xref: /dragonfly/sys/net/ipfw/ip_fw2.c (revision 23265324)
1 /*
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.6.2.12 2003/04/08 10:42:32 maxim Exp $
26  * $DragonFly: src/sys/net/ipfw/ip_fw2.c,v 1.26 2006/12/22 23:44:57 swildner Exp $
27  */
28 
29 #define        DEB(x)
30 #define        DDB(x) x
31 
32 /*
33  * Implement IP packet firewall (new version)
34  */
35 
36 #if !defined(KLD_MODULE)
37 #include "opt_ipfw.h"
38 #include "opt_ipdn.h"
39 #include "opt_ipdivert.h"
40 #include "opt_inet.h"
41 #ifndef INET
42 #error IPFIREWALL requires INET.
43 #endif /* INET */
44 #endif
45 
46 #if IPFW2
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/kernel.h>
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/sysctl.h>
56 #include <sys/syslog.h>
57 #include <sys/thread2.h>
58 #include <sys/ucred.h>
59 #include <sys/in_cksum.h>
60 #include <net/if.h>
61 #include <net/route.h>
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/in_pcb.h>
66 #include <netinet/ip.h>
67 #include <netinet/ip_var.h>
68 #include <netinet/ip_icmp.h>
69 #include "ip_fw.h"
70 #include <net/dummynet/ip_dummynet.h>
71 #include <netinet/tcp.h>
72 #include <netinet/tcp_timer.h>
73 #include <netinet/tcp_var.h>
74 #include <netinet/tcpip.h>
75 #include <netinet/udp.h>
76 #include <netinet/udp_var.h>
77 
78 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
79 
80 /*
81  * set_disable contains one bit per set value (0..31).
82  * If the bit is set, all rules with the corresponding set
83  * are disabled. Set 31 is reserved for the default rule
84  * and CANNOT be disabled.
85  */
86 static u_int32_t set_disable;
87 
88 static int fw_verbose;
89 static int verbose_limit;
90 
91 static struct callout ipfw_timeout_h;
92 #define	IPFW_DEFAULT_RULE	65535
93 
94 /*
95  * list of rules for layer 3
96  */
97 static struct ip_fw *layer3_chain;
98 
99 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
100 
101 static int fw_debug = 1;
102 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
103 
104 #ifdef SYSCTL_NODE
105 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
106 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable, CTLFLAG_RW,
107     &fw_enable, 0, "Enable ipfw");
108 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
109     &autoinc_step, 0, "Rule number autincrement step");
110 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO,one_pass,CTLFLAG_RW,
111     &fw_one_pass, 0,
112     "Only do a single pass through ipfw when using dummynet(4)");
113 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
114     &fw_debug, 0, "Enable printing of debug ip_fw statements");
115 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose, CTLFLAG_RW,
116     &fw_verbose, 0, "Log matches to ipfw rules");
117 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
118     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
119 
120 /*
121  * Description of dynamic rules.
122  *
123  * Dynamic rules are stored in lists accessed through a hash table
124  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
125  * be modified through the sysctl variable dyn_buckets which is
126  * updated when the table becomes empty.
127  *
128  * XXX currently there is only one list, ipfw_dyn.
129  *
130  * When a packet is received, its address fields are first masked
131  * with the mask defined for the rule, then hashed, then matched
132  * against the entries in the corresponding list.
133  * Dynamic rules can be used for different purposes:
134  *  + stateful rules;
135  *  + enforcing limits on the number of sessions;
136  *  + in-kernel NAT (not implemented yet)
137  *
138  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
139  * measured in seconds and depending on the flags.
140  *
141  * The total number of dynamic rules is stored in dyn_count.
142  * The max number of dynamic rules is dyn_max. When we reach
143  * the maximum number of rules we do not create anymore. This is
144  * done to avoid consuming too much memory, but also too much
145  * time when searching on each packet (ideally, we should try instead
146  * to put a limit on the length of the list on each bucket...).
147  *
148  * Each dynamic rule holds a pointer to the parent ipfw rule so
149  * we know what action to perform. Dynamic rules are removed when
150  * the parent rule is deleted. XXX we should make them survive.
151  *
152  * There are some limitations with dynamic rules -- we do not
153  * obey the 'randomized match', and we do not do multiple
154  * passes through the firewall. XXX check the latter!!!
155  */
156 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
157 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
158 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
159 
160 /*
161  * Timeouts for various events in handing dynamic rules.
162  */
163 static u_int32_t dyn_ack_lifetime = 300;
164 static u_int32_t dyn_syn_lifetime = 20;
165 static u_int32_t dyn_fin_lifetime = 1;
166 static u_int32_t dyn_rst_lifetime = 1;
167 static u_int32_t dyn_udp_lifetime = 10;
168 static u_int32_t dyn_short_lifetime = 5;
169 
170 /*
171  * Keepalives are sent if dyn_keepalive is set. They are sent every
172  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
173  * seconds of lifetime of a rule.
174  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
175  * than dyn_keepalive_period.
176  */
177 
178 static u_int32_t dyn_keepalive_interval = 20;
179 static u_int32_t dyn_keepalive_period = 5;
180 static u_int32_t dyn_keepalive = 1;	/* do send keepalives */
181 
182 static u_int32_t static_count;	/* # of static rules */
183 static u_int32_t static_len;	/* size in bytes of static rules */
184 static u_int32_t dyn_count;		/* # of dynamic rules */
185 static u_int32_t dyn_max = 4096;	/* max # of dynamic rules */
186 
187 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
188     &dyn_buckets, 0, "Number of dyn. buckets");
189 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
190     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
191 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
192     &dyn_count, 0, "Number of dyn. rules");
193 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
194     &dyn_max, 0, "Max number of dyn. rules");
195 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
196     &static_count, 0, "Number of static rules");
197 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
198     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
199 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
200     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
201 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
202     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
203 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
204     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
205 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
206     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
207 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
208     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
209 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
210     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
211 
212 #endif /* SYSCTL_NODE */
213 
214 
215 static ip_fw_chk_t	ipfw_chk;
216 
217 ip_dn_ruledel_t *ip_dn_ruledel_ptr = NULL;	/* hook into dummynet */
218 
219 /*
220  * This macro maps an ip pointer into a layer3 header pointer of type T
221  */
222 #define	L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
223 
224 static __inline int
225 icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd)
226 {
227 	int type = L3HDR(struct icmp,ip)->icmp_type;
228 
229 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
230 }
231 
232 #define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
233     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
234 
235 static int
236 is_icmp_query(struct ip *ip)
237 {
238 	int type = L3HDR(struct icmp, ip)->icmp_type;
239 	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
240 }
241 #undef TT
242 
243 /*
244  * The following checks use two arrays of 8 or 16 bits to store the
245  * bits that we want set or clear, respectively. They are in the
246  * low and high half of cmd->arg1 or cmd->d[0].
247  *
248  * We scan options and store the bits we find set. We succeed if
249  *
250  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
251  *
252  * The code is sometimes optimized not to store additional variables.
253  */
254 
255 static int
256 flags_match(ipfw_insn *cmd, u_int8_t bits)
257 {
258 	u_char want_clear;
259 	bits = ~bits;
260 
261 	if ( ((cmd->arg1 & 0xff) & bits) != 0)
262 		return 0; /* some bits we want set were clear */
263 	want_clear = (cmd->arg1 >> 8) & 0xff;
264 	if ( (want_clear & bits) != want_clear)
265 		return 0; /* some bits we want clear were set */
266 	return 1;
267 }
268 
269 static int
270 ipopts_match(struct ip *ip, ipfw_insn *cmd)
271 {
272 	int optlen, bits = 0;
273 	u_char *cp = (u_char *)(ip + 1);
274 	int x = (ip->ip_hl << 2) - sizeof (struct ip);
275 
276 	for (; x > 0; x -= optlen, cp += optlen) {
277 		int opt = cp[IPOPT_OPTVAL];
278 
279 		if (opt == IPOPT_EOL)
280 			break;
281 		if (opt == IPOPT_NOP)
282 			optlen = 1;
283 		else {
284 			optlen = cp[IPOPT_OLEN];
285 			if (optlen <= 0 || optlen > x)
286 				return 0; /* invalid or truncated */
287 		}
288 		switch (opt) {
289 
290 		default:
291 			break;
292 
293 		case IPOPT_LSRR:
294 			bits |= IP_FW_IPOPT_LSRR;
295 			break;
296 
297 		case IPOPT_SSRR:
298 			bits |= IP_FW_IPOPT_SSRR;
299 			break;
300 
301 		case IPOPT_RR:
302 			bits |= IP_FW_IPOPT_RR;
303 			break;
304 
305 		case IPOPT_TS:
306 			bits |= IP_FW_IPOPT_TS;
307 			break;
308 		}
309 	}
310 	return (flags_match(cmd, bits));
311 }
312 
313 static int
314 tcpopts_match(struct ip *ip, ipfw_insn *cmd)
315 {
316 	int optlen, bits = 0;
317 	struct tcphdr *tcp = L3HDR(struct tcphdr,ip);
318 	u_char *cp = (u_char *)(tcp + 1);
319 	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
320 
321 	for (; x > 0; x -= optlen, cp += optlen) {
322 		int opt = cp[0];
323 		if (opt == TCPOPT_EOL)
324 			break;
325 		if (opt == TCPOPT_NOP)
326 			optlen = 1;
327 		else {
328 			optlen = cp[1];
329 			if (optlen <= 0)
330 				break;
331 		}
332 
333 		switch (opt) {
334 
335 		default:
336 			break;
337 
338 		case TCPOPT_MAXSEG:
339 			bits |= IP_FW_TCPOPT_MSS;
340 			break;
341 
342 		case TCPOPT_WINDOW:
343 			bits |= IP_FW_TCPOPT_WINDOW;
344 			break;
345 
346 		case TCPOPT_SACK_PERMITTED:
347 		case TCPOPT_SACK:
348 			bits |= IP_FW_TCPOPT_SACK;
349 			break;
350 
351 		case TCPOPT_TIMESTAMP:
352 			bits |= IP_FW_TCPOPT_TS;
353 			break;
354 
355 		case TCPOPT_CC:
356 		case TCPOPT_CCNEW:
357 		case TCPOPT_CCECHO:
358 			bits |= IP_FW_TCPOPT_CC;
359 			break;
360 		}
361 	}
362 	return (flags_match(cmd, bits));
363 }
364 
365 static int
366 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
367 {
368 	if (ifp == NULL)	/* no iface with this packet, match fails */
369 		return 0;
370 	/* Check by name or by IP address */
371 	if (cmd->name[0] != '\0') { /* match by name */
372 		/* Check name */
373 		if (cmd->p.glob) {
374 			if (kfnmatch(cmd->name, ifp->if_xname, 0) == 0)
375 				return(1);
376 		} else {
377 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
378 				return(1);
379 		}
380 	} else {
381 		struct ifaddr *ia;
382 
383 		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
384 			if (ia->ifa_addr == NULL)
385 				continue;
386 			if (ia->ifa_addr->sa_family != AF_INET)
387 				continue;
388 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
389 			    (ia->ifa_addr))->sin_addr.s_addr)
390 				return(1);	/* match */
391 		}
392 	}
393 	return(0);	/* no match, fail ... */
394 }
395 
396 static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
397 
398 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
399 #define SNP(buf) buf, sizeof(buf)
400 
401 /*
402  * We enter here when we have a rule with O_LOG.
403  * XXX this function alone takes about 2Kbytes of code!
