xref: /dragonfly/sys/net/ipfw/ip_fw2.c (revision e0ecab34)
1 /*
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.6.2.12 2003/04/08 10:42:32 maxim Exp $
26  * $DragonFly: src/sys/net/ipfw/ip_fw2.c,v 1.100 2008/11/22 11:03:35 sephe Exp $
27  */
28 
29 /*
30  * Implement IP packet firewall (new version)
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_inet.h"
35 #ifndef INET
36 #error IPFIREWALL requires INET.
37 #endif /* INET */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/kernel.h>
44 #include <sys/proc.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/sysctl.h>
48 #include <sys/syslog.h>
49 #include <sys/ucred.h>
50 #include <sys/in_cksum.h>
51 #include <sys/lock.h>
52 
53 #include <net/if.h>
54 #include <net/route.h>
55 #include <net/pfil.h>
56 #include <net/dummynet/ip_dummynet.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/mplock2.h>
60 #include <net/netmsg2.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/in_pcb.h>
66 #include <netinet/ip.h>
67 #include <netinet/ip_var.h>
68 #include <netinet/ip_icmp.h>
69 #include <netinet/tcp.h>
70 #include <netinet/tcp_timer.h>
71 #include <netinet/tcp_var.h>
72 #include <netinet/tcpip.h>
73 #include <netinet/udp.h>
74 #include <netinet/udp_var.h>
75 #include <netinet/ip_divert.h>
76 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
77 
78 #include <net/ipfw/ip_fw2.h>
79 
80 #ifdef IPFIREWALL_DEBUG
81 #define DPRINTF(fmt, ...) \
82 do { \
83 	if (fw_debug > 0) \
84 		kprintf(fmt, __VA_ARGS__); \
85 } while (0)
86 #else
87 #define DPRINTF(fmt, ...)	((void)0)
88 #endif
89 
90 /*
91  * Description about per-CPU rule duplication:
92  *
93  * Module loading/unloading and all ioctl operations are serialized
94  * by netisr0, so we don't have any ordering or locking problems.
95  *
96  * Following graph shows how operation on per-CPU rule list is
97  * performed [2 CPU case]:
98  *
99  *   CPU0                 CPU1
100  *
101  * netisr0 <------------------------------------+
102  *  domsg                                       |
103  *    |                                         |
104  *    | netmsg                                  |
105  *    |                                         |
106  *    V                                         |
107  *  ifnet0                                      |
108  *    :                                         | netmsg
109  *    :(delete/add...)                          |
110  *    :                                         |
111  *    :         netmsg                          |
112  *  forwardmsg---------->ifnet1                 |
113  *                          :                   |
114  *                          :(delete/add...)    |
115  *                          :                   |
116  *                          :                   |
117  *                        replymsg--------------+
118  *
119  *
120  *
121  *
122  * Rules which will not create states (dyn rules) [2 CPU case]
123  *
124  *    CPU0               CPU1
125  * layer3_chain       layer3_chain
126  *     |                  |
127  *     V                  V
128  * +-------+ sibling  +-------+ sibling
129  * | rule1 |--------->| rule1 |--------->NULL
130  * +-------+          +-------+
131  *     |                  |
132  *     |next              |next
133  *     V                  V
134  * +-------+ sibling  +-------+ sibling
135  * | rule2 |--------->| rule2 |--------->NULL
136  * +-------+          +-------+
137  *
138  * ip_fw.sibling:
139  * 1) Ease statistics calculation during IP_FW_GET.  We only need to
140  *    iterate layer3_chain on CPU0; the current rule's duplication on
141  *    the other CPUs could safely be read-only accessed by using
142  *    ip_fw.sibling
143  * 2) Accelerate rule insertion and deletion, e.g. rule insertion:
144  *    a) In netisr0 (on CPU0) rule3 is determined to be inserted between
145  *       rule1 and rule2.  To make this decision we need to iterate the
146  *       layer3_chain on CPU0.  The netmsg, which is used to insert the
147  *       rule, will contain rule1 on CPU0 as prev_rule and rule2 on CPU0
148  *       as next_rule
149  *    b) After the insertion on CPU0 is done, we will move on to CPU1.
150  *       But instead of relocating the rule3's position on CPU1 by
151  *       iterating the layer3_chain on CPU1, we set the netmsg's prev_rule
152  *       to rule1->sibling and next_rule to rule2->sibling before the
153  *       netmsg is forwarded to CPU1 from CPU0
154  *
155  *
156  *
157  * Rules which will create states (dyn rules) [2 CPU case]
158  * (unnecessary parts are omitted; they are same as in the previous figure)
159  *
160  *   CPU0                       CPU1
161  *
162  * +-------+                  +-------+
163  * | rule1 |                  | rule1 |
164  * +-------+                  +-------+
165  *   ^   |                      |   ^
166  *   |   |stub              stub|   |
167  *   |   |                      |   |
168  *   |   +----+            +----+   |
169  *   |        |            |        |
170  *   |        V            V        |
171  *   |    +--------------------+    |
172  *   |    |     rule_stub      |    |
173  *   |    | (read-only shared) |    |
174  *   |    |                    |    |
175  *   |    | back pointer array |    |
176  *   |    | (indexed by cpuid) |    |
177  *   |    |                    |    |
178  *   +----|---------[0]        |    |
179  *        |         [1]--------|----+
180  *        |                    |
181  *        +--------------------+
182  *          ^            ^
183  *          |            |
184  *  ........|............|............
185  *  :       |            |           :
186  *  :       |stub        |stub       :
187  *  :       |            |           :
188  *  :  +---------+  +---------+      :
189  *  :  | state1a |  | state1b | .... :
190  *  :  +---------+  +---------+      :
191  *  :                                :
192  *  :           states table         :
193  *  :            (shared)            :
194  *  :      (protected by dyn_lock)   :
195  *  ..................................
196  *
197  * [state1a and state1b are states created by rule1]
198  *
199  * ip_fw_stub:
200  * This structure is introduced so that shared (locked) state table could
201  * work with per-CPU (duplicated) static rules.  It mainly bridges states
202  * and static rules and serves as static rule's place holder (a read-only
203  * shared part of duplicated rules) from states point of view.
204  *
205  * IPFW_RULE_F_STATE (only for rules which create states):
206  * o  During rule installation, this flag is turned on after rule's
207  *    duplications reach all CPUs, to avoid at least following race:
208  *    1) rule1 is duplicated on CPU0 and is not duplicated on CPU1 yet
209  *    2) rule1 creates state1
210  *    3) state1 is located on CPU1 by check-state
211  *    But rule1 is not duplicated on CPU1 yet
212  * o  During rule deletion, this flag is turned off before deleting states
213  *    created by the rule and before deleting the rule itself, so no
214  *    more states will be created by the to-be-deleted rule even when its
215  *    duplication on certain CPUs are not eliminated yet.
216  */
217 
218 #define IPFW_AUTOINC_STEP_MIN	1
219 #define IPFW_AUTOINC_STEP_MAX	1000
220 #define IPFW_AUTOINC_STEP_DEF	100
221 
222 #define	IPFW_DEFAULT_RULE	65535	/* rulenum for the default rule */
223 #define IPFW_DEFAULT_SET	31	/* set number for the default rule */
224 
225 struct netmsg_ipfw {
226 	struct netmsg	nmsg;
227 	const struct ipfw_ioc_rule *ioc_rule;
228 	struct ip_fw	*next_rule;
229 	struct ip_fw	*prev_rule;
230 	struct ip_fw	*sibling;
231 	struct ip_fw_stub *stub;
232 };
233 
234 struct netmsg_del {
235 	struct netmsg	nmsg;
236 	struct ip_fw	*start_rule;
237 	struct ip_fw	*prev_rule;
238 	uint16_t	rulenum;
239 	uint8_t		from_set;
240 	uint8_t		to_set;
241 };
242 
243 struct netmsg_zent {
244 	struct netmsg	nmsg;
245 	struct ip_fw	*start_rule;
246 	uint16_t	rulenum;
247 	uint16_t	log_only;
248 };
249 
250 struct ipfw_context {
251 	struct ip_fw	*ipfw_layer3_chain;	/* list of rules for layer3 */
252 	struct ip_fw	*ipfw_default_rule;	/* default rule */
253 	uint64_t	ipfw_norule_counter;	/* counter for ipfw_log(NULL) */
254 
255 	/*
256 	 * ipfw_set_disable contains one bit per set value (0..31).
257 	 * If the bit is set, all rules with the corresponding set
258 	 * are disabled.  Set IPDW_DEFAULT_SET is reserved for the
259 	 * default rule and CANNOT be disabled.
260 	 */
261 	uint32_t	ipfw_set_disable;
262 	uint32_t	ipfw_gen;		/* generation of rule list */
263 };
264 
265 static struct ipfw_context	*ipfw_ctx[MAXCPU];
266 
267 #ifdef KLD_MODULE
268 /*
269  * Module can not be unloaded, if there are references to
270  * certains rules of ipfw(4), e.g. dummynet(4)
271  */
272 static int ipfw_refcnt;
273 #endif
274 
275 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
276 
277 /*
278  * Following two global variables are accessed and
279  * updated only on CPU0
280  */
281 static uint32_t static_count;	/* # of static rules */
282 static uint32_t static_ioc_len;	/* bytes of static rules */
283 
284 /*
285  * If 1, then ipfw static rules are being flushed,
286  * ipfw_chk() will skip to the default rule.
287  */
288 static int ipfw_flushing;
289 
290 static int fw_verbose;
291 static int verbose_limit;
292 
293 static int fw_debug;
294 static int autoinc_step = IPFW_AUTOINC_STEP_DEF;
295 
296 static int	ipfw_sysctl_enable(SYSCTL_HANDLER_ARGS);
297 static int	ipfw_sysctl_autoinc_step(SYSCTL_HANDLER_ARGS);
298 static int	ipfw_sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS);
299 static int	ipfw_sysctl_dyn_fin(SYSCTL_HANDLER_ARGS);
300 static int	ipfw_sysctl_dyn_rst(SYSCTL_HANDLER_ARGS);
301 
302 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
303 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
304     &fw_enable, 0, ipfw_sysctl_enable, "I", "Enable ipfw");
305 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLTYPE_INT | CTLFLAG_RW,
306     &autoinc_step, 0, ipfw_sysctl_autoinc_step, "I",
307     "Rule number autincrement step");
308 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO,one_pass,CTLFLAG_RW,
309     &fw_one_pass, 0,
310     "Only do a single pass through ipfw when using dummynet(4)");
311 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
312     &fw_debug, 0, "Enable printing of debug ip_fw statements");
313 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose, CTLFLAG_RW,
314     &fw_verbose, 0, "Log matches to ipfw rules");
315 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
316     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
317 
318 /*
319  * Description of dynamic rules.
320  *
321  * Dynamic rules are stored in lists accessed through a hash table
322  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
323  * be modified through the sysctl variable dyn_buckets which is
324  * updated when the table becomes empty.
325  *
326  * XXX currently there is only one list, ipfw_dyn.
327  *
328  * When a packet is received, its address fields are first masked
329  * with the mask defined for the rule, then hashed, then matched
330  * against the entries in the corresponding list.
331  * Dynamic rules can be used for different purposes:
332  *  + stateful rules;
333  *  + enforcing limits on the number of sessions;
334  *  + in-kernel NAT (not implemented yet)
335  *
336  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
337  * measured in seconds and depending on the flags.
338  *
339  * The total number of dynamic rules is stored in dyn_count.
340  * The max number of dynamic rules is dyn_max. When we reach
341  * the maximum number of rules we do not create anymore. This is
342  * done to avoid consuming too much memory, but also too much
343  * time when searching on each packet (ideally, we should try instead
344  * to put a limit on the length of the list on each bucket...).
345  *
346  * Each dynamic rule holds a pointer to the parent ipfw rule so
347  * we know what action to perform. Dynamic rules are removed when
348  * the parent rule is deleted. XXX we should make them survive.
349  *
350  * There are some limitations with dynamic rules -- we do not
351  * obey the 'randomized match', and we do not do multiple
352  * passes through the firewall. XXX check the latter!!!
353  *
354  * NOTE about the SHARED LOCKMGR LOCK during dynamic rule looking up:
355  * Only TCP state transition will change dynamic rule's state and ack
356  * sequences, while all packets of one TCP connection only goes through
357  * one TCP thread, so it is safe to use shared lockmgr lock during dynamic
358  * rule looking up.  The keep alive callout uses exclusive lockmgr lock
359  * when it tries to find suitable dynamic rules to send keep alive, so
360  * it will not see half updated state and ack sequences.  Though the expire
361  * field updating looks racy for other protocols, the resolution (second)
362  * of expire field makes this kind of race harmless.
363  * XXX statistics' updating is _not_ MPsafe!!!
364  * XXX once UDP output path is fixed, we could use lockless dynamic rule
365  *     hash table
366  */
367 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
368 static uint32_t dyn_buckets = 256; /* must be power of 2 */
369 static uint32_t curr_dyn_buckets = 256; /* must be power of 2 */
370 static uint32_t dyn_buckets_gen; /* generation of dyn buckets array */
371 static struct lock dyn_lock; /* dynamic rules' hash table lock */
372 
373 static struct netmsg ipfw_timeout_netmsg; /* schedule ipfw timeout */
374 static struct callout ipfw_timeout_h;
375 
376 /*
377  * Timeouts for various events in handing dynamic rules.
378  */
379 static uint32_t dyn_ack_lifetime = 300;
380 static uint32_t dyn_syn_lifetime = 20;
381 static uint32_t dyn_fin_lifetime = 1;
382 static uint32_t dyn_rst_lifetime = 1;
383 static uint32_t dyn_udp_lifetime = 10;
384 static uint32_t dyn_short_lifetime = 5;
385 
386 /*
387  * Keepalives are sent if dyn_keepalive is set. They are sent every
388  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
389  * seconds of lifetime of a rule.
390  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
391  * than dyn_keepalive_period.
