xref: /dragonfly/sys/net/ipfw/ip_fw2.c (revision 71126e33)
1 /*
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.6.2.12 2003/04/08 10:42:32 maxim Exp $
26  * $DragonFly: src/sys/net/ipfw/ip_fw2.c,v 1.14 2004/09/17 08:25:30 dillon Exp $
27  */
28 
29 #define        DEB(x)
30 #define        DDB(x) x
31 
32 /*
33  * Implement IP packet firewall (new version)
34  */
35 
36 #if !defined(KLD_MODULE)
37 #include "opt_ipfw.h"
38 #include "opt_ipdn.h"
39 #include "opt_ipdivert.h"
40 #include "opt_inet.h"
41 #ifndef INET
42 #error IPFIREWALL requires INET.
43 #endif /* INET */
44 #endif
45 
46 #if IPFW2
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/kernel.h>
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/sysctl.h>
56 #include <sys/syslog.h>
57 #include <sys/ucred.h>
58 #include <sys/in_cksum.h>
59 #include <net/if.h>
60 #include <net/route.h>
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/ip.h>
66 #include <netinet/ip_var.h>
67 #include <netinet/ip_icmp.h>
68 #include "ip_fw.h"
69 #include <net/dummynet/ip_dummynet.h>
70 #include <netinet/tcp.h>
71 #include <netinet/tcp_timer.h>
72 #include <netinet/tcp_var.h>
73 #include <netinet/tcpip.h>
74 #include <netinet/udp.h>
75 #include <netinet/udp_var.h>
76 
77 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
78 
79 /*
80  * XXX This one should go in sys/mbuf.h. It is used to avoid that
81  * a firewall-generated packet loops forever through the firewall.
82  */
83 #ifndef	M_SKIP_FIREWALL
84 #define M_SKIP_FIREWALL         0x4000
85 #endif
86 
87 /*
88  * set_disable contains one bit per set value (0..31).
89  * If the bit is set, all rules with the corresponding set
90  * are disabled. Set 31 is reserved for the default rule
91  * and CANNOT be disabled.
92  */
93 static u_int32_t set_disable;
94 
95 static int fw_verbose;
96 static int verbose_limit;
97 
98 static struct callout ipfw_timeout_h;
99 #define	IPFW_DEFAULT_RULE	65535
100 
101 /*
102  * list of rules for layer 3
103  */
104 static struct ip_fw *layer3_chain;
105 
106 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
107 
108 static int fw_debug = 1;
109 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
110 
111 #ifdef SYSCTL_NODE
112 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
113 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable, CTLFLAG_RW,
114     &fw_enable, 0, "Enable ipfw");
115 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
116     &autoinc_step, 0, "Rule number autincrement step");
117 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO,one_pass,CTLFLAG_RW,
118     &fw_one_pass, 0,
119     "Only do a single pass through ipfw when using dummynet(4)");
120 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
121     &fw_debug, 0, "Enable printing of debug ip_fw statements");
122 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose, CTLFLAG_RW,
123     &fw_verbose, 0, "Log matches to ipfw rules");
124 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
125     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
126 
127 /*
128  * Description of dynamic rules.
129  *
130  * Dynamic rules are stored in lists accessed through a hash table
131  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
132  * be modified through the sysctl variable dyn_buckets which is
133  * updated when the table becomes empty.
134  *
135  * XXX currently there is only one list, ipfw_dyn.
136  *
137  * When a packet is received, its address fields are first masked
138  * with the mask defined for the rule, then hashed, then matched
139  * against the entries in the corresponding list.
140  * Dynamic rules can be used for different purposes:
141  *  + stateful rules;
142  *  + enforcing limits on the number of sessions;
143  *  + in-kernel NAT (not implemented yet)
144  *
145  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
146  * measured in seconds and depending on the flags.
147  *
148  * The total number of dynamic rules is stored in dyn_count.
149  * The max number of dynamic rules is dyn_max. When we reach
150  * the maximum number of rules we do not create anymore. This is
151  * done to avoid consuming too much memory, but also too much
152  * time when searching on each packet (ideally, we should try instead
153  * to put a limit on the length of the list on each bucket...).
154  *
155  * Each dynamic rule holds a pointer to the parent ipfw rule so
156  * we know what action to perform. Dynamic rules are removed when
157  * the parent rule is deleted. XXX we should make them survive.
158  *
159  * There are some limitations with dynamic rules -- we do not
160  * obey the 'randomized match', and we do not do multiple
161  * passes through the firewall. XXX check the latter!!!
162  */
163 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
164 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
165 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
166 
167 /*
168  * Timeouts for various events in handing dynamic rules.
169  */
170 static u_int32_t dyn_ack_lifetime = 300;
171 static u_int32_t dyn_syn_lifetime = 20;
172 static u_int32_t dyn_fin_lifetime = 1;
173 static u_int32_t dyn_rst_lifetime = 1;
174 static u_int32_t dyn_udp_lifetime = 10;
175 static u_int32_t dyn_short_lifetime = 5;
176 
177 /*
178  * Keepalives are sent if dyn_keepalive is set. They are sent every
179  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
180  * seconds of lifetime of a rule.
181  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
182  * than dyn_keepalive_period.
183  */
184 
185 static u_int32_t dyn_keepalive_interval = 20;
186 static u_int32_t dyn_keepalive_period = 5;
187 static u_int32_t dyn_keepalive = 1;	/* do send keepalives */
188 
189 static u_int32_t static_count;	/* # of static rules */
190 static u_int32_t static_len;	/* size in bytes of static rules */
191 static u_int32_t dyn_count;		/* # of dynamic rules */
192 static u_int32_t dyn_max = 4096;	/* max # of dynamic rules */
193 
194 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
195     &dyn_buckets, 0, "Number of dyn. buckets");
196 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
197     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
198 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
199     &dyn_count, 0, "Number of dyn. rules");
200 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
201     &dyn_max, 0, "Max number of dyn. rules");
202 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
203     &static_count, 0, "Number of static rules");
204 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
205     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
206 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
207     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
208 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
209     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
210 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
211     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
212 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
213     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
214 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
215     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
216 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
217     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
218 
219 #endif /* SYSCTL_NODE */
220 
221 
222 static ip_fw_chk_t	ipfw_chk;
223 
224 ip_dn_ruledel_t *ip_dn_ruledel_ptr = NULL;	/* hook into dummynet */
225 
226 /*
227  * This macro maps an ip pointer into a layer3 header pointer of type T
228  */
229 #define	L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
230 
231 static __inline int
232 icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd)
233 {
234 	int type = L3HDR(struct icmp,ip)->icmp_type;
235 
236 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
237 }
238 
239 #define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
240     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
241 
242 static int
243 is_icmp_query(struct ip *ip)
244 {
245 	int type = L3HDR(struct icmp, ip)->icmp_type;
246 	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
247 }
248 #undef TT
249 
250 /*
251  * The following checks use two arrays of 8 or 16 bits to store the
252  * bits that we want set or clear, respectively. They are in the
253  * low and high half of cmd->arg1 or cmd->d[0].
254  *
255  * We scan options and store the bits we find set. We succeed if
256  *
257  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
258  *
259  * The code is sometimes optimized not to store additional variables.
260  */
261 
262 static int
263 flags_match(ipfw_insn *cmd, u_int8_t bits)
264 {
265 	u_char want_clear;
266 	bits = ~bits;
267 
268 	if ( ((cmd->arg1 & 0xff) & bits) != 0)
269 		return 0; /* some bits we want set were clear */
270 	want_clear = (cmd->arg1 >> 8) & 0xff;
271 	if ( (want_clear & bits) != want_clear)
272 		return 0; /* some bits we want clear were set */
273 	return 1;
274 }
275 
276 static int
277 ipopts_match(struct ip *ip, ipfw_insn *cmd)
278 {
279 	int optlen, bits = 0;
280 	u_char *cp = (u_char *)(ip + 1);
281 	int x = (ip->ip_hl << 2) - sizeof (struct ip);
282 
283 	for (; x > 0; x -= optlen, cp += optlen) {
284 		int opt = cp[IPOPT_OPTVAL];
285 
286 		if (opt == IPOPT_EOL)
287 			break;
288 		if (opt == IPOPT_NOP)
289 			optlen = 1;
290 		else {
291 			optlen = cp[IPOPT_OLEN];
292 			if (optlen <= 0 || optlen > x)
293 				return 0; /* invalid or truncated */
294 		}
295 		switch (opt) {
296 
297 		default:
298 			break;
299 
300 		case IPOPT_LSRR:
301 			bits |= IP_FW_IPOPT_LSRR;
302 			break;
303 
304 		case IPOPT_SSRR:
305 			bits |= IP_FW_IPOPT_SSRR;
306 			break;
307 
308 		case IPOPT_RR:
309 			bits |= IP_FW_IPOPT_RR;
310 			break;
311 
312 		case IPOPT_TS:
313 			bits |= IP_FW_IPOPT_TS;
314 			break;
315 		}
316 	}
317 	return (flags_match(cmd, bits));
318 }
319 
320 static int
321 tcpopts_match(struct ip *ip, ipfw_insn *cmd)
322 {
323 	int optlen, bits = 0;
324 	struct tcphdr *tcp = L3HDR(struct tcphdr,ip);
325 	u_char *cp = (u_char *)(tcp + 1);
326 	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
327 
328 	for (; x > 0; x -= optlen, cp += optlen) {
329 		int opt = cp[0];
330 		if (opt == TCPOPT_EOL)
331 			break;
332 		if (opt == TCPOPT_NOP)
333 			optlen = 1;
334 		else {
335 			optlen = cp[1];
336 			if (optlen <= 0)
337 				break;
338 		}
339 
340 		switch (opt) {
341 
342 		default:
343 			break;
344 
345 		case TCPOPT_MAXSEG:
346 			bits |= IP_FW_TCPOPT_MSS;
347 			break;
348 
349 		case TCPOPT_WINDOW:
350 			bits |= IP_FW_TCPOPT_WINDOW;
351 			break;
352 
353 		case TCPOPT_SACK_PERMITTED:
354 		case TCPOPT_SACK:
355 			bits |= IP_FW_TCPOPT_SACK;
356 			break;
357 
358 		case TCPOPT_TIMESTAMP:
359 			bits |= IP_FW_TCPOPT_TS;
360 			break;
361 
362 		case TCPOPT_CC:
363 		case TCPOPT_CCNEW:
364 		case TCPOPT_CCECHO:
365 			bits |= IP_FW_TCPOPT_CC;
366 			break;
367 		}
368 	}
369 	return (flags_match(cmd, bits));
370 }
371 
372 static int
373 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
374 {
375 	if (ifp == NULL)	/* no iface with this packet, match fails */
376 		return 0;
377 	/* Check by name or by IP address */
378 	if (cmd->name[0] != '\0') { /* match by name */
379 		/* Check name */
380 		if (cmd->p.glob) {
381 			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
382 				return(1);
383 		} else {
384 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
385 				return(1);
386 		}
387 	} else {
388 		struct ifaddr *ia;
389 
390 		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
391 			if (ia->ifa_addr == NULL)
392 				continue;
393 			if (ia->ifa_addr->sa_family != AF_INET)
394 				continue;
395 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
396 			    (ia->ifa_addr))->sin_addr.s_addr)
397 				return(1);	/* match */
398 		}
399 	}
400 	return(0);	/* no match, fail ... */
401 }
402 
403 static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
404 
405 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
406 #define SNP(buf) buf, sizeof(buf)
407 
408 /*
409  * We enter here when we have a rule with O_LOG.
410  * XXX this function alone takes about 2Kbytes of code!
