m);
898     }
899 
900 #ifdef PIM
901     if (vifp->v_flags & VIFF_REGISTER)
902 	reg_vif_num = VIFI_INVALID;
903 #endif
904 
905     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
906     bzero((caddr_t)vifp, sizeof (*vifp));
907 
908     if (mrtdebug)
909 	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
910 
911     /* Adjust numvifs down */
912     for (vifi = numvifs; vifi > 0; vifi--)
913 	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
914 	    break;
915     numvifs = vifi;
916 
917     crit_exit();
918 
919     return 0;
920 }
921 
922 /*
923  * update an mfc entry without resetting counters and S,G addresses.
924  */
925 static void
926 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
927 {
928     int i;
929 
930     rt->mfc_parent = mfccp->mfcc_parent;
931     for (i = 0; i < numvifs; i++) {
932 	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
933 	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
934 	    MRT_MFC_FLAGS_ALL;
935     }
936     /* set the RP address */
937     if (mrt_api_config & MRT_MFC_RP)
938 	rt->mfc_rp = mfccp->mfcc_rp;
939     else
940 	rt->mfc_rp.s_addr = INADDR_ANY;
941 }
942 
943 /*
944  * fully initialize an mfc entry from the parameter.
945  */
946 static void
947 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
948 {
949     rt->mfc_origin     = mfccp->mfcc_origin;
950     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
951 
952     update_mfc_params(rt, mfccp);
953 
954     /* initialize pkt counters per src-grp */
955     rt->mfc_pkt_cnt    = 0;
956     rt->mfc_byte_cnt   = 0;
957     rt->mfc_wrong_if   = 0;
958     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
959 }
960 
961 
962 /*
963  * Add an mfc entry
964  */
965 static int
966 add_mfc(struct mfcctl2 *mfccp)
967 {
968     struct mfc *rt;
969     u_long hash;
970     struct rtdetq *rte;
971     u_short nstl;
972 
973     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
974 
975     /* If an entry already exists, just update the fields */
976     if (rt) {
977 	if (mrtdebug & DEBUG_MFC)
978 	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
979 		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
980 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
981 		mfccp->mfcc_parent);
982 
983 	crit_enter();
984 	update_mfc_params(rt, mfccp);
985 	crit_exit();
986 	return 0;
987     }
988 
989     /*
990      * Find the entry for which the upcall was made and update
991      */
992     crit_enter();
993     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
994     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
995 
996 	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
997 		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
998 		(rt->mfc_stall != NULL)) {
999 
1000 	    if (nstl++)
1001 		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1002 		    "multiple kernel entries",
1003 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1004 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1005 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1006 
1007 	    if (mrtdebug & DEBUG_MFC)
1008 		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1009 		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1010 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1011 		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1012 
1013 	    init_mfc_params(rt, mfccp);
1014 
1015 	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1016 	    nexpire[hash]--;
1017 
1018 	    /* free packets Qed at the end of this entry */
1019 	    for (rte = rt->mfc_stall; rte != NULL; ) {
1020 		struct rtdetq *n = rte->next;
1021 
1022 		ip_mdq(rte->m, rte->ifp, rt, -1);
1023 		m_freem(rte->m);
1024 		kfree(rte, M_MRTABLE);
1025 		rte = n;
1026 	    }
1027 	    rt->mfc_stall = NULL;
1028 	}
1029     }
1030 
1031     /*
1032      * It is possible that an entry is being inserted without an upcall
1033      */
1034     if (nstl == 0) {
1035 	if (mrtdebug & DEBUG_MFC)
1036 	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1037 		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1038 		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1039 		mfccp->mfcc_parent);
1040 
1041 	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1042 	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1043 		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1044 		init_mfc_params(rt, mfccp);
1045 		if (rt->mfc_expire)
1046 		    nexpire[hash]--;
1047 		rt->mfc_expire = 0;
1048 		break; /* XXX */
1049 	    }
1050 	}
1051 	if (rt == NULL) {		/* no upcall, so make a new entry */
1052 	    rt = kmalloc(sizeof(*rt), M_MRTABLE, M_INTWAIT | M_NULLOK);
1053 	    if (rt == NULL) {
1054 		    crit_exit();
1055 		    return ENOBUFS;
1056 	    }
1057 
1058 	    init_mfc_params(rt, mfccp);
1059 	    rt->mfc_expire     = 0;
1060 	    rt->mfc_stall      = NULL;
1061 
1062 	    rt->mfc_bw_meter = NULL;
1063 	    /* insert new entry at head of hash chain */
1064 	    rt->mfc_next = mfctable[hash];
1065 	    mfctable[hash] = rt;
1066 	}
1067     }
1068     crit_exit();
1069     return 0;
1070 }
1071 
1072 /*
1073  * Delete an mfc entry
1074  */
1075 static int
1076 del_mfc(struct mfcctl2 *mfccp)
1077 {
1078     struct in_addr 	origin;
1079     struct in_addr 	mcastgrp;
1080     struct mfc 		*rt;
1081     struct mfc	 	**nptr;
1082     u_long 		hash;
1083     struct bw_meter	*list;
1084 
1085     origin = mfccp->mfcc_origin;
1086     mcastgrp = mfccp->mfcc_mcastgrp;
1087 
1088     if (mrtdebug & DEBUG_MFC)
1089 	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1090 	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1091 
1092     crit_enter();
1093 
1094     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1095     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1096 	if (origin.s_addr == rt->mfc_origin.s_addr &&
1097 		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1098 		rt->mfc_stall == NULL)
1099 	    break;
1100     if (rt == NULL) {
1101 	crit_exit();
1102 	return EADDRNOTAVAIL;
1103     }
1104 
1105     *nptr = rt->mfc_next;
1106 
1107     /*
1108      * free the bw_meter entries
1109      */
1110     list = rt->mfc_bw_meter;
1111     rt->mfc_bw_meter = NULL;
1112 
1113     kfree(rt, M_MRTABLE);
1114 
1115     crit_exit();
1116 
1117     free_bw_list(list);
1118 
1119     return 0;
1120 }
1121 
1122 /*
1123  * Send a message to mrouted on the multicast routing socket
1124  */
1125 static int
1126 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1127 {
1128     if (s) {
1129 	if (ssb_appendaddr(&s->so_rcv, (struct sockaddr *)src, mm, NULL) != 0) {
1130 	    sorwakeup(s);
1131 	    return 0;
1132 	}
1133     }
1134     m_freem(mm);
1135     return -1;
1136 }
1137 
1138 /*
1139  * IP multicast forwarding function. This function assumes that the packet
1140  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1141  * pointed to by "ifp", and the packet is to be relayed to other networks
1142  * that have members of the packet's destination IP multicast group.
1143  *
1144  * The packet is returned unscathed to the caller, unless it is
1145  * erroneous, in which case a non-zero return value tells the caller to
1146  * discard it.
1147  */
1148 
1149 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1150 
1151 static int
1152 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1153     struct ip_moptions *imo)
1154 {
1155     struct mfc *rt;
1156     vifi_t vifi;
1157 
1158     if (mrtdebug & DEBUG_FORWARD)
1159 	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1160 	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1161 	    (void *)ifp);
1162 
1163     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1164 		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1165 	/*
1166 	 * Packet arrived via a physical interface or
1167 	 * an encapsulated tunnel or a register_vif.
1168 	 */
1169     } else {
1170 	/*
1171 	 * Packet arrived through a source-route tunnel.
1172 	 * Source-route tunnels are no longer supported.
1173 	 */
1174 	static int last_log;
1175 	if (last_log != time_second) {
1176 	    last_log = time_second;
1177 	    log(LOG_ERR,
1178 		"ip_mforward: received source-routed packet from %lx\n",
1179 		(u_long)ntohl(ip->ip_src.s_addr));
1180 	}
1181 	return 1;
1182     }
1183 
1184     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1185 	if (ip->ip_ttl < 255)
1186 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1187 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1188 	    struct vif *vifp = viftable + vifi;
1189 
1190 	    kprintf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1191 		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1192 		vifi,
1193 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1194 		vifp->v_ifp->if_xname);
1195 	}
1196 	return ip_mdq(m, ifp, NULL, vifi);
1197     }
1198     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1199 	kprintf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1200 	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1201 	if (!imo)
1202 	    kprintf("In fact, no options were specified at all\n");
1203     }
1204 
1205     /*
1206      * Don't forward a packet with time-to-live of zero or one,
1207      * or a packet destined to a local-only group.
1208      */
1209     if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1210 	return 0;
1211 
1212     /*
1213      * Determine forwarding vifs from the forwarding cache table
1214      */
1215     crit_enter();
1216     ++mrtstat.mrts_mfc_lookups;
1217     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1218 
1219     /* Entry exists, so forward if necessary */
1220     if (rt != NULL) {
1221 	crit_exit();
1222 	return ip_mdq(m, ifp, rt, -1);
1223     } else {
1224 	/*
1225 	 * If we don't have a route for packet's origin,
1226 	 * Make a copy of the packet & send message to routing daemon
1227 	 */
1228 
1229 	struct mbuf *mb0;
1230 	struct rtdetq *rte;
1231 	u_long hash;
1232 	int hlen = ip->ip_hl << 2;
1233 
1234 	++mrtstat.mrts_mfc_misses;
1235 
1236 	mrtstat.mrts_no_route++;
1237 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1238 	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1239 		(u_long)ntohl(ip->ip_src.s_addr),
1240 		(u_long)ntohl(ip->ip_dst.s_addr));
1241 
1242 	/*
1243 	 * Allocate mbufs early so that we don't do extra work if we are
1244 	 * just going to fail anyway.  Make sure to pullup the header so
1245 	 * that other people can't step on it.