392  */
393 
394 static uint32_t dyn_keepalive_interval = 20;
395 static uint32_t dyn_keepalive_period = 5;
396 static uint32_t dyn_keepalive = 1;	/* do send keepalives */
397 
398 static uint32_t dyn_count;		/* # of dynamic rules */
399 static uint32_t dyn_max = 4096;		/* max # of dynamic rules */
400 
401 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLTYPE_INT | CTLFLAG_RW,
402     &dyn_buckets, 0, ipfw_sysctl_dyn_buckets, "I", "Number of dyn. buckets");
403 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
404     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
405 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
406     &dyn_count, 0, "Number of dyn. rules");
407 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
408     &dyn_max, 0, "Max number of dyn. rules");
409 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
410     &static_count, 0, "Number of static rules");
411 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
412     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
413 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
414     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
415 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
416     CTLTYPE_INT | CTLFLAG_RW, &dyn_fin_lifetime, 0, ipfw_sysctl_dyn_fin, "I",
417     "Lifetime of dyn. rules for fin");
418 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
419     CTLTYPE_INT | CTLFLAG_RW, &dyn_rst_lifetime, 0, ipfw_sysctl_dyn_rst, "I",
420     "Lifetime of dyn. rules for rst");
421 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
422     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
423 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
424     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
425 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
426     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
427 
428 static ip_fw_chk_t	ipfw_chk;
429 static void		ipfw_tick(void *);
430 
431 static __inline int
432 ipfw_free_rule(struct ip_fw *rule)
433 {
434 	KASSERT(rule->cpuid == mycpuid, ("rule freed on cpu%d\n", mycpuid));
435 	KASSERT(rule->refcnt > 0, ("invalid refcnt %u\n", rule->refcnt));
436 	rule->refcnt--;
437 	if (rule->refcnt == 0) {
438 		kfree(rule, M_IPFW);
439 		return 1;
440 	}
441 	return 0;
442 }
443 
444 static void
445 ipfw_unref_rule(void *priv)
446 {
447 	ipfw_free_rule(priv);
448 #ifdef KLD_MODULE
449 	atomic_subtract_int(&ipfw_refcnt, 1);
450 #endif
451 }
452 
453 static __inline void
454 ipfw_ref_rule(struct ip_fw *rule)
455 {
456 	KASSERT(rule->cpuid == mycpuid, ("rule used on cpu%d\n", mycpuid));
457 #ifdef KLD_MODULE
458 	atomic_add_int(&ipfw_refcnt, 1);
459 #endif
460 	rule->refcnt++;
461 }
462 
463 /*
464  * This macro maps an ip pointer into a layer3 header pointer of type T
465  */
466 #define	L3HDR(T, ip) ((T *)((uint32_t *)(ip) + (ip)->ip_hl))
467 
468 static __inline int
469 icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd)
470 {
471 	int type = L3HDR(struct icmp,ip)->icmp_type;
472 
473 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1 << type)));
474 }
475 
476 #define TT	((1 << ICMP_ECHO) | \
477 		 (1 << ICMP_ROUTERSOLICIT) | \
478 		 (1 << ICMP_TSTAMP) | \
479 		 (1 << ICMP_IREQ) | \
480 		 (1 << ICMP_MASKREQ))
481 
482 static int
483 is_icmp_query(struct ip *ip)
484 {
485 	int type = L3HDR(struct icmp, ip)->icmp_type;
486 
487 	return (type <= ICMP_MAXTYPE && (TT & (1 << type)));
488 }
489 
490 #undef TT
491 
492 /*
493  * The following checks use two arrays of 8 or 16 bits to store the
494  * bits that we want set or clear, respectively. They are in the
495  * low and high half of cmd->arg1 or cmd->d[0].
496  *
497  * We scan options and store the bits we find set. We succeed if
498  *
499  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
500  *
501  * The code is sometimes optimized not to store additional variables.
502  */
503 
504 static int
505 flags_match(ipfw_insn *cmd, uint8_t bits)
506 {
507 	u_char want_clear;
508 	bits = ~bits;
509 
510 	if (((cmd->arg1 & 0xff) & bits) != 0)
511 		return 0; /* some bits we want set were clear */
512 
513 	want_clear = (cmd->arg1 >> 8) & 0xff;
514 	if ((want_clear & bits) != want_clear)
515 		return 0; /* some bits we want clear were set */
516 	return 1;
517 }
518 
519 static int
520 ipopts_match(struct ip *ip, ipfw_insn *cmd)
521 {
522 	int optlen, bits = 0;
523 	u_char *cp = (u_char *)(ip + 1);
524 	int x = (ip->ip_hl << 2) - sizeof(struct ip);
525 
526 	for (; x > 0; x -= optlen, cp += optlen) {
527 		int opt = cp[IPOPT_OPTVAL];
528 
529 		if (opt == IPOPT_EOL)
530 			break;
531 
532 		if (opt == IPOPT_NOP) {
533 			optlen = 1;
534 		} else {
535 			optlen = cp[IPOPT_OLEN];
536 			if (optlen <= 0 || optlen > x)
537 				return 0; /* invalid or truncated */
538 		}
539 
540 		switch (opt) {
541 		case IPOPT_LSRR:
542 			bits |= IP_FW_IPOPT_LSRR;
543 			break;
544 
545 		case IPOPT_SSRR:
546 			bits |= IP_FW_IPOPT_SSRR;
547 			break;
548 
549 		case IPOPT_RR:
550 			bits |= IP_FW_IPOPT_RR;
551 			break;
552 
553 		case IPOPT_TS:
554 			bits |= IP_FW_IPOPT_TS;
555 			break;
556 
557 		default:
558 			break;
559 		}
560 	}
561 	return (flags_match(cmd, bits));
562 }
563 
564 static int
565 tcpopts_match(struct ip *ip, ipfw_insn *cmd)
566 {
567 	int optlen, bits = 0;
568 	struct tcphdr *tcp = L3HDR(struct tcphdr,ip);
569 	u_char *cp = (u_char *)(tcp + 1);
570 	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
571 
572 	for (; x > 0; x -= optlen, cp += optlen) {
573 		int opt = cp[0];
574 
575 		if (opt == TCPOPT_EOL)
576 			break;
577 
578 		if (opt == TCPOPT_NOP) {
579 			optlen = 1;
580 		} else {
581 			optlen = cp[1];
582 			if (optlen <= 0)
583 				break;
584 		}
585 
586 		switch (opt) {
587 		case TCPOPT_MAXSEG:
588 			bits |= IP_FW_TCPOPT_MSS;
589 			break;
590 
591 		case TCPOPT_WINDOW:
592 			bits |= IP_FW_TCPOPT_WINDOW;
593 			break;
594 
595 		case TCPOPT_SACK_PERMITTED:
596 		case TCPOPT_SACK:
597 			bits |= IP_FW_TCPOPT_SACK;
598 			break;
599 
600 		case TCPOPT_TIMESTAMP:
601 			bits |= IP_FW_TCPOPT_TS;
602 			break;
603 
604 		case TCPOPT_CC:
605 		case TCPOPT_CCNEW:
606 		case TCPOPT_CCECHO:
607 			bits |= IP_FW_TCPOPT_CC;
608 			break;
609 
610 		default:
611 			break;
612 		}
613 	}
614 	return (flags_match(cmd, bits));
615 }
616 
617 static int
618 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
619 {
620 	if (ifp == NULL)	/* no iface with this packet, match fails */
621 		return 0;
622 
623 	/* Check by name or by IP address */
624 	if (cmd->name[0] != '\0') { /* match by name */
625 		/* Check name */
626 		if (cmd->p.glob) {
627 			if (kfnmatch(cmd->name, ifp->if_xname, 0) == 0)
628 				return(1);
629 		} else {
630 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
631 				return(1);
632 		}
633 	} else {
634 		struct ifaddr_container *ifac;
635 
636 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
637 			struct ifaddr *ia = ifac->ifa;
638 
639 			if (ia->ifa_addr == NULL)
640 				continue;
641 			if (ia->ifa_addr->sa_family != AF_INET)
642 				continue;
643 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
644 			    (ia->ifa_addr))->sin_addr.s_addr)
645 				return(1);	/* match */
646 		}
647 	}
648 	return(0);	/* no match, fail ... */
649 }
650 
651 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
652 
653 /*
654  * We enter here when we have a rule with O_LOG.
655  * XXX this function alone takes about 2Kbytes of code!
656  */
657 static void
658 ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
659 	 struct mbuf *m, struct ifnet *oif)
660 {
661 	char *action;
662 	int limit_reached = 0;
663 	char action2[40], proto[48], fragment[28];
664 
665 	fragment[0] = '\0';
666 	proto[0] = '\0';
667 
668 	if (f == NULL) {	/* bogus pkt */
669 		struct ipfw_context *ctx = ipfw_ctx[mycpuid];
670 
671 		if (verbose_limit != 0 &&
672 		    ctx->ipfw_norule_counter >= verbose_limit)
673 			return;
674 		ctx->ipfw_norule_counter++;
675 		if (ctx->ipfw_norule_counter == verbose_limit)
676 			limit_reached = verbose_limit;
677 		action = "Refuse";
678 	} else {	/* O_LOG is the first action, find the real one */
679 		ipfw_insn *cmd = ACTION_PTR(f);
680 		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
681 
682 		if (l->max_log != 0 && l->log_left == 0)
683 			return;
684 		l->log_left--;
685 		if (l->log_left == 0)
686 			limit_reached = l->max_log;
687 		cmd += F_LEN(cmd);	/* point to first action */
688 		if (cmd->opcode == O_PROB)
689 			cmd += F_LEN(cmd);
690 
691 		action = action2;
692 		switch (cmd->opcode) {
693 		case O_DENY:
694 			action = "Deny";
695 			break;
696 
697 		case O_REJECT:
698 			if (cmd->arg1==ICMP_REJECT_RST) {
699 				action = "Reset";
700 			} else if (cmd->arg1==ICMP_UNREACH_HOST) {
701 				action = "Reject";
702 			} else {
703 				ksnprintf(SNPARGS(action2, 0), "Unreach %d",
704 					  cmd->arg1);
705 			}
706 			break;
707 
708 		case O_ACCEPT:
709 			action = "Accept";
710 			break;
711 
712 		case O_COUNT:
713 			action = "Count";
714 			break;
715 
716 		case O_DIVERT:
717 			ksnprintf(SNPARGS(action2, 0), "Divert %d", cmd->arg1);
718 			break;
719 
720 		case O_TEE:
721 			ksnprintf(SNPARGS(action2, 0), "Tee %d", cmd->arg1);
722 			break;
723 
724 		case O_SKIPTO:
725 			ksnprintf(SNPARGS(action2, 0), "SkipTo %d", cmd->arg1);
726 			break;
727 
728 		case O_PIPE:
729 			ksnprintf(SNPARGS(action2, 0), "Pipe %d", cmd->arg1);
730 			break;
731 
732 		case O_QUEUE:
733 			ksnprintf(SNPARGS(action2, 0), "Queue %d", cmd->arg1);
734 			break;
735 
736 		case O_FORWARD_IP:
737 			{
738 				ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
739 				int len;
740 
741 				len = ksnprintf(SNPARGS(action2, 0),
742 						"Forward to %s",
743 						inet_ntoa(sa->sa.sin_addr));
744 				if (sa->sa.sin_port) {
745 					ksnprintf(SNPARGS(action2, len), ":%d",
746 						  sa->sa.sin_port);
747 				}
748 			}
749 			break;
750 
751 		default:
752 			action = "UNKNOWN";
753 			break;
754 		}
755 	}
756 
757 	if (hlen == 0) {	/* non-ip */
758 		ksnprintf(SNPARGS(proto, 0), "MAC");
759 	} else {
760 		struct ip *ip = mtod(m, struct ip *);
761 		/* these three are all aliases to the same thing */
762 		struct icmp *const icmp = L3HDR(struct icmp, ip);
763 		struct tcphdr *const tcp = (struct tcphdr *)icmp;
764 		struct udphdr *const udp = (struct udphdr *)icmp;
765 
766 		int ip_off, offset, ip_len;
767 		int len;
768 
769 		if (eh != NULL) { /* layer 2 packets are as on the wire */
770 			ip_off = ntohs(ip->ip_off);
771 			ip_len = ntohs(ip->ip_len);
772 		} else {
773 			ip_off = ip->ip_off;
774 			ip_len = ip->ip_len;
775 		}
776 		offset = ip_off & IP_OFFMASK;
777 		switch (ip->ip_p) {
778 		case IPPROTO_TCP:
779 			len = ksnprintf(SNPARGS(proto, 0), "TCP %s",
780 					inet_ntoa(ip->ip_src));
781 			if (offset == 0) {
782 				ksnprintf(SNPARGS(proto, len), ":%d %s:%d",
783 					  ntohs(tcp->th_sport),
784 					  inet_ntoa(ip->ip_dst),
785 					  ntohs(tcp->th_dport));
786 			} else {
787 				ksnprintf(SNPARGS(proto, len), " %s",
788 					  inet_ntoa(ip->ip_dst));
789 			}
790 			break;
791 
792 		case IPPROTO_UDP:
793 			len = ksnprintf(SNPARGS(proto, 0), "UDP %s",
794 					inet_ntoa(ip->ip_src));
795 			if (offset == 0) {
796 				ksnprintf(SNPARGS(proto, len), ":%d %s:%d",
797 					  ntohs(udp->uh_sport),
798 					  inet_ntoa(ip->ip_dst),
799 					  ntohs(udp->uh_dport));
800 			} else {
801 				ksnprintf(SNPARGS(proto, len), " %s",
802 					  inet_ntoa(ip->ip_dst));
803 			}
804 			break;
805 
806 		case IPPROTO_ICMP:
807 			if (offset == 0) {
808 				len = ksnprintf(SNPARGS(proto, 0),
809 						"ICMP:%u.%u ",
810 						icmp->icmp_type,
811 						icmp->icmp_code);
812 			} else {
813 				len = ksnprintf(SNPARGS(proto, 0), "ICMP ");
814 			}
815 			len += ksnprintf(SNPARGS(proto, len), "%s",
816 					 inet_ntoa(ip->ip_src));
817 			ksnprintf(SNPARGS(proto, len), " %s",
818 				  inet_ntoa(ip->ip_dst));
819 			break;
820 
821 		default:
822 			len = ksnprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
823 					inet_ntoa(ip->ip_src));
824 			ksnprintf(SNPARGS(proto, len), " %s",
825 				  inet_ntoa(ip->ip_dst));
826 			break;
827 		}
828 
829 		if (ip_off & (IP_MF | IP_OFFMASK)) {
830 			ksnprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
831 				  ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
832 				  offset << 3, (ip_off & IP_MF) ? "+" : "");
833 		}
834 	}
835 
836 	if (oif || m->m_pkthdr.rcvif) {
837 		log(LOG_SECURITY | LOG_INFO,
838 		    "ipfw: %d %s %s %s via %s%s\n",
839 		    f ? f->rulenum : -1,
840 		    action, proto, oif ? "out" : "in",
841 		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
842 		    fragment);
843 	} else {
844 		log(LOG_SECURITY | LOG_INFO,
845 		    "ipfw: %d %s %s [no if info]%s\n",
846 		    f ? f->rulenum : -1,
847 		    action, proto, fragment);
848 	}
849 
850 	if (limit_reached) {
851 		log(LOG_SECURITY | LOG_NOTICE,
852 		    "ipfw: limit %d reached on entry %d\n",
853 		    limit_reached, f ? f->rulenum : -1);
854 	}
855 }
856 
857 #undef SNPARGS
858 
859 /*
860  * IMPORTANT: the hash function for dynamic rules must be commutative
861  * in source and destination (ip,port), because rules are bidirectional
862  * and we want to find both in the same bucket.