411  */
412 static void
413 ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
414 	struct mbuf *m, struct ifnet *oif)
415 {
416 	char *action;
417 	int limit_reached = 0;
418 	char action2[40], proto[48], fragment[28];
419 
420 	fragment[0] = '\0';
421 	proto[0] = '\0';
422 
423 	if (f == NULL) {	/* bogus pkt */
424 		if (verbose_limit != 0 && norule_counter >= verbose_limit)
425 			return;
426 		norule_counter++;
427 		if (norule_counter == verbose_limit)
428 			limit_reached = verbose_limit;
429 		action = "Refuse";
430 	} else {	/* O_LOG is the first action, find the real one */
431 		ipfw_insn *cmd = ACTION_PTR(f);
432 		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
433 
434 		if (l->max_log != 0 && l->log_left == 0)
435 			return;
436 		l->log_left--;
437 		if (l->log_left == 0)
438 			limit_reached = l->max_log;
439 		cmd += F_LEN(cmd);	/* point to first action */
440 		if (cmd->opcode == O_PROB)
441 			cmd += F_LEN(cmd);
442 
443 		action = action2;
444 		switch (cmd->opcode) {
445 		case O_DENY:
446 			action = "Deny";
447 			break;
448 
449 		case O_REJECT:
450 			if (cmd->arg1==ICMP_REJECT_RST)
451 				action = "Reset";
452 			else if (cmd->arg1==ICMP_UNREACH_HOST)
453 				action = "Reject";
454 			else
455 				snprintf(SNPARGS(action2, 0), "Unreach %d",
456 					cmd->arg1);
457 			break;
458 
459 		case O_ACCEPT:
460 			action = "Accept";
461 			break;
462 		case O_COUNT:
463 			action = "Count";
464 			break;
465 		case O_DIVERT:
466 			snprintf(SNPARGS(action2, 0), "Divert %d",
467 				cmd->arg1);
468 			break;
469 		case O_TEE:
470 			snprintf(SNPARGS(action2, 0), "Tee %d",
471 				cmd->arg1);
472 			break;
473 		case O_SKIPTO:
474 			snprintf(SNPARGS(action2, 0), "SkipTo %d",
475 				cmd->arg1);
476 			break;
477 		case O_PIPE:
478 			snprintf(SNPARGS(action2, 0), "Pipe %d",
479 				cmd->arg1);
480 			break;
481 		case O_QUEUE:
482 			snprintf(SNPARGS(action2, 0), "Queue %d",
483 				cmd->arg1);
484 			break;
485 		case O_FORWARD_IP: {
486 			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
487 			int len;
488 
489 			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
490 				inet_ntoa(sa->sa.sin_addr));
491 			if (sa->sa.sin_port)
492 				snprintf(SNPARGS(action2, len), ":%d",
493 				    sa->sa.sin_port);
494 			}
495 			break;
496 		default:
497 			action = "UNKNOWN";
498 			break;
499 		}
500 	}
501 
502 	if (hlen == 0) {	/* non-ip */
503 		snprintf(SNPARGS(proto, 0), "MAC");
504 	} else {
505 		struct ip *ip = mtod(m, struct ip *);
506 		/* these three are all aliases to the same thing */
507 		struct icmp *const icmp = L3HDR(struct icmp, ip);
508 		struct tcphdr *const tcp = (struct tcphdr *)icmp;
509 		struct udphdr *const udp = (struct udphdr *)icmp;
510 
511 		int ip_off, offset, ip_len;
512 
513 		int len;
514 
515 		if (eh != NULL) { /* layer 2 packets are as on the wire */
516 			ip_off = ntohs(ip->ip_off);
517 			ip_len = ntohs(ip->ip_len);
518 		} else {
519 			ip_off = ip->ip_off;
520 			ip_len = ip->ip_len;
521 		}
522 		offset = ip_off & IP_OFFMASK;
523 		switch (ip->ip_p) {
524 		case IPPROTO_TCP:
525 			len = snprintf(SNPARGS(proto, 0), "TCP %s",
526 			    inet_ntoa(ip->ip_src));
527 			if (offset == 0)
528 				snprintf(SNPARGS(proto, len), ":%d %s:%d",
529 				    ntohs(tcp->th_sport),
530 				    inet_ntoa(ip->ip_dst),
531 				    ntohs(tcp->th_dport));
532 			else
533 				snprintf(SNPARGS(proto, len), " %s",
534 				    inet_ntoa(ip->ip_dst));
535 			break;
536 
537 		case IPPROTO_UDP:
538 			len = snprintf(SNPARGS(proto, 0), "UDP %s",
539 				inet_ntoa(ip->ip_src));
540 			if (offset == 0)
541 				snprintf(SNPARGS(proto, len), ":%d %s:%d",
542 				    ntohs(udp->uh_sport),
543 				    inet_ntoa(ip->ip_dst),
544 				    ntohs(udp->uh_dport));
545 			else
546 				snprintf(SNPARGS(proto, len), " %s",
547 				    inet_ntoa(ip->ip_dst));
548 			break;
549 
550 		case IPPROTO_ICMP:
551 			if (offset == 0)
552 				len = snprintf(SNPARGS(proto, 0),
553 				    "ICMP:%u.%u ",
554 				    icmp->icmp_type, icmp->icmp_code);
555 			else
556 				len = snprintf(SNPARGS(proto, 0), "ICMP ");
557 			len += snprintf(SNPARGS(proto, len), "%s",
558 			    inet_ntoa(ip->ip_src));
559 			snprintf(SNPARGS(proto, len), " %s",
560 			    inet_ntoa(ip->ip_dst));
561 			break;
562 
563 		default:
564 			len = snprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
565 			    inet_ntoa(ip->ip_src));
566 			snprintf(SNPARGS(proto, len), " %s",
567 			    inet_ntoa(ip->ip_dst));
568 			break;
569 		}
570 
571 		if (ip_off & (IP_MF | IP_OFFMASK))
572 			snprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
573 			     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
574 			     offset << 3,
575 			     (ip_off & IP_MF) ? "+" : "");
576 	}
577 	if (oif || m->m_pkthdr.rcvif)
578 		log(LOG_SECURITY | LOG_INFO,
579 		    "ipfw: %d %s %s %s via %s%s\n",
580 		    f ? f->rulenum : -1,
581 		    action, proto, oif ? "out" : "in",
582 		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
583 		    fragment);
584 	else
585 		log(LOG_SECURITY | LOG_INFO,
586 		    "ipfw: %d %s %s [no if info]%s\n",
587 		    f ? f->rulenum : -1,
588 		    action, proto, fragment);
589 	if (limit_reached)
590 		log(LOG_SECURITY | LOG_NOTICE,
591 		    "ipfw: limit %d reached on entry %d\n",
592 		    limit_reached, f ? f->rulenum : -1);
593 }
594 
595 /*
596  * IMPORTANT: the hash function for dynamic rules must be commutative
597  * in source and destination (ip,port), because rules are bidirectional
598  * and we want to find both in the same bucket.
599  */
600 static __inline int
601 hash_packet(struct ipfw_flow_id *id)
602 {
603 	u_int32_t i;
604 
605 	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
606 	i &= (curr_dyn_buckets - 1);
607 	return i;
608 }
609 
610 /**
611  * unlink a dynamic rule from a chain. prev is a pointer to
612  * the previous one, q is a pointer to the rule to delete,
613  * head is a pointer to the head of the queue.
614  * Modifies q and potentially also head.
615  */
616 #define UNLINK_DYN_RULE(prev, head, q) {				\
617 	ipfw_dyn_rule *old_q = q;					\
618 									\
619 	/* remove a refcount to the parent */				\
620 	if (q->dyn_type == O_LIMIT)					\
621 		q->parent->count--;					\
622 	DEB(printf("-- unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",	\
623 		(q->id.src_ip), (q->id.src_port),			\
624 		(q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )	\
625 	if (prev != NULL)						\
626 		prev->next = q = q->next;				\
627 	else								\
628 		head = q = q->next;					\
629 	dyn_count--;							\
630 	free(old_q, M_IPFW); }
631 
632 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
633 
634 /**
635  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
636  *
637  * If keep_me == NULL, rules are deleted even if not expired,
638  * otherwise only expired rules are removed.
639  *
640  * The value of the second parameter is also used to point to identify
641  * a rule we absolutely do not want to remove (e.g. because we are
642  * holding a reference to it -- this is the case with O_LIMIT_PARENT
643  * rules). The pointer is only used for comparison, so any non-null
644  * value will do.
645  */
646 static void
647 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
648 {
649 	static u_int32_t last_remove = 0;
650 
651 #define FORCE (keep_me == NULL)
652 
653 	ipfw_dyn_rule *prev, *q;
654 	int i, pass = 0, max_pass = 0;
655 
656 	if (ipfw_dyn_v == NULL || dyn_count == 0)
657 		return;
658 	/* do not expire more than once per second, it is useless */
659 	if (!FORCE && last_remove == time_second)
660 		return;
661 	last_remove = time_second;
662 
663 	/*
664 	 * because O_LIMIT refer to parent rules, during the first pass only
665 	 * remove child and mark any pending LIMIT_PARENT, and remove
666 	 * them in a second pass.
667 	 */
668 next_pass:
669 	for (i = 0 ; i < curr_dyn_buckets ; i++) {
670 		for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
671 			/*
672 			 * Logic can become complex here, so we split tests.
673 			 */
674 			if (q == keep_me)
675 				goto next;
676 			if (rule != NULL && rule != q->rule)
677 				goto next; /* not the one we are looking for */
678 			if (q->dyn_type == O_LIMIT_PARENT) {
679 				/*
680 				 * handle parent in the second pass,
681 				 * record we need one.
682 				 */
683 				max_pass = 1;
684 				if (pass == 0)
685 					goto next;
686 				if (FORCE && q->count != 0 ) {
687 					/* XXX should not happen! */
688 					printf( "OUCH! cannot remove rule,"
689 					     " count %d\n", q->count);
690 				}
691 			} else {
692 				if (!FORCE &&
693 				    !TIME_LEQ( q->expire, time_second ))
694 					goto next;
695 			}
696 			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
697 			continue;
698 next:
699 			prev=q;
700 			q=q->next;
701 		}
702 	}
703 	if (pass++ < max_pass)
704 		goto next_pass;
705 }
706 
707 
708 /**
709  * lookup a dynamic rule.
710  */
711 static ipfw_dyn_rule *
712 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
713 	struct tcphdr *tcp)
714 {
715 	/*
716 	 * stateful ipfw extensions.
717 	 * Lookup into dynamic session queue
718 	 */
719 #define MATCH_REVERSE	0
720 #define MATCH_FORWARD	1
721 #define MATCH_NONE	2
722 #define MATCH_UNKNOWN	3
723 	int i, dir = MATCH_NONE;
724 	ipfw_dyn_rule *prev, *q=NULL;
725 
726 	if (ipfw_dyn_v == NULL)
727 		goto done;	/* not found */
728 	i = hash_packet( pkt );
729 	for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
730 		if (q->dyn_type == O_LIMIT_PARENT)
731 			goto next;
732 		if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
733 			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
734 			continue;
735 		}
736 		if ( pkt->proto == q->id.proto) {
737 			if (pkt->src_ip == q->id.src_ip &&
738 			    pkt->dst_ip == q->id.dst_ip &&
739 			    pkt->src_port == q->id.src_port &&
740 			    pkt->dst_port == q->id.dst_port ) {
741 				dir = MATCH_FORWARD;
742 				break;
743 			}
744 			if (pkt->src_ip == q->id.dst_ip &&
745 			    pkt->dst_ip == q->id.src_ip &&
746 			    pkt->src_port == q->id.dst_port &&
747 			    pkt->dst_port == q->id.src_port ) {
748 				dir = MATCH_REVERSE;
749 				break;
750 			}
751 		}
752 next:
753 		prev = q;
754 		q = q->next;
755 	}
756 	if (q == NULL)
757 		goto done; /* q = NULL, not found */
758 
759 	if ( prev != NULL) { /* found and not in front */
760 		prev->next = q->next;
761 		q->next = ipfw_dyn_v[i];
762 		ipfw_dyn_v[i] = q;
763 	}
764 	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
765 		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
766 
767 #define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
768 #define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
769 		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
770 		switch (q->state) {
771 		case TH_SYN:				/* opening */
772 			q->expire = time_second + dyn_syn_lifetime;
773 			break;
774 
775 		case BOTH_SYN:			/* move to established */
776 		case BOTH_SYN | TH_FIN :	/* one side tries to close */
777 		case BOTH_SYN | (TH_FIN << 8) :
778  			if (tcp) {
779 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
780 			    u_int32_t ack = ntohl(tcp->th_ack);
781 			    if (dir == MATCH_FORWARD) {
782 				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
783 				    q->ack_fwd = ack;
784 				else { /* ignore out-of-sequence */
785 				    break;
786 				}
787 			    } else {
788 				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
789 				    q->ack_rev = ack;
790 				else { /* ignore out-of-sequence */
791 				    break;
792 				}
793 			    }
794 			}
795 			q->expire = time_second + dyn_ack_lifetime;
796 			break;
797 
798 		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
799 			if (dyn_fin_lifetime >= dyn_keepalive_period)
800 				dyn_fin_lifetime = dyn_keepalive_period - 1;
801 			q->expire = time_second + dyn_fin_lifetime;
802 			break;
803 
804 		default:
805 #if 0
806 			/*
807 			 * reset or some invalid combination, but can also
808 			 * occur if we use keep-state the wrong way.