404  */
405 static void
406 ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
407 	struct mbuf *m, struct ifnet *oif)
408 {
409 	char *action;
410 	int limit_reached = 0;
411 	char action2[40], proto[48], fragment[28];
412 
413 	fragment[0] = '\0';
414 	proto[0] = '\0';
415 
416 	if (f == NULL) {	/* bogus pkt */
417 		if (verbose_limit != 0 && norule_counter >= verbose_limit)
418 			return;
419 		norule_counter++;
420 		if (norule_counter == verbose_limit)
421 			limit_reached = verbose_limit;
422 		action = "Refuse";
423 	} else {	/* O_LOG is the first action, find the real one */
424 		ipfw_insn *cmd = ACTION_PTR(f);
425 		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
426 
427 		if (l->max_log != 0 && l->log_left == 0)
428 			return;
429 		l->log_left--;
430 		if (l->log_left == 0)
431 			limit_reached = l->max_log;
432 		cmd += F_LEN(cmd);	/* point to first action */
433 		if (cmd->opcode == O_PROB)
434 			cmd += F_LEN(cmd);
435 
436 		action = action2;
437 		switch (cmd->opcode) {
438 		case O_DENY:
439 			action = "Deny";
440 			break;
441 
442 		case O_REJECT:
443 			if (cmd->arg1==ICMP_REJECT_RST)
444 				action = "Reset";
445 			else if (cmd->arg1==ICMP_UNREACH_HOST)
446 				action = "Reject";
447 			else
448 				ksnprintf(SNPARGS(action2, 0), "Unreach %d",
449 					cmd->arg1);
450 			break;
451 
452 		case O_ACCEPT:
453 			action = "Accept";
454 			break;
455 		case O_COUNT:
456 			action = "Count";
457 			break;
458 		case O_DIVERT:
459 			ksnprintf(SNPARGS(action2, 0), "Divert %d",
460 				cmd->arg1);
461 			break;
462 		case O_TEE:
463 			ksnprintf(SNPARGS(action2, 0), "Tee %d",
464 				cmd->arg1);
465 			break;
466 		case O_SKIPTO:
467 			ksnprintf(SNPARGS(action2, 0), "SkipTo %d",
468 				cmd->arg1);
469 			break;
470 		case O_PIPE:
471 			ksnprintf(SNPARGS(action2, 0), "Pipe %d",
472 				cmd->arg1);
473 			break;
474 		case O_QUEUE:
475 			ksnprintf(SNPARGS(action2, 0), "Queue %d",
476 				cmd->arg1);
477 			break;
478 		case O_FORWARD_IP: {
479 			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
480 			int len;
481 
482 			len = ksnprintf(SNPARGS(action2, 0), "Forward to %s",
483 				inet_ntoa(sa->sa.sin_addr));
484 			if (sa->sa.sin_port)
485 				ksnprintf(SNPARGS(action2, len), ":%d",
486 				    sa->sa.sin_port);
487 			}
488 			break;
489 		default:
490 			action = "UNKNOWN";
491 			break;
492 		}
493 	}
494 
495 	if (hlen == 0) {	/* non-ip */
496 		ksnprintf(SNPARGS(proto, 0), "MAC");
497 	} else {
498 		struct ip *ip = mtod(m, struct ip *);
499 		/* these three are all aliases to the same thing */
500 		struct icmp *const icmp = L3HDR(struct icmp, ip);
501 		struct tcphdr *const tcp = (struct tcphdr *)icmp;
502 		struct udphdr *const udp = (struct udphdr *)icmp;
503 
504 		int ip_off, offset, ip_len;
505 
506 		int len;
507 
508 		if (eh != NULL) { /* layer 2 packets are as on the wire */
509 			ip_off = ntohs(ip->ip_off);
510 			ip_len = ntohs(ip->ip_len);
511 		} else {
512 			ip_off = ip->ip_off;
513 			ip_len = ip->ip_len;
514 		}
515 		offset = ip_off & IP_OFFMASK;
516 		switch (ip->ip_p) {
517 		case IPPROTO_TCP:
518 			len = ksnprintf(SNPARGS(proto, 0), "TCP %s",
519 			    inet_ntoa(ip->ip_src));
520 			if (offset == 0)
521 				ksnprintf(SNPARGS(proto, len), ":%d %s:%d",
522 				    ntohs(tcp->th_sport),
523 				    inet_ntoa(ip->ip_dst),
524 				    ntohs(tcp->th_dport));
525 			else
526 				ksnprintf(SNPARGS(proto, len), " %s",
527 				    inet_ntoa(ip->ip_dst));
528 			break;
529 
530 		case IPPROTO_UDP:
531 			len = ksnprintf(SNPARGS(proto, 0), "UDP %s",
532 				inet_ntoa(ip->ip_src));
533 			if (offset == 0)
534 				ksnprintf(SNPARGS(proto, len), ":%d %s:%d",
535 				    ntohs(udp->uh_sport),
536 				    inet_ntoa(ip->ip_dst),
537 				    ntohs(udp->uh_dport));
538 			else
539 				ksnprintf(SNPARGS(proto, len), " %s",
540 				    inet_ntoa(ip->ip_dst));
541 			break;
542 
543 		case IPPROTO_ICMP:
544 			if (offset == 0)
545 				len = ksnprintf(SNPARGS(proto, 0),
546 				    "ICMP:%u.%u ",
547 				    icmp->icmp_type, icmp->icmp_code);
548 			else
549 				len = ksnprintf(SNPARGS(proto, 0), "ICMP ");
550 			len += ksnprintf(SNPARGS(proto, len), "%s",
551 			    inet_ntoa(ip->ip_src));
552 			ksnprintf(SNPARGS(proto, len), " %s",
553 			    inet_ntoa(ip->ip_dst));
554 			break;
555 
556 		default:
557 			len = ksnprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
558 			    inet_ntoa(ip->ip_src));
559 			ksnprintf(SNPARGS(proto, len), " %s",
560 			    inet_ntoa(ip->ip_dst));
561 			break;
562 		}
563 
564 		if (ip_off & (IP_MF | IP_OFFMASK))
565 			ksnprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
566 			     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
567 			     offset << 3,
568 			     (ip_off & IP_MF) ? "+" : "");
569 	}
570 	if (oif || m->m_pkthdr.rcvif)
571 		log(LOG_SECURITY | LOG_INFO,
572 		    "ipfw: %d %s %s %s via %s%s\n",
573 		    f ? f->rulenum : -1,
574 		    action, proto, oif ? "out" : "in",
575 		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
576 		    fragment);
577 	else
578 		log(LOG_SECURITY | LOG_INFO,
579 		    "ipfw: %d %s %s [no if info]%s\n",
580 		    f ? f->rulenum : -1,
581 		    action, proto, fragment);
582 	if (limit_reached)
583 		log(LOG_SECURITY | LOG_NOTICE,
584 		    "ipfw: limit %d reached on entry %d\n",
585 		    limit_reached, f ? f->rulenum : -1);
586 }
587 
588 /*
589  * IMPORTANT: the hash function for dynamic rules must be commutative
590  * in source and destination (ip,port), because rules are bidirectional
591  * and we want to find both in the same bucket.
592  */
593 static __inline int
594 hash_packet(struct ipfw_flow_id *id)
595 {
596 	u_int32_t i;
597 
598 	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
599 	i &= (curr_dyn_buckets - 1);
600 	return i;
601 }
602 
603 /**
604  * unlink a dynamic rule from a chain. prev is a pointer to
605  * the previous one, q is a pointer to the rule to delete,
606  * head is a pointer to the head of the queue.
607  * Modifies q and potentially also head.
608  */
609 #define UNLINK_DYN_RULE(prev, head, q) {				\
610 	ipfw_dyn_rule *old_q = q;					\
611 									\
612 	/* remove a refcount to the parent */				\
613 	if (q->dyn_type == O_LIMIT)					\
614 		q->parent->count--;					\
615 	DEB(kprintf("-- unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",	\
616 		(q->id.src_ip), (q->id.src_port),			\
617 		(q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )	\
618 	if (prev != NULL)						\
619 		prev->next = q = q->next;				\
620 	else								\
621 		head = q = q->next;					\
622 	dyn_count--;							\
623 	kfree(old_q, M_IPFW); }
624 
625 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
626 
627 /**
628  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
629  *
630  * If keep_me == NULL, rules are deleted even if not expired,
631  * otherwise only expired rules are removed.
632  *
633  * The value of the second parameter is also used to point to identify
634  * a rule we absolutely do not want to remove (e.g. because we are
635  * holding a reference to it -- this is the case with O_LIMIT_PARENT
636  * rules). The pointer is only used for comparison, so any non-null
637  * value will do.
638  */
639 static void
640 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
641 {
642 	static u_int32_t last_remove = 0;
643 
644 #define FORCE (keep_me == NULL)
645 
646 	ipfw_dyn_rule *prev, *q;
647 	int i, pass = 0, max_pass = 0;
648 
649 	if (ipfw_dyn_v == NULL || dyn_count == 0)
650 		return;
651 	/* do not expire more than once per second, it is useless */
652 	if (!FORCE && last_remove == time_second)
653 		return;
654 	last_remove = time_second;
655 
656 	/*
657 	 * because O_LIMIT refer to parent rules, during the first pass only
658 	 * remove child and mark any pending LIMIT_PARENT, and remove
659 	 * them in a second pass.
660 	 */
661 next_pass:
662 	for (i = 0 ; i < curr_dyn_buckets ; i++) {
663 		for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
664 			/*
665 			 * Logic can become complex here, so we split tests.
666 			 */
667 			if (q == keep_me)
668 				goto next;
669 			if (rule != NULL && rule != q->rule)
670 				goto next; /* not the one we are looking for */
671 			if (q->dyn_type == O_LIMIT_PARENT) {
672 				/*
673 				 * handle parent in the second pass,
674 				 * record we need one.
675 				 */
676 				max_pass = 1;
677 				if (pass == 0)
678 					goto next;
679 				if (FORCE && q->count != 0 ) {
680 					/* XXX should not happen! */
681 					kprintf( "OUCH! cannot remove rule,"
682 					     " count %d\n", q->count);
683 				}
684 			} else {
685 				if (!FORCE &&
686 				    !TIME_LEQ( q->expire, time_second ))
687 					goto next;
688 			}
689 			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
690 			continue;
691 next:
692 			prev=q;
693 			q=q->next;
694 		}
695 	}
696 	if (pass++ < max_pass)
697 		goto next_pass;
698 }
699 
700 
701 /**
702  * lookup a dynamic rule.
703  */
704 static ipfw_dyn_rule *
705 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
706 	struct tcphdr *tcp)
707 {
708 	/*
709 	 * stateful ipfw extensions.
710 	 * Lookup into dynamic session queue
711 	 */
712 #define MATCH_REVERSE	0
713 #define MATCH_FORWARD	1
714 #define MATCH_NONE	2
715 #define MATCH_UNKNOWN	3
716 	int i, dir = MATCH_NONE;
717 	ipfw_dyn_rule *prev, *q=NULL;
718 
719 	if (ipfw_dyn_v == NULL)
720 		goto done;	/* not found */
721 	i = hash_packet( pkt );
722 	for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
723 		if (q->dyn_type == O_LIMIT_PARENT)
724 			goto next;
725 		if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
726 			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
727 			continue;
728 		}
729 		if ( pkt->proto == q->id.proto) {
730 			if (pkt->src_ip == q->id.src_ip &&
731 			    pkt->dst_ip == q->id.dst_ip &&
732 			    pkt->src_port == q->id.src_port &&
733 			    pkt->dst_port == q->id.dst_port ) {
734 				dir = MATCH_FORWARD;
735 				break;
736 			}
737 			if (pkt->src_ip == q->id.dst_ip &&
738 			    pkt->dst_ip == q->id.src_ip &&
739 			    pkt->src_port == q->id.dst_port &&
740 			    pkt->dst_port == q->id.src_port ) {
741 				dir = MATCH_REVERSE;
742 				break;
743 			}
744 		}
745 next:
746 		prev = q;
747 		q = q->next;
748 	}
749 	if (q == NULL)
750 		goto done; /* q = NULL, not found */
751 
752 	if ( prev != NULL) { /* found and not in front */
753 		prev->next = q->next;
754 		q->next = ipfw_dyn_v[i];
755 		ipfw_dyn_v[i] = q;
756 	}
757 	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
758 		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
759 
760 #define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
761 #define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
762 		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
763 		switch (q->state) {
764 		case TH_SYN:				/* opening */
765 			q->expire = time_second + dyn_syn_lifetime;
766 			break;
767 
768 		case BOTH_SYN:			/* move to established */
769 		case BOTH_SYN | TH_FIN :	/* one side tries to close */
770 		case BOTH_SYN | (TH_FIN << 8) :
771  			if (tcp) {
772 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
773 			    u_int32_t ack = ntohl(tcp->th_ack);
774 			    if (dir == MATCH_FORWARD) {
775 				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
776 				    q->ack_fwd = ack;
777 				else { /* ignore out-of-sequence */
778 				    break;
779 				}
780 			    } else {
781 				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
782 				    q->ack_rev = ack;
783 				else { /* ignore out-of-sequence */
784 				    break;
785 				}
786 			    }
787 			}
788 			q->expire = time_second + dyn_ack_lifetime;
789 			break;
790 
791 		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
792 			if (dyn_fin_lifetime >= dyn_keepalive_period)
793 				dyn_fin_lifetime = dyn_keepalive_period - 1;
794 			q->expire = time_second + dyn_fin_lifetime;
795 			break;
796 
797 		default:
798 #if 0
799 			/*
800 			 * reset or some invalid combination, but can also
801 			 * occur if we use keep-state the wrong way.