863  */
864 static __inline int
865 hash_packet(struct ipfw_flow_id *id)
866 {
867 	uint32_t i;
868 
869 	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
870 	i &= (curr_dyn_buckets - 1);
871 	return i;
872 }
873 
874 /**
875  * unlink a dynamic rule from a chain. prev is a pointer to
876  * the previous one, q is a pointer to the rule to delete,
877  * head is a pointer to the head of the queue.
878  * Modifies q and potentially also head.
879  */
880 #define UNLINK_DYN_RULE(prev, head, q)					\
881 do {									\
882 	ipfw_dyn_rule *old_q = q;					\
883 									\
884 	/* remove a refcount to the parent */				\
885 	if (q->dyn_type == O_LIMIT)					\
886 		q->parent->count--;					\
887 	DPRINTF("-- unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",	\
888 		q->id.src_ip, q->id.src_port,				\
889 		q->id.dst_ip, q->id.dst_port, dyn_count - 1);		\
890 	if (prev != NULL)						\
891 		prev->next = q = q->next;				\
892 	else								\
893 		head = q = q->next;					\
894 	KASSERT(dyn_count > 0, ("invalid dyn count %u\n", dyn_count));	\
895 	dyn_count--;							\
896 	kfree(old_q, M_IPFW);						\
897 } while (0)
898 
899 #define TIME_LEQ(a, b)	((int)((a) - (b)) <= 0)
900 
901 /**
902  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
903  *
904  * If keep_me == NULL, rules are deleted even if not expired,
905  * otherwise only expired rules are removed.
906  *
907  * The value of the second parameter is also used to point to identify
908  * a rule we absolutely do not want to remove (e.g. because we are
909  * holding a reference to it -- this is the case with O_LIMIT_PARENT
910  * rules). The pointer is only used for comparison, so any non-null
911  * value will do.
912  */
913 static void
914 remove_dyn_rule_locked(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
915 {
916 	static uint32_t last_remove = 0; /* XXX */
917 
918 #define FORCE	(keep_me == NULL)
919 
920 	ipfw_dyn_rule *prev, *q;
921 	int i, pass = 0, max_pass = 0, unlinked = 0;
922 
923 	if (ipfw_dyn_v == NULL || dyn_count == 0)
924 		return;
925 	/* do not expire more than once per second, it is useless */
926 	if (!FORCE && last_remove == time_second)
927 		return;
928 	last_remove = time_second;
929 
930 	/*
931 	 * because O_LIMIT refer to parent rules, during the first pass only
932 	 * remove child and mark any pending LIMIT_PARENT, and remove
933 	 * them in a second pass.
934 	 */
935 next_pass:
936 	for (i = 0; i < curr_dyn_buckets; i++) {
937 		for (prev = NULL, q = ipfw_dyn_v[i]; q;) {
938 			/*
939 			 * Logic can become complex here, so we split tests.
940 			 */
941 			if (q == keep_me)
942 				goto next;
943 			if (rule != NULL && rule->stub != q->stub)
944 				goto next; /* not the one we are looking for */
945 			if (q->dyn_type == O_LIMIT_PARENT) {
946 				/*
947 				 * handle parent in the second pass,
948 				 * record we need one.
949 				 */
950 				max_pass = 1;
951 				if (pass == 0)
952 					goto next;
953 				if (FORCE && q->count != 0) {
954 					/* XXX should not happen! */
955 					kprintf("OUCH! cannot remove rule, "
956 						"count %d\n", q->count);
957 				}
958 			} else {
959 				if (!FORCE && !TIME_LEQ(q->expire, time_second))
960 					goto next;
961 			}
962 			unlinked = 1;
963 			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
964 			continue;
965 next:
966 			prev = q;
967 			q = q->next;
968 		}
969 	}
970 	if (pass++ < max_pass)
971 		goto next_pass;
972 
973 	if (unlinked)
974 		++dyn_buckets_gen;
975 
976 #undef FORCE
977 }
978 
979 /**
980  * lookup a dynamic rule.
981  */
982 static ipfw_dyn_rule *
983 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
984 		struct tcphdr *tcp)
985 {
986 	/*
987 	 * stateful ipfw extensions.
988 	 * Lookup into dynamic session queue
989 	 */
990 #define MATCH_REVERSE	0
991 #define MATCH_FORWARD	1
992 #define MATCH_NONE	2
993 #define MATCH_UNKNOWN	3
994 	int i, dir = MATCH_NONE;
995 	ipfw_dyn_rule *prev, *q=NULL;
996 
997 	if (ipfw_dyn_v == NULL)
998 		goto done;	/* not found */
999 
1000 	i = hash_packet(pkt);
1001 	for (prev = NULL, q = ipfw_dyn_v[i]; q != NULL;) {
1002 		if (q->dyn_type == O_LIMIT_PARENT)
1003 			goto next;
1004 
1005 		if (TIME_LEQ(q->expire, time_second)) {
1006 			/*
1007 			 * Entry expired; skip.
1008 			 * Let ipfw_tick() take care of it
1009 			 */
1010 			goto next;
1011 		}
1012 
1013 		if (pkt->proto == q->id.proto) {
1014 			if (pkt->src_ip == q->id.src_ip &&
1015 			    pkt->dst_ip == q->id.dst_ip &&
1016 			    pkt->src_port == q->id.src_port &&
1017 			    pkt->dst_port == q->id.dst_port) {
1018 				dir = MATCH_FORWARD;
1019 				break;
1020 			}
1021 			if (pkt->src_ip == q->id.dst_ip &&
1022 			    pkt->dst_ip == q->id.src_ip &&
1023 			    pkt->src_port == q->id.dst_port &&
1024 			    pkt->dst_port == q->id.src_port) {
1025 				dir = MATCH_REVERSE;
1026 				break;
1027 			}
1028 		}
1029 next:
1030 		prev = q;
1031 		q = q->next;
1032 	}
1033 	if (q == NULL)
1034 		goto done; /* q = NULL, not found */
1035 
1036 	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1037 		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1038 
1039 #define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1040 #define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1041 
1042 		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1043 		switch (q->state) {
1044 		case TH_SYN:				/* opening */
1045 			q->expire = time_second + dyn_syn_lifetime;
1046 			break;
1047 
1048 		case BOTH_SYN:			/* move to established */
1049 		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1050 		case BOTH_SYN | (TH_FIN << 8) :
1051  			if (tcp) {
1052 				uint32_t ack = ntohl(tcp->th_ack);
1053 
1054 #define _SEQ_GE(a, b)	((int)(a) - (int)(b) >= 0)
1055 
1056 				if (dir == MATCH_FORWARD) {
1057 					if (q->ack_fwd == 0 ||
1058 					    _SEQ_GE(ack, q->ack_fwd))
1059 						q->ack_fwd = ack;
1060 					else /* ignore out-of-sequence */
1061 						break;
1062 				} else {
1063 					if (q->ack_rev == 0 ||
1064 					    _SEQ_GE(ack, q->ack_rev))
1065 						q->ack_rev = ack;
1066 					else /* ignore out-of-sequence */
1067 						break;
1068 				}
1069 #undef _SEQ_GE
1070 			}
1071 			q->expire = time_second + dyn_ack_lifetime;
1072 			break;
1073 
1074 		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1075 			KKASSERT(dyn_fin_lifetime < dyn_keepalive_period);
1076 			q->expire = time_second + dyn_fin_lifetime;
1077 			break;
1078 
1079 		default:
1080 #if 0
1081 			/*
1082 			 * reset or some invalid combination, but can also
1083 			 * occur if we use keep-state the wrong way.
1084 			 */
1085 			if ((q->state & ((TH_RST << 8) | TH_RST)) == 0)
1086 				kprintf("invalid state: 0x%x\n", q->state);
1087 #endif
1088 			KKASSERT(dyn_rst_lifetime < dyn_keepalive_period);
1089 			q->expire = time_second + dyn_rst_lifetime;
1090 			break;
1091 		}
1092 	} else if (pkt->proto == IPPROTO_UDP) {
1093 		q->expire = time_second + dyn_udp_lifetime;
1094 	} else {
1095 		/* other protocols */
1096 		q->expire = time_second + dyn_short_lifetime;
1097 	}
1098 done:
1099 	if (match_direction)
1100 		*match_direction = dir;
1101 	return q;
1102 }
1103 
1104 static struct ip_fw *
1105 lookup_rule(struct ipfw_flow_id *pkt, int *match_direction, struct tcphdr *tcp,
1106 	    uint16_t len, int *deny)
1107 {
1108 	struct ip_fw *rule = NULL;
1109 	ipfw_dyn_rule *q;
1110 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
1111 	uint32_t gen;
1112 
1113 	*deny = 0;
1114 	gen = ctx->ipfw_gen;
1115 
1116 	lockmgr(&dyn_lock, LK_SHARED);
1117 
1118 	if (ctx->ipfw_gen != gen) {
1119 		/*
1120 		 * Static rules had been change when we were waiting
1121 		 * for the dynamic hash table lock; deny this packet,
1122 		 * since it is _not_ known whether it is safe to keep
1123 		 * iterating the static rules.
1124 		 */
1125 		*deny = 1;
1126 		goto back;
1127 	}
1128 
1129 	q = lookup_dyn_rule(pkt, match_direction, tcp);
1130 	if (q == NULL) {
1131 		rule = NULL;
1132 	} else {
1133 		rule = q->stub->rule[mycpuid];
1134 		KKASSERT(rule->stub == q->stub && rule->cpuid == mycpuid);
1135 
1136 		/* XXX */
1137 		q->pcnt++;
1138 		q->bcnt += len;
1139 	}
1140 back:
1141 	lockmgr(&dyn_lock, LK_RELEASE);
1142 	return rule;
1143 }
1144 
1145 static void
1146 realloc_dynamic_table(void)
1147 {
1148 	ipfw_dyn_rule **old_dyn_v;
1149 	uint32_t old_curr_dyn_buckets;
1150 
1151 	KASSERT(dyn_buckets <= 65536 && (dyn_buckets & (dyn_buckets - 1)) == 0,
1152 		("invalid dyn_buckets %d\n", dyn_buckets));
1153 
1154 	/* Save the current buckets array for later error recovery */
1155 	old_dyn_v = ipfw_dyn_v;
1156 	old_curr_dyn_buckets = curr_dyn_buckets;
1157 
1158 	curr_dyn_buckets = dyn_buckets;
1159 	for (;;) {
1160 		ipfw_dyn_v = kmalloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1161 				     M_IPFW, M_NOWAIT | M_ZERO);
1162 		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1163 			break;
1164 
1165 		curr_dyn_buckets /= 2;
1166 		if (curr_dyn_buckets <= old_curr_dyn_buckets &&
1167 		    old_dyn_v != NULL) {
1168 			/*
1169 			 * Don't try allocating smaller buckets array, reuse
1170 			 * the old one, which alreay contains enough buckets
1171 			 */
1172 			break;
1173 		}
1174 	}
1175 
1176 	if (ipfw_dyn_v != NULL) {
1177 		if (old_dyn_v != NULL)
1178 			kfree(old_dyn_v, M_IPFW);
1179 	} else {
1180 		/* Allocation failed, restore old buckets array */
1181 		ipfw_dyn_v = old_dyn_v;
1182 		curr_dyn_buckets = old_curr_dyn_buckets;
1183 	}
1184 
1185 	if (ipfw_dyn_v != NULL)
1186 		++dyn_buckets_gen;
1187 }
1188 
1189 /**
1190  * Install state of type 'type' for a dynamic session.
1191  * The hash table contains two type of rules:
1192  * - regular rules (O_KEEP_STATE)
1193  * - rules for sessions with limited number of sess per user
1194  *   (O_LIMIT). When they are created, the parent is
1195  *   increased by 1, and decreased on delete. In this case,
1196  *   the third parameter is the parent rule and not the chain.
1197  * - "parent" rules for the above (O_LIMIT_PARENT).
1198  */
1199 static ipfw_dyn_rule *
1200 add_dyn_rule(struct ipfw_flow_id *id, uint8_t dyn_type, struct ip_fw *rule)
1201 {
1202 	ipfw_dyn_rule *r;
1203 	int i;
1204 
1205 	if (ipfw_dyn_v == NULL ||
1206 	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1207 		realloc_dynamic_table();
1208 		if (ipfw_dyn_v == NULL)
1209 			return NULL; /* failed ! */
1210 	}
1211 	i = hash_packet(id);
1212 
1213 	r = kmalloc(sizeof(*r), M_IPFW, M_NOWAIT | M_ZERO);
1214 	if (r == NULL) {
1215 		kprintf ("sorry cannot allocate state\n");
1216 		return NULL;
1217 	}
1218 
1219 	/* increase refcount on parent, and set pointer */
1220 	if (dyn_type == O_LIMIT) {
1221 		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1222 
1223 		if (parent->dyn_type != O_LIMIT_PARENT)
1224 			panic("invalid parent");
1225 		parent->count++;
1226 		r->parent = parent;
1227 		rule = parent->stub->rule[mycpuid];
1228 		KKASSERT(rule->stub == parent->stub);
1229 	}
1230 	KKASSERT(rule->cpuid == mycpuid && rule->stub != NULL);
1231 
1232 	r->id = *id;
1233 	r->expire = time_second + dyn_syn_lifetime;
1234 	r->stub = rule->stub;
1235 	r->dyn_type = dyn_type;
1236 	r->pcnt = r->bcnt = 0;
1237 	r->count = 0;
1238 
1239 	r->bucket = i;
1240 	r->next = ipfw_dyn_v[i];
1241 	ipfw_dyn_v[i] = r;
1242 	dyn_count++;
1243 	dyn_buckets_gen++;
1244 	DPRINTF("-- add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1245 		dyn_type,
1246 		r->id.src_ip, r->id.src_port,
1247 		r->id.dst_ip, r->id.dst_port, dyn_count);
1248 	return r;
1249 }
1250 
1251 /**
1252  * lookup dynamic parent rule using pkt and rule as search keys.