809 			 */
810 			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
811 				printf("invalid state: 0x%x\n", q->state);
812 #endif
813 			if (dyn_rst_lifetime >= dyn_keepalive_period)
814 				dyn_rst_lifetime = dyn_keepalive_period - 1;
815 			q->expire = time_second + dyn_rst_lifetime;
816 			break;
817 		}
818 	} else if (pkt->proto == IPPROTO_UDP) {
819 		q->expire = time_second + dyn_udp_lifetime;
820 	} else {
821 		/* other protocols */
822 		q->expire = time_second + dyn_short_lifetime;
823 	}
824 done:
825 	if (match_direction)
826 		*match_direction = dir;
827 	return q;
828 }
829 
830 static void
831 realloc_dynamic_table(void)
832 {
833 	/*
834 	 * Try reallocation, make sure we have a power of 2 and do
835 	 * not allow more than 64k entries. In case of overflow,
836 	 * default to 1024.
837 	 */
838 
839 	if (dyn_buckets > 65536)
840 		dyn_buckets = 1024;
841 	if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
842 		dyn_buckets = curr_dyn_buckets; /* reset */
843 		return;
844 	}
845 	curr_dyn_buckets = dyn_buckets;
846 	if (ipfw_dyn_v != NULL)
847 		free(ipfw_dyn_v, M_IPFW);
848 	for (;;) {
849 		ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
850 		       M_IPFW, M_WAITOK | M_ZERO);
851 		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
852 			break;
853 		curr_dyn_buckets /= 2;
854 	}
855 }
856 
857 /**
858  * Install state of type 'type' for a dynamic session.
859  * The hash table contains two type of rules:
860  * - regular rules (O_KEEP_STATE)
861  * - rules for sessions with limited number of sess per user
862  *   (O_LIMIT). When they are created, the parent is
863  *   increased by 1, and decreased on delete. In this case,
864  *   the third parameter is the parent rule and not the chain.
865  * - "parent" rules for the above (O_LIMIT_PARENT).
866  */
867 static ipfw_dyn_rule *
868 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
869 {
870 	ipfw_dyn_rule *r;
871 	int i;
872 
873 	if (ipfw_dyn_v == NULL ||
874 	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
875 		realloc_dynamic_table();
876 		if (ipfw_dyn_v == NULL)
877 			return NULL; /* failed ! */
878 	}
879 	i = hash_packet(id);
880 
881 	r = malloc(sizeof *r, M_IPFW, M_WAITOK | M_ZERO);
882 	if (r == NULL) {
883 		printf ("sorry cannot allocate state\n");
884 		return NULL;
885 	}
886 
887 	/* increase refcount on parent, and set pointer */
888 	if (dyn_type == O_LIMIT) {
889 		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
890 		if ( parent->dyn_type != O_LIMIT_PARENT)
891 			panic("invalid parent");
892 		parent->count++;
893 		r->parent = parent;
894 		rule = parent->rule;
895 	}
896 
897 	r->id = *id;
898 	r->expire = time_second + dyn_syn_lifetime;
899 	r->rule = rule;
900 	r->dyn_type = dyn_type;
901 	r->pcnt = r->bcnt = 0;
902 	r->count = 0;
903 
904 	r->bucket = i;
905 	r->next = ipfw_dyn_v[i];
906 	ipfw_dyn_v[i] = r;
907 	dyn_count++;
908 	DEB(printf("-- add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
909 	   dyn_type,
910 	   (r->id.src_ip), (r->id.src_port),
911 	   (r->id.dst_ip), (r->id.dst_port),
912 	   dyn_count ); )
913 	return r;
914 }
915 
916 /**
917  * lookup dynamic parent rule using pkt and rule as search keys.
918  * If the lookup fails, then install one.
919  */
920 static ipfw_dyn_rule *
921 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
922 {
923 	ipfw_dyn_rule *q;
924 	int i;
925 
926 	if (ipfw_dyn_v) {
927 		i = hash_packet( pkt );
928 		for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
929 			if (q->dyn_type == O_LIMIT_PARENT &&
930 			    rule== q->rule &&
931 			    pkt->proto == q->id.proto &&
932 			    pkt->src_ip == q->id.src_ip &&
933 			    pkt->dst_ip == q->id.dst_ip &&
934 			    pkt->src_port == q->id.src_port &&
935 			    pkt->dst_port == q->id.dst_port) {
936 				q->expire = time_second + dyn_short_lifetime;
937 				DEB(printf("lookup_dyn_parent found 0x%p\n",q);)
938 				return q;
939 			}
940 	}
941 	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
942 }
943 
944 /**
945  * Install dynamic state for rule type cmd->o.opcode
946  *
947  * Returns 1 (failure) if state is not installed because of errors or because
948  * session limitations are enforced.
949  */
950 static int
951 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
952 	struct ip_fw_args *args)
953 {
954 	static int last_log;
955 
956 	ipfw_dyn_rule *q;
957 
958 	DEB(printf("-- install state type %d 0x%08x %u -> 0x%08x %u\n",
959 	    cmd->o.opcode,
960 	    (args->f_id.src_ip), (args->f_id.src_port),
961 	    (args->f_id.dst_ip), (args->f_id.dst_port) );)
962 
963 	q = lookup_dyn_rule(&args->f_id, NULL, NULL);
964 
965 	if (q != NULL) { /* should never occur */
966 		if (last_log != time_second) {
967 			last_log = time_second;
968 			printf(" install_state: entry already present, done\n");
969 		}
970 		return 0;
971 	}
972 
973 	if (dyn_count >= dyn_max)
974 		/*
975 		 * Run out of slots, try to remove any expired rule.
976 		 */
977 		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
978 
979 	if (dyn_count >= dyn_max) {
980 		if (last_log != time_second) {
981 			last_log = time_second;
982 			printf("install_state: Too many dynamic rules\n");
983 		}
984 		return 1; /* cannot install, notify caller */
985 	}
986 
987 	switch (cmd->o.opcode) {
988 	case O_KEEP_STATE: /* bidir rule */
989 		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
990 		break;
991 
992 	case O_LIMIT: /* limit number of sessions */
993 	    {
994 		u_int16_t limit_mask = cmd->limit_mask;
995 		struct ipfw_flow_id id;
996 		ipfw_dyn_rule *parent;
997 
998 		DEB(printf("installing dyn-limit rule %d\n", cmd->conn_limit);)
999 
1000 		id.dst_ip = id.src_ip = 0;
1001 		id.dst_port = id.src_port = 0;
1002 		id.proto = args->f_id.proto;
1003 
1004 		if (limit_mask & DYN_SRC_ADDR)
1005 			id.src_ip = args->f_id.src_ip;
1006 		if (limit_mask & DYN_DST_ADDR)
1007 			id.dst_ip = args->f_id.dst_ip;
1008 		if (limit_mask & DYN_SRC_PORT)
1009 			id.src_port = args->f_id.src_port;
1010 		if (limit_mask & DYN_DST_PORT)
1011 			id.dst_port = args->f_id.dst_port;
1012 		parent = lookup_dyn_parent(&id, rule);
1013 		if (parent == NULL) {
1014 			printf("add parent failed\n");
1015 			return 1;
1016 		}
1017 		if (parent->count >= cmd->conn_limit) {
1018 			/*
1019 			 * See if we can remove some expired rule.
1020 			 */
1021 			remove_dyn_rule(rule, parent);
1022 			if (parent->count >= cmd->conn_limit) {
1023 				if (fw_verbose && last_log != time_second) {
1024 					last_log = time_second;
1025 					log(LOG_SECURITY | LOG_DEBUG,
1026 					    "drop session, too many entries\n");
1027 				}
1028 				return 1;
1029 			}
1030 		}
1031 		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1032 	    }
1033 		break;
1034 	default:
1035 		printf("unknown dynamic rule type %u\n", cmd->o.opcode);
1036 		return 1;
1037 	}
1038 	lookup_dyn_rule(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1039 	return 0;
1040 }
1041 
1042 /*
1043  * Transmit a TCP packet, containing either a RST or a keepalive.
1044  * When flags & TH_RST, we are sending a RST packet, because of a
1045  * "reset" action matched the packet.
1046  * Otherwise we are sending a keepalive, and flags & TH_
1047  */
1048 static void
1049 send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1050 {
1051 	struct mbuf *m;
1052 	struct ip *ip;
1053 	struct tcphdr *tcp;
1054 	struct route sro;	/* fake route */
1055 
1056 	MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1057 	if (m == 0)
1058 		return;
1059 	m->m_pkthdr.rcvif = (struct ifnet *)0;
1060 	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1061 	m->m_data += max_linkhdr;
1062 
1063 	ip = mtod(m, struct ip *);
1064 	bzero(ip, m->m_len);
1065 	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1066 	ip->ip_p = IPPROTO_TCP;
1067 	tcp->th_off = 5;
1068 	/*
1069 	 * Assume we are sending a RST (or a keepalive in the reverse
1070 	 * direction), swap src and destination addresses and ports.
1071 	 */
1072 	ip->ip_src.s_addr = htonl(id->dst_ip);
1073 	ip->ip_dst.s_addr = htonl(id->src_ip);
1074 	tcp->th_sport = htons(id->dst_port);
1075 	tcp->th_dport = htons(id->src_port);
1076 	if (flags & TH_RST) {	/* we are sending a RST */
1077 		if (flags & TH_ACK) {
1078 			tcp->th_seq = htonl(ack);
1079 			tcp->th_ack = htonl(0);
1080 			tcp->th_flags = TH_RST;
1081 		} else {
1082 			if (flags & TH_SYN)
1083 				seq++;
1084 			tcp->th_seq = htonl(0);
1085 			tcp->th_ack = htonl(seq);
1086 			tcp->th_flags = TH_RST | TH_ACK;
1087 		}
1088 	} else {
1089 		/*
1090 		 * We are sending a keepalive. flags & TH_SYN determines
1091 		 * the direction, forward if set, reverse if clear.
1092 		 * NOTE: seq and ack are always assumed to be correct
1093 		 * as set by the caller. This may be confusing...
1094 		 */
1095 		if (flags & TH_SYN) {
1096 			/*
1097 			 * we have to rewrite the correct addresses!
1098 			 */
1099 			ip->ip_dst.s_addr = htonl(id->dst_ip);
1100 			ip->ip_src.s_addr = htonl(id->src_ip);
1101 			tcp->th_dport = htons(id->dst_port);
1102 			tcp->th_sport = htons(id->src_port);
1103 		}
1104 		tcp->th_seq = htonl(seq);
1105 		tcp->th_ack = htonl(ack);
1106 		tcp->th_flags = TH_ACK;
1107 	}
1108 	/*
1109 	 * set ip_len to the payload size so we can compute
1110 	 * the tcp checksum on the pseudoheader
1111 	 * XXX check this, could save a couple of words ?