802 			 */
803 			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
804 				kprintf("invalid state: 0x%x\n", q->state);
805 #endif
806 			if (dyn_rst_lifetime >= dyn_keepalive_period)
807 				dyn_rst_lifetime = dyn_keepalive_period - 1;
808 			q->expire = time_second + dyn_rst_lifetime;
809 			break;
810 		}
811 	} else if (pkt->proto == IPPROTO_UDP) {
812 		q->expire = time_second + dyn_udp_lifetime;
813 	} else {
814 		/* other protocols */
815 		q->expire = time_second + dyn_short_lifetime;
816 	}
817 done:
818 	if (match_direction)
819 		*match_direction = dir;
820 	return q;
821 }
822 
823 static void
824 realloc_dynamic_table(void)
825 {
826 	/*
827 	 * Try reallocation, make sure we have a power of 2 and do
828 	 * not allow more than 64k entries. In case of overflow,
829 	 * default to 1024.
830 	 */
831 
832 	if (dyn_buckets > 65536)
833 		dyn_buckets = 1024;
834 	if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
835 		dyn_buckets = curr_dyn_buckets; /* reset */
836 		return;
837 	}
838 	curr_dyn_buckets = dyn_buckets;
839 	if (ipfw_dyn_v != NULL)
840 		kfree(ipfw_dyn_v, M_IPFW);
841 	for (;;) {
842 		ipfw_dyn_v = kmalloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
843 		       M_IPFW, M_WAITOK | M_ZERO);
844 		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
845 			break;
846 		curr_dyn_buckets /= 2;
847 	}
848 }
849 
850 /**
851  * Install state of type 'type' for a dynamic session.
852  * The hash table contains two type of rules:
853  * - regular rules (O_KEEP_STATE)
854  * - rules for sessions with limited number of sess per user
855  *   (O_LIMIT). When they are created, the parent is
856  *   increased by 1, and decreased on delete. In this case,
857  *   the third parameter is the parent rule and not the chain.
858  * - "parent" rules for the above (O_LIMIT_PARENT).
859  */
860 static ipfw_dyn_rule *
861 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
862 {
863 	ipfw_dyn_rule *r;
864 	int i;
865 
866 	if (ipfw_dyn_v == NULL ||
867 	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
868 		realloc_dynamic_table();
869 		if (ipfw_dyn_v == NULL)
870 			return NULL; /* failed ! */
871 	}
872 	i = hash_packet(id);
873 
874 	r = kmalloc(sizeof *r, M_IPFW, M_WAITOK | M_ZERO);
875 	if (r == NULL) {
876 		kprintf ("sorry cannot allocate state\n");
877 		return NULL;
878 	}
879 
880 	/* increase refcount on parent, and set pointer */
881 	if (dyn_type == O_LIMIT) {
882 		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
883 		if ( parent->dyn_type != O_LIMIT_PARENT)
884 			panic("invalid parent");
885 		parent->count++;
886 		r->parent = parent;
887 		rule = parent->rule;
888 	}
889 
890 	r->id = *id;
891 	r->expire = time_second + dyn_syn_lifetime;
892 	r->rule = rule;
893 	r->dyn_type = dyn_type;
894 	r->pcnt = r->bcnt = 0;
895 	r->count = 0;
896 
897 	r->bucket = i;
898 	r->next = ipfw_dyn_v[i];
899 	ipfw_dyn_v[i] = r;
900 	dyn_count++;
901 	DEB(kprintf("-- add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
902 	   dyn_type,
903 	   (r->id.src_ip), (r->id.src_port),
904 	   (r->id.dst_ip), (r->id.dst_port),
905 	   dyn_count ); )
906 	return r;
907 }
908 
909 /**
910  * lookup dynamic parent rule using pkt and rule as search keys.
911  * If the lookup fails, then install one.
912  */
913 static ipfw_dyn_rule *
914 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
915 {
916 	ipfw_dyn_rule *q;
917 	int i;
918 
919 	if (ipfw_dyn_v) {
920 		i = hash_packet( pkt );
921 		for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
922 			if (q->dyn_type == O_LIMIT_PARENT &&
923 			    rule== q->rule &&
924 			    pkt->proto == q->id.proto &&
925 			    pkt->src_ip == q->id.src_ip &&
926 			    pkt->dst_ip == q->id.dst_ip &&
927 			    pkt->src_port == q->id.src_port &&
928 			    pkt->dst_port == q->id.dst_port) {
929 				q->expire = time_second + dyn_short_lifetime;
930 				DEB(kprintf("lookup_dyn_parent found 0x%p\n",q);)
931 				return q;
932 			}
933 	}
934 	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
935 }
936 
937 /**
938  * Install dynamic state for rule type cmd->o.opcode
939  *
940  * Returns 1 (failure) if state is not installed because of errors or because
941  * session limitations are enforced.
942  */
943 static int
944 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
945 	struct ip_fw_args *args)
946 {
947 	static int last_log;
948 
949 	ipfw_dyn_rule *q;
950 
951 	DEB(kprintf("-- install state type %d 0x%08x %u -> 0x%08x %u\n",
952 	    cmd->o.opcode,
953 	    (args->f_id.src_ip), (args->f_id.src_port),
954 	    (args->f_id.dst_ip), (args->f_id.dst_port) );)
955 
956 	q = lookup_dyn_rule(&args->f_id, NULL, NULL);
957 
958 	if (q != NULL) { /* should never occur */
959 		if (last_log != time_second) {
960 			last_log = time_second;
961 			kprintf(" install_state: entry already present, done\n");
962 		}
963 		return 0;
964 	}
965 
966 	if (dyn_count >= dyn_max)
967 		/*
968 		 * Run out of slots, try to remove any expired rule.
969 		 */
970 		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
971 
972 	if (dyn_count >= dyn_max) {
973 		if (last_log != time_second) {
974 			last_log = time_second;
975 			kprintf("install_state: Too many dynamic rules\n");
976 		}
977 		return 1; /* cannot install, notify caller */
978 	}
979 
980 	switch (cmd->o.opcode) {
981 	case O_KEEP_STATE: /* bidir rule */
982 		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
983 		break;
984 
985 	case O_LIMIT: /* limit number of sessions */
986 	    {
987 		u_int16_t limit_mask = cmd->limit_mask;
988 		struct ipfw_flow_id id;
989 		ipfw_dyn_rule *parent;
990 
991 		DEB(kprintf("installing dyn-limit rule %d\n", cmd->conn_limit);)
992 
993 		id.dst_ip = id.src_ip = 0;
994 		id.dst_port = id.src_port = 0;
995 		id.proto = args->f_id.proto;
996 
997 		if (limit_mask & DYN_SRC_ADDR)
998 			id.src_ip = args->f_id.src_ip;
999 		if (limit_mask & DYN_DST_ADDR)
1000 			id.dst_ip = args->f_id.dst_ip;
1001 		if (limit_mask & DYN_SRC_PORT)
1002 			id.src_port = args->f_id.src_port;
1003 		if (limit_mask & DYN_DST_PORT)
1004 			id.dst_port = args->f_id.dst_port;
1005 		parent = lookup_dyn_parent(&id, rule);
1006 		if (parent == NULL) {
1007 			kprintf("add parent failed\n");
1008 			return 1;
1009 		}
1010 		if (parent->count >= cmd->conn_limit) {
1011 			/*
1012 			 * See if we can remove some expired rule.
1013 			 */
1014 			remove_dyn_rule(rule, parent);
1015 			if (parent->count >= cmd->conn_limit) {
1016 				if (fw_verbose && last_log != time_second) {
1017 					last_log = time_second;
1018 					log(LOG_SECURITY | LOG_DEBUG,
1019 					    "drop session, too many entries\n");
1020 				}
1021 				return 1;
1022 			}
1023 		}
1024 		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1025 	    }
1026 		break;
1027 	default:
1028 		kprintf("unknown dynamic rule type %u\n", cmd->o.opcode);
1029 		return 1;
1030 	}
1031 	lookup_dyn_rule(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1032 	return 0;
1033 }
1034 
1035 /*
1036  * Transmit a TCP packet, containing either a RST or a keepalive.
1037  * When flags & TH_RST, we are sending a RST packet, because of a
1038  * "reset" action matched the packet.
1039  * Otherwise we are sending a keepalive, and flags & TH_
1040  */
1041 static void
1042 send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1043 {
1044 	struct mbuf *m;
1045 	struct ip *ip;
1046 	struct tcphdr *tcp;
1047 	struct route sro;	/* fake route */
1048 
1049 	MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1050 	if (m == 0)
1051 		return;
1052 	m->m_pkthdr.rcvif = (struct ifnet *)0;
1053 	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1054 	m->m_data += max_linkhdr;
1055 
1056 	ip = mtod(m, struct ip *);
1057 	bzero(ip, m->m_len);
1058 	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1059 	ip->ip_p = IPPROTO_TCP;
1060 	tcp->th_off = 5;
1061 	/*
1062 	 * Assume we are sending a RST (or a keepalive in the reverse
1063 	 * direction), swap src and destination addresses and ports.
1064 	 */
1065 	ip->ip_src.s_addr = htonl(id->dst_ip);
1066 	ip->ip_dst.s_addr = htonl(id->src_ip);
1067 	tcp->th_sport = htons(id->dst_port);
1068 	tcp->th_dport = htons(id->src_port);
1069 	if (flags & TH_RST) {	/* we are sending a RST */
1070 		if (flags & TH_ACK) {
1071 			tcp->th_seq = htonl(ack);
1072 			tcp->th_ack = htonl(0);
1073 			tcp->th_flags = TH_RST;
1074 		} else {
1075 			if (flags & TH_SYN)
1076 				seq++;
1077 			tcp->th_seq = htonl(0);
1078 			tcp->th_ack = htonl(seq);
1079 			tcp->th_flags = TH_RST | TH_ACK;
1080 		}
1081 	} else {
1082 		/*
1083 		 * We are sending a keepalive. flags & TH_SYN determines
1084 		 * the direction, forward if set, reverse if clear.
1085 		 * NOTE: seq and ack are always assumed to be correct
1086 		 * as set by the caller. This may be confusing...
1087 		 */
1088 		if (flags & TH_SYN) {
1089 			/*
1090 			 * we have to rewrite the correct addresses!
1091 			 */
1092 			ip->ip_dst.s_addr = htonl(id->dst_ip);
1093 			ip->ip_src.s_addr = htonl(id->src_ip);
1094 			tcp->th_dport = htons(id->dst_port);
1095 			tcp->th_sport = htons(id->src_port);
1096 		}
1097 		tcp->th_seq = htonl(seq);
1098 		tcp->th_ack = htonl(ack);
1099 		tcp->th_flags = TH_ACK;
1100 	}
1101 	/*
1102 	 * set ip_len to the payload size so we can compute
1103 	 * the tcp checksum on the pseudoheader
1104 	 * XXX check this, could save a couple of words ?