1246 	 */
1247 	rte = kmalloc((sizeof *rte), M_MRTABLE, M_INTWAIT | M_NULLOK);
1248 	if (rte == NULL) {
1249 		crit_exit();
1250 		return ENOBUFS;
1251 	}
1252 
1253 	mb0 = m_copypacket(m, MB_DONTWAIT);
1254 	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1255 	    mb0 = m_pullup(mb0, hlen);
1256 	if (mb0 == NULL) {
1257 	    kfree(rte, M_MRTABLE);
1258 	    crit_exit();
1259 	    return ENOBUFS;
1260 	}
1261 
1262 	/* is there an upcall waiting for this flow ? */
1263 	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1264 	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1265 	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1266 		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1267 		    (rt->mfc_stall != NULL))
1268 		break;
1269 	}
1270 
1271 	if (rt == NULL) {
1272 	    int i;
1273 	    struct igmpmsg *im;
1274 	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1275 	    struct mbuf *mm;
1276 
1277 	    /*
1278 	     * Locate the vifi for the incoming interface for this packet.
1279 	     * If none found, drop packet.
1280 	     */
1281 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1282 		;
1283 	    if (vifi >= numvifs)	/* vif not found, drop packet */
1284 		goto non_fatal;
1285 
1286 	    /* no upcall, so make a new entry */
1287 	    rt = kmalloc(sizeof(*rt), M_MRTABLE, M_INTWAIT | M_NULLOK);
1288 	    if (rt == NULL)
1289 		    goto fail;
1290 
1291 	    /* Make a copy of the header to send to the user level process */
1292 	    mm = m_copy(mb0, 0, hlen);
1293 	    if (mm == NULL)
1294 		goto fail1;
1295 
1296 	    /*
1297 	     * Send message to routing daemon to install
1298 	     * a route into the kernel table
1299 	     */
1300 
1301 	    im = mtod(mm, struct igmpmsg *);
1302 	    im->im_msgtype = IGMPMSG_NOCACHE;
1303 	    im->im_mbz = 0;
1304 	    im->im_vif = vifi;
1305 
1306 	    mrtstat.mrts_upcalls++;
1307 
1308 	    k_igmpsrc.sin_addr = ip->ip_src;
1309 	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1310 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1311 		++mrtstat.mrts_upq_sockfull;
1312 fail1:
1313 		kfree(rt, M_MRTABLE);
1314 fail:
1315 		kfree(rte, M_MRTABLE);
1316 		m_freem(mb0);
1317 		crit_exit();
1318 		return ENOBUFS;
1319 	    }
1320 
1321 	    /* insert new entry at head of hash chain */
1322 	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1323 	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1324 	    rt->mfc_expire	      = UPCALL_EXPIRE;
1325 	    nexpire[hash]++;
1326 	    for (i = 0; i < numvifs; i++) {
1327 		rt->mfc_ttls[i] = 0;
1328 		rt->mfc_flags[i] = 0;
1329 	    }
1330 	    rt->mfc_parent = -1;
1331 
1332 	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1333 
1334 	    rt->mfc_bw_meter = NULL;
1335 
1336 	    /* link into table */
1337 	    rt->mfc_next   = mfctable[hash];
1338 	    mfctable[hash] = rt;
1339 	    rt->mfc_stall = rte;
1340 
1341 	} else {
1342 	    /* determine if q has overflowed */
1343 	    int npkts = 0;
1344 	    struct rtdetq **p;
1345 
1346 	    /*
1347 	     * XXX ouch! we need to append to the list, but we
1348 	     * only have a pointer to the front, so we have to
1349 	     * scan the entire list every time.
1350 	     */
1351 	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1352 		npkts++;
1353 
1354 	    if (npkts > MAX_UPQ) {
1355 		mrtstat.mrts_upq_ovflw++;
1356 non_fatal:
1357 		kfree(rte, M_MRTABLE);
1358 		m_freem(mb0);
1359 		crit_exit();
1360 		return 0;
1361 	    }
1362 
1363 	    /* Add this entry to the end of the queue */
1364 	    *p = rte;
1365 	}
1366 
1367 	rte->m 			= mb0;
1368 	rte->ifp 		= ifp;
1369 	rte->next		= NULL;
1370 
1371 	crit_exit();
1372 	return 0;
1373     }
1374 }
1375 
1376 /*
1377  * Clean up the cache entry if upcall is not serviced
1378  */
1379 static void
1380 expire_upcalls(void *unused)
1381 {
1382     struct rtdetq *rte;
1383     struct mfc *mfc, **nptr;
1384     int i;
1385 
1386     crit_enter();
1387     for (i = 0; i < MFCTBLSIZ; i++) {
1388 	if (nexpire[i] == 0)
1389 	    continue;
1390 	nptr = &mfctable[i];
1391 	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1392 	    /*
1393 	     * Skip real cache entries
1394 	     * Make sure it wasn't marked to not expire (shouldn't happen)
1395 	     * If it expires now
1396 	     */
1397 	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1398 		    --mfc->mfc_expire == 0) {
1399 		if (mrtdebug & DEBUG_EXPIRE)
1400 		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1401 			(u_long)ntohl(mfc->mfc_origin.s_addr),
1402 			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1403 		/*
1404 		 * drop all the packets
1405 		 * free the mbuf with the pkt, if, timing info
1406 		 */
1407 		for (rte = mfc->mfc_stall; rte; ) {
1408 		    struct rtdetq *n = rte->next;
1409 
1410 		    m_freem(rte->m);
1411 		    kfree(rte, M_MRTABLE);
1412 		    rte = n;
1413 		}
1414 		++mrtstat.mrts_cache_cleanups;
1415 		nexpire[i]--;
1416 
1417 		/*
1418 		 * free the bw_meter entries
1419 		 */
1420 		while (mfc->mfc_bw_meter != NULL) {
1421 		    struct bw_meter *x = mfc->mfc_bw_meter;
1422 
1423 		    mfc->mfc_bw_meter = x->bm_mfc_next;
1424 		    kfree(x, M_BWMETER);
1425 		}
1426 
1427 		*nptr = mfc->mfc_next;
1428 		kfree(mfc, M_MRTABLE);
1429 	    } else {
1430 		nptr = &mfc->mfc_next;
1431 	    }
1432 	}
1433     }
1434     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1435     crit_exit();
1436 }
1437 
1438 /*
1439  * Packet forwarding routine once entry in the cache is made
1440  */
1441 static int
1442 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1443 {
1444     struct ip  *ip = mtod(m, struct ip *);
1445     vifi_t vifi;
1446     int plen = ip->ip_len;
1447 
1448 /*
1449  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1450  * input, they shouldn't get counted on output, so statistics keeping is
1451  * separate.
1452  */
1453 #define MC_SEND(ip,vifp,m) {				\
1454 		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1455 		    encap_send((ip), (vifp), (m));	\
1456 		else					\
1457 		    phyint_send((ip), (vifp), (m));	\
1458 }
1459 
1460     /*
1461      * If xmt_vif is not -1, send on only the requested vif.
1462      *
1463      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1464      */
1465     if (xmt_vif < numvifs) {
1466 #ifdef PIM
1467 	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1468 	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1469         else
1470 #endif
1471 	MC_SEND(ip, viftable + xmt_vif, m);
1472 	return 1;
1473     }
1474 
1475     /*
1476      * Don't forward if it didn't arrive from the parent vif for its origin.
1477      */
1478     vifi = rt->mfc_parent;
1479     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1480 	/* came in the wrong interface */
1481 	if (mrtdebug & DEBUG_FORWARD)
1482 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1483 		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1484 	++mrtstat.mrts_wrong_if;
1485 	++rt->mfc_wrong_if;
1486 	/*
1487 	 * If we are doing PIM assert processing, send a message
1488 	 * to the routing daemon.
1489 	 *
1490 	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1491 	 * can complete the SPT switch, regardless of the type
1492 	 * of the iif (broadcast media, GRE tunnel, etc).
1493 	 */
1494 	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1495 	    struct timeval now;
1496 	    u_long delta;
1497 
1498 #ifdef PIM
1499 	    if (ifp == &multicast_register_if)
1500 		pimstat.pims_rcv_registers_wrongiif++;
1501 #endif
1502 
1503 	    /* Get vifi for the incoming packet */
1504 	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1505 		;
1506 	    if (vifi >= numvifs)
1507 		return 0;	/* The iif is not found: ignore the packet. */
1508 
1509 	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1510 		return 0;	/* WRONGVIF disabled: ignore the packet */
1511 
1512 	    GET_TIME(now);
1513 
1514 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1515 
1516 	    if (delta > ASSERT_MSG_TIME) {
1517 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1518 		struct igmpmsg *im;
1519 		int hlen = ip->ip_hl << 2;
1520 		struct mbuf *mm = m_copy(m, 0, hlen);
1521 
1522 		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1523 		    mm = m_pullup(mm, hlen);
1524 		if (mm == NULL)
1525 		    return ENOBUFS;
1526 
1527 		rt->mfc_last_assert = now;
1528 
1529 		im = mtod(mm, struct igmpmsg *);
1530 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1531 		im->im_mbz		= 0;
1532 		im->im_vif		= vifi;
1533 
1534 		mrtstat.mrts_upcalls++;
1535 
1536 		k_igmpsrc.sin_addr = im->im_src;
1537 		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1538 		    log(LOG_WARNING,
1539 			"ip_mforward: ip_mrouter socket queue full\n");
1540 		    ++mrtstat.mrts_upq_sockfull;
1541 		    return ENOBUFS;
1542 		}
1543 	    }
1544 	}
1545 	return 0;
1546     }
1547 
1548     /* If I sourced this packet, it counts as output, else it was input. */
1549     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1550 	viftable[vifi].v_pkt_out++;
1551 	viftable[vifi].v_bytes_out += plen;
1552     } else {
1553 	viftable[vifi].v_pkt_in++;
1554 	viftable[vifi].v_bytes_in += plen;
1555     }
1556     rt->mfc_pkt_cnt++;
1557     rt->mfc_byte_cnt += plen;
1558 
1559     /*
1560      * For each vif, decide if a copy of the packet should be forwarded.