1112 	 */
1113 	ip->ip_len = htons(sizeof(struct tcphdr));
1114 	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1115 	/*
1116 	 * now fill fields left out earlier
1117 	 */
1118 	ip->ip_ttl = ip_defttl;
1119 	ip->ip_len = m->m_pkthdr.len;
1120 	bzero (&sro, sizeof (sro));
1121 	ip_rtaddr(ip->ip_dst, &sro);
1122 	m->m_flags |= M_SKIP_FIREWALL;
1123 	ip_output(m, NULL, &sro, 0, NULL, NULL);
1124 	if (sro.ro_rt)
1125 		RTFREE(sro.ro_rt);
1126 }
1127 
1128 /*
1129  * sends a reject message, consuming the mbuf passed as an argument.
1130  */
1131 static void
1132 send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
1133 {
1134 
1135 	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1136 		/* We need the IP header in host order for icmp_error(). */
1137 		if (args->eh != NULL) {
1138 			struct ip *ip = mtod(args->m, struct ip *);
1139 			ip->ip_len = ntohs(ip->ip_len);
1140 			ip->ip_off = ntohs(ip->ip_off);
1141 		}
1142 		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1143 	} else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1144 		struct tcphdr *const tcp =
1145 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1146 		if ( (tcp->th_flags & TH_RST) == 0)
1147 			send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1148 				ntohl(tcp->th_ack),
1149 				tcp->th_flags | TH_RST);
1150 		m_freem(args->m);
1151 	} else
1152 		m_freem(args->m);
1153 	args->m = NULL;
1154 }
1155 
1156 /**
1157  *
1158  * Given an ip_fw *, lookup_next_rule will return a pointer
1159  * to the next rule, which can be either the jump
1160  * target (for skipto instructions) or the next one in the list (in
1161  * all other cases including a missing jump target).
1162  * The result is also written in the "next_rule" field of the rule.
1163  * Backward jumps are not allowed, so start looking from the next
1164  * rule...
1165  *
1166  * This never returns NULL -- in case we do not have an exact match,
1167  * the next rule is returned. When the ruleset is changed,
1168  * pointers are flushed so we are always correct.
1169  */
1170 
1171 static struct ip_fw *
1172 lookup_next_rule(struct ip_fw *me)
1173 {
1174 	struct ip_fw *rule = NULL;
1175 	ipfw_insn *cmd;
1176 
1177 	/* look for action, in case it is a skipto */
1178 	cmd = ACTION_PTR(me);
1179 	if (cmd->opcode == O_LOG)
1180 		cmd += F_LEN(cmd);
1181 	if ( cmd->opcode == O_SKIPTO )
1182 		for (rule = me->next; rule ; rule = rule->next)
1183 			if (rule->rulenum >= cmd->arg1)
1184 				break;
1185 	if (rule == NULL)			/* failure or not a skipto */
1186 		rule = me->next;
1187 	me->next_rule = rule;
1188 	return rule;
1189 }
1190 
1191 /*
1192  * The main check routine for the firewall.
1193  *
1194  * All arguments are in args so we can modify them and return them
1195  * back to the caller.
1196  *
1197  * Parameters:
1198  *
1199  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1200  *		Starts with the IP header.
1201  *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
1202  *	args->oif	Outgoing interface, or NULL if packet is incoming.
1203  *		The incoming interface is in the mbuf. (in)
1204  *	args->divert_rule (in/out)
1205  *		Skip up to the first rule past this rule number;
1206  *		upon return, non-zero port number for divert or tee.
1207  *
1208  *	args->rule	Pointer to the last matching rule (in/out)
1209  *	args->next_hop	Socket we are forwarding to (out).
1210  *	args->f_id	Addresses grabbed from the packet (out)
1211  *
1212  * Return value:
1213  *
1214  *	IP_FW_PORT_DENY_FLAG	the packet must be dropped.
1215  *	0	The packet is to be accepted and routed normally OR
1216  *      	the packet was denied/rejected and has been dropped;
1217  *		in the latter case, *m is equal to NULL upon return.
1218  *	port	Divert the packet to port, with these caveats:
1219  *
1220  *		- If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
1221  *		  of diverting it (ie, 'ipfw tee').
1222  *
1223  *		- If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
1224  *		  16 bits as a dummynet pipe number instead of diverting
1225  */
1226 
1227 static int
1228 ipfw_chk(struct ip_fw_args *args)
1229 {
1230 	/*
1231 	 * Local variables hold state during the processing of a packet.
1232 	 *
1233 	 * IMPORTANT NOTE: to speed up the processing of rules, there
1234 	 * are some assumption on the values of the variables, which
1235 	 * are documented here. Should you change them, please check
1236 	 * the implementation of the various instructions to make sure
1237 	 * that they still work.
1238 	 *
1239 	 * args->eh	The MAC header. It is non-null for a layer2
1240 	 *	packet, it is NULL for a layer-3 packet.
1241 	 *
1242 	 * m | args->m	Pointer to the mbuf, as received from the caller.
1243 	 *	It may change if ipfw_chk() does an m_pullup, or if it
1244 	 *	consumes the packet because it calls send_reject().
1245 	 *	XXX This has to change, so that ipfw_chk() never modifies
1246 	 *	or consumes the buffer.
1247 	 * ip	is simply an alias of the value of m, and it is kept
1248 	 *	in sync with it (the packet is	supposed to start with
1249 	 *	the ip header).
1250 	 */
1251 	struct mbuf *m = args->m;
1252 	struct ip *ip = mtod(m, struct ip *);
1253 
1254 	/*
1255 	 * oif | args->oif	If NULL, ipfw_chk has been called on the
1256 	 *	inbound path (ether_input, bdg_forward, ip_input).
1257 	 *	If non-NULL, ipfw_chk has been called on the outbound path
1258 	 *	(ether_output, ip_output).
1259 	 */
1260 	struct ifnet *oif = args->oif;
1261 
1262 	struct ip_fw *f = NULL;		/* matching rule */
1263 	int retval = 0;
1264 
1265 	/*
1266 	 * hlen	The length of the IPv4 header.
1267 	 *	hlen >0 means we have an IPv4 packet.
1268 	 */
1269 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1270 
1271 	/*
1272 	 * offset	The offset of a fragment. offset != 0 means that
1273 	 *	we have a fragment at this offset of an IPv4 packet.
1274 	 *	offset == 0 means that (if this is an IPv4 packet)
1275 	 *	this is the first or only fragment.
1276 	 */
1277 	u_short offset = 0;
1278 
1279 	/*
1280 	 * Local copies of addresses. They are only valid if we have
1281 	 * an IP packet.
1282 	 *
1283 	 * proto	The protocol. Set to 0 for non-ip packets,
1284 	 *	or to the protocol read from the packet otherwise.
1285 	 *	proto != 0 means that we have an IPv4 packet.
1286 	 *
1287 	 * src_port, dst_port	port numbers, in HOST format. Only
1288 	 *	valid for TCP and UDP packets.
1289 	 *
1290 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1291 	 *	Only valid for IPv4 packets.
1292 	 */
1293 	u_int8_t proto;
1294 	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
1295 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1296 	u_int16_t ip_len=0;
1297 	int dyn_dir = MATCH_UNKNOWN;
1298 	ipfw_dyn_rule *q = NULL;
1299 
1300 	if (m->m_flags & M_SKIP_FIREWALL)
1301 		return 0;	/* accept */
1302 	/*
1303 	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
1304 	 * 	MATCH_NONE when checked and not matched (q = NULL),
1305 	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
1306 	 */
1307 
1308 	if (args->eh == NULL ||		/* layer 3 packet */
1309 		( m->m_pkthdr.len >= sizeof(struct ip) &&
1310 		    ntohs(args->eh->ether_type) == ETHERTYPE_IP))
1311 			hlen = ip->ip_hl << 2;
1312 
1313 	/*
1314 	 * Collect parameters into local variables for faster matching.
1315 	 */
1316 	if (hlen == 0) {	/* do not grab addresses for non-ip pkts */
1317 		proto = args->f_id.proto = 0;	/* mark f_id invalid */
1318 		goto after_ip_checks;
1319 	}
1320 
1321 	proto = args->f_id.proto = ip->ip_p;
1322 	src_ip = ip->ip_src;
1323 	dst_ip = ip->ip_dst;
1324 	if (args->eh != NULL) { /* layer 2 packets are as on the wire */
1325 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1326 		ip_len = ntohs(ip->ip_len);
1327 	} else {
1328 		offset = ip->ip_off & IP_OFFMASK;
1329 		ip_len = ip->ip_len;
1330 	}
1331 
1332 #define PULLUP_TO(len)						\
1333 		do {						\
1334 			if ((m)->m_len < (len)) {		\
1335 			    args->m = m = m_pullup(m, (len));	\
1336 			    if (m == 0)				\
1337 				goto pullup_failed;		\
1338 			    ip = mtod(m, struct ip *);		\
1339 			}					\
1340 		} while (0)
1341 
1342 	if (offset == 0) {
1343 		switch (proto) {
1344 		case IPPROTO_TCP:
1345 		    {
1346 			struct tcphdr *tcp;
1347 
1348 			PULLUP_TO(hlen + sizeof(struct tcphdr));
1349 			tcp = L3HDR(struct tcphdr, ip);
1350 			dst_port = tcp->th_dport;
1351 			src_port = tcp->th_sport;
1352 			args->f_id.flags = tcp->th_flags;
1353 			}
1354 			break;
1355 
1356 		case IPPROTO_UDP:
1357 		    {
1358 			struct udphdr *udp;
1359 
1360 			PULLUP_TO(hlen + sizeof(struct udphdr));
1361 			udp = L3HDR(struct udphdr, ip);
1362 			dst_port = udp->uh_dport;
1363 			src_port = udp->uh_sport;
1364 			}
1365 			break;
1366 
1367 		case IPPROTO_ICMP:
1368 			PULLUP_TO(hlen + 4);	/* type, code and checksum. */
1369 			args->f_id.flags = L3HDR(struct icmp, ip)->icmp_type;
1370 			break;
1371 
1372 		default:
1373 			break;
1374 		}
1375 #undef PULLUP_TO
1376 	}
1377 
1378 	args->f_id.src_ip = ntohl(src_ip.s_addr);
1379 	args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1380 	args->f_id.src_port = src_port = ntohs(src_port);
1381 	args->f_id.dst_port = dst_port = ntohs(dst_port);
1382 
1383 after_ip_checks:
1384 	if (args->rule) {
1385 		/*
1386 		 * Packet has already been tagged. Look for the next rule
1387 		 * to restart processing.
1388 		 *
1389 		 * If fw_one_pass != 0 then just accept it.
1390 		 * XXX should not happen here, but optimized out in
1391 		 * the caller.
1392 		 */
1393 		if (fw_one_pass)
1394 			return 0;
1395 
1396 		f = args->rule->next_rule;
1397 		if (f == NULL)
1398 			f = lookup_next_rule(args->rule);
1399 	} else {
1400 		/*
1401 		 * Find the starting rule. It can be either the first
1402 		 * one, or the one after divert_rule if asked so.
1403 		 */
1404 		int skipto = args->divert_rule;
1405 
1406 		f = layer3_chain;
1407 		if (args->eh == NULL && skipto != 0) {
1408 			if (skipto >= IPFW_DEFAULT_RULE)
1409 				return(IP_FW_PORT_DENY_FLAG); /* invalid */
1410 			while (f && f->rulenum <= skipto)
1411 				f = f->next;
1412 			if (f == NULL)	/* drop packet */
1413 				return(IP_FW_PORT_DENY_FLAG);
1414 		}
1415 	}
1416 	args->divert_rule = 0;	/* reset to avoid confusion later */
1417 
1418 	/*
1419 	 * Now scan the rules, and parse microinstructions for each rule.