1253  * If the lookup fails, then install one.
1254  */
1255 static ipfw_dyn_rule *
1256 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1257 {
1258 	ipfw_dyn_rule *q;
1259 	int i;
1260 
1261 	if (ipfw_dyn_v) {
1262 		i = hash_packet(pkt);
1263 		for (q = ipfw_dyn_v[i]; q != NULL; q = q->next) {
1264 			if (q->dyn_type == O_LIMIT_PARENT &&
1265 			    rule->stub == q->stub &&
1266 			    pkt->proto == q->id.proto &&
1267 			    pkt->src_ip == q->id.src_ip &&
1268 			    pkt->dst_ip == q->id.dst_ip &&
1269 			    pkt->src_port == q->id.src_port &&
1270 			    pkt->dst_port == q->id.dst_port) {
1271 				q->expire = time_second + dyn_short_lifetime;
1272 				DPRINTF("lookup_dyn_parent found 0x%p\n", q);
1273 				return q;
1274 			}
1275 		}
1276 	}
1277 	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1278 }
1279 
1280 /**
1281  * Install dynamic state for rule type cmd->o.opcode
1282  *
1283  * Returns 1 (failure) if state is not installed because of errors or because
1284  * session limitations are enforced.
1285  */
1286 static int
1287 install_state_locked(struct ip_fw *rule, ipfw_insn_limit *cmd,
1288 		     struct ip_fw_args *args)
1289 {
1290 	static int last_log; /* XXX */
1291 
1292 	ipfw_dyn_rule *q;
1293 
1294 	DPRINTF("-- install state type %d 0x%08x %u -> 0x%08x %u\n",
1295 		cmd->o.opcode,
1296 		args->f_id.src_ip, args->f_id.src_port,
1297 		args->f_id.dst_ip, args->f_id.dst_port);
1298 
1299 	q = lookup_dyn_rule(&args->f_id, NULL, NULL);
1300 	if (q != NULL) { /* should never occur */
1301 		if (last_log != time_second) {
1302 			last_log = time_second;
1303 			kprintf(" install_state: entry already present, done\n");
1304 		}
1305 		return 0;
1306 	}
1307 
1308 	if (dyn_count >= dyn_max) {
1309 		/*
1310 		 * Run out of slots, try to remove any expired rule.
1311 		 */
1312 		remove_dyn_rule_locked(NULL, (ipfw_dyn_rule *)1);
1313 		if (dyn_count >= dyn_max) {
1314 			if (last_log != time_second) {
1315 				last_log = time_second;
1316 				kprintf("install_state: "
1317 					"Too many dynamic rules\n");
1318 			}
1319 			return 1; /* cannot install, notify caller */
1320 		}
1321 	}
1322 
1323 	switch (cmd->o.opcode) {
1324 	case O_KEEP_STATE: /* bidir rule */
1325 		if (add_dyn_rule(&args->f_id, O_KEEP_STATE, rule) == NULL)
1326 			return 1;
1327 		break;
1328 
1329 	case O_LIMIT: /* limit number of sessions */
1330 		{
1331 			uint16_t limit_mask = cmd->limit_mask;
1332 			struct ipfw_flow_id id;
1333 			ipfw_dyn_rule *parent;
1334 
1335 			DPRINTF("installing dyn-limit rule %d\n",
1336 				cmd->conn_limit);
1337 
1338 			id.dst_ip = id.src_ip = 0;
1339 			id.dst_port = id.src_port = 0;
1340 			id.proto = args->f_id.proto;
1341 
1342 			if (limit_mask & DYN_SRC_ADDR)
1343 				id.src_ip = args->f_id.src_ip;
1344 			if (limit_mask & DYN_DST_ADDR)
1345 				id.dst_ip = args->f_id.dst_ip;
1346 			if (limit_mask & DYN_SRC_PORT)
1347 				id.src_port = args->f_id.src_port;
1348 			if (limit_mask & DYN_DST_PORT)
1349 				id.dst_port = args->f_id.dst_port;
1350 
1351 			parent = lookup_dyn_parent(&id, rule);
1352 			if (parent == NULL) {
1353 				kprintf("add parent failed\n");
1354 				return 1;
1355 			}
1356 
1357 			if (parent->count >= cmd->conn_limit) {
1358 				/*
1359 				 * See if we can remove some expired rule.
1360 				 */
1361 				remove_dyn_rule_locked(rule, parent);
1362 				if (parent->count >= cmd->conn_limit) {
1363 					if (fw_verbose &&
1364 					    last_log != time_second) {
1365 						last_log = time_second;
1366 						log(LOG_SECURITY | LOG_DEBUG,
1367 						    "drop session, "
1368 						    "too many entries\n");
1369 					}
1370 					return 1;
1371 				}
1372 			}
1373 			if (add_dyn_rule(&args->f_id, O_LIMIT,
1374 					 (struct ip_fw *)parent) == NULL)
1375 				return 1;
1376 		}
1377 		break;
1378 	default:
1379 		kprintf("unknown dynamic rule type %u\n", cmd->o.opcode);
1380 		return 1;
1381 	}
1382 	lookup_dyn_rule(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1383 	return 0;
1384 }
1385 
1386 static int
1387 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1388 	      struct ip_fw_args *args, int *deny)
1389 {
1390 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
1391 	uint32_t gen;
1392 	int ret = 0;
1393 
1394 	*deny = 0;
1395 	gen = ctx->ipfw_gen;
1396 
1397 	lockmgr(&dyn_lock, LK_EXCLUSIVE);
1398 	if (ctx->ipfw_gen != gen) {
1399 		/* See the comment in lookup_rule() */
1400 		*deny = 1;
1401 	} else {
1402 		ret = install_state_locked(rule, cmd, args);
1403 	}
1404 	lockmgr(&dyn_lock, LK_RELEASE);
1405 
1406 	return ret;
1407 }
1408 
1409 /*
1410  * Transmit a TCP packet, containing either a RST or a keepalive.
1411  * When flags & TH_RST, we are sending a RST packet, because of a
1412  * "reset" action matched the packet.
1413  * Otherwise we are sending a keepalive, and flags & TH_
1414  */
1415 static void
1416 send_pkt(struct ipfw_flow_id *id, uint32_t seq, uint32_t ack, int flags)
1417 {
1418 	struct mbuf *m;
1419 	struct ip *ip;
1420 	struct tcphdr *tcp;
1421 	struct route sro;	/* fake route */
1422 
1423 	MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1424 	if (m == NULL)
1425 		return;
1426 	m->m_pkthdr.rcvif = NULL;
1427 	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1428 	m->m_data += max_linkhdr;
1429 
1430 	ip = mtod(m, struct ip *);
1431 	bzero(ip, m->m_len);
1432 	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1433 	ip->ip_p = IPPROTO_TCP;
1434 	tcp->th_off = 5;
1435 
1436 	/*
1437 	 * Assume we are sending a RST (or a keepalive in the reverse
1438 	 * direction), swap src and destination addresses and ports.
1439 	 */
1440 	ip->ip_src.s_addr = htonl(id->dst_ip);
1441 	ip->ip_dst.s_addr = htonl(id->src_ip);
1442 	tcp->th_sport = htons(id->dst_port);
1443 	tcp->th_dport = htons(id->src_port);
1444 	if (flags & TH_RST) {	/* we are sending a RST */
1445 		if (flags & TH_ACK) {
1446 			tcp->th_seq = htonl(ack);
1447 			tcp->th_ack = htonl(0);
1448 			tcp->th_flags = TH_RST;
1449 		} else {
1450 			if (flags & TH_SYN)
1451 				seq++;
1452 			tcp->th_seq = htonl(0);
1453 			tcp->th_ack = htonl(seq);
1454 			tcp->th_flags = TH_RST | TH_ACK;
1455 		}
1456 	} else {
1457 		/*
1458 		 * We are sending a keepalive. flags & TH_SYN determines
1459 		 * the direction, forward if set, reverse if clear.
1460 		 * NOTE: seq and ack are always assumed to be correct
1461 		 * as set by the caller. This may be confusing...
1462 		 */
1463 		if (flags & TH_SYN) {
1464 			/*
1465 			 * we have to rewrite the correct addresses!
1466 			 */
1467 			ip->ip_dst.s_addr = htonl(id->dst_ip);
1468 			ip->ip_src.s_addr = htonl(id->src_ip);
1469 			tcp->th_dport = htons(id->dst_port);
1470 			tcp->th_sport = htons(id->src_port);
1471 		}
1472 		tcp->th_seq = htonl(seq);
1473 		tcp->th_ack = htonl(ack);
1474 		tcp->th_flags = TH_ACK;
1475 	}
1476 
1477 	/*
1478 	 * set ip_len to the payload size so we can compute
1479 	 * the tcp checksum on the pseudoheader
1480 	 * XXX check this, could save a couple of words ?
1481 	 */
1482 	ip->ip_len = htons(sizeof(struct tcphdr));
1483 	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1484 
1485 	/*
1486 	 * now fill fields left out earlier
1487 	 */
1488 	ip->ip_ttl = ip_defttl;
1489 	ip->ip_len = m->m_pkthdr.len;
1490 
1491 	bzero(&sro, sizeof(sro));
1492 	ip_rtaddr(ip->ip_dst, &sro);
1493 
1494 	m->m_pkthdr.fw_flags |= IPFW_MBUF_GENERATED;
1495 	ip_output(m, NULL, &sro, 0, NULL, NULL);
1496 	if (sro.ro_rt)
1497 		RTFREE(sro.ro_rt);
1498 }
1499 
1500 /*
1501  * sends a reject message, consuming the mbuf passed as an argument.
1502  */
1503 static void
1504 send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
1505 {
1506 	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1507 		/* We need the IP header in host order for icmp_error(). */
1508 		if (args->eh != NULL) {
1509 			struct ip *ip = mtod(args->m, struct ip *);
1510 
1511 			ip->ip_len = ntohs(ip->ip_len);
1512 			ip->ip_off = ntohs(ip->ip_off);
1513 		}
1514 		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1515 	} else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1516 		struct tcphdr *const tcp =
1517 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1518 
1519 		if ((tcp->th_flags & TH_RST) == 0) {
1520 			send_pkt(&args->f_id, ntohl(tcp->th_seq),
1521 				 ntohl(tcp->th_ack), tcp->th_flags | TH_RST);
1522 		}
1523 		m_freem(args->m);
1524 	} else {
1525 		m_freem(args->m);
1526 	}
1527 	args->m = NULL;
1528 }
1529 
1530 /**
1531  *
1532  * Given an ip_fw *, lookup_next_rule will return a pointer
1533  * to the next rule, which can be either the jump
1534  * target (for skipto instructions) or the next one in the list (in
1535  * all other cases including a missing jump target).
1536  * The result is also written in the "next_rule" field of the rule.
1537  * Backward jumps are not allowed, so start looking from the next
1538  * rule...
1539  *
1540  * This never returns NULL -- in case we do not have an exact match,
1541  * the next rule is returned. When the ruleset is changed,
1542  * pointers are flushed so we are always correct.
1543  */
1544 
1545 static struct ip_fw *
1546 lookup_next_rule(struct ip_fw *me)
1547 {
1548 	struct ip_fw *rule = NULL;
1549 	ipfw_insn *cmd;
1550 
1551 	/* look for action, in case it is a skipto */
1552 	cmd = ACTION_PTR(me);
1553 	if (cmd->opcode == O_LOG)
1554 		cmd += F_LEN(cmd);
1555 	if (cmd->opcode == O_SKIPTO) {
1556 		for (rule = me->next; rule; rule = rule->next) {
1557 			if (rule->rulenum >= cmd->arg1)
1558 				break;
1559 		}
1560 	}
1561 	if (rule == NULL)			/* failure or not a skipto */
1562 		rule = me->next;
1563 	me->next_rule = rule;
1564 	return rule;
1565 }
1566 
1567 static int
1568 _ipfw_match_uid(const struct ipfw_flow_id *fid, struct ifnet *oif,
1569 		enum ipfw_opcodes opcode, uid_t uid)
1570 {
1571 	struct in_addr src_ip, dst_ip;
1572 	struct inpcbinfo *pi;
1573 	int wildcard;
1574 	struct inpcb *pcb;
1575 
1576 	if (fid->proto == IPPROTO_TCP) {
1577 		wildcard = 0;
1578 		pi = &tcbinfo[mycpuid];
1579 	} else if (fid->proto == IPPROTO_UDP) {
1580 		wildcard = 1;
1581 		pi = &udbinfo;
1582 	} else {
1583 		return 0;
1584 	}
1585 
1586 	/*
1587 	 * Values in 'fid' are in host byte order
1588 	 */
1589 	dst_ip.s_addr = htonl(fid->dst_ip);
1590 	src_ip.s_addr = htonl(fid->src_ip);
1591 	if (oif) {
1592 		pcb = in_pcblookup_hash(pi,
1593 			dst_ip, htons(fid->dst_port),
1594 			src_ip, htons(fid->src_port),
1595 			wildcard, oif);
1596 	} else {
1597 		pcb = in_pcblookup_hash(pi,
1598 			src_ip, htons(fid->src_port),
1599 			dst_ip, htons(fid->dst_port),
1600 			wildcard, NULL);
1601 	}
1602 	if (pcb == NULL || pcb->inp_socket == NULL)
1603 		return 0;
1604 
1605 	if (opcode == O_UID) {
1606 #define socheckuid(a,b)	((a)->so_cred->cr_uid != (b))
1607 		return !socheckuid(pcb->inp_socket, uid);
1608 #undef socheckuid
1609 	} else  {
1610 		return groupmember(uid, pcb->inp_socket->so_cred);
1611 	}
1612 }
1613 
1614 static int
1615 ipfw_match_uid(const struct ipfw_flow_id *fid, struct ifnet *oif,
1616 	       enum ipfw_opcodes opcode, uid_t uid, int *deny)
1617 {
1618 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
1619 	uint32_t gen;
1620 	int match = 0;
1621 
1622 	*deny = 0;
1623 	gen = ctx->ipfw_gen;
1624 
1625 	get_mplock();
1626 	if (gen != ctx->ipfw_gen) {
1627 		/* See the comment in lookup_rule() */
1628 		*deny = 1;
1629 	} else {
1630 		match = _ipfw_match_uid(fid, oif, opcode, uid);
1631 	}
1632 	rel_mplock();
1633 	return match;
1634 }
1635 
1636 /*
1637  * The main check routine for the firewall.