1561      * Forward if:
1562      *		- the ttl exceeds the vif's threshold
1563      *		- there are group members downstream on interface
1564      */
1565     for (vifi = 0; vifi < numvifs; vifi++)
1566 	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1567 	    viftable[vifi].v_pkt_out++;
1568 	    viftable[vifi].v_bytes_out += plen;
1569 #ifdef PIM
1570 	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1571 		pim_register_send(ip, viftable + vifi, m, rt);
1572 	    else
1573 #endif
1574 	    MC_SEND(ip, viftable+vifi, m);
1575 	}
1576 
1577     /*
1578      * Perform upcall-related bw measuring.
1579      */
1580     if (rt->mfc_bw_meter != NULL) {
1581 	struct bw_meter *x;
1582 	struct timeval now;
1583 
1584 	GET_TIME(now);
1585 	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1586 	    bw_meter_receive_packet(x, plen, &now);
1587     }
1588 
1589     return 0;
1590 }
1591 
1592 /*
1593  * check if a vif number is legal/ok. This is used by ip_output.
1594  */
1595 static int
1596 X_legal_vif_num(int vif)
1597 {
1598     return (vif >= 0 && vif < numvifs);
1599 }
1600 
1601 /*
1602  * Return the local address used by this vif
1603  */
1604 static u_long
1605 X_ip_mcast_src(int vifi)
1606 {
1607     if (vifi >= 0 && vifi < numvifs)
1608 	return viftable[vifi].v_lcl_addr.s_addr;
1609     else
1610 	return INADDR_ANY;
1611 }
1612 
1613 static void
1614 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1615 {
1616     struct mbuf *mb_copy;
1617     int hlen = ip->ip_hl << 2;
1618 
1619     /*
1620      * Make a new reference to the packet; make sure that
1621      * the IP header is actually copied, not just referenced,
1622      * so that ip_output() only scribbles on the copy.
1623      */
1624     mb_copy = m_copypacket(m, MB_DONTWAIT);
1625     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1626 	mb_copy = m_pullup(mb_copy, hlen);
1627     if (mb_copy == NULL)
1628 	return;
1629 
1630     if (vifp->v_rate_limit == 0)
1631 	tbf_send_packet(vifp, mb_copy);
1632     else
1633 	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1634 }
1635 
1636 static void
1637 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1638 {
1639     struct mbuf *mb_copy;
1640     struct ip *ip_copy;
1641     int i, len = ip->ip_len;
1642 
1643     /* Take care of delayed checksums */
1644     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1645 	in_delayed_cksum(m);
1646 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1647     }
1648 
1649     /*
1650      * copy the old packet & pullup its IP header into the
1651      * new mbuf so we can modify it.  Try to fill the new
1652      * mbuf since if we don't the ethernet driver will.
1653      */
1654     MGETHDR(mb_copy, MB_DONTWAIT, MT_HEADER);
1655     if (mb_copy == NULL)
1656 	return;
1657     mb_copy->m_data += max_linkhdr;
1658     mb_copy->m_len = sizeof(multicast_encap_iphdr);
1659 
1660     if ((mb_copy->m_next = m_copypacket(m, MB_DONTWAIT)) == NULL) {
1661 	m_freem(mb_copy);
1662 	return;
1663     }
1664     i = MHLEN - M_LEADINGSPACE(mb_copy);
1665     if (i > len)
1666 	i = len;
1667     mb_copy = m_pullup(mb_copy, i);
1668     if (mb_copy == NULL)
1669 	return;
1670     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1671 
1672     /*
1673      * fill in the encapsulating IP header.
1674      */
1675     ip_copy = mtod(mb_copy, struct ip *);
1676     *ip_copy = multicast_encap_iphdr;
1677     ip_copy->ip_id = ip_newid();
1678     ip_copy->ip_len += len;
1679     ip_copy->ip_src = vifp->v_lcl_addr;
1680     ip_copy->ip_dst = vifp->v_rmt_addr;
1681 
1682     /*
1683      * turn the encapsulated IP header back into a valid one.
1684      */
1685     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1686     --ip->ip_ttl;
1687     ip->ip_len = htons(ip->ip_len);
1688     ip->ip_off = htons(ip->ip_off);
1689     ip->ip_sum = 0;
1690     mb_copy->m_data += sizeof(multicast_encap_iphdr);
1691     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1692     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1693 
1694     if (vifp->v_rate_limit == 0)
1695 	tbf_send_packet(vifp, mb_copy);
1696     else
1697 	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1698 }
1699 
1700 /*
1701  * De-encapsulate a packet and feed it back through ip input (this
1702  * routine is called whenever IP gets a packet with proto type
1703  * ENCAP_PROTO and a local destination address).
1704  *
1705  * This is similar to mroute_encapcheck() + mroute_encap_input() in -current.
1706  */
1707 static void
1708 X_ipip_input(struct mbuf *m, int off, int proto)
1709 {
1710     struct ip *ip = mtod(m, struct ip *);
1711     int hlen = ip->ip_hl << 2;
1712 
1713     if (!have_encap_tunnel) {
1714 	rip_input(m, off, proto);
1715 	return;
1716     }
1717     /*
1718      * dump the packet if it's not to a multicast destination or if
1719      * we don't have an encapsulating tunnel with the source.
1720      * Note:  This code assumes that the remote site IP address
1721      * uniquely identifies the tunnel (i.e., that this site has
1722      * at most one tunnel with the remote site).
1723      */
1724     if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr))) {
1725 	++mrtstat.mrts_bad_tunnel;
1726 	m_freem(m);
1727 	return;
1728     }
1729     if (ip->ip_src.s_addr != last_encap_src) {
1730 	struct vif *vifp = viftable;
1731 	struct vif *vife = vifp + numvifs;
1732 
1733 	last_encap_src = ip->ip_src.s_addr;
1734 	last_encap_vif = NULL;
1735 	for ( ; vifp < vife; ++vifp)
1736 	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1737 		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1738 		    == VIFF_TUNNEL)
1739 		    last_encap_vif = vifp;
1740 		break;
1741 	    }
1742     }
1743     if (last_encap_vif == NULL) {
1744 	last_encap_src = INADDR_ANY;
1745 	mrtstat.mrts_cant_tunnel++; /*XXX*/
1746 	m_freem(m);
1747 	if (mrtdebug)
1748 	    log(LOG_DEBUG, "ip_mforward: no tunnel with %lx\n",
1749 		(u_long)ntohl(ip->ip_src.s_addr));
1750 	return;
1751     }
1752 
1753     if (hlen > sizeof(struct ip))
1754 	ip_stripoptions(m);
1755     m->m_data += sizeof(struct ip);
1756     m->m_len -= sizeof(struct ip);
1757     m->m_pkthdr.len -= sizeof(struct ip);
1758     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
1759 
1760     netisr_queue(NETISR_IP, m);
1761 }
1762 
1763 /*
1764  * Token bucket filter module
1765  */
1766 
1767 static void
1768 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1769 {
1770     struct tbf *t = vifp->v_tbf;
1771 
1772     if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
1773 	mrtstat.mrts_pkt2large++;
1774 	m_freem(m);
1775 	return;
1776     }
1777 
1778     tbf_update_tokens(vifp);
1779 
1780     if (t->tbf_q_len == 0) {		/* queue empty...		*/
1781 	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens	*/
1782 	    t->tbf_n_tok -= p_len;
1783 	    tbf_send_packet(vifp, m);
1784 	} else {			/* no, queue packet and try later */
1785 	    tbf_queue(vifp, m);
1786 	    callout_reset(&tbf_reprocess_q_ch, TBF_REPROCESS,
1787 	    		  tbf_reprocess_q, vifp);
1788 	}
1789     } else if (t->tbf_q_len < t->tbf_max_q_len) {
1790 	/* finite queue length, so queue pkts and process queue */
1791 	tbf_queue(vifp, m);
1792 	tbf_process_q(vifp);
1793     } else {
1794 	/* queue full, try to dq and queue and process */
1795 	if (!tbf_dq_sel(vifp, ip)) {
1796 	    mrtstat.mrts_q_overflow++;
1797 	    m_freem(m);
1798 	} else {
1799 	    tbf_queue(vifp, m);
1800 	    tbf_process_q(vifp);
1801 	}
1802     }
1803 }
1804 
1805 /*
1806  * adds a packet to the queue at the interface
1807  */
1808 static void
1809 tbf_queue(struct vif *vifp, struct mbuf *m)
1810 {
1811     struct tbf *t = vifp->v_tbf;
1812 
1813     crit_enter();
1814 
1815     if (t->tbf_t == NULL)	/* Queue was empty */
1816 	t->tbf_q = m;
1817     else			/* Insert at tail */
1818 	t->tbf_t->m_nextpkt = m;
1819 
1820     t->tbf_t = m;		/* Set new tail pointer */
1821 
1822 #ifdef DIAGNOSTIC
1823     /* Make sure we didn't get fed a bogus mbuf */
1824     if (m->m_nextpkt)
1825 	panic("tbf_queue: m_nextpkt");
1826 #endif
1827     m->m_nextpkt = NULL;
1828 
1829     t->tbf_q_len++;
1830 
1831     crit_exit();
1832 }
1833 
1834 /*
1835  * processes the queue at the interface
1836  */
1837 static void
1838 tbf_process_q(struct vif *vifp)
1839 {
1840     struct tbf *t = vifp->v_tbf;
1841 