1420 	 */
1421 	for (; f; f = f->next) {
1422 		int l, cmdlen;
1423 		ipfw_insn *cmd;
1424 		int skip_or; /* skip rest of OR block */
1425 
1426 again:
1427 		if (set_disable & (1 << f->set) )
1428 			continue;
1429 
1430 		skip_or = 0;
1431 		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1432 		    l -= cmdlen, cmd += cmdlen) {
1433 			int match;
1434 
1435 			/*
1436 			 * check_body is a jump target used when we find a
1437 			 * CHECK_STATE, and need to jump to the body of
1438 			 * the target rule.
1439 			 */
1440 
1441 check_body:
1442 			cmdlen = F_LEN(cmd);
1443 			/*
1444 			 * An OR block (insn_1 || .. || insn_n) has the
1445 			 * F_OR bit set in all but the last instruction.
1446 			 * The first match will set "skip_or", and cause
1447 			 * the following instructions to be skipped until
1448 			 * past the one with the F_OR bit clear.
1449 			 */
1450 			if (skip_or) {		/* skip this instruction */
1451 				if ((cmd->len & F_OR) == 0)
1452 					skip_or = 0;	/* next one is good */
1453 				continue;
1454 			}
1455 			match = 0; /* set to 1 if we succeed */
1456 
1457 			switch (cmd->opcode) {
1458 			/*
1459 			 * The first set of opcodes compares the packet's
1460 			 * fields with some pattern, setting 'match' if a
1461 			 * match is found. At the end of the loop there is
1462 			 * logic to deal with F_NOT and F_OR flags associated
1463 			 * with the opcode.
1464 			 */
1465 			case O_NOP:
1466 				match = 1;
1467 				break;
1468 
1469 			case O_FORWARD_MAC:
1470 				printf("ipfw: opcode %d unimplemented\n",
1471 				    cmd->opcode);
1472 				break;
1473 
1474 			case O_GID:
1475 			case O_UID:
1476 				/*
1477 				 * We only check offset == 0 && proto != 0,
1478 				 * as this ensures that we have an IPv4
1479 				 * packet with the ports info.
1480 				 */
1481 				if (offset!=0)
1482 					break;
1483 			    {
1484 				struct inpcbinfo *pi;
1485 				int wildcard;
1486 				struct inpcb *pcb;
1487 
1488 				if (proto == IPPROTO_TCP) {
1489 					wildcard = 0;
1490 					pi = &tcbinfo[mycpu->gd_cpuid];
1491 				} else if (proto == IPPROTO_UDP) {
1492 					wildcard = 1;
1493 					pi = &udbinfo;
1494 				} else
1495 					break;
1496 
1497 				pcb =  (oif) ?
1498 					in_pcblookup_hash(pi,
1499 					    dst_ip, htons(dst_port),
1500 					    src_ip, htons(src_port),
1501 					    wildcard, oif) :
1502 					in_pcblookup_hash(pi,
1503 					    src_ip, htons(src_port),
1504 					    dst_ip, htons(dst_port),
1505 					    wildcard, NULL);
1506 
1507 				if (pcb == NULL || pcb->inp_socket == NULL)
1508 					break;
1509 #if defined(__DragonFly__) || (defined(__FreeBSD__) && __FreeBSD_version < 500034)
1510 #define socheckuid(a,b)	((a)->so_cred->cr_uid != (b))
1511 #endif
1512 				if (cmd->opcode == O_UID) {
1513 					match =
1514 					  !socheckuid(pcb->inp_socket,
1515 					   (uid_t)((ipfw_insn_u32 *)cmd)->d[0]);
1516 				} else  {
1517 					match = groupmember(
1518 					    (uid_t)((ipfw_insn_u32 *)cmd)->d[0],
1519 					    pcb->inp_socket->so_cred);
1520 				}
1521 			    }
1522 				break;
1523 
1524 			case O_RECV:
1525 				match = iface_match(m->m_pkthdr.rcvif,
1526 				    (ipfw_insn_if *)cmd);
1527 				break;
1528 
1529 			case O_XMIT:
1530 				match = iface_match(oif, (ipfw_insn_if *)cmd);
1531 				break;
1532 
1533 			case O_VIA:
1534 				match = iface_match(oif ? oif :
1535 				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1536 				break;
1537 
1538 			case O_MACADDR2:
1539 				if (args->eh != NULL) {	/* have MAC header */
1540 					u_int32_t *want = (u_int32_t *)
1541 						((ipfw_insn_mac *)cmd)->addr;
1542 					u_int32_t *mask = (u_int32_t *)
1543 						((ipfw_insn_mac *)cmd)->mask;
1544 					u_int32_t *hdr = (u_int32_t *)args->eh;
1545 
1546 					match =
1547 					    ( want[0] == (hdr[0] & mask[0]) &&
1548 					      want[1] == (hdr[1] & mask[1]) &&
1549 					      want[2] == (hdr[2] & mask[2]) );
1550 				}
1551 				break;
1552 
1553 			case O_MAC_TYPE:
1554 				if (args->eh != NULL) {
1555 					u_int16_t t =
1556 					    ntohs(args->eh->ether_type);
1557 					u_int16_t *p =
1558 					    ((ipfw_insn_u16 *)cmd)->ports;
1559 					int i;
1560 
1561 					for (i = cmdlen - 1; !match && i>0;
1562 					    i--, p += 2)
1563 						match = (t>=p[0] && t<=p[1]);
1564 				}
1565 				break;
1566 
1567 			case O_FRAG:
1568 				match = (hlen > 0 && offset != 0);
1569 				break;
1570 
1571 			case O_IN:	/* "out" is "not in" */
1572 				match = (oif == NULL);
1573 				break;
1574 
1575 			case O_LAYER2:
1576 				match = (args->eh != NULL);
1577 				break;
1578 
1579 			case O_PROTO:
1580 				/*
1581 				 * We do not allow an arg of 0 so the
1582 				 * check of "proto" only suffices.
1583 				 */
1584 				match = (proto == cmd->arg1);
1585 				break;
1586 
1587 			case O_IP_SRC:
1588 				match = (hlen > 0 &&
1589 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1590 				    src_ip.s_addr);
1591 				break;
1592 
1593 			case O_IP_SRC_MASK:
1594 				match = (hlen > 0 &&
1595 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1596 				     (src_ip.s_addr &
1597 				     ((ipfw_insn_ip *)cmd)->mask.s_addr));
1598 				break;
1599 
1600 			case O_IP_SRC_ME:
1601 				if (hlen > 0) {
1602 					struct ifnet *tif;
1603 
1604 					INADDR_TO_IFP(src_ip, tif);
1605 					match = (tif != NULL);
1606 				}
1607 				break;
1608 
1609 			case O_IP_DST_SET:
1610 			case O_IP_SRC_SET:
1611 				if (hlen > 0) {
1612 					u_int32_t *d = (u_int32_t *)(cmd+1);
1613 					u_int32_t addr =
1614 					    cmd->opcode == O_IP_DST_SET ?
1615 						args->f_id.dst_ip :
1616 						args->f_id.src_ip;
1617 
1618 					    if (addr < d[0])
1619 						    break;
1620 					    addr -= d[0]; /* subtract base */
1621 					    match = (addr < cmd->arg1) &&
1622 						( d[ 1 + (addr>>5)] &
1623 						  (1<<(addr & 0x1f)) );
1624 				}
1625 				break;
1626 
1627 			case O_IP_DST:
1628 				match = (hlen > 0 &&
1629 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1630 				    dst_ip.s_addr);
1631 				break;
1632 
1633 			case O_IP_DST_MASK:
1634 				match = (hlen > 0) &&
1635 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1636 				     (dst_ip.s_addr &
1637 				     ((ipfw_insn_ip *)cmd)->mask.s_addr));
1638 				break;
1639 
1640 			case O_IP_DST_ME:
1641 				if (hlen > 0) {
1642 					struct ifnet *tif;
1643 
1644 					INADDR_TO_IFP(dst_ip, tif);
1645 					match = (tif != NULL);
1646 				}
1647 				break;
1648 
1649 			case O_IP_SRCPORT:
1650 			case O_IP_DSTPORT:
1651 				/*
1652 				 * offset == 0 && proto != 0 is enough
1653 				 * to guarantee that we have an IPv4
1654 				 * packet with port info.
1655 				 */
1656 				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1657 				    && offset == 0) {
1658 					u_int16_t x =
1659 					    (cmd->opcode == O_IP_SRCPORT) ?
1660 						src_port : dst_port ;
1661 					u_int16_t *p =
1662 					    ((ipfw_insn_u16 *)cmd)->ports;
1663 					int i;
1664 
1665 					for (i = cmdlen - 1; !match && i>0;
1666 					    i--, p += 2)
1667 						match = (x>=p[0] && x<=p[1]);
1668 				}
1669 				break;
1670 
1671 			case O_ICMPTYPE:
1672 				match = (offset == 0 && proto==IPPROTO_ICMP &&
1673 				    icmptype_match(ip, (ipfw_insn_u32 *)cmd) );
1674 				break;
1675 
1676 			case O_IPOPT:
1677 				match = (hlen > 0 && ipopts_match(ip, cmd) );
1678 				break;
1679 
1680 			case O_IPVER:
1681 				match = (hlen > 0 && cmd->arg1 == ip->ip_v);
1682 				break;
1683 
1684 			case O_IPTTL:
1685 				match = (hlen > 0 && cmd->arg1 == ip->ip_ttl);
1686 				break;
1687 
1688 			case O_IPID:
1689 				match = (hlen > 0 &&
1690 				    cmd->arg1 == ntohs(ip->ip_id));
1691 				break;
1692 
1693 			case O_IPLEN:
1694 				match = (hlen > 0 && cmd->arg1 == ip_len);
1695 				break;
1696 
1697 			case O_IPPRECEDENCE:
1698 				match = (hlen > 0 &&
1699 				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1700 				break;
1701 
1702 			case O_IPTOS:
1703 				match = (hlen > 0 &&
1704 				    flags_match(cmd, ip->ip_tos));
1705 				break;
1706 
1707 			case O_TCPFLAGS:
1708 				match = (proto == IPPROTO_TCP && offset == 0 &&
1709 				    flags_match(cmd,
1710 					L3HDR(struct tcphdr,ip)->th_flags));
1711 				break;
1712 
1713 			case O_TCPOPTS:
1714 				match = (proto == IPPROTO_TCP && offset == 0 &&
1715 				    tcpopts_match(ip, cmd));
1716 				break;
1717 
1718 			case O_TCPSEQ:
1719 				match = (proto == IPPROTO_TCP && offset == 0 &&
1720 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1721 					L3HDR(struct tcphdr,ip)->th_seq);
1722 				break;
1723 
1724 			case O_TCPACK:
1725 				match = (proto == IPPROTO_TCP && offset == 0 &&
1726 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1727 					L3HDR(struct tcphdr,ip)->th_ack);
1728 				break;
1729 
1730 			case O_TCPWIN:
1731 				match = (proto == IPPROTO_TCP && offset == 0 &&
1732 				    cmd->arg1 ==
1733 					L3HDR(struct tcphdr,ip)->th_win);
1734 				break;
1735 
1736 			case O_ESTAB:
1737 				/* reject packets which have SYN only */
1738 				/* XXX should i also check for TH_ACK ? */
1739 				match = (proto == IPPROTO_TCP && offset == 0 &&
1740 				    (L3HDR(struct tcphdr,ip)->th_flags &
1741 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1742 				break;
1743 
1744 			case O_LOG:
1745 				if (fw_verbose)
1746 					ipfw_log(f, hlen, args->eh, m, oif);
1747 				match = 1;
1748 				break;
1749 
1750 			case O_PROB:
1751 				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1752 				break;
1753 
1754 			/*
1755 			 * The second set of opcodes represents 'actions',
1756 			 * i.e. the terminal part of a rule once the packet
1757 			 * matches all previous patterns.