1638  *
1639  * All arguments are in args so we can modify them and return them
1640  * back to the caller.
1641  *
1642  * Parameters:
1643  *
1644  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1645  *		Starts with the IP header.
1646  *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
1647  *	args->oif	Outgoing interface, or NULL if packet is incoming.
1648  *		The incoming interface is in the mbuf. (in)
1649  *
1650  *	args->rule	Pointer to the last matching rule (in/out)
1651  *	args->f_id	Addresses grabbed from the packet (out)
1652  *
1653  * Return value:
1654  *
1655  *	If the packet was denied/rejected and has been dropped, *m is equal
1656  *	to NULL upon return.
1657  *
1658  *	IP_FW_DENY	the packet must be dropped.
1659  *	IP_FW_PASS	The packet is to be accepted and routed normally.
1660  *	IP_FW_DIVERT	Divert the packet to port (args->cookie)
1661  *	IP_FW_TEE	Tee the packet to port (args->cookie)
1662  *	IP_FW_DUMMYNET	Send the packet to pipe/queue (args->cookie)
1663  */
1664 
1665 static int
1666 ipfw_chk(struct ip_fw_args *args)
1667 {
1668 	/*
1669 	 * Local variables hold state during the processing of a packet.
1670 	 *
1671 	 * IMPORTANT NOTE: to speed up the processing of rules, there
1672 	 * are some assumption on the values of the variables, which
1673 	 * are documented here. Should you change them, please check
1674 	 * the implementation of the various instructions to make sure
1675 	 * that they still work.
1676 	 *
1677 	 * args->eh	The MAC header. It is non-null for a layer2
1678 	 *	packet, it is NULL for a layer-3 packet.
1679 	 *
1680 	 * m | args->m	Pointer to the mbuf, as received from the caller.
1681 	 *	It may change if ipfw_chk() does an m_pullup, or if it
1682 	 *	consumes the packet because it calls send_reject().
1683 	 *	XXX This has to change, so that ipfw_chk() never modifies
1684 	 *	or consumes the buffer.
1685 	 * ip	is simply an alias of the value of m, and it is kept
1686 	 *	in sync with it (the packet is	supposed to start with
1687 	 *	the ip header).
1688 	 */
1689 	struct mbuf *m = args->m;
1690 	struct ip *ip = mtod(m, struct ip *);
1691 
1692 	/*
1693 	 * oif | args->oif	If NULL, ipfw_chk has been called on the
1694 	 *	inbound path (ether_input, ip_input).
1695 	 *	If non-NULL, ipfw_chk has been called on the outbound path
1696 	 *	(ether_output, ip_output).
1697 	 */
1698 	struct ifnet *oif = args->oif;
1699 
1700 	struct ip_fw *f = NULL;		/* matching rule */
1701 	int retval = IP_FW_PASS;
1702 	struct m_tag *mtag;
1703 	struct divert_info *divinfo;
1704 
1705 	/*
1706 	 * hlen	The length of the IPv4 header.
1707 	 *	hlen >0 means we have an IPv4 packet.
1708 	 */
1709 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1710 
1711 	/*
1712 	 * offset	The offset of a fragment. offset != 0 means that
1713 	 *	we have a fragment at this offset of an IPv4 packet.
1714 	 *	offset == 0 means that (if this is an IPv4 packet)
1715 	 *	this is the first or only fragment.
1716 	 */
1717 	u_short offset = 0;
1718 
1719 	/*
1720 	 * Local copies of addresses. They are only valid if we have
1721 	 * an IP packet.
1722 	 *
1723 	 * proto	The protocol. Set to 0 for non-ip packets,
1724 	 *	or to the protocol read from the packet otherwise.
1725 	 *	proto != 0 means that we have an IPv4 packet.
1726 	 *
1727 	 * src_port, dst_port	port numbers, in HOST format. Only
1728 	 *	valid for TCP and UDP packets.
1729 	 *
1730 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1731 	 *	Only valid for IPv4 packets.
1732 	 */
1733 	uint8_t proto;
1734 	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
1735 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1736 	uint16_t ip_len = 0;
1737 
1738 	/*
1739 	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
1740 	 * 	MATCH_NONE when checked and not matched (dyn_f = NULL),
1741 	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (dyn_f != NULL)
1742 	 */
1743 	int dyn_dir = MATCH_UNKNOWN;
1744 	struct ip_fw *dyn_f = NULL;
1745 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
1746 
1747 	if (m->m_pkthdr.fw_flags & IPFW_MBUF_GENERATED)
1748 		return IP_FW_PASS;	/* accept */
1749 
1750 	if (args->eh == NULL ||		/* layer 3 packet */
1751 	    (m->m_pkthdr.len >= sizeof(struct ip) &&
1752 	     ntohs(args->eh->ether_type) == ETHERTYPE_IP))
1753 		hlen = ip->ip_hl << 2;
1754 
1755 	/*
1756 	 * Collect parameters into local variables for faster matching.
1757 	 */
1758 	if (hlen == 0) {	/* do not grab addresses for non-ip pkts */
1759 		proto = args->f_id.proto = 0;	/* mark f_id invalid */
1760 		goto after_ip_checks;
1761 	}
1762 
1763 	proto = args->f_id.proto = ip->ip_p;
1764 	src_ip = ip->ip_src;
1765 	dst_ip = ip->ip_dst;
1766 	if (args->eh != NULL) { /* layer 2 packets are as on the wire */
1767 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1768 		ip_len = ntohs(ip->ip_len);
1769 	} else {
1770 		offset = ip->ip_off & IP_OFFMASK;
1771 		ip_len = ip->ip_len;
1772 	}
1773 
1774 #define PULLUP_TO(len)				\
1775 do {						\
1776 	if (m->m_len < (len)) {			\
1777 		args->m = m = m_pullup(m, (len));\
1778 		if (m == NULL)			\
1779 			goto pullup_failed;	\
1780 		ip = mtod(m, struct ip *);	\
1781 	}					\
1782 } while (0)
1783 
1784 	if (offset == 0) {
1785 		switch (proto) {
1786 		case IPPROTO_TCP:
1787 			{
1788 				struct tcphdr *tcp;
1789 
1790 				PULLUP_TO(hlen + sizeof(struct tcphdr));
1791 				tcp = L3HDR(struct tcphdr, ip);
1792 				dst_port = tcp->th_dport;
1793 				src_port = tcp->th_sport;
1794 				args->f_id.flags = tcp->th_flags;
1795 			}
1796 			break;
1797 
1798 		case IPPROTO_UDP:
1799 			{
1800 				struct udphdr *udp;
1801 
1802 				PULLUP_TO(hlen + sizeof(struct udphdr));
1803 				udp = L3HDR(struct udphdr, ip);
1804 				dst_port = udp->uh_dport;
1805 				src_port = udp->uh_sport;
1806 			}
1807 			break;
1808 
1809 		case IPPROTO_ICMP:
1810 			PULLUP_TO(hlen + 4);	/* type, code and checksum. */
1811 			args->f_id.flags = L3HDR(struct icmp, ip)->icmp_type;
1812 			break;
1813 
1814 		default:
1815 			break;
1816 		}
1817 	}
1818 
1819 #undef PULLUP_TO
1820 
1821 	args->f_id.src_ip = ntohl(src_ip.s_addr);
1822 	args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1823 	args->f_id.src_port = src_port = ntohs(src_port);
1824 	args->f_id.dst_port = dst_port = ntohs(dst_port);
1825 
1826 after_ip_checks:
1827 	if (args->rule) {
1828 		/*
1829 		 * Packet has already been tagged. Look for the next rule
1830 		 * to restart processing.
1831 		 *
1832 		 * If fw_one_pass != 0 then just accept it.
1833 		 * XXX should not happen here, but optimized out in
1834 		 * the caller.
1835 		 */
1836 		if (fw_one_pass)
1837 			return IP_FW_PASS;
1838 
1839 		/* This rule is being/has been flushed */
1840 		if (ipfw_flushing)
1841 			return IP_FW_DENY;
1842 
1843 		KASSERT(args->rule->cpuid == mycpuid,
1844 			("rule used on cpu%d\n", mycpuid));
1845 
1846 		/* This rule was deleted */
1847 		if (args->rule->rule_flags & IPFW_RULE_F_INVALID)
1848 			return IP_FW_DENY;
1849 
1850 		f = args->rule->next_rule;
1851 		if (f == NULL)
1852 			f = lookup_next_rule(args->rule);
1853 	} else {
1854 		/*
1855 		 * Find the starting rule. It can be either the first
1856 		 * one, or the one after divert_rule if asked so.
1857 		 */
1858 		int skipto;
1859 
1860 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1861 		if (mtag != NULL) {
1862 			divinfo = m_tag_data(mtag);
1863 			skipto = divinfo->skipto;
1864 		} else {
1865 			skipto = 0;
1866 		}
1867 
1868 		f = ctx->ipfw_layer3_chain;
1869 		if (args->eh == NULL && skipto != 0) {
1870 			/* No skipto during rule flushing */
1871 			if (ipfw_flushing)
1872 				return IP_FW_DENY;
1873 
1874 			if (skipto >= IPFW_DEFAULT_RULE)
1875 				return IP_FW_DENY; /* invalid */
1876 
1877 			while (f && f->rulenum <= skipto)
1878 				f = f->next;
1879 			if (f == NULL)	/* drop packet */
1880 				return IP_FW_DENY;
1881 		} else if (ipfw_flushing) {
1882 			/* Rules are being flushed; skip to default rule */
1883 			f = ctx->ipfw_default_rule;
1884 		}
1885 	}
1886 	if ((mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
1887 		m_tag_delete(m, mtag);
1888 
1889 	/*
1890 	 * Now scan the rules, and parse microinstructions for each rule.
1891 	 */
1892 	for (; f; f = f->next) {
1893 		int l, cmdlen;
1894 		ipfw_insn *cmd;
1895 		int skip_or; /* skip rest of OR block */
1896 
1897 again:
1898 		if (ctx->ipfw_set_disable & (1 << f->set))
1899 			continue;
1900 
1901 		skip_or = 0;
1902 		for (l = f->cmd_len, cmd = f->cmd; l > 0;
1903 		     l -= cmdlen, cmd += cmdlen) {
1904 			int match, deny;
1905 
1906 			/*
1907 			 * check_body is a jump target used when we find a
1908 			 * CHECK_STATE, and need to jump to the body of
1909 			 * the target rule.
1910 			 */
1911 
1912 check_body:
1913 			cmdlen = F_LEN(cmd);
1914 			/*
1915 			 * An OR block (insn_1 || .. || insn_n) has the
1916 			 * F_OR bit set in all but the last instruction.
1917 			 * The first match will set "skip_or", and cause
1918 			 * the following instructions to be skipped until
1919 			 * past the one with the F_OR bit clear.
1920 			 */
1921 			if (skip_or) {		/* skip this instruction */
1922 				if ((cmd->len & F_OR) == 0)
1923 					skip_or = 0;	/* next one is good */
1924 				continue;
1925 			}
1926 			match = 0; /* set to 1 if we succeed */
1927 
1928 			switch (cmd->opcode) {
1929 			/*
1930 			 * The first set of opcodes compares the packet's
1931 			 * fields with some pattern, setting 'match' if a
1932 			 * match is found. At the end of the loop there is
1933 			 * logic to deal with F_NOT and F_OR flags associated
1934 			 * with the opcode.
1935 			 */
1936 			case O_NOP:
1937 				match = 1;
1938 				break;
1939 
1940 			case O_FORWARD_MAC:
1941 				kprintf("ipfw: opcode %d unimplemented\n",
1942 					cmd->opcode);
1943 				break;
1944 
1945 			case O_GID:
1946 			case O_UID:
1947 				/*
1948 				 * We only check offset == 0 && proto != 0,
1949 				 * as this ensures that we have an IPv4
1950 				 * packet with the ports info.
1951 				 */
1952 				if (offset!=0)
1953 					break;
1954 
1955 				match = ipfw_match_uid(&args->f_id, oif,
1956 					cmd->opcode,
1957 					(uid_t)((ipfw_insn_u32 *)cmd)->d[0],
1958 					&deny);
1959 				if (deny)
1960 					return IP_FW_DENY;
1961 				break;
1962 
1963 			case O_RECV:
1964 				match = iface_match(m->m_pkthdr.rcvif,
1965 				    (ipfw_insn_if *)cmd);
1966 				break;
1967 
1968 			case O_XMIT:
1969 				match = iface_match(oif, (ipfw_insn_if *)cmd);
1970 				break;
1971 
1972 			case O_VIA:
1973 				match = iface_match(oif ? oif :
1974 				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1975 				break;
1976 
1977 			case O_MACADDR2:
1978 				if (args->eh != NULL) {	/* have MAC header */
1979 					uint32_t *want = (uint32_t *)
1980 						((ipfw_insn_mac *)cmd)->addr;
1981 					uint32_t *mask = (uint32_t *)
1982 						((ipfw_insn_mac *)cmd)->mask;
1983 					uint32_t *hdr = (uint32_t *)args->eh;
1984 
1985 					match =
1986 					(want[0] == (hdr[0] & mask[0]) &&
1987 					 want[1] == (hdr[1] & mask[1]) &&
1988 					 want[2] == (hdr[2] & mask[2]));
1989 				}
1990 				break;
1991 
1992 			case O_MAC_TYPE:
1993 				if (args->eh != NULL) {
1994 					uint16_t t =
1995 					    ntohs(args->eh->ether_type);
1996 					uint16_t *p =
1997 					    ((ipfw_insn_u16 *)cmd)->ports;
1998 					int i;
1999 
2000 					/* Special vlan handling */
2001 					if (m->m_flags & M_VLANTAG)
2002 						t = ETHERTYPE_VLAN;
2003 
2004 					for (i = cmdlen - 1; !match && i > 0;
2005 					     i--, p += 2) {
2006 						match =
2007 						(t >= p[0] && t <= p[1]);
2008 					}
2009 				}
2010 				break;
2011 
2012 			case O_FRAG:
2013 				match = (hlen > 0 && offset != 0);
2014 				break;
2015 
2016 			case O_IN:	/* "out" is "not in" */
2017 				match = (oif == NULL);
2018 				break;
2019 
2020 			case O_LAYER2:
2021 				match = (args->eh != NULL);
2022 				break;
2023 
2024 			case O_PROTO:
2025 				/*
2026 				 * We do not allow an arg of 0 so the
2027 				 * check of "proto" only suffices.