1105 	 */
1106 	ip->ip_len = htons(sizeof(struct tcphdr));
1107 	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1108 	/*
1109 	 * now fill fields left out earlier
1110 	 */
1111 	ip->ip_ttl = ip_defttl;
1112 	ip->ip_len = m->m_pkthdr.len;
1113 	bzero (&sro, sizeof (sro));
1114 	ip_rtaddr(ip->ip_dst, &sro);
1115 	m->m_pkthdr.fw_flags |= IPFW_MBUF_SKIP_FIREWALL;
1116 	ip_output(m, NULL, &sro, 0, NULL, NULL);
1117 	if (sro.ro_rt)
1118 		RTFREE(sro.ro_rt);
1119 }
1120 
1121 /*
1122  * sends a reject message, consuming the mbuf passed as an argument.
1123  */
1124 static void
1125 send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
1126 {
1127 
1128 	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1129 		/* We need the IP header in host order for icmp_error(). */
1130 		if (args->eh != NULL) {
1131 			struct ip *ip = mtod(args->m, struct ip *);
1132 			ip->ip_len = ntohs(ip->ip_len);
1133 			ip->ip_off = ntohs(ip->ip_off);
1134 		}
1135 		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1136 	} else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1137 		struct tcphdr *const tcp =
1138 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1139 		if ( (tcp->th_flags & TH_RST) == 0)
1140 			send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1141 				ntohl(tcp->th_ack),
1142 				tcp->th_flags | TH_RST);
1143 		m_freem(args->m);
1144 	} else
1145 		m_freem(args->m);
1146 	args->m = NULL;
1147 }
1148 
1149 /**
1150  *
1151  * Given an ip_fw *, lookup_next_rule will return a pointer
1152  * to the next rule, which can be either the jump
1153  * target (for skipto instructions) or the next one in the list (in
1154  * all other cases including a missing jump target).
1155  * The result is also written in the "next_rule" field of the rule.
1156  * Backward jumps are not allowed, so start looking from the next
1157  * rule...
1158  *
1159  * This never returns NULL -- in case we do not have an exact match,
1160  * the next rule is returned. When the ruleset is changed,
1161  * pointers are flushed so we are always correct.
1162  */
1163 
1164 static struct ip_fw *
1165 lookup_next_rule(struct ip_fw *me)
1166 {
1167 	struct ip_fw *rule = NULL;
1168 	ipfw_insn *cmd;
1169 
1170 	/* look for action, in case it is a skipto */
1171 	cmd = ACTION_PTR(me);
1172 	if (cmd->opcode == O_LOG)
1173 		cmd += F_LEN(cmd);
1174 	if ( cmd->opcode == O_SKIPTO )
1175 		for (rule = me->next; rule ; rule = rule->next)
1176 			if (rule->rulenum >= cmd->arg1)
1177 				break;
1178 	if (rule == NULL)			/* failure or not a skipto */
1179 		rule = me->next;
1180 	me->next_rule = rule;
1181 	return rule;
1182 }
1183 
1184 /*
1185  * The main check routine for the firewall.
1186  *
1187  * All arguments are in args so we can modify them and return them
1188  * back to the caller.
1189  *
1190  * Parameters:
1191  *
1192  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1193  *		Starts with the IP header.
1194  *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
1195  *	args->oif	Outgoing interface, or NULL if packet is incoming.
1196  *		The incoming interface is in the mbuf. (in)
1197  *
1198  *	args->rule	Pointer to the last matching rule (in/out)
1199  *	args->next_hop	Socket we are forwarding to (out).
1200  *	args->f_id	Addresses grabbed from the packet (out)
1201  *
1202  * Return value:
1203  *
1204  *	IP_FW_PORT_DENY_FLAG	the packet must be dropped.
1205  *	0	The packet is to be accepted and routed normally OR
1206  *      	the packet was denied/rejected and has been dropped;
1207  *		in the latter case, *m is equal to NULL upon return.
1208  *	port	Divert the packet to port, with these caveats:
1209  *
1210  *		- If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
1211  *		  of diverting it (ie, 'ipfw tee').
1212  *
1213  *		- If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
1214  *		  16 bits as a dummynet pipe number instead of diverting
1215  */
1216 
1217 static int
1218 ipfw_chk(struct ip_fw_args *args)
1219 {
1220 	/*
1221 	 * Local variables hold state during the processing of a packet.
1222 	 *
1223 	 * IMPORTANT NOTE: to speed up the processing of rules, there
1224 	 * are some assumption on the values of the variables, which
1225 	 * are documented here. Should you change them, please check
1226 	 * the implementation of the various instructions to make sure
1227 	 * that they still work.
1228 	 *
1229 	 * args->eh	The MAC header. It is non-null for a layer2
1230 	 *	packet, it is NULL for a layer-3 packet.
1231 	 *
1232 	 * m | args->m	Pointer to the mbuf, as received from the caller.
1233 	 *	It may change if ipfw_chk() does an m_pullup, or if it
1234 	 *	consumes the packet because it calls send_reject().
1235 	 *	XXX This has to change, so that ipfw_chk() never modifies
1236 	 *	or consumes the buffer.
1237 	 * ip	is simply an alias of the value of m, and it is kept
1238 	 *	in sync with it (the packet is	supposed to start with
1239 	 *	the ip header).
1240 	 */
1241 	struct mbuf *m = args->m;
1242 	struct ip *ip = mtod(m, struct ip *);
1243 
1244 	/*
1245 	 * oif | args->oif	If NULL, ipfw_chk has been called on the
1246 	 *	inbound path (ether_input, ip_input).
1247 	 *	If non-NULL, ipfw_chk has been called on the outbound path
1248 	 *	(ether_output, ip_output).
1249 	 */
1250 	struct ifnet *oif = args->oif;
1251 
1252 	struct ip_fw *f = NULL;		/* matching rule */
1253 	int retval = 0;
1254 	struct m_tag *mtag;
1255 
1256 	/*
1257 	 * hlen	The length of the IPv4 header.
1258 	 *	hlen >0 means we have an IPv4 packet.
1259 	 */
1260 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1261 
1262 	/*
1263 	 * offset	The offset of a fragment. offset != 0 means that
1264 	 *	we have a fragment at this offset of an IPv4 packet.
1265 	 *	offset == 0 means that (if this is an IPv4 packet)
1266 	 *	this is the first or only fragment.
1267 	 */
1268 	u_short offset = 0;
1269 
1270 	/*
1271 	 * Local copies of addresses. They are only valid if we have
1272 	 * an IP packet.
1273 	 *
1274 	 * proto	The protocol. Set to 0 for non-ip packets,
1275 	 *	or to the protocol read from the packet otherwise.
1276 	 *	proto != 0 means that we have an IPv4 packet.
1277 	 *
1278 	 * src_port, dst_port	port numbers, in HOST format. Only
1279 	 *	valid for TCP and UDP packets.
1280 	 *
1281 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1282 	 *	Only valid for IPv4 packets.
1283 	 */
1284 	u_int8_t proto;
1285 	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
1286 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1287 	u_int16_t ip_len=0;
1288 	int dyn_dir = MATCH_UNKNOWN;
1289 	ipfw_dyn_rule *q = NULL;
1290 
1291 	if (m->m_pkthdr.fw_flags & IPFW_MBUF_SKIP_FIREWALL)
1292 		return 0;	/* accept */
1293 	/*
1294 	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
1295 	 * 	MATCH_NONE when checked and not matched (q = NULL),
1296 	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
1297 	 */
1298 
1299 	if (args->eh == NULL ||		/* layer 3 packet */
1300 		( m->m_pkthdr.len >= sizeof(struct ip) &&
1301 		    ntohs(args->eh->ether_type) == ETHERTYPE_IP))
1302 			hlen = ip->ip_hl << 2;
1303 
1304 	/*
1305 	 * Collect parameters into local variables for faster matching.
1306 	 */
1307 	if (hlen == 0) {	/* do not grab addresses for non-ip pkts */
1308 		proto = args->f_id.proto = 0;	/* mark f_id invalid */
1309 		goto after_ip_checks;
1310 	}
1311 
1312 	proto = args->f_id.proto = ip->ip_p;
1313 	src_ip = ip->ip_src;
1314 	dst_ip = ip->ip_dst;
1315 	if (args->eh != NULL) { /* layer 2 packets are as on the wire */
1316 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1317 		ip_len = ntohs(ip->ip_len);
1318 	} else {
1319 		offset = ip->ip_off & IP_OFFMASK;
1320 		ip_len = ip->ip_len;
1321 	}
1322 
1323 #define PULLUP_TO(len)						\
1324 		do {						\
1325 			if ((m)->m_len < (len)) {		\
1326 			    args->m = m = m_pullup(m, (len));	\
1327 			    if (m == 0)				\
1328 				goto pullup_failed;		\
1329 			    ip = mtod(m, struct ip *);		\
1330 			}					\
1331 		} while (0)
1332 
1333 	if (offset == 0) {
1334 		switch (proto) {
1335 		case IPPROTO_TCP:
1336 		    {
1337 			struct tcphdr *tcp;
1338 
1339 			PULLUP_TO(hlen + sizeof(struct tcphdr));
1340 			tcp = L3HDR(struct tcphdr, ip);
1341 			dst_port = tcp->th_dport;
1342 			src_port = tcp->th_sport;
1343 			args->f_id.flags = tcp->th_flags;
1344 			}
1345 			break;
1346 
1347 		case IPPROTO_UDP:
1348 		    {
1349 			struct udphdr *udp;
1350 
1351 			PULLUP_TO(hlen + sizeof(struct udphdr));
1352 			udp = L3HDR(struct udphdr, ip);
1353 			dst_port = udp->uh_dport;
1354 			src_port = udp->uh_sport;
1355 			}
1356 			break;
1357 
1358 		case IPPROTO_ICMP:
1359 			PULLUP_TO(hlen + 4);	/* type, code and checksum. */
1360 			args->f_id.flags = L3HDR(struct icmp, ip)->icmp_type;
1361 			break;
1362 
1363 		default:
1364 			break;
1365 		}
1366 #undef PULLUP_TO
1367 	}
1368 
1369 	args->f_id.src_ip = ntohl(src_ip.s_addr);
1370 	args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1371 	args->f_id.src_port = src_port = ntohs(src_port);
1372 	args->f_id.dst_port = dst_port = ntohs(dst_port);
1373 
1374 after_ip_checks:
1375 	if (args->rule) {
1376 		/*
1377 		 * Packet has already been tagged. Look for the next rule
1378 		 * to restart processing.
1379 		 *
1380 		 * If fw_one_pass != 0 then just accept it.
1381 		 * XXX should not happen here, but optimized out in
1382 		 * the caller.
1383 		 */
1384 		if (fw_one_pass)
1385 			return 0;
1386 
1387 		f = args->rule->next_rule;
1388 		if (f == NULL)
1389 			f = lookup_next_rule(args->rule);
1390 	} else {
1391 		/*
1392 		 * Find the starting rule. It can be either the first
1393 		 * one, or the one after divert_rule if asked so.
1394 		 */
1395 		int skipto;
1396 
1397 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1398 		if (mtag != NULL)
1399 			skipto = *(u_int16_t *)m_tag_data(mtag);
1400 		else
1401 			skipto = 0;
1402 
1403 		f = layer3_chain;
1404 		if (args->eh == NULL && skipto != 0) {
1405 			if (skipto >= IPFW_DEFAULT_RULE)
1406 				return(IP_FW_PORT_DENY_FLAG); /* invalid */
1407 			while (f && f->rulenum <= skipto)
1408 				f = f->next;
1409 			if (f == NULL)	/* drop packet */
1410 				return(IP_FW_PORT_DENY_FLAG);
1411 		}
1412 	}
1413 	if ((mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
1414 		m_tag_delete(m, mtag);
1415 
1416 	/*
1417 	 * Now scan the rules, and parse microinstructions for each rule.