1758 			 * Typically there is only one action for each rule,
1759 			 * and the opcode is stored at the end of the rule
1760 			 * (but there are exceptions -- see below).
1761 			 *
1762 			 * In general, here we set retval and terminate the
1763 			 * outer loop (would be a 'break 3' in some language,
1764 			 * but we need to do a 'goto done').
1765 			 *
1766 			 * Exceptions:
1767 			 * O_COUNT and O_SKIPTO actions:
1768 			 *   instead of terminating, we jump to the next rule
1769 			 *   ('goto next_rule', equivalent to a 'break 2'),
1770 			 *   or to the SKIPTO target ('goto again' after
1771 			 *   having set f, cmd and l), respectively.
1772 			 *
1773 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
1774 			 *   not real 'actions', and are stored right
1775 			 *   before the 'action' part of the rule.
1776 			 *   These opcodes try to install an entry in the
1777 			 *   state tables; if successful, we continue with
1778 			 *   the next opcode (match=1; break;), otherwise
1779 			 *   the packet *   must be dropped
1780 			 *   ('goto done' after setting retval);
1781 			 *
1782 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1783 			 *   cause a lookup of the state table, and a jump
1784 			 *   to the 'action' part of the parent rule
1785 			 *   ('goto check_body') if an entry is found, or
1786 			 *   (CHECK_STATE only) a jump to the next rule if
1787 			 *   the entry is not found ('goto next_rule').
1788 			 *   The result of the lookup is cached to make
1789 			 *   further instances of these opcodes are
1790 			 *   effectively NOPs.
1791 			 */
1792 			case O_LIMIT:
1793 			case O_KEEP_STATE:
1794 				if (install_state(f,
1795 				    (ipfw_insn_limit *)cmd, args)) {
1796 					retval = IP_FW_PORT_DENY_FLAG;
1797 					goto done; /* error/limit violation */
1798 				}
1799 				match = 1;
1800 				break;
1801 
1802 			case O_PROBE_STATE:
1803 			case O_CHECK_STATE:
1804 				/*
1805 				 * dynamic rules are checked at the first
1806 				 * keep-state or check-state occurrence,
1807 				 * with the result being stored in dyn_dir.
1808 				 * The compiler introduces a PROBE_STATE
1809 				 * instruction for us when we have a
1810 				 * KEEP_STATE (because PROBE_STATE needs
1811 				 * to be run first).
1812 				 */
1813 				if (dyn_dir == MATCH_UNKNOWN &&
1814 				    (q = lookup_dyn_rule(&args->f_id,
1815 				     &dyn_dir, proto == IPPROTO_TCP ?
1816 					L3HDR(struct tcphdr, ip) : NULL))
1817 					!= NULL) {
1818 					/*
1819 					 * Found dynamic entry, update stats
1820 					 * and jump to the 'action' part of
1821 					 * the parent rule.
1822 					 */
1823 					q->pcnt++;
1824 					q->bcnt += ip_len;
1825 					f = q->rule;
1826 					cmd = ACTION_PTR(f);
1827 					l = f->cmd_len - f->act_ofs;
1828 					goto check_body;
1829 				}
1830 				/*
1831 				 * Dynamic entry not found. If CHECK_STATE,
1832 				 * skip to next rule, if PROBE_STATE just
1833 				 * ignore and continue with next opcode.
1834 				 */
1835 				if (cmd->opcode == O_CHECK_STATE)
1836 					goto next_rule;
1837 				match = 1;
1838 				break;
1839 
1840 			case O_ACCEPT:
1841 				retval = 0;	/* accept */
1842 				goto done;
1843 
1844 			case O_PIPE:
1845 			case O_QUEUE:
1846 				args->rule = f; /* report matching rule */
1847 				retval = cmd->arg1 | IP_FW_PORT_DYNT_FLAG;
1848 				goto done;
1849 
1850 			case O_DIVERT:
1851 			case O_TEE:
1852 				if (args->eh) /* not on layer 2 */
1853 					break;
1854 				args->divert_rule = f->rulenum;
1855 				retval = (cmd->opcode == O_DIVERT) ?
1856 				    cmd->arg1 :
1857 				    cmd->arg1 | IP_FW_PORT_TEE_FLAG;
1858 				goto done;
1859 
1860 			case O_COUNT:
1861 			case O_SKIPTO:
1862 				f->pcnt++;	/* update stats */
1863 				f->bcnt += ip_len;
1864 				f->timestamp = time_second;
1865 				if (cmd->opcode == O_COUNT)
1866 					goto next_rule;
1867 				/* handle skipto */
1868 				if (f->next_rule == NULL)
1869 					lookup_next_rule(f);
1870 				f = f->next_rule;
1871 				goto again;
1872 
1873 			case O_REJECT:
1874 				/*
1875 				 * Drop the packet and send a reject notice
1876 				 * if the packet is not ICMP (or is an ICMP
1877 				 * query), and it is not multicast/broadcast.
1878 				 */
1879 				if (hlen > 0 &&
1880 				    (proto != IPPROTO_ICMP ||
1881 				     is_icmp_query(ip)) &&
1882 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
1883 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
1884 					send_reject(args, cmd->arg1,
1885 					    offset,ip_len);
1886 					m = args->m;
1887 				}
1888 				/* FALLTHROUGH */
1889 			case O_DENY:
1890 				retval = IP_FW_PORT_DENY_FLAG;
1891 				goto done;
1892 
1893 			case O_FORWARD_IP:
1894 				if (args->eh)	/* not valid on layer2 pkts */
1895 					break;
1896 				if (!q || dyn_dir == MATCH_FORWARD)
1897 					args->next_hop =
1898 					    &((ipfw_insn_sa *)cmd)->sa;
1899 				retval = 0;
1900 				goto done;
1901 
1902 			default:
1903 				panic("-- unknown opcode %d\n", cmd->opcode);
1904 			} /* end of switch() on opcodes */
1905 
1906 			if (cmd->len & F_NOT)
1907 				match = !match;
1908 
1909 			if (match) {
1910 				if (cmd->len & F_OR)
1911 					skip_or = 1;
1912 			} else {
1913 				if (!(cmd->len & F_OR)) /* not an OR block, */
1914 					break;		/* try next rule    */
1915 			}
1916 
1917 		}	/* end of inner for, scan opcodes */
1918 
1919 next_rule:;		/* try next rule		*/
1920 
1921 	}		/* end of outer for, scan rules */
1922 	printf("+++ ipfw: ouch!, skip past end of rules, denying packet\n");
1923 	return(IP_FW_PORT_DENY_FLAG);
1924 
1925 done:
1926 	/* Update statistics */
1927 	f->pcnt++;
1928 	f->bcnt += ip_len;
1929 	f->timestamp = time_second;
1930 	return retval;
1931 
1932 pullup_failed:
1933 	if (fw_verbose)
1934 		printf("pullup failed\n");
1935 	return(IP_FW_PORT_DENY_FLAG);
1936 }
1937 
1938 /*
1939  * When a rule is added/deleted, clear the next_rule pointers in all rules.
1940  * These will be reconstructed on the fly as packets are matched.
1941  * Must be called at splimp().
1942  */
1943 static void
1944 flush_rule_ptrs(void)
1945 {
1946 	struct ip_fw *rule;
1947 
1948 	for (rule = layer3_chain; rule; rule = rule->next)
1949 		rule->next_rule = NULL;
1950 }
1951 
1952 /*
1953  * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
1954  * pipe/queue, or to all of them (match == NULL).
1955  * Must be called at splimp().
1956  */
1957 void
1958 flush_pipe_ptrs(struct dn_flow_set *match)
1959 {
1960 	struct ip_fw *rule;
1961 
1962 	for (rule = layer3_chain; rule; rule = rule->next) {
1963 		ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
1964 
1965 		if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
1966 			continue;
1967 		if (match == NULL || cmd->pipe_ptr == match)
1968 			cmd->pipe_ptr = NULL;
1969 	}
1970 }
1971 
1972 /*
1973  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
1974  * possibly create a rule number and add the rule to the list.
1975  * Update the rule_number in the input struct so the caller knows it as well.
1976  */
1977 static int
1978 add_rule(struct ip_fw **head, struct ip_fw *input_rule)
1979 {
1980 	struct ip_fw *rule, *f, *prev;
1981 	int s;
1982 	int l = RULESIZE(input_rule);
1983 
1984 	if (*head == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
1985 		return (EINVAL);
1986 
1987 	rule = malloc(l, M_IPFW, M_WAITOK | M_ZERO);
1988 	if (rule == NULL)
1989 		return (ENOSPC);
1990 
1991 	bcopy(input_rule, rule, l);
1992 
1993 	rule->next = NULL;
1994 	rule->next_rule = NULL;
1995 
1996 	rule->pcnt = 0;
1997 	rule->bcnt = 0;
1998 	rule->timestamp = 0;
1999 
2000 	s = splimp();
2001 
2002 	if (*head == NULL) {	/* default rule */
2003 		*head = rule;
2004 		goto done;
2005         }
2006 
2007 	/*
2008 	 * If rulenum is 0, find highest numbered rule before the
2009 	 * default rule, and add autoinc_step
2010 	 */
2011 	if (autoinc_step < 1)
2012 		autoinc_step = 1;
2013 	else if (autoinc_step > 1000)
2014 		autoinc_step = 1000;
2015 	if (rule->rulenum == 0) {
2016 		/*
2017 		 * locate the highest numbered rule before default
2018 		 */
2019 		for (f = *head; f; f = f->next) {
2020 			if (f->rulenum == IPFW_DEFAULT_RULE)
2021 				break;
2022 			rule->rulenum = f->rulenum;
2023 		}
2024 		if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
2025 			rule->rulenum += autoinc_step;
2026 		input_rule->rulenum = rule->rulenum;
2027 	}
2028 
2029 	/*
2030 	 * Now insert the new rule in the right place in the sorted list.
2031 	 */
2032 	for (prev = NULL, f = *head; f; prev = f, f = f->next) {
2033 		if (f->rulenum > rule->rulenum) { /* found the location */
2034 			if (prev) {
2035 				rule->next = f;
2036 				prev->next = rule;
2037 			} else { /* head insert */
2038 				rule->next = *head;
2039 				*head = rule;
2040 			}
2041 			break;
2042 		}
2043 	}
2044 	flush_rule_ptrs();
2045 done:
2046 	static_count++;
2047 	static_len += l;
2048 	splx(s);
2049 	DEB(printf("++ installed rule %d, static count now %d\n",
2050 		rule->rulenum, static_count);)
2051 	return (0);
2052 }
2053 
2054 /**
2055  * Free storage associated with a static rule (including derived
2056  * dynamic rules).
2057  * The caller is in charge of clearing rule pointers to avoid
2058  * dangling pointers.
2059  * @return a pointer to the next entry.
2060  * Arguments are not checked, so they better be correct.
2061  * Must be called at splimp().
2062  */
2063 static struct ip_fw *
2064 delete_rule(struct ip_fw **head, struct ip_fw *prev, struct ip_fw *rule)
2065 {
2066 	struct ip_fw *n;
2067 	int l = RULESIZE(rule);
2068 
2069 	n = rule->next;
2070 	remove_dyn_rule(rule, NULL /* force removal */);
2071 	if (prev == NULL)
2072 		*head = n;
2073 	else
2074 		prev->next = n;
2075 	static_count--;
2076 	static_len -= l;
2077 
2078 	if (DUMMYNET_LOADED)
2079 		ip_dn_ruledel_ptr(rule);
2080 	free(rule, M_IPFW);
2081 	return n;
2082 }
2083 
2084 /*
2085  * Deletes all rules from a chain (including the default rule
2086  * if the second argument is set).