2028 				 */
2029 				match = (proto == cmd->arg1);
2030 				break;
2031 
2032 			case O_IP_SRC:
2033 				match = (hlen > 0 &&
2034 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
2035 				    src_ip.s_addr);
2036 				break;
2037 
2038 			case O_IP_SRC_MASK:
2039 				match = (hlen > 0 &&
2040 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
2041 				     (src_ip.s_addr &
2042 				     ((ipfw_insn_ip *)cmd)->mask.s_addr));
2043 				break;
2044 
2045 			case O_IP_SRC_ME:
2046 				if (hlen > 0) {
2047 					struct ifnet *tif;
2048 
2049 					tif = INADDR_TO_IFP(&src_ip);
2050 					match = (tif != NULL);
2051 				}
2052 				break;
2053 
2054 			case O_IP_DST_SET:
2055 			case O_IP_SRC_SET:
2056 				if (hlen > 0) {
2057 					uint32_t *d = (uint32_t *)(cmd + 1);
2058 					uint32_t addr =
2059 					    cmd->opcode == O_IP_DST_SET ?
2060 						args->f_id.dst_ip :
2061 						args->f_id.src_ip;
2062 
2063 					if (addr < d[0])
2064 						break;
2065 					addr -= d[0]; /* subtract base */
2066 					match =
2067 					(addr < cmd->arg1) &&
2068 					 (d[1 + (addr >> 5)] &
2069 					  (1 << (addr & 0x1f)));
2070 				}
2071 				break;
2072 
2073 			case O_IP_DST:
2074 				match = (hlen > 0 &&
2075 				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
2076 				    dst_ip.s_addr);
2077 				break;
2078 
2079 			case O_IP_DST_MASK:
2080 				match = (hlen > 0) &&
2081 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2082 				     (dst_ip.s_addr &
2083 				     ((ipfw_insn_ip *)cmd)->mask.s_addr));
2084 				break;
2085 
2086 			case O_IP_DST_ME:
2087 				if (hlen > 0) {
2088 					struct ifnet *tif;
2089 
2090 					tif = INADDR_TO_IFP(&dst_ip);
2091 					match = (tif != NULL);
2092 				}
2093 				break;
2094 
2095 			case O_IP_SRCPORT:
2096 			case O_IP_DSTPORT:
2097 				/*
2098 				 * offset == 0 && proto != 0 is enough
2099 				 * to guarantee that we have an IPv4
2100 				 * packet with port info.
2101 				 */
2102 				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2103 				    && offset == 0) {
2104 					uint16_t x =
2105 					    (cmd->opcode == O_IP_SRCPORT) ?
2106 						src_port : dst_port ;
2107 					uint16_t *p =
2108 					    ((ipfw_insn_u16 *)cmd)->ports;
2109 					int i;
2110 
2111 					for (i = cmdlen - 1; !match && i > 0;
2112 					     i--, p += 2) {
2113 						match =
2114 						(x >= p[0] && x <= p[1]);
2115 					}
2116 				}
2117 				break;
2118 
2119 			case O_ICMPTYPE:
2120 				match = (offset == 0 && proto==IPPROTO_ICMP &&
2121 				    icmptype_match(ip, (ipfw_insn_u32 *)cmd));
2122 				break;
2123 
2124 			case O_IPOPT:
2125 				match = (hlen > 0 && ipopts_match(ip, cmd));
2126 				break;
2127 
2128 			case O_IPVER:
2129 				match = (hlen > 0 && cmd->arg1 == ip->ip_v);
2130 				break;
2131 
2132 			case O_IPTTL:
2133 				match = (hlen > 0 && cmd->arg1 == ip->ip_ttl);
2134 				break;
2135 
2136 			case O_IPID:
2137 				match = (hlen > 0 &&
2138 				    cmd->arg1 == ntohs(ip->ip_id));
2139 				break;
2140 
2141 			case O_IPLEN:
2142 				match = (hlen > 0 && cmd->arg1 == ip_len);
2143 				break;
2144 
2145 			case O_IPPRECEDENCE:
2146 				match = (hlen > 0 &&
2147 				    (cmd->arg1 == (ip->ip_tos & 0xe0)));
2148 				break;
2149 
2150 			case O_IPTOS:
2151 				match = (hlen > 0 &&
2152 				    flags_match(cmd, ip->ip_tos));
2153 				break;
2154 
2155 			case O_TCPFLAGS:
2156 				match = (proto == IPPROTO_TCP && offset == 0 &&
2157 				    flags_match(cmd,
2158 					L3HDR(struct tcphdr,ip)->th_flags));
2159 				break;
2160 
2161 			case O_TCPOPTS:
2162 				match = (proto == IPPROTO_TCP && offset == 0 &&
2163 				    tcpopts_match(ip, cmd));
2164 				break;
2165 
2166 			case O_TCPSEQ:
2167 				match = (proto == IPPROTO_TCP && offset == 0 &&
2168 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2169 					L3HDR(struct tcphdr,ip)->th_seq);
2170 				break;
2171 
2172 			case O_TCPACK:
2173 				match = (proto == IPPROTO_TCP && offset == 0 &&
2174 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2175 					L3HDR(struct tcphdr,ip)->th_ack);
2176 				break;
2177 
2178 			case O_TCPWIN:
2179 				match = (proto == IPPROTO_TCP && offset == 0 &&
2180 				    cmd->arg1 ==
2181 					L3HDR(struct tcphdr,ip)->th_win);
2182 				break;
2183 
2184 			case O_ESTAB:
2185 				/* reject packets which have SYN only */
2186 				/* XXX should i also check for TH_ACK ? */
2187 				match = (proto == IPPROTO_TCP && offset == 0 &&
2188 				    (L3HDR(struct tcphdr,ip)->th_flags &
2189 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2190 				break;
2191 
2192 			case O_LOG:
2193 				if (fw_verbose)
2194 					ipfw_log(f, hlen, args->eh, m, oif);
2195 				match = 1;
2196 				break;
2197 
2198 			case O_PROB:
2199 				match = (krandom() <
2200 					((ipfw_insn_u32 *)cmd)->d[0]);
2201 				break;
2202 
2203 			/*
2204 			 * The second set of opcodes represents 'actions',
2205 			 * i.e. the terminal part of a rule once the packet
2206 			 * matches all previous patterns.
2207 			 * Typically there is only one action for each rule,
2208 			 * and the opcode is stored at the end of the rule
2209 			 * (but there are exceptions -- see below).
2210 			 *
2211 			 * In general, here we set retval and terminate the
2212 			 * outer loop (would be a 'break 3' in some language,
2213 			 * but we need to do a 'goto done').
2214 			 *
2215 			 * Exceptions:
2216 			 * O_COUNT and O_SKIPTO actions:
2217 			 *   instead of terminating, we jump to the next rule
2218 			 *   ('goto next_rule', equivalent to a 'break 2'),
2219 			 *   or to the SKIPTO target ('goto again' after
2220 			 *   having set f, cmd and l), respectively.
2221 			 *
2222 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2223 			 *   not real 'actions', and are stored right
2224 			 *   before the 'action' part of the rule.
2225 			 *   These opcodes try to install an entry in the
2226 			 *   state tables; if successful, we continue with
2227 			 *   the next opcode (match=1; break;), otherwise
2228 			 *   the packet must be dropped ('goto done' after
2229 			 *   setting retval).  If static rules are changed
2230 			 *   during the state installation, the packet will
2231 			 *   be dropped and rule's stats will not beupdated
2232 			 *   ('return IP_FW_DENY').
2233 			 *
2234 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2235 			 *   cause a lookup of the state table, and a jump
2236 			 *   to the 'action' part of the parent rule
2237 			 *   ('goto check_body') if an entry is found, or
2238 			 *   (CHECK_STATE only) a jump to the next rule if
2239 			 *   the entry is not found ('goto next_rule').
2240 			 *   The result of the lookup is cached to make
2241 			 *   further instances of these opcodes are
2242 			 *   effectively NOPs.  If static rules are changed
2243 			 *   during the state looking up, the packet will
2244 			 *   be dropped and rule's stats will not be updated
2245 			 *   ('return IP_FW_DENY').
2246 			 */
2247 			case O_LIMIT:
2248 			case O_KEEP_STATE:
2249 				if (!(f->rule_flags & IPFW_RULE_F_STATE)) {
2250 					kprintf("%s rule (%d) is not ready "
2251 						"on cpu%d\n",
2252 						cmd->opcode == O_LIMIT ?
2253 						"limit" : "keep state",
2254 						f->rulenum, f->cpuid);
2255 					goto next_rule;
2256 				}
2257 				if (install_state(f,
2258 				    (ipfw_insn_limit *)cmd, args, &deny)) {
2259 					if (deny)
2260 						return IP_FW_DENY;
2261 
2262 					retval = IP_FW_DENY;
2263 					goto done; /* error/limit violation */
2264 				}
2265 				if (deny)
2266 					return IP_FW_DENY;
2267 				match = 1;
2268 				break;
2269 
2270 			case O_PROBE_STATE:
2271 			case O_CHECK_STATE:
2272 				/*
2273 				 * dynamic rules are checked at the first
2274 				 * keep-state or check-state occurrence,
2275 				 * with the result being stored in dyn_dir.
2276 				 * The compiler introduces a PROBE_STATE
2277 				 * instruction for us when we have a
2278 				 * KEEP_STATE (because PROBE_STATE needs
2279 				 * to be run first).
2280 				 */
2281 				if (dyn_dir == MATCH_UNKNOWN) {
2282 					dyn_f = lookup_rule(&args->f_id,
2283 						&dyn_dir,
2284 						proto == IPPROTO_TCP ?
2285 						L3HDR(struct tcphdr, ip) : NULL,
2286 						ip_len, &deny);
2287 					if (deny)
2288 						return IP_FW_DENY;
2289 					if (dyn_f != NULL) {
2290 						/*
2291 						 * Found a rule from a dynamic
2292 						 * entry; jump to the 'action'
2293 						 * part of the rule.
2294 						 */
2295 						f = dyn_f;
2296 						cmd = ACTION_PTR(f);
2297 						l = f->cmd_len - f->act_ofs;
2298 						goto check_body;
2299 					}
2300 				}
2301 				/*
2302 				 * Dynamic entry not found. If CHECK_STATE,
2303 				 * skip to next rule, if PROBE_STATE just
2304 				 * ignore and continue with next opcode.
2305 				 */
2306 				if (cmd->opcode == O_CHECK_STATE)
2307 					goto next_rule;
2308 				else if (!(f->rule_flags & IPFW_RULE_F_STATE))
2309 					goto next_rule; /* not ready yet */
2310 				match = 1;
2311 				break;
2312 
2313 			case O_ACCEPT:
2314 				retval = IP_FW_PASS;	/* accept */
2315 				goto done;
2316 
2317 			case O_PIPE:
2318 			case O_QUEUE:
2319 				args->rule = f; /* report matching rule */
2320 				args->cookie = cmd->arg1;
2321 				retval = IP_FW_DUMMYNET;
2322 				goto done;
2323 
2324 			case O_DIVERT:
2325 			case O_TEE:
2326 				if (args->eh) /* not on layer 2 */
2327 					break;
2328 
2329 				mtag = m_tag_get(PACKET_TAG_IPFW_DIVERT,
2330 						 sizeof(*divinfo), MB_DONTWAIT);
2331 				if (mtag == NULL) {
2332 					retval = IP_FW_DENY;
2333 					goto done;
2334 				}
2335 				divinfo = m_tag_data(mtag);
2336 
2337 				divinfo->skipto = f->rulenum;
2338 				divinfo->port = cmd->arg1;
2339 				divinfo->tee = (cmd->opcode == O_TEE);
2340 				m_tag_prepend(m, mtag);
2341 
2342 				args->cookie = cmd->arg1;
2343 				retval = (cmd->opcode == O_DIVERT) ?
2344 					 IP_FW_DIVERT : IP_FW_TEE;
2345 				goto done;
2346 
2347 			case O_COUNT:
2348 			case O_SKIPTO:
2349 				f->pcnt++;	/* update stats */
2350 				f->bcnt += ip_len;
2351 				f->timestamp = time_second;
2352 				if (cmd->opcode == O_COUNT)
2353 					goto next_rule;
2354 				/* handle skipto */
2355 				if (f->next_rule == NULL)
2356 					lookup_next_rule(f);
2357 				f = f->next_rule;
2358 				goto again;
2359 
2360 			case O_REJECT:
2361 				/*
2362 				 * Drop the packet and send a reject notice
2363 				 * if the packet is not ICMP (or is an ICMP
2364 				 * query), and it is not multicast/broadcast.
2365 				 */
2366 				if (hlen > 0 &&
2367 				    (proto != IPPROTO_ICMP ||
2368 				     is_icmp_query(ip)) &&
2369 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2370 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2371 					/*
2372 					 * Update statistics before the possible
2373 					 * blocking 'send_reject'
2374 					 */
2375 					f->pcnt++;
2376 					f->bcnt += ip_len;
2377 					f->timestamp = time_second;
2378 
2379 					send_reject(args, cmd->arg1,
2380 					    offset,ip_len);
2381 					m = args->m;
2382 
2383 					/*
2384 					 * Return directly here, rule stats
2385 					 * have been updated above.