1842     crit_enter();
1843 
1844     /* loop through the queue at the interface and send as many packets
1845      * as possible
1846      */
1847     while (t->tbf_q_len > 0) {
1848 	struct mbuf *m = t->tbf_q;
1849 	int len = mtod(m, struct ip *)->ip_len;
1850 
1851 	/* determine if the packet can be sent */
1852 	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
1853 	    break;
1854 	/* ok, reduce no of tokens, dequeue and send the packet. */
1855 	t->tbf_n_tok -= len;
1856 
1857 	t->tbf_q = m->m_nextpkt;
1858 	if (--t->tbf_q_len == 0)
1859 	    t->tbf_t = NULL;
1860 
1861 	m->m_nextpkt = NULL;
1862 	tbf_send_packet(vifp, m);
1863     }
1864     crit_exit();
1865 }
1866 
1867 static void
1868 tbf_reprocess_q(void *xvifp)
1869 {
1870     struct vif *vifp = xvifp;
1871 
1872     if (ip_mrouter == NULL)
1873 	return;
1874     tbf_update_tokens(vifp);
1875     tbf_process_q(vifp);
1876     if (vifp->v_tbf->tbf_q_len)
1877 	callout_reset(&tbf_reprocess_q_ch, TBF_REPROCESS,
1878 		      tbf_reprocess_q, vifp);
1879 }
1880 
1881 /* function that will selectively discard a member of the queue
1882  * based on the precedence value and the priority
1883  */
1884 static int
1885 tbf_dq_sel(struct vif *vifp, struct ip *ip)
1886 {
1887     u_int p;
1888     struct mbuf *m, *last;
1889     struct mbuf **np;
1890     struct tbf *t = vifp->v_tbf;
1891 
1892     crit_enter();
1893 
1894     p = priority(vifp, ip);
1895 
1896     np = &t->tbf_q;
1897     last = NULL;
1898     while ((m = *np) != NULL) {
1899 	if (p > priority(vifp, mtod(m, struct ip *))) {
1900 	    *np = m->m_nextpkt;
1901 	    /* If we're removing the last packet, fix the tail pointer */
1902 	    if (m == t->tbf_t)
1903 		t->tbf_t = last;
1904 	    m_freem(m);
1905 	    /* It's impossible for the queue to be empty, but check anyways. */
1906 	    if (--t->tbf_q_len == 0)
1907 		t->tbf_t = NULL;
1908 	    crit_exit();
1909 	    mrtstat.mrts_drop_sel++;
1910 	    return 1;
1911 	}
1912 	np = &m->m_nextpkt;
1913 	last = m;
1914     }
1915     crit_exit();
1916     return 0;
1917 }
1918 
1919 static void
1920 tbf_send_packet(struct vif *vifp, struct mbuf *m)
1921 {
1922     crit_enter();
1923 
1924     if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
1925 	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
1926     else {
1927 	struct ip_moptions imo;
1928 	int error;
1929 	static struct route ro; /* XXX check this */
1930 
1931 	imo.imo_multicast_ifp  = vifp->v_ifp;
1932 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1933 	imo.imo_multicast_loop = 1;
1934 	imo.imo_multicast_vif  = -1;
1935 
1936 	/*
1937 	 * Re-entrancy should not be a problem here, because
1938 	 * the packets that we send out and are looped back at us
1939 	 * should get rejected because they appear to come from
1940 	 * the loopback interface, thus preventing looping.
1941 	 */
1942 	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
1943 
1944 	if (mrtdebug & DEBUG_XMIT)
1945 	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1946 		(int)(vifp - viftable), error);
1947     }
1948     crit_exit();
1949 }
1950 
1951 /* determine the current time and then
1952  * the elapsed time (between the last time and time now)
1953  * in milliseconds & update the no. of tokens in the bucket
1954  */
1955 static void
1956 tbf_update_tokens(struct vif *vifp)
1957 {
1958     struct timeval tp;
1959     u_long tm;
1960     struct tbf *t = vifp->v_tbf;
1961 
1962     crit_enter();
1963 
1964     GET_TIME(tp);
1965 
1966     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1967 
1968     /*
1969      * This formula is actually
1970      * "time in seconds" * "bytes/second".
1971      *
1972      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1973      *
1974      * The (1000/1024) was introduced in add_vif to optimize
1975      * this divide into a shift.
1976      */
1977     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1978     t->tbf_last_pkt_t = tp;
1979 
1980     if (t->tbf_n_tok > MAX_BKT_SIZE)
1981 	t->tbf_n_tok = MAX_BKT_SIZE;
1982 
1983     crit_exit();
1984 }
1985 
1986 static int
1987 priority(struct vif *vifp, struct ip *ip)
1988 {
1989     int prio = 50; /* the lowest priority -- default case */
1990 
1991     /* temporary hack; may add general packet classifier some day */
1992 
1993     /*
1994      * The UDP port space is divided up into four priority ranges:
1995      * [0, 16384)     : unclassified - lowest priority
1996      * [16384, 32768) : audio - highest priority
1997      * [32768, 49152) : whiteboard - medium priority
1998      * [49152, 65536) : video - low priority
1999      *
2000      * Everything else gets lowest priority.
2001      */
2002     if (ip->ip_p == IPPROTO_UDP) {
2003 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2004 	switch (ntohs(udp->uh_dport) & 0xc000) {
2005 	case 0x4000:
2006 	    prio = 70;
2007 	    break;
2008 	case 0x8000:
2009 	    prio = 60;
2010 	    break;
2011 	case 0xc000:
2012 	    prio = 55;
2013 	    break;
2014 	}
2015     }
2016     return prio;
2017 }
2018 
2019 /*
2020  * End of token bucket filter modifications
2021  */
2022 
2023 static int
2024 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2025 {
2026     int error, vifi;
2027 
2028     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2029 	return EOPNOTSUPP;
2030 
2031     error = soopt_to_kbuf(sopt, &vifi, sizeof vifi, sizeof vifi);
2032     if (error)
2033 	return error;
2034 
2035     crit_enter();
2036 
2037     if (vifi < 0 || vifi >= numvifs) { /* Error if vif is invalid */
2038 	crit_exit();
2039 	return EADDRNOTAVAIL;
2040     }
2041 
2042     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2043 	/* Check if socket is available. */
2044 	if (viftable[vifi].v_rsvpd != NULL) {
2045 	    crit_exit();
2046 	    return EADDRINUSE;
2047 	}
2048 
2049 	viftable[vifi].v_rsvpd = so;
2050 	/* This may seem silly, but we need to be sure we don't over-increment
2051 	 * the RSVP counter, in case something slips up.
2052 	 */
2053 	if (!viftable[vifi].v_rsvp_on) {
2054 	    viftable[vifi].v_rsvp_on = 1;
2055 	    rsvp_on++;
2056 	}
2057     } else { /* must be VIF_OFF */
2058 	/*
2059 	 * XXX as an additional consistency check, one could make sure
2060 	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2061 	 * first parameter is pretty useless.
2062 	 */
2063 	viftable[vifi].v_rsvpd = NULL;
2064 	/*
2065 	 * This may seem silly, but we need to be sure we don't over-decrement
2066 	 * the RSVP counter, in case something slips up.
2067 	 */
2068 	if (viftable[vifi].v_rsvp_on) {
2069 	    viftable[vifi].v_rsvp_on = 0;
2070 	    rsvp_on--;
2071 	}
2072     }
2073     crit_exit();
2074     return 0;
2075 }
2076 
2077 static void
2078 X_ip_rsvp_force_done(struct socket *so)
2079 {
2080     int vifi;
2081 
2082     /* Don't bother if it is not the right type of socket. */
2083     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2084 	return;
2085 
2086     crit_enter();
2087 
2088     /* The socket may be attached to more than one vif...this
2089      * is perfectly legal.
2090      */
2091     for (vifi = 0; vifi < numvifs; vifi++) {
2092 	if (viftable[vifi].v_rsvpd == so) {
2093 	    viftable[vifi].v_rsvpd = NULL;
2094 	    /* This may seem silly, but we need to be sure we don't
2095 	     * over-decrement the RSVP counter, in case something slips up.
2096 	     */
2097 	    if (viftable[vifi].v_rsvp_on) {
2098 		viftable[vifi].v_rsvp_on = 0;
2099 		rsvp_on--;
2100 	    }
2101 	}
2102     }
2103 
2104     crit_exit();
2105 }
2106 
2107 static void
2108 X_rsvp_input(struct mbuf *m, ...)
2109 {
2110     int vifi;
2111     struct ip *ip = mtod(m, struct ip *);
2112     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2113     struct ifnet *ifp;
2114     int off, proto;
2115 #ifdef ALTQ
2116     /* support IP_RECVIF used by rsvpd rel4.2a1 */
2117     struct inpcb *inp;
2118     struct socket *so;
2119     struct mbuf *opts;
2120 #endif
2121     __va_list ap;
2122 
2123     __va_start(ap, m);
2124     off = __va_arg(ap, int);
2125     proto = __va_arg(ap, int);
2126     __va_end(ap);
2127 
2128     if (rsvpdebug)
2129 	kprintf("rsvp_input: rsvp_on %d\n",rsvp_on);
2130 
2131     /* Can still get packets with rsvp_on = 0 if there is a local member
2132      * of the group to which the RSVP packet is addressed.  But in this
2133      * case we want to throw the packet away.