2087  * Must be called at splimp().
2088  */
2089 static void
2090 free_chain(struct ip_fw **chain, int kill_default)
2091 {
2092 	struct ip_fw *rule;
2093 
2094 	flush_rule_ptrs(); /* more efficient to do outside the loop */
2095 
2096 	while ( (rule = *chain) != NULL &&
2097 	    (kill_default || rule->rulenum != IPFW_DEFAULT_RULE) )
2098 		delete_rule(chain, NULL, rule);
2099 }
2100 
2101 /**
2102  * Remove all rules with given number, and also do set manipulation.
2103  *
2104  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
2105  * the next 8 bits are the new set, the top 8 bits are the command:
2106  *
2107  *	0	delete rules with given number
2108  *	1	delete rules with given set number
2109  *	2	move rules with given number to new set
2110  *	3	move rules with given set number to new set
2111  *	4	swap sets with given numbers
2112  */
2113 static int
2114 del_entry(struct ip_fw **chain, u_int32_t arg)
2115 {
2116 	struct ip_fw *prev, *rule;
2117 	int s;
2118 	u_int16_t rulenum;
2119 	u_int8_t cmd, new_set;
2120 
2121 	rulenum = arg & 0xffff;
2122 	cmd = (arg >> 24) & 0xff;
2123 	new_set = (arg >> 16) & 0xff;
2124 
2125 	if (cmd > 4)
2126 		return EINVAL;
2127 	if (new_set > 30)
2128 		return EINVAL;
2129 	if (cmd == 0 || cmd == 2) {
2130 		if (rulenum == IPFW_DEFAULT_RULE)
2131 			return EINVAL;
2132 	} else {
2133 		if (rulenum > 30)
2134 			return EINVAL;
2135 	}
2136 
2137 	switch (cmd) {
2138 	case 0:	/* delete rules with given number */
2139 		/*
2140 		 * locate first rule to delete
2141 		 */
2142 		for (prev = NULL, rule = *chain;
2143 		    rule && rule->rulenum < rulenum;
2144 		     prev = rule, rule = rule->next)
2145 			;
2146 		if (rule->rulenum != rulenum)
2147 			return EINVAL;
2148 
2149 		s = splimp(); /* no access to rules while removing */
2150 		/*
2151 		 * flush pointers outside the loop, then delete all matching
2152 		 * rules. prev remains the same throughout the cycle.
2153 		 */
2154 		flush_rule_ptrs();
2155 		while (rule && rule->rulenum == rulenum)
2156 			rule = delete_rule(chain, prev, rule);
2157 		splx(s);
2158 		break;
2159 
2160 	case 1:	/* delete all rules with given set number */
2161 		s = splimp();
2162 		flush_rule_ptrs();
2163 		for (prev = NULL, rule = *chain; rule ; )
2164 			if (rule->set == rulenum)
2165 				rule = delete_rule(chain, prev, rule);
2166 			else {
2167 				prev = rule;
2168 				rule = rule->next;
2169 			}
2170 		splx(s);
2171 		break;
2172 
2173 	case 2:	/* move rules with given number to new set */
2174 		s = splimp();
2175 		for (rule = *chain; rule ; rule = rule->next)
2176 			if (rule->rulenum == rulenum)
2177 				rule->set = new_set;
2178 		splx(s);
2179 		break;
2180 
2181 	case 3: /* move rules with given set number to new set */
2182 		s = splimp();
2183 		for (rule = *chain; rule ; rule = rule->next)
2184 			if (rule->set == rulenum)
2185 				rule->set = new_set;
2186 		splx(s);
2187 		break;
2188 
2189 	case 4: /* swap two sets */
2190 		s = splimp();
2191 		for (rule = *chain; rule ; rule = rule->next)
2192 			if (rule->set == rulenum)
2193 				rule->set = new_set;
2194 			else if (rule->set == new_set)
2195 				rule->set = rulenum;
2196 		splx(s);
2197 		break;
2198 	}
2199 	return 0;
2200 }
2201 
2202 /*
2203  * Clear counters for a specific rule.
2204  */
2205 static void
2206 clear_counters(struct ip_fw *rule, int log_only)
2207 {
2208 	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
2209 
2210 	if (log_only == 0) {
2211 		rule->bcnt = rule->pcnt = 0;
2212 		rule->timestamp = 0;
2213 	}
2214 	if (l->o.opcode == O_LOG)
2215 		l->log_left = l->max_log;
2216 }
2217 
2218 /**
2219  * Reset some or all counters on firewall rules.
2220  * @arg frwl is null to clear all entries, or contains a specific
2221  * rule number.
2222  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
2223  */
2224 static int
2225 zero_entry(int rulenum, int log_only)
2226 {
2227 	struct ip_fw *rule;
2228 	int s;
2229 	char *msg;
2230 
2231 	if (rulenum == 0) {
2232 		s = splimp();
2233 		norule_counter = 0;
2234 		for (rule = layer3_chain; rule; rule = rule->next)
2235 			clear_counters(rule, log_only);
2236 		splx(s);
2237 		msg = log_only ? "ipfw: All logging counts reset.\n" :
2238 				"ipfw: Accounting cleared.\n";
2239 	} else {
2240 		int cleared = 0;
2241 		/*
2242 		 * We can have multiple rules with the same number, so we
2243 		 * need to clear them all.
2244 		 */
2245 		for (rule = layer3_chain; rule; rule = rule->next)
2246 			if (rule->rulenum == rulenum) {
2247 				s = splimp();
2248 				while (rule && rule->rulenum == rulenum) {
2249 					clear_counters(rule, log_only);
2250 					rule = rule->next;
2251 				}
2252 				splx(s);
2253 				cleared = 1;
2254 				break;
2255 			}
2256 		if (!cleared)	/* we did not find any matching rules */
2257 			return (EINVAL);
2258 		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
2259 				"ipfw: Entry %d cleared.\n";
2260 	}
2261 	if (fw_verbose)
2262 		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
2263 	return (0);
2264 }
2265 
2266 /*
2267  * Check validity of the structure before insert.
2268  * Fortunately rules are simple, so this mostly need to check rule sizes.
2269  */
2270 static int
2271 check_ipfw_struct(struct ip_fw *rule, int size)
2272 {
2273 	int l, cmdlen = 0;
2274 	int have_action=0;
2275 	ipfw_insn *cmd;
2276 
2277 	if (size < sizeof(*rule)) {
2278 		printf("ipfw: rule too short\n");
2279 		return (EINVAL);
2280 	}
2281 	/* first, check for valid size */
2282 	l = RULESIZE(rule);
2283 	if (l != size) {
2284 		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
2285 		return (EINVAL);
2286 	}
2287 	/*
2288 	 * Now go for the individual checks. Very simple ones, basically only
2289 	 * instruction sizes.
2290 	 */
2291 	for (l = rule->cmd_len, cmd = rule->cmd ;
2292 			l > 0 ; l -= cmdlen, cmd += cmdlen) {
2293 		cmdlen = F_LEN(cmd);
2294 		if (cmdlen > l) {
2295 			printf("ipfw: opcode %d size truncated\n",
2296 			    cmd->opcode);
2297 			return EINVAL;
2298 		}
2299 		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
2300 		switch (cmd->opcode) {
2301 		case O_NOP:
2302 		case O_PROBE_STATE:
2303 		case O_KEEP_STATE:
2304 		case O_PROTO:
2305 		case O_IP_SRC_ME:
2306 		case O_IP_DST_ME:
2307 		case O_LAYER2:
2308 		case O_IN:
2309 		case O_FRAG:
2310 		case O_IPOPT:
2311 		case O_IPLEN:
2312 		case O_IPID:
2313 		case O_IPTOS:
2314 		case O_IPPRECEDENCE:
2315 		case O_IPTTL:
2316 		case O_IPVER:
2317 		case O_TCPWIN:
2318 		case O_TCPFLAGS:
2319 		case O_TCPOPTS:
2320 		case O_ESTAB:
2321 			if (cmdlen != F_INSN_SIZE(ipfw_insn))
2322 				goto bad_size;
2323 			break;
2324 
2325 		case O_UID:
2326 		case O_GID:
2327 		case O_IP_SRC:
2328 		case O_IP_DST:
2329 		case O_TCPSEQ:
2330 		case O_TCPACK:
2331 		case O_PROB:
2332 		case O_ICMPTYPE:
2333 			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
2334 				goto bad_size;
2335 			break;
2336 
2337 		case O_LIMIT:
2338 			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
2339 				goto bad_size;
2340 			break;
2341 
2342 		case O_LOG:
2343 			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
2344 				goto bad_size;
2345 
2346 			((ipfw_insn_log *)cmd)->log_left =
2347 			    ((ipfw_insn_log *)cmd)->max_log;
2348 
2349 			break;
2350 
2351 		case O_IP_SRC_MASK:
2352 		case O_IP_DST_MASK:
2353 			if (cmdlen != F_INSN_SIZE(ipfw_insn_ip))
2354 				goto bad_size;
2355 			if (((ipfw_insn_ip *)cmd)->mask.s_addr == 0) {
2356 				printf("ipfw: opcode %d, useless rule\n",
2357 					cmd->opcode);
2358 				return EINVAL;
2359 			}
2360 			break;
2361 
2362 		case O_IP_SRC_SET:
2363 		case O_IP_DST_SET:
2364 			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
2365 				printf("ipfw: invalid set size %d\n",
2366 					cmd->arg1);
2367 				return EINVAL;
2368 			}
2369 			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
2370 			    (cmd->arg1+31)/32 )
2371 				goto bad_size;
2372 			break;
2373 
2374 		case O_MACADDR2:
2375 			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
2376 				goto bad_size;
2377 			break;
2378 
2379 		case O_MAC_TYPE:
2380 		case O_IP_SRCPORT:
2381 		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
2382 			if (cmdlen < 2 || cmdlen > 31)
2383 				goto bad_size;
2384 			break;
2385 
2386 		case O_RECV:
2387 		case O_XMIT:
2388 		case O_VIA:
2389 			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
2390 				goto bad_size;
2391 			break;
2392 
2393 		case O_PIPE:
2394 		case O_QUEUE:
2395 			if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
2396 				goto bad_size;
2397 			goto check_action;
2398 
2399 		case O_FORWARD_IP:
2400 			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
2401 				goto bad_size;
2402 			goto check_action;
2403 
2404 		case O_FORWARD_MAC: /* XXX not implemented yet */
2405 		case O_CHECK_STATE:
2406 		case O_COUNT:
2407 		case O_ACCEPT:
2408 		case O_DENY:
2409 		case O_REJECT:
2410 		case O_SKIPTO:
2411 		case O_DIVERT:
2412 		case O_TEE:
2413 			if (cmdlen != F_INSN_SIZE(ipfw_insn))
2414 				goto bad_size;
2415 check_action:
2416 			if (have_action) {
2417 				printf("ipfw: opcode %d, multiple actions"
2418 					" not allowed\n",
2419 					cmd->opcode);
2420 				return EINVAL;
2421 			}
2422 			have_action = 1;
2423 			if (l != cmdlen) {
2424 				printf("ipfw: opcode %d, action must be"
2425 					" last opcode\n",
2426 					cmd->opcode);
2427 				return EINVAL;
2428 			}
2429 			break;
2430 		default:
2431 			printf("ipfw: opcode %d, unknown opcode\n",
2432 				cmd->opcode);
2433 			return EINVAL;
2434 		}
2435 	}
2436 	if (have_action == 0) {
2437 		printf("ipfw: missing action\n");
2438 		return EINVAL;
2439 	}
2440 	return 0;
2441 
2442 bad_size:
2443 	printf("ipfw: opcode %d size %d wrong\n",
2444 		cmd->opcode, cmdlen);
2445 	return EINVAL;
2446 }
2447 
2448 
2449 /**
2450  * {set|get}sockopt parser.