2386 					 */
2387 					return IP_FW_DENY;
2388 				}
2389 				/* FALLTHROUGH */
2390 			case O_DENY:
2391 				retval = IP_FW_DENY;
2392 				goto done;
2393 
2394 			case O_FORWARD_IP:
2395 				if (args->eh)	/* not valid on layer2 pkts */
2396 					break;
2397 				if (!dyn_f || dyn_dir == MATCH_FORWARD) {
2398 					struct sockaddr_in *sin;
2399 
2400 					mtag = m_tag_get(PACKET_TAG_IPFORWARD,
2401 					       sizeof(*sin), MB_DONTWAIT);
2402 					if (mtag == NULL) {
2403 						retval = IP_FW_DENY;
2404 						goto done;
2405 					}
2406 					sin = m_tag_data(mtag);
2407 
2408 					/* Structure copy */
2409 					*sin = ((ipfw_insn_sa *)cmd)->sa;
2410 
2411 					m_tag_prepend(m, mtag);
2412 					m->m_pkthdr.fw_flags |=
2413 						IPFORWARD_MBUF_TAGGED;
2414 				}
2415 				retval = IP_FW_PASS;
2416 				goto done;
2417 
2418 			default:
2419 				panic("-- unknown opcode %d\n", cmd->opcode);
2420 			} /* end of switch() on opcodes */
2421 
2422 			if (cmd->len & F_NOT)
2423 				match = !match;
2424 
2425 			if (match) {
2426 				if (cmd->len & F_OR)
2427 					skip_or = 1;
2428 			} else {
2429 				if (!(cmd->len & F_OR)) /* not an OR block, */
2430 					break;		/* try next rule    */
2431 			}
2432 
2433 		}	/* end of inner for, scan opcodes */
2434 
2435 next_rule:;		/* try next rule		*/
2436 
2437 	}		/* end of outer for, scan rules */
2438 	kprintf("+++ ipfw: ouch!, skip past end of rules, denying packet\n");
2439 	return IP_FW_DENY;
2440 
2441 done:
2442 	/* Update statistics */
2443 	f->pcnt++;
2444 	f->bcnt += ip_len;
2445 	f->timestamp = time_second;
2446 	return retval;
2447 
2448 pullup_failed:
2449 	if (fw_verbose)
2450 		kprintf("pullup failed\n");
2451 	return IP_FW_DENY;
2452 }
2453 
2454 static void
2455 ipfw_dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
2456 {
2457 	struct m_tag *mtag;
2458 	struct dn_pkt *pkt;
2459 	ipfw_insn *cmd;
2460 	const struct ipfw_flow_id *id;
2461 	struct dn_flow_id *fid;
2462 
2463 	M_ASSERTPKTHDR(m);
2464 
2465 	mtag = m_tag_get(PACKET_TAG_DUMMYNET, sizeof(*pkt), MB_DONTWAIT);
2466 	if (mtag == NULL) {
2467 		m_freem(m);
2468 		return;
2469 	}
2470 	m_tag_prepend(m, mtag);
2471 
2472 	pkt = m_tag_data(mtag);
2473 	bzero(pkt, sizeof(*pkt));
2474 
2475 	cmd = fwa->rule->cmd + fwa->rule->act_ofs;
2476 	if (cmd->opcode == O_LOG)
2477 		cmd += F_LEN(cmd);
2478 	KASSERT(cmd->opcode == O_PIPE || cmd->opcode == O_QUEUE,
2479 		("Rule is not PIPE or QUEUE, opcode %d\n", cmd->opcode));
2480 
2481 	pkt->dn_m = m;
2482 	pkt->dn_flags = (dir & DN_FLAGS_DIR_MASK);
2483 	pkt->ifp = fwa->oif;
2484 	pkt->pipe_nr = pipe_nr;
2485 
2486 	pkt->cpuid = mycpuid;
2487 	pkt->msgport = curnetport;
2488 
2489 	id = &fwa->f_id;
2490 	fid = &pkt->id;
2491 	fid->fid_dst_ip = id->dst_ip;
2492 	fid->fid_src_ip = id->src_ip;
2493 	fid->fid_dst_port = id->dst_port;
2494 	fid->fid_src_port = id->src_port;
2495 	fid->fid_proto = id->proto;
2496 	fid->fid_flags = id->flags;
2497 
2498 	ipfw_ref_rule(fwa->rule);
2499 	pkt->dn_priv = fwa->rule;
2500 	pkt->dn_unref_priv = ipfw_unref_rule;
2501 
2502 	if (cmd->opcode == O_PIPE)
2503 		pkt->dn_flags |= DN_FLAGS_IS_PIPE;
2504 
2505 	m->m_pkthdr.fw_flags |= DUMMYNET_MBUF_TAGGED;
2506 }
2507 
2508 /*
2509  * When a rule is added/deleted, clear the next_rule pointers in all rules.
2510  * These will be reconstructed on the fly as packets are matched.
2511  * Must be called at splimp().
2512  */
2513 static void
2514 ipfw_flush_rule_ptrs(struct ipfw_context *ctx)
2515 {
2516 	struct ip_fw *rule;
2517 
2518 	for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next)
2519 		rule->next_rule = NULL;
2520 }
2521 
2522 static __inline void
2523 ipfw_inc_static_count(struct ip_fw *rule)
2524 {
2525 	/* Static rule's counts are updated only on CPU0 */
2526 	KKASSERT(mycpuid == 0);
2527 
2528 	static_count++;
2529 	static_ioc_len += IOC_RULESIZE(rule);
2530 }
2531 
2532 static __inline void
2533 ipfw_dec_static_count(struct ip_fw *rule)
2534 {
2535 	int l = IOC_RULESIZE(rule);
2536 
2537 	/* Static rule's counts are updated only on CPU0 */
2538 	KKASSERT(mycpuid == 0);
2539 
2540 	KASSERT(static_count > 0, ("invalid static count %u\n", static_count));
2541 	static_count--;
2542 
2543 	KASSERT(static_ioc_len >= l,
2544 		("invalid static len %u\n", static_ioc_len));
2545 	static_ioc_len -= l;
2546 }
2547 
2548 static void
2549 ipfw_link_sibling(struct netmsg_ipfw *fwmsg, struct ip_fw *rule)
2550 {
2551 	if (fwmsg->sibling != NULL) {
2552 		KKASSERT(mycpuid > 0 && fwmsg->sibling->cpuid == mycpuid - 1);
2553 		fwmsg->sibling->sibling = rule;
2554 	}
2555 	fwmsg->sibling = rule;
2556 }
2557 
2558 static struct ip_fw *
2559 ipfw_create_rule(const struct ipfw_ioc_rule *ioc_rule, struct ip_fw_stub *stub)
2560 {
2561 	struct ip_fw *rule;
2562 
2563 	rule = kmalloc(RULESIZE(ioc_rule), M_IPFW, M_WAITOK | M_ZERO);
2564 
2565 	rule->act_ofs = ioc_rule->act_ofs;
2566 	rule->cmd_len = ioc_rule->cmd_len;
2567 	rule->rulenum = ioc_rule->rulenum;
2568 	rule->set = ioc_rule->set;
2569 	rule->usr_flags = ioc_rule->usr_flags;
2570 
2571 	bcopy(ioc_rule->cmd, rule->cmd, rule->cmd_len * 4 /* XXX */);
2572 
2573 	rule->refcnt = 1;
2574 	rule->cpuid = mycpuid;
2575 
2576 	rule->stub = stub;
2577 	if (stub != NULL)
2578 		stub->rule[mycpuid] = rule;
2579 
2580 	return rule;
2581 }
2582 
2583 static void
2584 ipfw_add_rule_dispatch(struct netmsg *nmsg)
2585 {
2586 	struct netmsg_ipfw *fwmsg = (struct netmsg_ipfw *)nmsg;
2587 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2588 	struct ip_fw *rule;
2589 
2590 	rule = ipfw_create_rule(fwmsg->ioc_rule, fwmsg->stub);
2591 
2592 	/*
2593 	 * Bump generation after ipfw_create_rule(),
2594 	 * since this function is blocking
2595 	 */
2596 	ctx->ipfw_gen++;
2597 
2598 	/*
2599 	 * Insert rule into the pre-determined position
2600 	 */
2601 	if (fwmsg->prev_rule != NULL) {
2602 		struct ip_fw *prev, *next;
2603 
2604 		prev = fwmsg->prev_rule;
2605 		KKASSERT(prev->cpuid == mycpuid);
2606 
2607 		next = fwmsg->next_rule;
2608 		KKASSERT(next->cpuid == mycpuid);
2609 
2610 		rule->next = next;
2611 		prev->next = rule;
2612 
2613 		/*
2614 		 * Move to the position on the next CPU
2615 		 * before the msg is forwarded.
2616 		 */
2617 		fwmsg->prev_rule = prev->sibling;
2618 		fwmsg->next_rule = next->sibling;
2619 	} else {
2620 		KKASSERT(fwmsg->next_rule == NULL);
2621 		rule->next = ctx->ipfw_layer3_chain;
2622 		ctx->ipfw_layer3_chain = rule;
2623 	}
2624 
2625 	/* Link rule CPU sibling */
2626 	ipfw_link_sibling(fwmsg, rule);
2627 
2628 	ipfw_flush_rule_ptrs(ctx);
2629 
2630 	if (mycpuid == 0) {
2631 		/* Statistics only need to be updated once */
2632 		ipfw_inc_static_count(rule);
2633 
2634 		/* Return the rule on CPU0 */
2635 		nmsg->nm_lmsg.u.ms_resultp = rule;
2636 	}
2637 
2638 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2639 }
2640 
2641 static void
2642 ipfw_enable_state_dispatch(struct netmsg *nmsg)
2643 {
2644 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
2645 	struct ip_fw *rule = lmsg->u.ms_resultp;
2646 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2647 
2648 	ctx->ipfw_gen++;
2649 
2650 	KKASSERT(rule->cpuid == mycpuid);
2651 	KKASSERT(rule->stub != NULL && rule->stub->rule[mycpuid] == rule);
2652 	KKASSERT(!(rule->rule_flags & IPFW_RULE_F_STATE));
2653 	rule->rule_flags |= IPFW_RULE_F_STATE;
2654 	lmsg->u.ms_resultp = rule->sibling;
2655 
2656 	ifnet_forwardmsg(lmsg, mycpuid + 1);
2657 }
2658 
2659 /*
2660  * Add a new rule to the list.  Copy the rule into a malloc'ed area,
2661  * then possibly create a rule number and add the rule to the list.
2662  * Update the rule_number in the input struct so the caller knows
2663  * it as well.
2664  */
2665 static void
2666 ipfw_add_rule(struct ipfw_ioc_rule *ioc_rule, uint32_t rule_flags)
2667 {
2668 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2669 	struct netmsg_ipfw fwmsg;
2670 	struct netmsg *nmsg;
2671 	struct ip_fw *f, *prev, *rule;
2672 	struct ip_fw_stub *stub;
2673 
2674 	IPFW_ASSERT_CFGPORT(&curthread->td_msgport);
2675 
2676 	/*
2677 	 * If rulenum is 0, find highest numbered rule before the
2678 	 * default rule, and add rule number incremental step.
2679 	 */
2680 	if (ioc_rule->rulenum == 0) {
2681 		int step = autoinc_step;
2682 
2683 		KKASSERT(step >= IPFW_AUTOINC_STEP_MIN &&
2684 			 step <= IPFW_AUTOINC_STEP_MAX);
2685 
2686 		/*
2687 		 * Locate the highest numbered rule before default
2688 		 */
2689 		for (f = ctx->ipfw_layer3_chain; f; f = f->next) {
2690 			if (f->rulenum == IPFW_DEFAULT_RULE)
2691 				break;
2692 			ioc_rule->rulenum = f->rulenum;
2693 		}
2694 		if (ioc_rule->rulenum < IPFW_DEFAULT_RULE - step)
2695 			ioc_rule->rulenum += step;
2696 	}
2697 	KASSERT(ioc_rule->rulenum != IPFW_DEFAULT_RULE &&
2698 		ioc_rule->rulenum != 0,
2699 		("invalid rule num %d\n", ioc_rule->rulenum));
2700 
2701 	/*
2702 	 * Now find the right place for the new rule in the sorted list.
2703 	 */
2704 	for (prev = NULL, f = ctx->ipfw_layer3_chain; f;
2705 	     prev = f, f = f->next) {
2706 		if (f->rulenum > ioc_rule->rulenum) {
2707 			/* Found the location */
2708 			break;
2709 		}
2710 	}
2711 	KASSERT(f != NULL, ("no default rule?!\n"));
2712 
2713 	if (rule_flags & IPFW_RULE_F_STATE) {
2714 		int size;
2715 
2716 		/*
2717 		 * If the new rule will create states, then allocate
2718 		 * a rule stub, which will be referenced by states
2719 		 * (dyn rules)
2720 		 */
2721 		size = sizeof(*stub) + ((ncpus - 1) * sizeof(struct ip_fw *));
2722 		stub = kmalloc(size, M_IPFW, M_WAITOK | M_ZERO);
2723 	} else {
2724 		stub = NULL;
2725 	}
2726 
2727 	/*
2728 	 * Duplicate the rule onto each CPU.
2729 	 * The rule duplicated on CPU0 will be returned.
2730 	 */
2731 	bzero(&fwmsg, sizeof(fwmsg));
2732 	nmsg = &fwmsg.nmsg;
2733 	netmsg_init(nmsg, NULL, &curthread->td_msgport,
2734 		    0, ipfw_add_rule_dispatch);
2735 	fwmsg.ioc_rule = ioc_rule;
2736 	fwmsg.prev_rule = prev;
2737 	fwmsg.next_rule = prev == NULL ? NULL : f;
2738 	fwmsg.stub = stub;
2739 
2740 	ifnet_domsg(&nmsg->nm_lmsg, 0);
2741 	KKASSERT(fwmsg.prev_rule == NULL && fwmsg.next_rule == NULL);
2742 
2743 	rule = nmsg->nm_lmsg.u.ms_resultp;
2744 	KKASSERT(rule != NULL && rule->cpuid == mycpuid);
2745 
2746 	if (rule_flags & IPFW_RULE_F_STATE) {
2747 		/*
2748 		 * Turn on state flag, _after_ everything on all
2749 		 * CPUs have been setup.