2134      */
2135     if (!rsvp_on) {
2136 	m_freem(m);
2137 	return;
2138     }
2139 
2140     crit_enter();
2141 
2142     if (rsvpdebug)
2143 	kprintf("rsvp_input: check vifs\n");
2144 
2145 #ifdef DIAGNOSTIC
2146     if (!(m->m_flags & M_PKTHDR))
2147 	panic("rsvp_input no hdr");
2148 #endif
2149 
2150     ifp = m->m_pkthdr.rcvif;
2151     /* Find which vif the packet arrived on. */
2152     for (vifi = 0; vifi < numvifs; vifi++)
2153 	if (viftable[vifi].v_ifp == ifp)
2154 	    break;
2155 
2156 #ifdef ALTQ
2157     if (vifi == numvifs || (so = viftable[vifi].v_rsvpd) == NULL) {
2158 #else
2159     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2160 #endif
2161 	/*
2162 	 * If the old-style non-vif-associated socket is set,
2163 	 * then use it.  Otherwise, drop packet since there
2164 	 * is no specific socket for this vif.
2165 	 */
2166 	if (ip_rsvpd != NULL) {
2167 	    if (rsvpdebug)
2168 		kprintf("rsvp_input: Sending packet up old-style socket\n");
2169 	    rip_input(m, off, proto);  /* xxx */
2170 	} else {
2171 	    if (rsvpdebug && vifi == numvifs)
2172 		kprintf("rsvp_input: Can't find vif for packet.\n");
2173 	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2174 		kprintf("rsvp_input: No socket defined for vif %d\n",vifi);
2175 	    m_freem(m);
2176 	}
2177 	crit_exit();
2178 	return;
2179     }
2180     rsvp_src.sin_addr = ip->ip_src;
2181 
2182     if (rsvpdebug && m)
2183 	kprintf("rsvp_input: m->m_len = %d, ssb_space() = %ld\n",
2184 	       m->m_len,ssb_space(&(viftable[vifi].v_rsvpd->so_rcv)));
2185 
2186 #ifdef ALTQ
2187     opts = NULL;
2188     inp = (struct inpcb *)so->so_pcb;
2189     if (inp->inp_flags & INP_CONTROLOPTS ||
2190 	inp->inp_socket->so_options & SO_TIMESTAMP)
2191 	ip_savecontrol(inp, &opts, ip, m);
2192     if (ssb_appendaddr(&so->so_rcv,
2193 		     (struct sockaddr *)&rsvp_src,m, opts) == 0) {
2194 	m_freem(m);
2195 	if (opts)
2196 	    m_freem(opts);
2197 	if (rsvpdebug)
2198 	    kprintf("rsvp_input: Failed to append to socket\n");
2199     }
2200     else {
2201 	sorwakeup(so);
2202 	if (rsvpdebug)
2203 	    kprintf("rsvp_input: send packet up\n");
2204     }
2205 #else /* !ALTQ */
2206     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2207 	if (rsvpdebug)
2208 	    kprintf("rsvp_input: Failed to append to socket\n");
2209     } else {
2210 	if (rsvpdebug)
2211 	    kprintf("rsvp_input: send packet up\n");
2212     }
2213 #endif /* !ALTQ */
2214 
2215     crit_exit();
2216 }
2217 
2218 /*
2219  * Code for bandwidth monitors
2220  */
2221 
2222 /*
2223  * Define common interface for timeval-related methods
2224  */
2225 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2226 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2227 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2228 
2229 static uint32_t
2230 compute_bw_meter_flags(struct bw_upcall *req)
2231 {
2232     uint32_t flags = 0;
2233 
2234     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2235 	flags |= BW_METER_UNIT_PACKETS;
2236     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2237 	flags |= BW_METER_UNIT_BYTES;
2238     if (req->bu_flags & BW_UPCALL_GEQ)
2239 	flags |= BW_METER_GEQ;
2240     if (req->bu_flags & BW_UPCALL_LEQ)
2241 	flags |= BW_METER_LEQ;
2242 
2243     return flags;
2244 }
2245 
2246 /*
2247  * Add a bw_meter entry
2248  */
2249 static int
2250 add_bw_upcall(struct bw_upcall *req)
2251 {
2252     struct mfc *mfc;
2253     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2254 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2255     struct timeval now;
2256     struct bw_meter *x;
2257     uint32_t flags;
2258 
2259     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2260 	return EOPNOTSUPP;
2261 
2262     /* Test if the flags are valid */
2263     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2264 	return EINVAL;
2265     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2266 	return EINVAL;
2267     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2268 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2269 	return EINVAL;
2270 
2271     /* Test if the threshold time interval is valid */
2272     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2273 	return EINVAL;
2274 
2275     flags = compute_bw_meter_flags(req);
2276 
2277     /*
2278      * Find if we have already same bw_meter entry
2279      */
2280     crit_enter();
2281     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2282     if (mfc == NULL) {
2283 	crit_exit();
2284 	return EADDRNOTAVAIL;
2285     }
2286     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2287 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2288 			   &req->bu_threshold.b_time, ==)) &&
2289 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2290 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2291 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2292 	    crit_exit();
2293 	    return 0;		/* XXX Already installed */
2294 	}
2295     }
2296     crit_exit();
2297 
2298     /* Allocate the new bw_meter entry */
2299     x = kmalloc(sizeof(*x), M_BWMETER, M_INTWAIT);
2300 
2301     /* Set the new bw_meter entry */
2302     x->bm_threshold.b_time = req->bu_threshold.b_time;
2303     GET_TIME(now);
2304     x->bm_start_time = now;
2305     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2306     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2307     x->bm_measured.b_packets = 0;
2308     x->bm_measured.b_bytes = 0;
2309     x->bm_flags = flags;
2310     x->bm_time_next = NULL;
2311     x->bm_time_hash = BW_METER_BUCKETS;
2312 
2313     /* Add the new bw_meter entry to the front of entries for this MFC */
2314     crit_enter();
2315     x->bm_mfc = mfc;
2316     x->bm_mfc_next = mfc->mfc_bw_meter;
2317     mfc->mfc_bw_meter = x;
2318     schedule_bw_meter(x, &now);
2319     crit_exit();
2320 
2321     return 0;
2322 }
2323 
2324 static void
2325 free_bw_list(struct bw_meter *list)
2326 {
2327     while (list != NULL) {
2328 	struct bw_meter *x = list;
2329 
2330 	list = list->bm_mfc_next;
2331 	unschedule_bw_meter(x);
2332 	kfree(x, M_BWMETER);
2333     }
2334 }
2335 
2336 /*
2337  * Delete one or multiple bw_meter entries
2338  */
2339 static int
2340 del_bw_upcall(struct bw_upcall *req)
2341 {
2342     struct mfc *mfc;
2343     struct bw_meter *x;
2344 
2345     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2346 	return EOPNOTSUPP;
2347 
2348     crit_enter();
2349     /* Find the corresponding MFC entry */
2350     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2351     if (mfc == NULL) {
2352 	crit_exit();
2353 	return EADDRNOTAVAIL;
2354     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2355 	/*
2356 	 * Delete all bw_meter entries for this mfc
2357 	 */
2358 	struct bw_meter *list;
2359 
2360 	list = mfc->mfc_bw_meter;
2361 	mfc->mfc_bw_meter = NULL;
2362 	crit_exit();
2363 	free_bw_list(list);
2364 	return 0;
2365     } else {			/* Delete a single bw_meter entry */
2366 	struct bw_meter *prev;
2367 	uint32_t flags = 0;
2368 
2369 	flags = compute_bw_meter_flags(req);
2370 
2371 	/* Find the bw_meter entry to delete */
2372 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2373 	     prev = x, x = x->bm_mfc_next) {
2374 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2375 			       &req->bu_threshold.b_time, ==)) &&
2376 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2377 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2378 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2379 		break;
2380 	}
2381 	if (x != NULL) { /* Delete entry from the list for this MFC */
2382 	    if (prev != NULL)
2383 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2384 	    else
2385 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2386 	    crit_exit();
2387 
2388 	    unschedule_bw_meter(x);
2389 	    /* Free the bw_meter entry */
2390 	    kfree(x, M_BWMETER);
2391 	    return 0;
2392 	} else {
2393 	    crit_exit();
2394 	    return EINVAL;
2395 	}
2396     }
2397     /* NOTREACHED */
2398 }
2399 
2400 /*
2401  * Perform bandwidth measurement processing that may result in an upcall
2402  */
2403 static void
2404 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2405 {
2406     struct timeval delta;
2407 
2408     crit_enter();
2409     delta = *nowp;
2410     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2411 
2412     if (x->bm_flags & BW_METER_GEQ) {
2413 	/*
2414 	 * Processing for ">=" type of bw_meter entry
2415 	 */
2416 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2417 	    /* Reset the bw_meter entry */
2418 	    x->bm_start_time = *nowp;
2419 	    x->bm_measured.b_packets = 0;
2420 	    x->bm_measured.b_bytes = 0;
2421 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2422 	}
2423 
2424 	/* Record that a packet is received */
2425 	x->bm_measured.b_packets++;
2426 	x->bm_measured.b_bytes += plen;
2427 
2428 	/*
2429 	 * Test if we should deliver an upcall
2430 	 */
2431 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2432 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2433 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2434 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2435 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2436 		/* Prepare an upcall for delivery */
2437 		bw_meter_prepare_upcall(x, nowp);
2438 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2439 	    }
2440 	}
2441     } else if (x->bm_flags & BW_METER_LEQ) {
2442 	/*
2443 	 * Processing for "<=" type of bw_meter entry
2444 	 */
2445 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2446 	    /*
2447 	     * We are behind time with the multicast forwarding table
2448 	     * scanning for "<=" type of bw_meter entries, so test now
2449 	     * if we should deliver an upcall.