2451  */
2452 static int
2453 ipfw_ctl(struct sockopt *sopt)
2454 {
2455 	int error, s, rulenum;
2456 	size_t size;
2457 	struct ip_fw *bp , *buf, *rule;
2458 
2459 	static u_int32_t rule_buf[255];	/* we copy the data here */
2460 
2461 	/*
2462 	 * Disallow modifications in really-really secure mode, but still allow
2463 	 * the logging counters to be reset.
2464 	 */
2465 	if (sopt->sopt_name == IP_FW_ADD ||
2466 	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
2467 #if defined(__FreeBSD__) && __FreeBSD_version >= 500034
2468 		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
2469 		if (error)
2470 			return (error);
2471 #else /* FreeBSD 4.x */
2472 		if (securelevel >= 3)
2473 			return (EPERM);
2474 #endif
2475 	}
2476 
2477 	error = 0;
2478 
2479 	switch (sopt->sopt_name) {
2480 	case IP_FW_GET:
2481 		/*
2482 		 * pass up a copy of the current rules. Static rules
2483 		 * come first (the last of which has number IPFW_DEFAULT_RULE),
2484 		 * followed by a possibly empty list of dynamic rule.
2485 		 * The last dynamic rule has NULL in the "next" field.
2486 		 */
2487 		s = splimp();
2488 		size = static_len;	/* size of static rules */
2489 		if (ipfw_dyn_v)		/* add size of dyn.rules */
2490 			size += (dyn_count * sizeof(ipfw_dyn_rule));
2491 
2492 		/*
2493 		 * XXX todo: if the user passes a short length just to know
2494 		 * how much room is needed, do not bother filling up the
2495 		 * buffer, just jump to the sooptcopyout.
2496 		 */
2497 		buf = malloc(size, M_TEMP, M_WAITOK);
2498 
2499 		bp = buf;
2500 		for (rule = layer3_chain; rule ; rule = rule->next) {
2501 			int i = RULESIZE(rule);
2502 			bcopy(rule, bp, i);
2503 			/*
2504 			 * abuse 'next_rule' to store the set_disable word
2505 			 */
2506 			(u_int32_t)(((struct ip_fw *)bp)->next_rule) =
2507 				set_disable;
2508 			bp = (struct ip_fw *)((char *)bp + i);
2509 		}
2510 		if (ipfw_dyn_v) {
2511 			int i;
2512 			ipfw_dyn_rule *p, *dst, *last = NULL;
2513 
2514 			dst = (ipfw_dyn_rule *)bp;
2515 			for (i = 0 ; i < curr_dyn_buckets ; i++ )
2516 				for ( p = ipfw_dyn_v[i] ; p != NULL ;
2517 				    p = p->next, dst++ ) {
2518 					bcopy(p, dst, sizeof *p);
2519 					(int)dst->rule = p->rule->rulenum ;
2520 					/*
2521 					 * store a non-null value in "next".
2522 					 * The userland code will interpret a
2523 					 * NULL here as a marker
2524 					 * for the last dynamic rule.
2525 					 */
2526 					dst->next = dst ;
2527 					last = dst ;
2528 					dst->expire =
2529 					    TIME_LEQ(dst->expire, time_second) ?
2530 						0 : dst->expire - time_second ;
2531 				}
2532 			if (last != NULL) /* mark last dynamic rule */
2533 				last->next = NULL;
2534 		}
2535 		splx(s);
2536 
2537 		error = sooptcopyout(sopt, buf, size);
2538 		free(buf, M_TEMP);
2539 		break;
2540 
2541 	case IP_FW_FLUSH:
2542 		/*
2543 		 * Normally we cannot release the lock on each iteration.
2544 		 * We could do it here only because we start from the head all
2545 		 * the times so there is no risk of missing some entries.
2546 		 * On the other hand, the risk is that we end up with
2547 		 * a very inconsistent ruleset, so better keep the lock
2548 		 * around the whole cycle.
2549 		 *
2550 		 * XXX this code can be improved by resetting the head of
2551 		 * the list to point to the default rule, and then freeing
2552 		 * the old list without the need for a lock.
2553 		 */
2554 
2555 		s = splimp();
2556 		free_chain(&layer3_chain, 0 /* keep default rule */);
2557 		splx(s);
2558 		break;
2559 
2560 	case IP_FW_ADD:
2561 		rule = (struct ip_fw *)rule_buf; /* XXX do a malloc */
2562 		error = sooptcopyin(sopt, rule, sizeof(rule_buf),
2563 			sizeof(struct ip_fw) );
2564 		size = sopt->sopt_valsize;
2565 		if (error || (error = check_ipfw_struct(rule, size)))
2566 			break;
2567 
2568 		error = add_rule(&layer3_chain, rule);
2569 		size = RULESIZE(rule);
2570 		if (!error && sopt->sopt_dir == SOPT_GET)
2571 			error = sooptcopyout(sopt, rule, size);
2572 		break;
2573 
2574 	case IP_FW_DEL:
2575 		/*
2576 		 * IP_FW_DEL is used for deleting single rules or sets,
2577 		 * and (ab)used to atomically manipulate sets. Argument size
2578 		 * is used to distinguish between the two:
2579 		 *    sizeof(u_int32_t)
2580 		 *	delete single rule or set of rules,
2581 		 *	or reassign rules (or sets) to a different set.
2582 		 *    2*sizeof(u_int32_t)
2583 		 *	atomic disable/enable sets.
2584 		 *	first u_int32_t contains sets to be disabled,
2585 		 *	second u_int32_t contains sets to be enabled.
2586 		 */
2587 		error = sooptcopyin(sopt, rule_buf,
2588 			2*sizeof(u_int32_t), sizeof(u_int32_t));
2589 		if (error)
2590 			break;
2591 		size = sopt->sopt_valsize;
2592 		if (size == sizeof(u_int32_t))	/* delete or reassign */
2593 			error = del_entry(&layer3_chain, rule_buf[0]);
2594 		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
2595 			set_disable =
2596 			    (set_disable | rule_buf[0]) & ~rule_buf[1] &
2597 			    ~(1<<31); /* set 31 always enabled */
2598 		else
2599 			error = EINVAL;
2600 		break;
2601 
2602 	case IP_FW_ZERO:
2603 	case IP_FW_RESETLOG: /* argument is an int, the rule number */
2604 		rulenum=0;
2605 
2606 		if (sopt->sopt_val != 0) {
2607 		    error = sooptcopyin(sopt, &rulenum,
2608 			    sizeof(int), sizeof(int));
2609 		    if (error)
2610 			break;
2611 		}
2612 		error = zero_entry(rulenum, sopt->sopt_name == IP_FW_RESETLOG);
2613 		break;
2614 
2615 	default:
2616 		printf("ipfw_ctl invalid option %d\n", sopt->sopt_name);
2617 		error = EINVAL;
2618 	}
2619 
2620 	return (error);
2621 }
2622 
2623 /**
2624  * dummynet needs a reference to the default rule, because rules can be
2625  * deleted while packets hold a reference to them. When this happens,
2626  * dummynet changes the reference to the default rule (it could well be a
2627  * NULL pointer, but this way we do not need to check for the special
2628  * case, plus here he have info on the default behaviour).
2629  */
2630 struct ip_fw *ip_fw_default_rule;
2631 
2632 /*
2633  * This procedure is only used to handle keepalives. It is invoked
2634  * every dyn_keepalive_period
2635  */
2636 static void
2637 ipfw_tick(void * __unused unused)
2638 {
2639 	int i;
2640 	int s;
2641 	ipfw_dyn_rule *q;
2642 
2643 	if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
2644 		goto done;
2645 
2646 	s = splimp();
2647 	for (i = 0 ; i < curr_dyn_buckets ; i++) {
2648 		for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
2649 			if (q->dyn_type == O_LIMIT_PARENT)
2650 				continue;
2651 			if (q->id.proto != IPPROTO_TCP)
2652 				continue;
2653 			if ( (q->state & BOTH_SYN) != BOTH_SYN)
2654 				continue;
2655 			if (TIME_LEQ( time_second+dyn_keepalive_interval,
2656 			    q->expire))
2657 				continue;	/* too early */
2658 			if (TIME_LEQ(q->expire, time_second))
2659 				continue;	/* too late, rule expired */
2660 
2661 			send_pkt(&(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
2662 			send_pkt(&(q->id), q->ack_fwd - 1, q->ack_rev, 0);
2663 		}
2664 	}
2665 	splx(s);
2666 done:
2667 	callout_reset(&ipfw_timeout_h, dyn_keepalive_period * hz,
2668 		      ipfw_tick, NULL);
2669 }
2670 
2671 static void
2672 ipfw_init(void)
2673 {
2674 	struct ip_fw default_rule;
2675 
2676 	ip_fw_chk_ptr = ipfw_chk;
2677 	ip_fw_ctl_ptr = ipfw_ctl;
2678 	layer3_chain = NULL;
2679 
2680 	bzero(&default_rule, sizeof default_rule);
2681 
2682 	default_rule.act_ofs = 0;
2683 	default_rule.rulenum = IPFW_DEFAULT_RULE;
2684 	default_rule.cmd_len = 1;
2685 	default_rule.set = 31;
2686 
2687 	default_rule.cmd[0].len = 1;
2688 	default_rule.cmd[0].opcode =
2689 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
2690 				1 ? O_ACCEPT :
2691 #endif
2692 				O_DENY;
2693 
2694 	add_rule(&layer3_chain, &default_rule);
2695 
2696 	ip_fw_default_rule = layer3_chain;
2697 	printf("ipfw2 initialized, divert %s, "
2698 		"rule-based forwarding enabled, default to %s, logging ",
2699 #ifdef IPDIVERT
2700 		"enabled",
2701 #else
2702 		"disabled",
2703 #endif
2704 		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
2705 
2706 #ifdef IPFIREWALL_VERBOSE
2707 	fw_verbose = 1;
2708 #endif
2709 #ifdef IPFIREWALL_VERBOSE_LIMIT
2710 	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2711 #endif
2712 	if (fw_verbose == 0)
2713 		printf("disabled\n");
2714 	else if (verbose_limit == 0)
2715 		printf("unlimited\n");
2716 	else
2717 		printf("limited to %d packets/entry by default\n",
2718 		    verbose_limit);
2719 	callout_init(&ipfw_timeout_h);
2720 	callout_reset(&ipfw_timeout_h, hz, ipfw_tick, NULL);
2721 }
2722 
2723 static int
2724 ipfw_modevent(module_t mod, int type, void *unused)
2725 {
2726 	int s;
2727 	int err = 0;
2728 
2729 	switch (type) {
2730 	case MOD_LOAD:
2731 		s = splimp();
2732 		if (IPFW_LOADED) {
2733 			splx(s);
2734 			printf("IP firewall already loaded\n");
2735 			err = EEXIST;
2736 		} else {
2737 			ipfw_init();
2738 			splx(s);
2739 		}
2740 		break;
2741 
2742 	case MOD_UNLOAD:
2743 #if !defined(KLD_MODULE)
2744 		printf("ipfw statically compiled, cannot unload\n");
2745 		err = EBUSY;
2746 #else
2747                 s = splimp();
2748 		callout_stop(&ipfw_timeout_h);
2749 		ip_fw_chk_ptr = NULL;
2750 		ip_fw_ctl_ptr = NULL;
2751 		free_chain(&layer3_chain, 1 /* kill default rule */);
2752 		splx(s);
2753 		printf("IP firewall unloaded\n");
2754 #endif
2755 		break;
2756 	default:
2757 		break;
2758 	}
2759 	return err;
2760 }
2761 
2762 static moduledata_t ipfwmod = {
2763 	"ipfw",
2764 	ipfw_modevent,
2765 	0
2766 };
2767 DECLARE_MODULE(ipfw, ipfwmod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2768 MODULE_VERSION(ipfw, 1);
2769 #endif /* IPFW2 */
2770