1418 	 */
1419 	for (; f; f = f->next) {
1420 		int l, cmdlen;
1421 		ipfw_insn *cmd;
1422 		int skip_or; /* skip rest of OR block */
1423 
1424 again:
1425 		if (set_disable & (1 << f->set) )
1426 			continue;
1427 
1428 		skip_or = 0;
1429 		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1430 		    l -= cmdlen, cmd += cmdlen) {
1431 			int match;
1432 
1433 			/*
1434 			 * check_body is a jump target used when we find a
1435 			 * CHECK_STATE, and need to jump to the body of
1436 			 * the target rule.
1437 			 */
1438 
1439 check_body:
1440 			cmdlen = F_LEN(cmd);
1441 			/*
1442 			 * An OR block (insn_1 || .. || insn_n) has the
1443 			 * F_OR bit set in all but the last instruction.
1444 			 * The first match will set "skip_or", and cause
1445 			 * the following instructions to be skipped until
1446 			 * past the one with the F_OR bit clear.
1447 			 */
1448 			if (skip_or) {		/* skip this instruction */
1449 				if ((cmd->len & F_OR) == 0)
1450 					skip_or = 0;	/* next one is good */
1451 				continue;
1452 			}
1453 			match = 0; /* set to 1 if we succeed */
1454 
1455 			switch (cmd->opcode) {
1456 			/*
1457 			 * The first set of opcodes compares the packet's
1458 			 * fields with some pattern, setting 'match' if a
1459 			 * match is found. At the end of the loop there is
1460 			 * logic to deal with F_NOT and F_OR flags associated
1461 			 * with the opcode.
1462 			 */
1463 			case O_NOP:
1464 				match = 1;
1465 				break;
1466 
1467 			case O_FORWARD_MAC:
1468 				kprintf("ipfw: opcode %d unimplemented\n",
1469 				    cmd->opcode);
1470 				break;
1471 
1472 			case O_GID:
1473 			case O_UID:
1474 				/*
1475 				 * We only check offset == 0 && proto != 0,
1476 				 * as this ensures that we have an IPv4
1477 				 * packet with the ports info.
1478 				 */
1479 				if (offset!=0)
1480 					break;
1481 			    {
1482 				struct inpcbinfo *pi;
1483 				int wildcard;
1484 				struct inpcb *pcb;
1485 
1486 				if (proto == IPPROTO_TCP) {
1487 					wildcard = 0;
1488 					pi = &tcbinfo[mycpu->gd_cpuid];
1489 				} else if (proto == IPPROTO_UDP) {
1490 					wildcard = 1;
1491 					pi = &udbinfo;
1492 				} else
1493 					break;
1494 
1495 				pcb =  (oif) ?
1496 					in_pcblookup_hash(pi,
1497 					    dst_ip, htons(dst_port),
1498 					    src_ip, htons(src_port),
1499 					    wildcard, oif) :
1500 					in_pcblookup_hash(pi,
1501 					    src_ip, htons(src_port),
1502 					    dst_ip, htons(dst_port),
1503 					    wildcard, NULL);
1504 
1505 				if (pcb == NULL || pcb->inp_socket == NULL)
1506 					break;
1507 #if defined(__DragonFly__) || (defined(__FreeBSD__) && __FreeBSD_version < 500034)
1508 #define socheckuid(a,b)	((a)->so_cred->cr_uid != (b))
1509 #endif
1510 				if (cmd->opcode == O_UID) {
1511 					match =
1512 					  !socheckuid(pcb->inp_socket,
1513 					   (uid_t)((ipfw_insn_u32 *)cmd)->d[0]);
1514 				} else  {
1515 					match = groupmember(
1516 					    (uid_t)((ipfw_insn_u32 *)cmd)->d[0],
1517 					    pcb->inp_socket->so_cred);
1518 				}
1519 			    }
1520 				break;
1521 
1522 			case O_RECV:
1523 				match = iface_match(m->m_pkthdr.rcvif,
1524 				    (ipfw_insn_if *)cmd);
1525 				break;
1526 
1527 			case O_XMIT:
1528 				match = iface_match(oif, (ipfw_insn_if *)cmd);
1529 				break;
1530 
1531 			case O_VIA:
1532 				match = iface_match(oif ? oif :
1533 				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1534 				break;
1535 
1536 			case O_MACADDR2:
1537 				if (args->eh != NULL) {	/* have MAC header */
1538 					u_int32_t *want = (u_int32_t *)
1539 						((ipfw_insn_mac *)cmd)->addr;
1540 					u_int32_t *mask = (u_int32_t *)
1541 						((ipfw_insn_mac *)cmd)->mask;
1542 					u_int32_t *hdr = (u_int32_t *)args->eh;
1543 
1544 					match =
1545 					    ( want[0] == (hdr[0] & mask[0]) &&
1546 					      want[1] == (hdr[1] & mask[1]) &&
1547 					      want[2] == (hdr[2] & mask[2]) );
1548 				}
1549 				break;
1550 
1551 			case O_MAC_TYPE:
1552 				if (args->eh != NULL) {
1553 					u_int16_t t =
1554 					    ntohs(args->eh->ether_type);
1555 					u_int16_t *p =
1556 					    ((ipfw_insn_u16 *)cmd)->ports;
1557 					int i;
1558 
1559 					for (i = cmdlen - 1; !match && i>0;
1560 					    i--, p += 2)
1561 						match = (t>=p[0] && t<=p[1]);
1562 				}
1563 				break;
1564 
1565 			case O_FRAG:
1566 				match = (hlen > 0 && offset != 0);
1567 				break;
1568 
1569 			case O_IN:	/* "out" is "not in" */
1570 				match = (oif == NULL);
1571 				break;
1572 
1573 			case O_LAYER2:
1574 				match = (args->eh != NULL);
1575 				break;
1576 
1577 			case O_PROTO:
1578 				/*
1579 				 * We do not allow an arg of 0 so the
1580 				 * check of "proto" only suffices.
1581 				 */
1582 				match = (proto == cmd->arg1);
1583 				break;
1584 
1585 			case O_IP_SRC:
1586 				match = (hlen > 0 &&
1587 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1588 				    src_ip.s_addr);
1589 				break;
1590 
1591 			case O_IP_SRC_MASK:
1592 				match = (hlen > 0 &&
1593 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1594 				     (src_ip.s_addr &
1595 				     ((ipfw_insn_ip *)cmd)->mask.s_addr));
1596 				break;
1597 
1598 			case O_IP_SRC_ME:
1599 				if (hlen > 0) {
1600 					struct ifnet *tif;
1601 
1602 					INADDR_TO_IFP(src_ip, tif);
1603 					match = (tif != NULL);
1604 				}
1605 				break;
1606 
1607 			case O_IP_DST_SET:
1608 			case O_IP_SRC_SET:
1609 				if (hlen > 0) {
1610 					u_int32_t *d = (u_int32_t *)(cmd+1);
1611 					u_int32_t addr =
1612 					    cmd->opcode == O_IP_DST_SET ?
1613 						args->f_id.dst_ip :
1614 						args->f_id.src_ip;
1615 
1616 					    if (addr < d[0])
1617 						    break;
1618 					    addr -= d[0]; /* subtract base */
1619 					    match = (addr < cmd->arg1) &&
1620 						( d[ 1 + (addr>>5)] &
1621 						  (1<<(addr & 0x1f)) );
1622 				}
1623 				break;
1624 
1625 			case O_IP_DST:
1626 				match = (hlen > 0 &&
1627 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1628 				    dst_ip.s_addr);
1629 				break;
1630 
1631 			case O_IP_DST_MASK:
1632 				match = (hlen > 0) &&
1633 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1634 				     (dst_ip.s_addr &
1635 				     ((ipfw_insn_ip *)cmd)->mask.s_addr));
1636 				break;
1637 
1638 			case O_IP_DST_ME:
1639 				if (hlen > 0) {
1640 					struct ifnet *tif;
1641 
1642 					INADDR_TO_IFP(dst_ip, tif);
1643 					match = (tif != NULL);
1644 				}
1645 				break;
1646 
1647 			case O_IP_SRCPORT:
1648 			case O_IP_DSTPORT:
1649 				/*
1650 				 * offset == 0 && proto != 0 is enough
1651 				 * to guarantee that we have an IPv4
1652 				 * packet with port info.
1653 				 */
1654 				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1655 				    && offset == 0) {
1656 					u_int16_t x =
1657 					    (cmd->opcode == O_IP_SRCPORT) ?
1658 						src_port : dst_port ;
1659 					u_int16_t *p =
1660 					    ((ipfw_insn_u16 *)cmd)->ports;
1661 					int i;
1662 
1663 					for (i = cmdlen - 1; !match && i>0;
1664 					    i--, p += 2)
1665 						match = (x>=p[0] && x<=p[1]);
1666 				}
1667 				break;
1668 
1669 			case O_ICMPTYPE:
1670 				match = (offset == 0 && proto==IPPROTO_ICMP &&
1671 				    icmptype_match(ip, (ipfw_insn_u32 *)cmd) );
1672 				break;
1673 
1674 			case O_IPOPT:
1675 				match = (hlen > 0 && ipopts_match(ip, cmd) );
1676 				break;
1677 
1678 			case O_IPVER:
1679 				match = (hlen > 0 && cmd->arg1 == ip->ip_v);
1680 				break;
1681 
1682 			case O_IPTTL:
1683 				match = (hlen > 0 && cmd->arg1 == ip->ip_ttl);
1684 				break;
1685 
1686 			case O_IPID:
1687 				match = (hlen > 0 &&
1688 				    cmd->arg1 == ntohs(ip->ip_id));
1689 				break;
1690 
1691 			case O_IPLEN:
1692 				match = (hlen > 0 && cmd->arg1 == ip_len);
1693 				break;
1694 
1695 			case O_IPPRECEDENCE:
1696 				match = (hlen > 0 &&
1697 				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1698 				break;
1699 
1700 			case O_IPTOS:
1701 				match = (hlen > 0 &&
1702 				    flags_match(cmd, ip->ip_tos));
1703 				break;
1704 
1705 			case O_TCPFLAGS:
1706 				match = (proto == IPPROTO_TCP && offset == 0 &&
1707 				    flags_match(cmd,
1708 					L3HDR(struct tcphdr,ip)->th_flags));
1709 				break;
1710 
1711 			case O_TCPOPTS:
1712 				match = (proto == IPPROTO_TCP && offset == 0 &&
1713 				    tcpopts_match(ip, cmd));
1714 				break;
1715 
1716 			case O_TCPSEQ:
1717 				match = (proto == IPPROTO_TCP && offset == 0 &&
1718 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1719 					L3HDR(struct tcphdr,ip)->th_seq);
1720 				break;
1721 
1722 			case O_TCPACK:
1723 				match = (proto == IPPROTO_TCP && offset == 0 &&
1724 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1725 					L3HDR(struct tcphdr,ip)->th_ack);
1726 				break;
1727 
1728 			case O_TCPWIN:
1729 				match = (proto == IPPROTO_TCP && offset == 0 &&
1730 				    cmd->arg1 ==
1731 					L3HDR(struct tcphdr,ip)->th_win);
1732 				break;
1733 
1734 			case O_ESTAB:
1735 				/* reject packets which have SYN only */
1736 				/* XXX should i also check for TH_ACK ? */
1737 				match = (proto == IPPROTO_TCP && offset == 0 &&
1738 				    (L3HDR(struct tcphdr,ip)->th_flags &
1739 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1740 				break;
1741 
1742 			case O_LOG:
1743 				if (fw_verbose)
1744 					ipfw_log(f, hlen, args->eh, m, oif);
1745 				match = 1;
1746 				break;
1747 
1748 			case O_PROB:
1749 				match = (krandom() <
1750 					((ipfw_insn_u32 *)cmd)->d[0]);
1751 				break;
1752 
1753 			/*
1754 			 * The second set of opcodes represents 'actions',
1755 			 * i.e. the terminal part of a rule once the packet
1756 			 * matches all previous patterns.