2450 	     */
2451 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2452 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2453 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2454 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2455 		/* Prepare an upcall for delivery */
2456 		bw_meter_prepare_upcall(x, nowp);
2457 	    }
2458 	    /* Reschedule the bw_meter entry */
2459 	    unschedule_bw_meter(x);
2460 	    schedule_bw_meter(x, nowp);
2461 	}
2462 
2463 	/* Record that a packet is received */
2464 	x->bm_measured.b_packets++;
2465 	x->bm_measured.b_bytes += plen;
2466 
2467 	/*
2468 	 * Test if we should restart the measuring interval
2469 	 */
2470 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2471 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2472 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2473 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2474 	    /* Don't restart the measuring interval */
2475 	} else {
2476 	    /* Do restart the measuring interval */
2477 	    /*
2478 	     * XXX: note that we don't unschedule and schedule, because this
2479 	     * might be too much overhead per packet. Instead, when we process
2480 	     * all entries for a given timer hash bin, we check whether it is
2481 	     * really a timeout. If not, we reschedule at that time.
2482 	     */
2483 	    x->bm_start_time = *nowp;
2484 	    x->bm_measured.b_packets = 0;
2485 	    x->bm_measured.b_bytes = 0;
2486 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2487 	}
2488     }
2489     crit_exit();
2490 }
2491 
2492 /*
2493  * Prepare a bandwidth-related upcall
2494  */
2495 static void
2496 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2497 {
2498     struct timeval delta;
2499     struct bw_upcall *u;
2500 
2501     crit_enter();
2502 
2503     /*
2504      * Compute the measured time interval
2505      */
2506     delta = *nowp;
2507     BW_TIMEVALDECR(&delta, &x->bm_start_time);
2508 
2509     /*
2510      * If there are too many pending upcalls, deliver them now
2511      */
2512     if (bw_upcalls_n >= BW_UPCALLS_MAX)
2513 	bw_upcalls_send();
2514 
2515     /*
2516      * Set the bw_upcall entry
2517      */
2518     u = &bw_upcalls[bw_upcalls_n++];
2519     u->bu_src = x->bm_mfc->mfc_origin;
2520     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2521     u->bu_threshold.b_time = x->bm_threshold.b_time;
2522     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2523     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2524     u->bu_measured.b_time = delta;
2525     u->bu_measured.b_packets = x->bm_measured.b_packets;
2526     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2527     u->bu_flags = 0;
2528     if (x->bm_flags & BW_METER_UNIT_PACKETS)
2529 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2530     if (x->bm_flags & BW_METER_UNIT_BYTES)
2531 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2532     if (x->bm_flags & BW_METER_GEQ)
2533 	u->bu_flags |= BW_UPCALL_GEQ;
2534     if (x->bm_flags & BW_METER_LEQ)
2535 	u->bu_flags |= BW_UPCALL_LEQ;
2536 
2537     crit_exit();
2538 }
2539 
2540 /*
2541  * Send the pending bandwidth-related upcalls
2542  */
2543 static void
2544 bw_upcalls_send(void)
2545 {
2546     struct mbuf *m;
2547     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2548     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2549     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2550 				      0,		/* unused2 */
2551 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2552 				      0,		/* im_mbz  */
2553 				      0,		/* im_vif  */
2554 				      0,		/* unused3 */
2555 				      { 0 },		/* im_src  */
2556 				      { 0 } };		/* im_dst  */
2557 
2558     if (bw_upcalls_n == 0)
2559 	return;			/* No pending upcalls */
2560 
2561     bw_upcalls_n = 0;
2562 
2563     /*
2564      * Allocate a new mbuf, initialize it with the header and
2565      * the payload for the pending calls.
2566      */
2567     MGETHDR(m, MB_DONTWAIT, MT_HEADER);
2568     if (m == NULL) {
2569 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2570 	return;
2571     }
2572 
2573     m->m_len = m->m_pkthdr.len = 0;
2574     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2575     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2576 
2577     /*
2578      * Send the upcalls
2579      * XXX do we need to set the address in k_igmpsrc ?
2580      */
2581     mrtstat.mrts_upcalls++;
2582     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2583 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2584 	++mrtstat.mrts_upq_sockfull;
2585     }
2586 }
2587 
2588 /*
2589  * Compute the timeout hash value for the bw_meter entries
2590  */
2591 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2592     do {								\
2593 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2594 									\
2595 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2596 	(hash) = next_timeval.tv_sec;					\
2597 	if (next_timeval.tv_usec)					\
2598 	    (hash)++; /* XXX: make sure we don't timeout early */	\
2599 	(hash) %= BW_METER_BUCKETS;					\
2600     } while (0)
2601 
2602 /*
2603  * Schedule a timer to process periodically bw_meter entry of type "<="
2604  * by linking the entry in the proper hash bucket.
2605  */
2606 static void
2607 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2608 {
2609     int time_hash;
2610 
2611     if (!(x->bm_flags & BW_METER_LEQ))
2612 	return;		/* XXX: we schedule timers only for "<=" entries */
2613 
2614     /*
2615      * Reset the bw_meter entry
2616      */
2617     crit_enter();
2618     x->bm_start_time = *nowp;
2619     x->bm_measured.b_packets = 0;
2620     x->bm_measured.b_bytes = 0;
2621     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2622     crit_exit();
2623 
2624     /*
2625      * Compute the timeout hash value and insert the entry
2626      */
2627     BW_METER_TIMEHASH(x, time_hash);
2628     x->bm_time_next = bw_meter_timers[time_hash];
2629     bw_meter_timers[time_hash] = x;
2630     x->bm_time_hash = time_hash;
2631 }
2632 
2633 /*
2634  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2635  * by removing the entry from the proper hash bucket.
2636  */
2637 static void
2638 unschedule_bw_meter(struct bw_meter *x)
2639 {
2640     int time_hash;
2641     struct bw_meter *prev, *tmp;
2642 
2643     if (!(x->bm_flags & BW_METER_LEQ))
2644 	return;		/* XXX: we schedule timers only for "<=" entries */
2645 
2646     /*
2647      * Compute the timeout hash value and delete the entry
2648      */
2649     time_hash = x->bm_time_hash;
2650     if (time_hash >= BW_METER_BUCKETS)
2651 	return;		/* Entry was not scheduled */
2652 
2653     for (prev = NULL, tmp = bw_meter_timers[time_hash];
2654 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2655 	if (tmp == x)
2656 	    break;
2657 
2658     if (tmp == NULL)
2659 	panic("unschedule_bw_meter: bw_meter entry not found");
2660 
2661     if (prev != NULL)
2662 	prev->bm_time_next = x->bm_time_next;
2663     else
2664 	bw_meter_timers[time_hash] = x->bm_time_next;
2665 
2666     x->bm_time_next = NULL;
2667     x->bm_time_hash = BW_METER_BUCKETS;
2668 }
2669 
2670 
2671 /*
2672  * Process all "<=" type of bw_meter that should be processed now,
2673  * and for each entry prepare an upcall if necessary. Each processed
2674  * entry is rescheduled again for the (periodic) processing.
2675  *
2676  * This is run periodically (once per second normally). On each round,
2677  * all the potentially matching entries are in the hash slot that we are
2678  * looking at.
2679  */
2680 static void
2681 bw_meter_process(void)
2682 {
2683     static uint32_t last_tv_sec;	/* last time we processed this */
2684 
2685     uint32_t loops;
2686     int i;
2687     struct timeval now, process_endtime;
2688 
2689     GET_TIME(now);
2690     if (last_tv_sec == now.tv_sec)
2691 	return;		/* nothing to do */
2692 
2693     crit_enter();
2694     loops = now.tv_sec - last_tv_sec;
2695     last_tv_sec = now.tv_sec;
2696     if (loops > BW_METER_BUCKETS)
2697 	loops = BW_METER_BUCKETS;
2698 
2699     /*
2700      * Process all bins of bw_meter entries from the one after the last
2701      * processed to the current one. On entry, i points to the last bucket
2702      * visited, so we need to increment i at the beginning of the loop.
2703      */
2704     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2705 	struct bw_meter *x, *tmp_list;
2706 
2707 	if (++i >= BW_METER_BUCKETS)
2708 	    i = 0;
2709 
2710 	/* Disconnect the list of bw_meter entries from the bin */
2711 	tmp_list = bw_meter_timers[i];
2712 	bw_meter_timers[i] = NULL;
2713 
2714 	/* Process the list of bw_meter entries */
2715 	while (tmp_list != NULL) {
2716 	    x = tmp_list;
2717 	    tmp_list = tmp_list->bm_time_next;
2718 
2719 	    /* Test if the time interval is over */
2720 	    process_endtime = x->bm_start_time;
2721 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2722 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2723 		/* Not yet: reschedule, but don't reset */
2724 		int time_hash;
2725 
2726 		BW_METER_TIMEHASH(x, time_hash);
2727 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2728 		    /*
2729 		     * XXX: somehow the bin processing is a bit ahead of time.
2730 		     * Put the entry in the next bin.