1757 			 * Typically there is only one action for each rule,
1758 			 * and the opcode is stored at the end of the rule
1759 			 * (but there are exceptions -- see below).
1760 			 *
1761 			 * In general, here we set retval and terminate the
1762 			 * outer loop (would be a 'break 3' in some language,
1763 			 * but we need to do a 'goto done').
1764 			 *
1765 			 * Exceptions:
1766 			 * O_COUNT and O_SKIPTO actions:
1767 			 *   instead of terminating, we jump to the next rule
1768 			 *   ('goto next_rule', equivalent to a 'break 2'),
1769 			 *   or to the SKIPTO target ('goto again' after
1770 			 *   having set f, cmd and l), respectively.
1771 			 *
1772 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
1773 			 *   not real 'actions', and are stored right
1774 			 *   before the 'action' part of the rule.
1775 			 *   These opcodes try to install an entry in the
1776 			 *   state tables; if successful, we continue with
1777 			 *   the next opcode (match=1; break;), otherwise
1778 			 *   the packet *   must be dropped
1779 			 *   ('goto done' after setting retval);
1780 			 *
1781 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1782 			 *   cause a lookup of the state table, and a jump
1783 			 *   to the 'action' part of the parent rule
1784 			 *   ('goto check_body') if an entry is found, or
1785 			 *   (CHECK_STATE only) a jump to the next rule if
1786 			 *   the entry is not found ('goto next_rule').
1787 			 *   The result of the lookup is cached to make
1788 			 *   further instances of these opcodes are
1789 			 *   effectively NOPs.
1790 			 */
1791 			case O_LIMIT:
1792 			case O_KEEP_STATE:
1793 				if (install_state(f,
1794 				    (ipfw_insn_limit *)cmd, args)) {
1795 					retval = IP_FW_PORT_DENY_FLAG;
1796 					goto done; /* error/limit violation */
1797 				}
1798 				match = 1;
1799 				break;
1800 
1801 			case O_PROBE_STATE:
1802 			case O_CHECK_STATE:
1803 				/*
1804 				 * dynamic rules are checked at the first
1805 				 * keep-state or check-state occurrence,
1806 				 * with the result being stored in dyn_dir.
1807 				 * The compiler introduces a PROBE_STATE
1808 				 * instruction for us when we have a
1809 				 * KEEP_STATE (because PROBE_STATE needs
1810 				 * to be run first).
1811 				 */
1812 				if (dyn_dir == MATCH_UNKNOWN &&
1813 				    (q = lookup_dyn_rule(&args->f_id,
1814 				     &dyn_dir, proto == IPPROTO_TCP ?
1815 					L3HDR(struct tcphdr, ip) : NULL))
1816 					!= NULL) {
1817 					/*
1818 					 * Found dynamic entry, update stats
1819 					 * and jump to the 'action' part of
1820 					 * the parent rule.
1821 					 */
1822 					q->pcnt++;
1823 					q->bcnt += ip_len;
1824 					f = q->rule;
1825 					cmd = ACTION_PTR(f);
1826 					l = f->cmd_len - f->act_ofs;
1827 					goto check_body;
1828 				}
1829 				/*
1830 				 * Dynamic entry not found. If CHECK_STATE,
1831 				 * skip to next rule, if PROBE_STATE just
1832 				 * ignore and continue with next opcode.
1833 				 */
1834 				if (cmd->opcode == O_CHECK_STATE)
1835 					goto next_rule;
1836 				match = 1;
1837 				break;
1838 
1839 			case O_ACCEPT:
1840 				retval = 0;	/* accept */
1841 				goto done;
1842 
1843 			case O_PIPE:
1844 			case O_QUEUE:
1845 				args->rule = f; /* report matching rule */
1846 				retval = cmd->arg1 | IP_FW_PORT_DYNT_FLAG;
1847 				goto done;
1848 
1849 			case O_DIVERT:
1850 			case O_TEE:
1851 				if (args->eh) /* not on layer 2 */
1852 					break;
1853 
1854 				mtag = m_tag_get(PACKET_TAG_IPFW_DIVERT,
1855 						sizeof(u_int16_t), M_NOWAIT);
1856 				if (mtag == NULL) {
1857 					retval = IP_FW_PORT_DENY_FLAG;
1858 					goto done;
1859 				}
1860 				*(u_int16_t *)m_tag_data(mtag) = f->rulenum;
1861 				m_tag_prepend(m, mtag);
1862 				retval = (cmd->opcode == O_DIVERT) ?
1863 				    cmd->arg1 :
1864 				    cmd->arg1 | IP_FW_PORT_TEE_FLAG;
1865 				goto done;
1866 
1867 			case O_COUNT:
1868 			case O_SKIPTO:
1869 				f->pcnt++;	/* update stats */
1870 				f->bcnt += ip_len;
1871 				f->timestamp = time_second;
1872 				if (cmd->opcode == O_COUNT)
1873 					goto next_rule;
1874 				/* handle skipto */
1875 				if (f->next_rule == NULL)
1876 					lookup_next_rule(f);
1877 				f = f->next_rule;
1878 				goto again;
1879 
1880 			case O_REJECT:
1881 				/*
1882 				 * Drop the packet and send a reject notice
1883 				 * if the packet is not ICMP (or is an ICMP
1884 				 * query), and it is not multicast/broadcast.
1885 				 */
1886 				if (hlen > 0 &&
1887 				    (proto != IPPROTO_ICMP ||
1888 				     is_icmp_query(ip)) &&
1889 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
1890 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
1891 					send_reject(args, cmd->arg1,
1892 					    offset,ip_len);
1893 					m = args->m;
1894 				}
1895 				/* FALLTHROUGH */
1896 			case O_DENY:
1897 				retval = IP_FW_PORT_DENY_FLAG;
1898 				goto done;
1899 
1900 			case O_FORWARD_IP:
1901 				if (args->eh)	/* not valid on layer2 pkts */
1902 					break;
1903 				if (!q || dyn_dir == MATCH_FORWARD)
1904 					args->next_hop =
1905 					    &((ipfw_insn_sa *)cmd)->sa;
1906 				retval = 0;
1907 				goto done;
1908 
1909 			default:
1910 				panic("-- unknown opcode %d\n", cmd->opcode);
1911 			} /* end of switch() on opcodes */
1912 
1913 			if (cmd->len & F_NOT)
1914 				match = !match;
1915 
1916 			if (match) {
1917 				if (cmd->len & F_OR)
1918 					skip_or = 1;
1919 			} else {
1920 				if (!(cmd->len & F_OR)) /* not an OR block, */
1921 					break;		/* try next rule    */
1922 			}
1923 
1924 		}	/* end of inner for, scan opcodes */
1925 
1926 next_rule:;		/* try next rule		*/
1927 
1928 	}		/* end of outer for, scan rules */
1929 	kprintf("+++ ipfw: ouch!, skip past end of rules, denying packet\n");
1930 	return(IP_FW_PORT_DENY_FLAG);
1931 
1932 done:
1933 	/* Update statistics */
1934 	f->pcnt++;
1935 	f->bcnt += ip_len;
1936 	f->timestamp = time_second;
1937 	return retval;
1938 
1939 pullup_failed:
1940 	if (fw_verbose)
1941 		kprintf("pullup failed\n");
1942 	return(IP_FW_PORT_DENY_FLAG);
1943 }
1944 
1945 /*
1946  * When a rule is added/deleted, clear the next_rule pointers in all rules.
1947  * These will be reconstructed on the fly as packets are matched.
1948  * Must be called at splimp().
1949  */
1950 static void
1951 flush_rule_ptrs(void)
1952 {
1953 	struct ip_fw *rule;
1954 
1955 	for (rule = layer3_chain; rule; rule = rule->next)
1956 		rule->next_rule = NULL;
1957 }
1958 
1959 /*
1960  * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
1961  * pipe/queue, or to all of them (match == NULL).
1962  * Must be called at splimp().
1963  */
1964 void
1965 flush_pipe_ptrs(struct dn_flow_set *match)
1966 {
1967 	struct ip_fw *rule;
1968 
1969 	for (rule = layer3_chain; rule; rule = rule->next) {
1970 		ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
1971 
1972 		if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
1973 			continue;
1974 		if (match == NULL || cmd->pipe_ptr == match)
1975 			cmd->pipe_ptr = NULL;
1976 	}
1977 }
1978 
1979 /*
1980  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
1981  * possibly create a rule number and add the rule to the list.
1982  * Update the rule_number in the input struct so the caller knows it as well.
1983  */
1984 static int
1985 add_rule(struct ip_fw **head, struct ip_fw *input_rule)
1986 {
1987 	struct ip_fw *rule, *f, *prev;
1988 	int l = RULESIZE(input_rule);
1989 
1990 	if (*head == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
1991 		return (EINVAL);
1992 
1993 	rule = kmalloc(l, M_IPFW, M_WAITOK | M_ZERO);
1994 	if (rule == NULL)
1995 		return (ENOSPC);
1996 
1997 	bcopy(input_rule, rule, l);
1998 
1999 	rule->next = NULL;
2000 	rule->next_rule = NULL;
2001 
2002 	rule->pcnt = 0;
2003 	rule->bcnt = 0;
2004 	rule->timestamp = 0;
2005 
2006 	crit_enter();
2007 
2008 	if (*head == NULL) {	/* default rule */
2009 		*head = rule;
2010 		goto done;
2011         }
2012 
2013 	/*
2014 	 * If rulenum is 0, find highest numbered rule before the
2015 	 * default rule, and add autoinc_step
2016 	 */
2017 	if (autoinc_step < 1)
2018 		autoinc_step = 1;
2019 	else if (autoinc_step > 1000)
2020 		autoinc_step = 1000;
2021 	if (rule->rulenum == 0) {
2022 		/*
2023 		 * locate the highest numbered rule before default
2024 		 */
2025 		for (f = *head; f; f = f->next) {
2026 			if (f->rulenum == IPFW_DEFAULT_RULE)
2027 				break;
2028 			rule->rulenum = f->rulenum;
2029 		}
2030 		if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
2031 			rule->rulenum += autoinc_step;
2032 		input_rule->rulenum = rule->rulenum;
2033 	}
2034 
2035 	/*
2036 	 * Now insert the new rule in the right place in the sorted list.
2037 	 */
2038 	for (prev = NULL, f = *head; f; prev = f, f = f->next) {
2039 		if (f->rulenum > rule->rulenum) { /* found the location */
2040 			if (prev) {
2041 				rule->next = f;
2042 				prev->next = rule;
2043 			} else { /* head insert */
2044 				rule->next = *head;
2045 				*head = rule;
2046 			}
2047 			break;
2048 		}
2049 	}
2050 	flush_rule_ptrs();
2051 done:
2052 	static_count++;
2053 	static_len += l;
2054 	crit_exit();
2055 	DEB(kprintf("++ installed rule %d, static count now %d\n",
2056 		rule->rulenum, static_count);)
2057 	return (0);
2058 }
2059 
2060 /**
2061  * Free storage associated with a static rule (including derived
2062  * dynamic rules).
2063  * The caller is in charge of clearing rule pointers to avoid
2064  * dangling pointers.
2065  * @return a pointer to the next entry.
2066  * Arguments are not checked, so they better be correct.
2067  * Must be called at splimp().
2068  */
2069 static struct ip_fw *
2070 delete_rule(struct ip_fw **head, struct ip_fw *prev, struct ip_fw *rule)
2071 {
2072 	struct ip_fw *n;
2073 	int l = RULESIZE(rule);
2074 
2075 	n = rule->next;
2076 	remove_dyn_rule(rule, NULL /* force removal */);
2077 	if (prev == NULL)
2078 		*head = n;
2079 	else
2080 		prev->next = n;
2081 	static_count--;
2082 	static_len -= l;
2083 
2084 	if (DUMMYNET_LOADED)
2085 		ip_dn_ruledel_ptr(rule);
2086 	kfree(rule, M_IPFW);
2087 	return n;
2088 }
2089 
2090 /*
2091  * Deletes all rules from a chain (including the default rule
2092  * if the second argument is set).