2731 		     */
2732 		    if (++time_hash >= BW_METER_BUCKETS)
2733 			time_hash = 0;
2734 		}
2735 		x->bm_time_next = bw_meter_timers[time_hash];
2736 		bw_meter_timers[time_hash] = x;
2737 		x->bm_time_hash = time_hash;
2738 
2739 		continue;
2740 	    }
2741 
2742 	    /*
2743 	     * Test if we should deliver an upcall
2744 	     */
2745 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2746 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2747 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2748 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2749 		/* Prepare an upcall for delivery */
2750 		bw_meter_prepare_upcall(x, &now);
2751 	    }
2752 
2753 	    /*
2754 	     * Reschedule for next processing
2755 	     */
2756 	    schedule_bw_meter(x, &now);
2757 	}
2758     }
2759     crit_exit();
2760 
2761     /* Send all upcalls that are pending delivery */
2762     bw_upcalls_send();
2763 }
2764 
2765 /*
2766  * A periodic function for sending all upcalls that are pending delivery
2767  */
2768 static void
2769 expire_bw_upcalls_send(void *unused)
2770 {
2771     bw_upcalls_send();
2772 
2773     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2774     		  expire_bw_upcalls_send, NULL);
2775 }
2776 
2777 /*
2778  * A periodic function for periodic scanning of the multicast forwarding
2779  * table for processing all "<=" bw_meter entries.
2780  */
2781 static void
2782 expire_bw_meter_process(void *unused)
2783 {
2784     if (mrt_api_config & MRT_MFC_BW_UPCALL)
2785 	bw_meter_process();
2786 
2787     callout_reset(&bw_meter_ch, BW_METER_PERIOD,
2788     		  expire_bw_meter_process, NULL);
2789 }
2790 
2791 /*
2792  * End of bandwidth monitoring code
2793  */
2794 
2795 #ifdef PIM
2796 /*
2797  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2798  *
2799  */
2800 static int
2801 pim_register_send(struct ip *ip, struct vif *vifp,
2802 	struct mbuf *m, struct mfc *rt)
2803 {
2804     struct mbuf *mb_copy, *mm;
2805 
2806     if (mrtdebug & DEBUG_PIM)
2807         log(LOG_DEBUG, "pim_register_send: ");
2808 
2809     mb_copy = pim_register_prepare(ip, m);
2810     if (mb_copy == NULL)
2811 	return ENOBUFS;
2812 
2813     /*
2814      * Send all the fragments. Note that the mbuf for each fragment
2815      * is freed by the sending machinery.
2816      */
2817     for (mm = mb_copy; mm; mm = mb_copy) {
2818 	mb_copy = mm->m_nextpkt;
2819 	mm->m_nextpkt = 0;
2820 	mm = m_pullup(mm, sizeof(struct ip));
2821 	if (mm != NULL) {
2822 	    ip = mtod(mm, struct ip *);
2823 	    if ((mrt_api_config & MRT_MFC_RP) &&
2824 		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2825 		pim_register_send_rp(ip, vifp, mm, rt);
2826 	    } else {
2827 		pim_register_send_upcall(ip, vifp, mm, rt);
2828 	    }
2829 	}
2830     }
2831 
2832     return 0;
2833 }
2834 
2835 /*
2836  * Return a copy of the data packet that is ready for PIM Register
2837  * encapsulation.
2838  * XXX: Note that in the returned copy the IP header is a valid one.
2839  */
2840 static struct mbuf *
2841 pim_register_prepare(struct ip *ip, struct mbuf *m)
2842 {
2843     struct mbuf *mb_copy = NULL;
2844     int mtu;
2845 
2846     /* Take care of delayed checksums */
2847     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2848 	in_delayed_cksum(m);
2849 	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2850     }
2851 
2852     /*
2853      * Copy the old packet & pullup its IP header into the
2854      * new mbuf so we can modify it.
2855      */
2856     mb_copy = m_copypacket(m, MB_DONTWAIT);
2857     if (mb_copy == NULL)
2858 	return NULL;
2859     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2860     if (mb_copy == NULL)
2861 	return NULL;
2862 
2863     /* take care of the TTL */
2864     ip = mtod(mb_copy, struct ip *);
2865     --ip->ip_ttl;
2866 
2867     /* Compute the MTU after the PIM Register encapsulation */
2868     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2869 
2870     if (ip->ip_len <= mtu) {
2871 	/* Turn the IP header into a valid one */
2872 	ip->ip_len = htons(ip->ip_len);
2873 	ip->ip_off = htons(ip->ip_off);
2874 	ip->ip_sum = 0;
2875 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2876     } else {
2877 	/* Fragment the packet */
2878 	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2879 	    m_freem(mb_copy);
2880 	    return NULL;
2881 	}
2882     }
2883     return mb_copy;
2884 }
2885 
2886 /*
2887  * Send an upcall with the data packet to the user-level process.
2888  */
2889 static int
2890 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2891 	struct mbuf *mb_copy, struct mfc *rt)
2892 {
2893     struct mbuf *mb_first;
2894     int len = ntohs(ip->ip_len);
2895     struct igmpmsg *im;
2896     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2897 
2898     /*
2899      * Add a new mbuf with an upcall header
2900      */
2901     MGETHDR(mb_first, MB_DONTWAIT, MT_HEADER);
2902     if (mb_first == NULL) {
2903 	m_freem(mb_copy);
2904 	return ENOBUFS;
2905     }
2906     mb_first->m_data += max_linkhdr;
2907     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2908     mb_first->m_len = sizeof(struct igmpmsg);
2909     mb_first->m_next = mb_copy;
2910 
2911     /* Send message to routing daemon */
2912     im = mtod(mb_first, struct igmpmsg *);
2913     im->im_msgtype	= IGMPMSG_WHOLEPKT;
2914     im->im_mbz		= 0;
2915     im->im_vif		= vifp - viftable;
2916     im->im_src		= ip->ip_src;
2917     im->im_dst		= ip->ip_dst;
2918 
2919     k_igmpsrc.sin_addr	= ip->ip_src;
2920 
2921     mrtstat.mrts_upcalls++;
2922 
2923     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2924 	if (mrtdebug & DEBUG_PIM)
2925 	    log(LOG_WARNING,
2926 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2927 	++mrtstat.mrts_upq_sockfull;
2928 	return ENOBUFS;
2929     }
2930 
2931     /* Keep statistics */
2932     pimstat.pims_snd_registers_msgs++;
2933     pimstat.pims_snd_registers_bytes += len;
2934 
2935     return 0;
2936 }
2937 
2938 /*
2939  * Encapsulate the data packet in PIM Register message and send it to the RP.
2940  */
2941 static int
2942 pim_register_send_rp(struct ip *ip, struct vif *vifp,
2943 	struct mbuf *mb_copy, struct mfc *rt)
2944 {
2945     struct mbuf *mb_first;
2946     struct ip *ip_outer;
2947     struct pim_encap_pimhdr *pimhdr;
2948     int len = ntohs(ip->ip_len);
2949     vifi_t vifi = rt->mfc_parent;
2950 
2951     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2952 	m_freem(mb_copy);
2953 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2954     }
2955 
2956     /*
2957      * Add a new mbuf with the encapsulating header
2958      */
2959     MGETHDR(mb_first, MB_DONTWAIT, MT_HEADER);
2960     if (mb_first == NULL) {
2961 	m_freem(mb_copy);
2962 	return ENOBUFS;
2963     }
2964     mb_first->m_data += max_linkhdr;
2965     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2966     mb_first->m_next = mb_copy;
2967 
2968     mb_first->m_pkthdr.len = len + mb_first->m_len;
2969 
2970     /*
2971      * Fill in the encapsulating IP and PIM header
2972      */
2973     ip_outer = mtod(mb_first, struct ip *);
2974     *ip_outer = pim_encap_iphdr;
2975     ip_outer->ip_id = ip_newid();
2976     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2977     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2978     ip_outer->ip_dst = rt->mfc_rp;
2979     /*
2980      * Copy the inner header TOS to the outer header, and take care of the
2981      * IP_DF bit.
2982      */
2983     ip_outer->ip_tos = ip->ip_tos;
2984     if (ntohs(ip->ip_off) & IP_DF)
2985 	ip_outer->ip_off |= IP_DF;
2986     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2987 					 + sizeof(pim_encap_iphdr));
2988     *pimhdr = pim_encap_pimhdr;
2989     /* If the iif crosses a border, set the Border-bit */
2990     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2991 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2992 
2993     mb_first->m_data += sizeof(pim_encap_iphdr);
2994     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2995     mb_first->m_data -= sizeof(pim_encap_iphdr);
2996 
2997     if (vifp->v_rate_limit == 0)
2998 	tbf_send_packet(vifp, mb_first);
2999     else
3000 	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3001 
3002     /* Keep statistics */
3003     pimstat.pims_snd_registers_msgs++;
3004     pimstat.pims_snd_registers_bytes += len;
3005 
3006     return 0;
3007 }
3008 
3009 /*
3010  * PIM-SMv2 and PIM-DM messages processing.
3011  * Receives and verifies the PIM control messages, and passes them
3012  * up to the listening socket, using rip_input().
3013  * The only message with special processing is the PIM_REGISTER message
3014  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3015  * is passed to if_simloop().
3016  */
3017 void
3018 pim_input(struct mbuf *m, ...)