2093  * Must be called at splimp().
2094  */
2095 static void
2096 free_chain(struct ip_fw **chain, int kill_default)
2097 {
2098 	struct ip_fw *rule;
2099 
2100 	flush_rule_ptrs(); /* more efficient to do outside the loop */
2101 
2102 	while ( (rule = *chain) != NULL &&
2103 	    (kill_default || rule->rulenum != IPFW_DEFAULT_RULE) )
2104 		delete_rule(chain, NULL, rule);
2105 }
2106 
2107 /**
2108  * Remove all rules with given number, and also do set manipulation.
2109  *
2110  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
2111  * the next 8 bits are the new set, the top 8 bits are the command:
2112  *
2113  *	0	delete rules with given number
2114  *	1	delete rules with given set number
2115  *	2	move rules with given number to new set
2116  *	3	move rules with given set number to new set
2117  *	4	swap sets with given numbers
2118  */
2119 static int
2120 del_entry(struct ip_fw **chain, u_int32_t arg)
2121 {
2122 	struct ip_fw *prev, *rule;
2123 	u_int16_t rulenum;
2124 	u_int8_t cmd, new_set;
2125 
2126 	rulenum = arg & 0xffff;
2127 	cmd = (arg >> 24) & 0xff;
2128 	new_set = (arg >> 16) & 0xff;
2129 
2130 	if (cmd > 4)
2131 		return EINVAL;
2132 	if (new_set > 30)
2133 		return EINVAL;
2134 	if (cmd == 0 || cmd == 2) {
2135 		if (rulenum == IPFW_DEFAULT_RULE)
2136 			return EINVAL;
2137 	} else {
2138 		if (rulenum > 30)
2139 			return EINVAL;
2140 	}
2141 
2142 	switch (cmd) {
2143 	case 0:	/* delete rules with given number */
2144 		/*
2145 		 * locate first rule to delete
2146 		 */
2147 		for (prev = NULL, rule = *chain;
2148 		    rule && rule->rulenum < rulenum;
2149 		     prev = rule, rule = rule->next)
2150 			;
2151 		if (rule->rulenum != rulenum)
2152 			return EINVAL;
2153 
2154 		crit_enter(); /* no access to rules while removing */
2155 		/*
2156 		 * flush pointers outside the loop, then delete all matching
2157 		 * rules. prev remains the same throughout the cycle.
2158 		 */
2159 		flush_rule_ptrs();
2160 		while (rule && rule->rulenum == rulenum)
2161 			rule = delete_rule(chain, prev, rule);
2162 		crit_exit();
2163 		break;
2164 
2165 	case 1:	/* delete all rules with given set number */
2166 		crit_enter();
2167 		flush_rule_ptrs();
2168 		for (prev = NULL, rule = *chain; rule ; )
2169 			if (rule->set == rulenum)
2170 				rule = delete_rule(chain, prev, rule);
2171 			else {
2172 				prev = rule;
2173 				rule = rule->next;
2174 			}
2175 		crit_exit();
2176 		break;
2177 
2178 	case 2:	/* move rules with given number to new set */
2179 		crit_enter();
2180 		for (rule = *chain; rule ; rule = rule->next)
2181 			if (rule->rulenum == rulenum)
2182 				rule->set = new_set;
2183 		crit_exit();
2184 		break;
2185 
2186 	case 3: /* move rules with given set number to new set */
2187 		crit_enter();
2188 		for (rule = *chain; rule ; rule = rule->next)
2189 			if (rule->set == rulenum)
2190 				rule->set = new_set;
2191 		crit_exit();
2192 		break;
2193 
2194 	case 4: /* swap two sets */
2195 		crit_enter();
2196 		for (rule = *chain; rule ; rule = rule->next)
2197 			if (rule->set == rulenum)
2198 				rule->set = new_set;
2199 			else if (rule->set == new_set)
2200 				rule->set = rulenum;
2201 		crit_exit();
2202 		break;
2203 	}
2204 	return 0;
2205 }
2206 
2207 /*
2208  * Clear counters for a specific rule.
2209  */
2210 static void
2211 clear_counters(struct ip_fw *rule, int log_only)
2212 {
2213 	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
2214 
2215 	if (log_only == 0) {
2216 		rule->bcnt = rule->pcnt = 0;
2217 		rule->timestamp = 0;
2218 	}
2219 	if (l->o.opcode == O_LOG)
2220 		l->log_left = l->max_log;
2221 }
2222 
2223 /**
2224  * Reset some or all counters on firewall rules.
2225  * @arg frwl is null to clear all entries, or contains a specific
2226  * rule number.
2227  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
2228  */
2229 static int
2230 zero_entry(int rulenum, int log_only)
2231 {
2232 	struct ip_fw *rule;
2233 	char *msg;
2234 
2235 	if (rulenum == 0) {
2236 		crit_enter();
2237 		norule_counter = 0;
2238 		for (rule = layer3_chain; rule; rule = rule->next)
2239 			clear_counters(rule, log_only);
2240 		crit_exit();
2241 		msg = log_only ? "ipfw: All logging counts reset.\n" :
2242 				"ipfw: Accounting cleared.\n";
2243 	} else {
2244 		int cleared = 0;
2245 		/*
2246 		 * We can have multiple rules with the same number, so we
2247 		 * need to clear them all.
2248 		 */
2249 		for (rule = layer3_chain; rule; rule = rule->next)
2250 			if (rule->rulenum == rulenum) {
2251 				crit_enter();
2252 				while (rule && rule->rulenum == rulenum) {
2253 					clear_counters(rule, log_only);
2254 					rule = rule->next;
2255 				}
2256 				crit_exit();
2257 				cleared = 1;
2258 				break;
2259 			}
2260 		if (!cleared)	/* we did not find any matching rules */
2261 			return (EINVAL);
2262 		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
2263 				"ipfw: Entry %d cleared.\n";
2264 	}
2265 	if (fw_verbose)
2266 		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
2267 	return (0);
2268 }
2269 
2270 /*
2271  * Check validity of the structure before insert.
2272  * Fortunately rules are simple, so this mostly need to check rule sizes.
2273  */
2274 static int
2275 check_ipfw_struct(struct ip_fw *rule, int size)
2276 {
2277 	int l, cmdlen = 0;
2278 	int have_action=0;
2279 	ipfw_insn *cmd;
2280 
2281 	if (size < sizeof(*rule)) {
2282 		kprintf("ipfw: rule too short\n");
2283 		return (EINVAL);
2284 	}
2285 	/* first, check for valid size */
2286 	l = RULESIZE(rule);
2287 	if (l != size) {
2288 		kprintf("ipfw: size mismatch (have %d want %d)\n", size, l);
2289 		return (EINVAL);
2290 	}
2291 	/*
2292 	 * Now go for the individual checks. Very simple ones, basically only
2293 	 * instruction sizes.
2294 	 */
2295 	for (l = rule->cmd_len, cmd = rule->cmd ;
2296 			l > 0 ; l -= cmdlen, cmd += cmdlen) {
2297 		cmdlen = F_LEN(cmd);
2298 		if (cmdlen > l) {
2299 			kprintf("ipfw: opcode %d size truncated\n",
2300 			    cmd->opcode);
2301 			return EINVAL;
2302 		}
2303 		DEB(kprintf("ipfw: opcode %d\n", cmd->opcode);)
2304 		switch (cmd->opcode) {
2305 		case O_NOP:
2306 		case O_PROBE_STATE:
2307 		case O_KEEP_STATE:
2308 		case O_PROTO:
2309 		case O_IP_SRC_ME:
2310 		case O_IP_DST_ME:
2311 		case O_LAYER2:
2312 		case O_IN:
2313 		case O_FRAG:
2314 		case O_IPOPT:
2315 		case O_IPLEN:
2316 		case O_IPID:
2317 		case O_IPTOS:
2318 		case O_IPPRECEDENCE:
2319 		case O_IPTTL:
2320 		case O_IPVER:
2321 		case O_TCPWIN:
2322 		case O_TCPFLAGS:
2323 		case O_TCPOPTS:
2324 		case O_ESTAB:
2325 			if (cmdlen != F_INSN_SIZE(ipfw_insn))
2326 				goto bad_size;
2327 			break;
2328 
2329 		case O_UID:
2330 		case O_GID:
2331 		case O_IP_SRC:
2332 		case O_IP_DST:
2333 		case O_TCPSEQ:
2334 		case O_TCPACK:
2335 		case O_PROB:
2336 		case O_ICMPTYPE:
2337 			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
2338 				goto bad_size;
2339 			break;
2340 
2341 		case O_LIMIT:
2342 			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
2343 				goto bad_size;
2344 			break;
2345 
2346 		case O_LOG:
2347 			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
2348 				goto bad_size;
2349 
2350 			((ipfw_insn_log *)cmd)->log_left =
2351 			    ((ipfw_insn_log *)cmd)->max_log;
2352 
2353 			break;
2354 
2355 		case O_IP_SRC_MASK:
2356 		case O_IP_DST_MASK:
2357 			if (cmdlen != F_INSN_SIZE(ipfw_insn_ip))
2358 				goto bad_size;
2359 			if (((ipfw_insn_ip *)cmd)->mask.s_addr == 0) {
2360 				kprintf("ipfw: opcode %d, useless rule\n",
2361 					cmd->opcode);
2362 				return EINVAL;
2363 			}
2364 			break;
2365 
2366 		case O_IP_SRC_SET:
2367 		case O_IP_DST_SET:
2368 			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
2369 				kprintf("ipfw: invalid set size %d\n",
2370 					cmd->arg1);
2371 				return EINVAL;
2372 			}
2373 			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
2374 			    (cmd->arg1+31)/32 )
2375 				goto bad_size;
2376 			break;
2377 
2378 		case O_MACADDR2:
2379 			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
2380 				goto bad_size;
2381 			break;
2382 
2383 		case O_MAC_TYPE:
2384 		case O_IP_SRCPORT:
2385 		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
2386 			if (cmdlen < 2 || cmdlen > 31)
2387 				goto bad_size;
2388 			break;
2389 
2390 		case O_RECV:
2391 		case O_XMIT:
2392 		case O_VIA:
2393 			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
2394 				goto bad_size;
2395 			break;
2396 
2397 		case O_PIPE:
2398 		case O_QUEUE:
2399 			if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
2400 				goto bad_size;
2401 			goto check_action;
2402 
2403 		case O_FORWARD_IP:
2404 			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
2405 				goto bad_size;
2406 			goto check_action;
2407 
2408 		case O_FORWARD_MAC: /* XXX not implemented yet */
2409 		case O_CHECK_STATE:
2410 		case O_COUNT:
2411 		case O_ACCEPT:
2412 		case O_DENY:
2413 		case O_REJECT:
2414 		case O_SKIPTO:
2415 		case O_DIVERT:
2416 		case O_TEE:
2417 			if (cmdlen != F_INSN_SIZE(ipfw_insn))
2418 				goto bad_size;
2419 check_action:
2420 			if (have_action) {
2421 				kprintf("ipfw: opcode %d, multiple actions"
2422 					" not allowed\n",
2423 					cmd->opcode);
2424 				return EINVAL;
2425 			}
2426 			have_action = 1;
2427 			if (l != cmdlen) {
2428 				kprintf("ipfw: opcode %d, action must be"
2429 					" last opcode\n",
2430 					cmd->opcode);
2431 				return EINVAL;
2432 			}
2433 			break;
2434 		default:
2435 			kprintf("ipfw: opcode %d, unknown opcode\n",
2436 				cmd->opcode);
2437 			return EINVAL;
2438 		}
2439 	}
2440 	if (have_action == 0) {
2441 		kprintf("ipfw: missing action\n");
2442 		return EINVAL;
2443 	}
2444 	return 0;
2445 
2446 bad_size:
2447 	kprintf("ipfw: opcode %d size %d wrong\n",
2448 		cmd->opcode, cmdlen);
2449 	return EINVAL;
2450 }
2451 
2452 
2453 /**
2454  * {set|get}sockopt parser.