3019 {
3020     int off, proto;
3021     struct ip *ip = mtod(m, struct ip *);
3022     struct pim *pim;
3023     int minlen;
3024     int datalen = ip->ip_len;
3025     int ip_tos;
3026     int iphlen;
3027     __va_list ap;
3028 
3029     __va_start(ap, m);
3030     off = __va_arg(ap, int);
3031     proto = __va_arg(ap, int);
3032     __va_end(ap);
3033 
3034     iphlen = off;
3035 
3036     /* Keep statistics */
3037     pimstat.pims_rcv_total_msgs++;
3038     pimstat.pims_rcv_total_bytes += datalen;
3039 
3040     /*
3041      * Validate lengths
3042      */
3043     if (datalen < PIM_MINLEN) {
3044 	pimstat.pims_rcv_tooshort++;
3045 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3046 	    datalen, (u_long)ip->ip_src.s_addr);
3047 	m_freem(m);
3048 	return;
3049     }
3050 
3051     /*
3052      * If the packet is at least as big as a REGISTER, go agead
3053      * and grab the PIM REGISTER header size, to avoid another
3054      * possible m_pullup() later.
3055      *
3056      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3057      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3058      */
3059     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3060     /*
3061      * Get the IP and PIM headers in contiguous memory, and
3062      * possibly the PIM REGISTER header.
3063      */
3064     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3065 	(m = m_pullup(m, minlen)) == 0) {
3066 	log(LOG_ERR, "pim_input: m_pullup failure\n");
3067 	return;
3068     }
3069     /* m_pullup() may have given us a new mbuf so reset ip. */
3070     ip = mtod(m, struct ip *);
3071     ip_tos = ip->ip_tos;
3072 
3073     /* adjust mbuf to point to the PIM header */
3074     m->m_data += iphlen;
3075     m->m_len  -= iphlen;
3076     pim = mtod(m, struct pim *);
3077 
3078     /*
3079      * Validate checksum. If PIM REGISTER, exclude the data packet.
3080      *
3081      * XXX: some older PIMv2 implementations don't make this distinction,
3082      * so for compatibility reason perform the checksum over part of the
3083      * message, and if error, then over the whole message.
3084      */
3085     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3086 	/* do nothing, checksum okay */
3087     } else if (in_cksum(m, datalen)) {
3088 	pimstat.pims_rcv_badsum++;
3089 	if (mrtdebug & DEBUG_PIM)
3090 	    log(LOG_DEBUG, "pim_input: invalid checksum");
3091 	m_freem(m);
3092 	return;
3093     }
3094 
3095     /* PIM version check */
3096     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3097 	pimstat.pims_rcv_badversion++;
3098 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3099 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3100 	m_freem(m);
3101 	return;
3102     }
3103 
3104     /* restore mbuf back to the outer IP */
3105     m->m_data -= iphlen;
3106     m->m_len  += iphlen;
3107 
3108     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3109 	/*
3110 	 * Since this is a REGISTER, we'll make a copy of the register
3111 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3112 	 * routing daemon.
3113 	 */
3114 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3115 	struct mbuf *mcp;
3116 	struct ip *encap_ip;
3117 	u_int32_t *reghdr;
3118 
3119 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3120 	    if (mrtdebug & DEBUG_PIM)
3121 		log(LOG_DEBUG,
3122 		    "pim_input: register vif not set: %d\n", reg_vif_num);
3123 	    m_freem(m);
3124 	    return;
3125 	}
3126 
3127 	/*
3128 	 * Validate length
3129 	 */
3130 	if (datalen < PIM_REG_MINLEN) {
3131 	    pimstat.pims_rcv_tooshort++;
3132 	    pimstat.pims_rcv_badregisters++;
3133 	    log(LOG_ERR,
3134 		"pim_input: register packet size too small %d from %lx\n",
3135 		datalen, (u_long)ip->ip_src.s_addr);
3136 	    m_freem(m);
3137 	    return;
3138 	}
3139 
3140 	reghdr = (u_int32_t *)(pim + 1);
3141 	encap_ip = (struct ip *)(reghdr + 1);
3142 
3143 	if (mrtdebug & DEBUG_PIM) {
3144 	    log(LOG_DEBUG,
3145 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3146 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3147 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3148 		ntohs(encap_ip->ip_len));
3149 	}
3150 
3151 	/* verify the version number of the inner packet */
3152 	if (encap_ip->ip_v != IPVERSION) {
3153 	    pimstat.pims_rcv_badregisters++;
3154 	    if (mrtdebug & DEBUG_PIM) {
3155 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3156 		    "of the inner packet\n", encap_ip->ip_v);
3157 	    }
3158 	    m_freem(m);
3159 	    return;
3160 	}
3161 
3162 	/* verify the inner packet is destined to a mcast group */
3163 	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3164 	    pimstat.pims_rcv_badregisters++;
3165 	    if (mrtdebug & DEBUG_PIM)
3166 		log(LOG_DEBUG,
3167 		    "pim_input: inner packet of register is not "
3168 		    "multicast %lx\n",
3169 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3170 	    m_freem(m);
3171 	    return;
3172 	}
3173 
3174 	/* If a NULL_REGISTER, pass it to the daemon */
3175 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3176 		goto pim_input_to_daemon;
3177 
3178 	/*
3179 	 * Copy the TOS from the outer IP header to the inner IP header.
3180 	 */
3181 	if (encap_ip->ip_tos != ip_tos) {
3182 	    /* Outer TOS -> inner TOS */
3183 	    encap_ip->ip_tos = ip_tos;
3184 	    /* Recompute the inner header checksum. Sigh... */
3185 
3186 	    /* adjust mbuf to point to the inner IP header */
3187 	    m->m_data += (iphlen + PIM_MINLEN);
3188 	    m->m_len  -= (iphlen + PIM_MINLEN);
3189 
3190 	    encap_ip->ip_sum = 0;
3191 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3192 
3193 	    /* restore mbuf to point back to the outer IP header */
3194 	    m->m_data -= (iphlen + PIM_MINLEN);
3195 	    m->m_len  += (iphlen + PIM_MINLEN);
3196 	}
3197 
3198 	/*
3199 	 * Decapsulate the inner IP packet and loopback to forward it
3200 	 * as a normal multicast packet. Also, make a copy of the
3201 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3202 	 * to pass to the daemon later, so it can take the appropriate
3203 	 * actions (e.g., send back PIM_REGISTER_STOP).
3204 	 * XXX: here m->m_data points to the outer IP header.
3205 	 */
3206 	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3207 	if (mcp == NULL) {
3208 	    log(LOG_ERR,
3209 		"pim_input: pim register: could not copy register head\n");
3210 	    m_freem(m);
3211 	    return;
3212 	}
3213 
3214 	/* Keep statistics */
3215 	/* XXX: registers_bytes include only the encap. mcast pkt */
3216 	pimstat.pims_rcv_registers_msgs++;
3217 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3218 
3219 	/*
3220 	 * forward the inner ip packet; point m_data at the inner ip.
3221 	 */
3222 	m_adj(m, iphlen + PIM_MINLEN);
3223 
3224 	if (mrtdebug & DEBUG_PIM) {
3225 	    log(LOG_DEBUG,
3226 		"pim_input: forwarding decapsulated register: "
3227 		"src %lx, dst %lx, vif %d\n",
3228 		(u_long)ntohl(encap_ip->ip_src.s_addr),
3229 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3230 		reg_vif_num);
3231 	}
3232 	if_simloop(viftable[reg_vif_num].v_ifp, m, dst.sin_family, 0);
3233 
3234 	/* prepare the register head to send to the mrouting daemon */
3235 	m = mcp;
3236     }
3237 
3238 pim_input_to_daemon:
3239     /*
3240      * Pass the PIM message up to the daemon; if it is a Register message,
3241      * pass the 'head' only up to the daemon. This includes the
3242      * outer IP header, PIM header, PIM-Register header and the
3243      * inner IP header.
3244      * XXX: the outer IP header pkt size of a Register is not adjust to
3245      * reflect the fact that the inner multicast data is truncated.
3246      */
3247     rip_input(m, iphlen, proto);
3248 
3249     return;
3250 }
3251 #endif /* PIM */
3252 
3253 static int
3254 ip_mroute_modevent(module_t mod, int type, void *unused)
3255 {
3256     switch (type) {
3257     case MOD_LOAD:
3258 	crit_enter();
3259 	/* XXX Protect against multiple loading */
3260 	ip_mcast_src = X_ip_mcast_src;
3261 	ip_mforward = X_ip_mforward;
3262 	ip_mrouter_done = X_ip_mrouter_done;
3263 	ip_mrouter_get = X_ip_mrouter_get;
3264 	ip_mrouter_set = X_ip_mrouter_set;
3265 	ip_rsvp_force_done = X_ip_rsvp_force_done;
3266 	ip_rsvp_vif = X_ip_rsvp_vif;
3267 	ipip_input = X_ipip_input;
3268 	legal_vif_num = X_legal_vif_num;
3269 	mrt_ioctl = X_mrt_ioctl;
3270 	rsvp_input_p = X_rsvp_input;
3271 	crit_exit();
3272 	break;
3273 
3274     case MOD_UNLOAD:
3275 	if (ip_mrouter)
3276 	    return EINVAL;
3277 
3278 	crit_enter();
3279 	ip_mcast_src = NULL;
3280 	ip_mforward = NULL;
3281 	ip_mrouter_done = NULL;
3282 	ip_mrouter_get = NULL;
3283 	ip_mrouter_set = NULL;
3284 	ip_rsvp_force_done = NULL;
3285 	ip_rsvp_vif = NULL;
3286 	ipip_input = NULL;
3287 	legal_vif_num = NULL;
3288 	mrt_ioctl = NULL;
3289 	rsvp_input_p = NULL;
3290 	crit_exit();
3291 	break;
3292     }
3293     return 0;
3294 }
3295 
3296 static moduledata_t ip_mroutemod = {
3297     "ip_mroute",
3298     ip_mroute_modevent,
3299     0
3300 };
3301 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3302