2455  */
2456 static int
2457 ipfw_ctl(struct sockopt *sopt)
2458 {
2459 	int error, rulenum;
2460 	size_t size;
2461 	struct ip_fw *bp , *buf, *rule;
2462 
2463 	static u_int32_t rule_buf[255];	/* we copy the data here */
2464 
2465 	/*
2466 	 * Disallow modifications in really-really secure mode, but still allow
2467 	 * the logging counters to be reset.
2468 	 */
2469 	if (sopt->sopt_name == IP_FW_ADD ||
2470 	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
2471 #if defined(__FreeBSD__) && __FreeBSD_version >= 500034
2472 		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
2473 		if (error)
2474 			return (error);
2475 #else /* FreeBSD 4.x */
2476 		if (securelevel >= 3)
2477 			return (EPERM);
2478 #endif
2479 	}
2480 
2481 	error = 0;
2482 
2483 	switch (sopt->sopt_name) {
2484 	case IP_FW_GET:
2485 		/*
2486 		 * pass up a copy of the current rules. Static rules
2487 		 * come first (the last of which has number IPFW_DEFAULT_RULE),
2488 		 * followed by a possibly empty list of dynamic rule.
2489 		 * The last dynamic rule has NULL in the "next" field.
2490 		 */
2491 		crit_enter();
2492 		size = static_len;	/* size of static rules */
2493 		if (ipfw_dyn_v)		/* add size of dyn.rules */
2494 			size += (dyn_count * sizeof(ipfw_dyn_rule));
2495 
2496 		/*
2497 		 * XXX todo: if the user passes a short length just to know
2498 		 * how much room is needed, do not bother filling up the
2499 		 * buffer, just jump to the sooptcopyout.
2500 		 */
2501 		buf = kmalloc(size, M_TEMP, M_WAITOK);
2502 
2503 		bp = buf;
2504 		for (rule = layer3_chain; rule ; rule = rule->next) {
2505 			int i = RULESIZE(rule);
2506 			bcopy(rule, bp, i);
2507 			/*
2508 			 * abuse 'next_rule' to store the set_disable word
2509 			 */
2510 			bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
2511 			    sizeof(set_disable));
2512 			bp = (struct ip_fw *)((char *)bp + i);
2513 		}
2514 		if (ipfw_dyn_v) {
2515 			int i;
2516 			ipfw_dyn_rule *p, *dst, *last = NULL;
2517 
2518 			dst = (ipfw_dyn_rule *)bp;
2519 			for (i = 0 ; i < curr_dyn_buckets ; i++ )
2520 				for ( p = ipfw_dyn_v[i] ; p != NULL ;
2521 				    p = p->next, dst++ ) {
2522 					bcopy(p, dst, sizeof *p);
2523 					bcopy(&(p->rule->rulenum), &(dst->rule),
2524 					    sizeof(p->rule->rulenum));
2525 					/*
2526 					 * store a non-null value in "next".
2527 					 * The userland code will interpret a
2528 					 * NULL here as a marker
2529 					 * for the last dynamic rule.
2530 					 */
2531 					dst->next = dst ;
2532 					last = dst ;
2533 					dst->expire =
2534 					    TIME_LEQ(dst->expire, time_second) ?
2535 						0 : dst->expire - time_second ;
2536 				}
2537 			if (last != NULL) /* mark last dynamic rule */
2538 				last->next = NULL;
2539 		}
2540 		crit_exit();
2541 
2542 		error = sooptcopyout(sopt, buf, size);
2543 		kfree(buf, M_TEMP);
2544 		break;
2545 
2546 	case IP_FW_FLUSH:
2547 		/*
2548 		 * Normally we cannot release the lock on each iteration.
2549 		 * We could do it here only because we start from the head all
2550 		 * the times so there is no risk of missing some entries.
2551 		 * On the other hand, the risk is that we end up with
2552 		 * a very inconsistent ruleset, so better keep the lock
2553 		 * around the whole cycle.
2554 		 *
2555 		 * XXX this code can be improved by resetting the head of
2556 		 * the list to point to the default rule, and then freeing
2557 		 * the old list without the need for a lock.
2558 		 */
2559 
2560 		crit_enter();
2561 		free_chain(&layer3_chain, 0 /* keep default rule */);
2562 		crit_exit();
2563 		break;
2564 
2565 	case IP_FW_ADD:
2566 		rule = (struct ip_fw *)rule_buf; /* XXX do a malloc */
2567 		error = sooptcopyin(sopt, rule, sizeof(rule_buf),
2568 			sizeof(struct ip_fw) );
2569 		size = sopt->sopt_valsize;
2570 		if (error || (error = check_ipfw_struct(rule, size)))
2571 			break;
2572 
2573 		error = add_rule(&layer3_chain, rule);
2574 		size = RULESIZE(rule);
2575 		if (!error && sopt->sopt_dir == SOPT_GET)
2576 			error = sooptcopyout(sopt, rule, size);
2577 		break;
2578 
2579 	case IP_FW_DEL:
2580 		/*
2581 		 * IP_FW_DEL is used for deleting single rules or sets,
2582 		 * and (ab)used to atomically manipulate sets. Argument size
2583 		 * is used to distinguish between the two:
2584 		 *    sizeof(u_int32_t)
2585 		 *	delete single rule or set of rules,
2586 		 *	or reassign rules (or sets) to a different set.
2587 		 *    2*sizeof(u_int32_t)
2588 		 *	atomic disable/enable sets.
2589 		 *	first u_int32_t contains sets to be disabled,
2590 		 *	second u_int32_t contains sets to be enabled.
2591 		 */
2592 		error = sooptcopyin(sopt, rule_buf,
2593 			2*sizeof(u_int32_t), sizeof(u_int32_t));
2594 		if (error)
2595 			break;
2596 		size = sopt->sopt_valsize;
2597 		if (size == sizeof(u_int32_t))	/* delete or reassign */
2598 			error = del_entry(&layer3_chain, rule_buf[0]);
2599 		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
2600 			set_disable =
2601 			    (set_disable | rule_buf[0]) & ~rule_buf[1] &
2602 			    ~(1<<31); /* set 31 always enabled */
2603 		else
2604 			error = EINVAL;
2605 		break;
2606 
2607 	case IP_FW_ZERO:
2608 	case IP_FW_RESETLOG: /* argument is an int, the rule number */
2609 		rulenum=0;
2610 
2611 		if (sopt->sopt_val != 0) {
2612 		    error = sooptcopyin(sopt, &rulenum,
2613 			    sizeof(int), sizeof(int));
2614 		    if (error)
2615 			break;
2616 		}
2617 		error = zero_entry(rulenum, sopt->sopt_name == IP_FW_RESETLOG);
2618 		break;
2619 
2620 	default:
2621 		kprintf("ipfw_ctl invalid option %d\n", sopt->sopt_name);
2622 		error = EINVAL;
2623 	}
2624 
2625 	return (error);
2626 }
2627 
2628 /**
2629  * dummynet needs a reference to the default rule, because rules can be
2630  * deleted while packets hold a reference to them. When this happens,
2631  * dummynet changes the reference to the default rule (it could well be a
2632  * NULL pointer, but this way we do not need to check for the special
2633  * case, plus here he have info on the default behaviour).
2634  */
2635 struct ip_fw *ip_fw_default_rule;
2636 
2637 /*
2638  * This procedure is only used to handle keepalives. It is invoked
2639  * every dyn_keepalive_period
2640  */
2641 static void
2642 ipfw_tick(void * __unused unused)
2643 {
2644 	int i;
2645 	ipfw_dyn_rule *q;
2646 
2647 	if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
2648 		goto done;
2649 
2650 	crit_enter();
2651 	for (i = 0 ; i < curr_dyn_buckets ; i++) {
2652 		for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
2653 			if (q->dyn_type == O_LIMIT_PARENT)
2654 				continue;
2655 			if (q->id.proto != IPPROTO_TCP)
2656 				continue;
2657 			if ( (q->state & BOTH_SYN) != BOTH_SYN)
2658 				continue;
2659 			if (TIME_LEQ( time_second+dyn_keepalive_interval,
2660 			    q->expire))
2661 				continue;	/* too early */
2662 			if (TIME_LEQ(q->expire, time_second))
2663 				continue;	/* too late, rule expired */
2664 
2665 			send_pkt(&(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
2666 			send_pkt(&(q->id), q->ack_fwd - 1, q->ack_rev, 0);
2667 		}
2668 	}
2669 	crit_exit();
2670 done:
2671 	callout_reset(&ipfw_timeout_h, dyn_keepalive_period * hz,
2672 		      ipfw_tick, NULL);
2673 }
2674 
2675 static void
2676 ipfw_init(void)
2677 {
2678 	struct ip_fw default_rule;
2679 
2680 	ip_fw_chk_ptr = ipfw_chk;
2681 	ip_fw_ctl_ptr = ipfw_ctl;
2682 	layer3_chain = NULL;
2683 
2684 	bzero(&default_rule, sizeof default_rule);
2685 
2686 	default_rule.act_ofs = 0;
2687 	default_rule.rulenum = IPFW_DEFAULT_RULE;
2688 	default_rule.cmd_len = 1;
2689 	default_rule.set = 31;
2690 
2691 	default_rule.cmd[0].len = 1;
2692 	default_rule.cmd[0].opcode =
2693 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
2694 				1 ? O_ACCEPT :
2695 #endif
2696 				O_DENY;
2697 
2698 	add_rule(&layer3_chain, &default_rule);
2699 
2700 	ip_fw_default_rule = layer3_chain;
2701 	kprintf("ipfw2 initialized, divert %s, "
2702 		"rule-based forwarding enabled, default to %s, logging ",
2703 #ifdef IPDIVERT
2704 		"enabled",
2705 #else
2706 		"disabled",
2707 #endif
2708 		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
2709 
2710 #ifdef IPFIREWALL_VERBOSE
2711 	fw_verbose = 1;
2712 #endif
2713 #ifdef IPFIREWALL_VERBOSE_LIMIT
2714 	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2715 #endif
2716 	if (fw_verbose == 0)
2717 		kprintf("disabled\n");
2718 	else if (verbose_limit == 0)
2719 		kprintf("unlimited\n");
2720 	else
2721 		kprintf("limited to %d packets/entry by default\n",
2722 		    verbose_limit);
2723 	callout_init(&ipfw_timeout_h);
2724 	callout_reset(&ipfw_timeout_h, hz, ipfw_tick, NULL);
2725 }
2726 
2727 static int
2728 ipfw_modevent(module_t mod, int type, void *unused)
2729 {
2730 	int err = 0;
2731 
2732 	switch (type) {
2733 	case MOD_LOAD:
2734 		crit_enter();
2735 		if (IPFW_LOADED) {
2736 			crit_exit();
2737 			kprintf("IP firewall already loaded\n");
2738 			err = EEXIST;
2739 		} else {
2740 			ipfw_init();
2741 			crit_exit();
2742 		}
2743 		break;
2744 
2745 	case MOD_UNLOAD:
2746 #if !defined(KLD_MODULE)
2747 		kprintf("ipfw statically compiled, cannot unload\n");
2748 		err = EBUSY;
2749 #else
2750                 crit_enter();
2751 		callout_stop(&ipfw_timeout_h);
2752 		ip_fw_chk_ptr = NULL;
2753 		ip_fw_ctl_ptr = NULL;
2754 		free_chain(&layer3_chain, 1 /* kill default rule */);
2755 		crit_exit();
2756 		kprintf("IP firewall unloaded\n");
2757 #endif
2758 		break;
2759 	default:
2760 		break;
2761 	}
2762 	return err;
2763 }
2764 
2765 static moduledata_t ipfwmod = {
2766 	"ipfw",
2767 	ipfw_modevent,
2768 	0
2769 };
2770 DECLARE_MODULE(ipfw, ipfwmod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2771 MODULE_VERSION(ipfw, 1);
2772 #endif /* IPFW2 */
2773