2750 		 */
2751 		bzero(nmsg, sizeof(*nmsg));
2752 		netmsg_init(nmsg, NULL, &curthread->td_msgport,
2753 			    0, ipfw_enable_state_dispatch);
2754 		nmsg->nm_lmsg.u.ms_resultp = rule;
2755 
2756 		ifnet_domsg(&nmsg->nm_lmsg, 0);
2757 		KKASSERT(nmsg->nm_lmsg.u.ms_resultp == NULL);
2758 	}
2759 
2760 	DPRINTF("++ installed rule %d, static count now %d\n",
2761 		rule->rulenum, static_count);
2762 }
2763 
2764 /**
2765  * Free storage associated with a static rule (including derived
2766  * dynamic rules).
2767  * The caller is in charge of clearing rule pointers to avoid
2768  * dangling pointers.
2769  * @return a pointer to the next entry.
2770  * Arguments are not checked, so they better be correct.
2771  * Must be called at splimp().
2772  */
2773 static struct ip_fw *
2774 ipfw_delete_rule(struct ipfw_context *ctx,
2775 		 struct ip_fw *prev, struct ip_fw *rule)
2776 {
2777 	struct ip_fw *n;
2778 	struct ip_fw_stub *stub;
2779 
2780 	ctx->ipfw_gen++;
2781 
2782 	/* STATE flag should have been cleared before we reach here */
2783 	KKASSERT((rule->rule_flags & IPFW_RULE_F_STATE) == 0);
2784 
2785 	stub = rule->stub;
2786 	n = rule->next;
2787 	if (prev == NULL)
2788 		ctx->ipfw_layer3_chain = n;
2789 	else
2790 		prev->next = n;
2791 
2792 	/* Mark the rule as invalid */
2793 	rule->rule_flags |= IPFW_RULE_F_INVALID;
2794 	rule->next_rule = NULL;
2795 	rule->sibling = NULL;
2796 	rule->stub = NULL;
2797 #ifdef foo
2798 	/* Don't reset cpuid here; keep various assertion working */
2799 	rule->cpuid = -1;
2800 #endif
2801 
2802 	/* Statistics only need to be updated once */
2803 	if (mycpuid == 0)
2804 		ipfw_dec_static_count(rule);
2805 
2806 	/* Free 'stub' on the last CPU */
2807 	if (stub != NULL && mycpuid == ncpus - 1)
2808 		kfree(stub, M_IPFW);
2809 
2810 	/* Try to free this rule */
2811 	ipfw_free_rule(rule);
2812 
2813 	/* Return the next rule */
2814 	return n;
2815 }
2816 
2817 static void
2818 ipfw_flush_dispatch(struct netmsg *nmsg)
2819 {
2820 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
2821 	int kill_default = lmsg->u.ms_result;
2822 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2823 	struct ip_fw *rule;
2824 
2825 	ipfw_flush_rule_ptrs(ctx); /* more efficient to do outside the loop */
2826 
2827 	while ((rule = ctx->ipfw_layer3_chain) != NULL &&
2828 	       (kill_default || rule->rulenum != IPFW_DEFAULT_RULE))
2829 		ipfw_delete_rule(ctx, NULL, rule);
2830 
2831 	ifnet_forwardmsg(lmsg, mycpuid + 1);
2832 }
2833 
2834 static void
2835 ipfw_disable_rule_state_dispatch(struct netmsg *nmsg)
2836 {
2837 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
2838 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2839 	struct ip_fw *rule;
2840 
2841 	ctx->ipfw_gen++;
2842 
2843 	rule = dmsg->start_rule;
2844 	if (rule != NULL) {
2845 		KKASSERT(rule->cpuid == mycpuid);
2846 
2847 		/*
2848 		 * Move to the position on the next CPU
2849 		 * before the msg is forwarded.
2850 		 */
2851 		dmsg->start_rule = rule->sibling;
2852 	} else {
2853 		KKASSERT(dmsg->rulenum == 0);
2854 		rule = ctx->ipfw_layer3_chain;
2855 	}
2856 
2857 	while (rule != NULL) {
2858 		if (dmsg->rulenum && rule->rulenum != dmsg->rulenum)
2859 			break;
2860 		rule->rule_flags &= ~IPFW_RULE_F_STATE;
2861 		rule = rule->next;
2862 	}
2863 
2864 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2865 }
2866 
2867 /*
2868  * Deletes all rules from a chain (including the default rule
2869  * if the second argument is set).
2870  * Must be called at splimp().
2871  */
2872 static void
2873 ipfw_flush(int kill_default)
2874 {
2875 	struct netmsg_del dmsg;
2876 	struct netmsg nmsg;
2877 	struct lwkt_msg *lmsg;
2878 	struct ip_fw *rule;
2879 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2880 
2881 	IPFW_ASSERT_CFGPORT(&curthread->td_msgport);
2882 
2883 	/*
2884 	 * If 'kill_default' then caller has done the necessary
2885 	 * msgport syncing; unnecessary to do it again.
2886 	 */
2887 	if (!kill_default) {
2888 		/*
2889 		 * Let ipfw_chk() know the rules are going to
2890 		 * be flushed, so it could jump directly to
2891 		 * the default rule.
2892 		 */
2893 		ipfw_flushing = 1;
2894 		netmsg_service_sync();
2895 	}
2896 
2897 	/*
2898 	 * Clear STATE flag on rules, so no more states (dyn rules)
2899 	 * will be created.
2900 	 */
2901 	bzero(&dmsg, sizeof(dmsg));
2902 	netmsg_init(&dmsg.nmsg, NULL, &curthread->td_msgport,
2903 		    0, ipfw_disable_rule_state_dispatch);
2904 	ifnet_domsg(&dmsg.nmsg.nm_lmsg, 0);
2905 
2906 	/*
2907 	 * This actually nukes all states (dyn rules)
2908 	 */
2909 	lockmgr(&dyn_lock, LK_EXCLUSIVE);
2910 	for (rule = ctx->ipfw_layer3_chain; rule != NULL; rule = rule->next) {
2911 		/*
2912 		 * Can't check IPFW_RULE_F_STATE here,
2913 		 * since it has been cleared previously.
2914 		 * Check 'stub' instead.
2915 		 */
2916 		if (rule->stub != NULL) {
2917 			/* Force removal */
2918 			remove_dyn_rule_locked(rule, NULL);
2919 		}
2920 	}
2921 	lockmgr(&dyn_lock, LK_RELEASE);
2922 
2923 	/*
2924 	 * Press the 'flush' button
2925 	 */
2926 	bzero(&nmsg, sizeof(nmsg));
2927 	netmsg_init(&nmsg, NULL, &curthread->td_msgport,
2928 		    0, ipfw_flush_dispatch);
2929 	lmsg = &nmsg.nm_lmsg;
2930 	lmsg->u.ms_result = kill_default;
2931 	ifnet_domsg(lmsg, 0);
2932 
2933 	KASSERT(dyn_count == 0, ("%u dyn rule remains\n", dyn_count));
2934 
2935 	if (kill_default) {
2936 		if (ipfw_dyn_v != NULL) {
2937 			/*
2938 			 * Free dynamic rules(state) hash table
2939 			 */
2940 			kfree(ipfw_dyn_v, M_IPFW);
2941 			ipfw_dyn_v = NULL;
2942 		}
2943 
2944 		KASSERT(static_count == 0,
2945 			("%u static rules remains\n", static_count));
2946 		KASSERT(static_ioc_len == 0,
2947 			("%u bytes of static rules remains\n", static_ioc_len));
2948 	} else {
2949 		KASSERT(static_count == 1,
2950 			("%u static rules remains\n", static_count));
2951 		KASSERT(static_ioc_len == IOC_RULESIZE(ctx->ipfw_default_rule),
2952 			("%u bytes of static rules remains, should be %lu\n",
2953 			 static_ioc_len,
2954 			 (u_long)IOC_RULESIZE(ctx->ipfw_default_rule)));
2955 	}
2956 
2957 	/* Flush is done */
2958 	ipfw_flushing = 0;
2959 }
2960 
2961 static void
2962 ipfw_alt_delete_rule_dispatch(struct netmsg *nmsg)
2963 {
2964 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
2965 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2966 	struct ip_fw *rule, *prev;
2967 
2968 	rule = dmsg->start_rule;
2969 	KKASSERT(rule->cpuid == mycpuid);
2970 	dmsg->start_rule = rule->sibling;
2971 
2972 	prev = dmsg->prev_rule;
2973 	if (prev != NULL) {
2974 		KKASSERT(prev->cpuid == mycpuid);
2975 
2976 		/*
2977 		 * Move to the position on the next CPU
2978 		 * before the msg is forwarded.
2979 		 */
2980 		dmsg->prev_rule = prev->sibling;
2981 	}
2982 
2983 	/*
2984 	 * flush pointers outside the loop, then delete all matching
2985 	 * rules.  'prev' remains the same throughout the cycle.
2986 	 */
2987 	ipfw_flush_rule_ptrs(ctx);
2988 	while (rule && rule->rulenum == dmsg->rulenum)
2989 		rule = ipfw_delete_rule(ctx, prev, rule);
2990 
2991 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2992 }
2993 
2994 static int
2995 ipfw_alt_delete_rule(uint16_t rulenum)
2996 {
2997 	struct ip_fw *prev, *rule, *f;
2998 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
2999 	struct netmsg_del dmsg;
3000 	struct netmsg *nmsg;
3001 	int state;
3002 
3003 	/*
3004 	 * Locate first rule to delete
3005 	 */
3006 	for (prev = NULL, rule = ctx->ipfw_layer3_chain;
3007 	     rule && rule->rulenum < rulenum;
3008 	     prev = rule, rule = rule->next)
3009 		; /* EMPTY */
3010 	if (rule->rulenum != rulenum)
3011 		return EINVAL;
3012 
3013 	/*
3014 	 * Check whether any rules with the given number will
3015 	 * create states.
3016 	 */
3017 	state = 0;
3018 	for (f = rule; f && f->rulenum == rulenum; f = f->next) {
3019 		if (f->rule_flags & IPFW_RULE_F_STATE) {
3020 			state = 1;
3021 			break;
3022 		}
3023 	}
3024 
3025 	if (state) {
3026 		/*
3027 		 * Clear the STATE flag, so no more states will be
3028 		 * created based the rules numbered 'rulenum'.
3029 		 */
3030 		bzero(&dmsg, sizeof(dmsg));
3031 		nmsg = &dmsg.nmsg;
3032 		netmsg_init(nmsg, NULL, &curthread->td_msgport,
3033 			    0, ipfw_disable_rule_state_dispatch);
3034 		dmsg.start_rule = rule;
3035 		dmsg.rulenum = rulenum;
3036 
3037 		ifnet_domsg(&nmsg->nm_lmsg, 0);
3038 		KKASSERT(dmsg.start_rule == NULL);
3039 
3040 		/*
3041 		 * Nuke all related states
3042 		 */
3043 		lockmgr(&dyn_lock, LK_EXCLUSIVE);
3044 		for (f = rule; f && f->rulenum == rulenum; f = f->next) {
3045 			/*
3046 			 * Can't check IPFW_RULE_F_STATE here,
3047 			 * since it has been cleared previously.
3048 			 * Check 'stub' instead.
3049 			 */
3050 			if (f->stub != NULL) {
3051 				/* Force removal */
3052 				remove_dyn_rule_locked(f, NULL);
3053 			}
3054 		}
3055 		lockmgr(&dyn_lock, LK_RELEASE);
3056 	}
3057 
3058 	/*
3059 	 * Get rid of the rule duplications on all CPUs
3060 	 */
3061 	bzero(&dmsg, sizeof(dmsg));
3062 	nmsg = &dmsg.nmsg;
3063 	netmsg_init(nmsg, NULL, &curthread->td_msgport,
3064 		    0, ipfw_alt_delete_rule_dispatch);
3065 	dmsg.prev_rule = prev;
3066 	dmsg.start_rule = rule;
3067 	dmsg.rulenum = rulenum;
3068 
3069 	ifnet_domsg(&nmsg->nm_lmsg, 0);
3070 	KKASSERT(dmsg.prev_rule == NULL && dmsg.start_rule == NULL);
3071 	return 0;
3072 }
3073 
3074 static void
3075 ipfw_alt_delete_ruleset_dispatch(struct netmsg *nmsg)
3076 {
3077 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
3078 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3079 	struct ip_fw *prev, *rule;
3080 #ifdef INVARIANTS
3081 	int del = 0;
3082 #endif
3083 
3084 	ipfw_flush_rule_ptrs(ctx);
3085 
3086 	prev = NULL;
3087 	rule = ctx->ipfw_layer3_chain;
3088 	while (rule != NULL) {
3089 		if (rule->set == dmsg->from_set) {
3090 			rule = ipfw_delete_rule(ctx, prev, rule);
3091 #ifdef INVARIANTS
3092 			del = 1;
3093 #endif
3094 		} else {
3095 			prev = rule;
3096 			rule = rule->next;
3097 		}
3098 	}
3099 	KASSERT(del, ("no match set?!\n"));
3100 
3101 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
3102 }
3103 
3104 static void
3105 ipfw_disable_ruleset_state_dispatch(struct netmsg *nmsg)
3106 {
3107 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
3108 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3109 	struct ip_fw *rule;
3110 #ifdef INVARIANTS
3111 	int cleared = 0;
3112 #endif
3113 
3114 	ctx->ipfw_gen++;
3115 
3116 	for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next) {
3117 		if (rule->set == dmsg->from_set) {
3118 #ifdef INVARIANTS
3119 			cleared = 1;
3120 #endif
3121 			rule->rule_flags &= ~IPFW_RULE_F_STATE;
3122 		}
3123 	}
3124 	KASSERT(cleared, ("no match set?!\n"));
3125 
3126 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
3127 }
3128 
3129 static int
3130 ipfw_alt_delete_ruleset(uint8_t set)
3131 {
3132 	struct netmsg_del dmsg;
3133 	struct netmsg *nmsg;
3134 	int state, del;
3135 	struct ip_fw *rule;
3136 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3137 
3138 	/*
3139 	 * Check whether the 'set' exists.  If it exists,
3140 	 * then check whether any rules within the set will
3141 	 * try to create states.
3142 	 */
3143 	state = 0;
3144 	del = 0;
3145 	for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next) {
3146 		if (rule->set == set) {
3147 			del = 1;
3148 			if (rule->rule_flags & IPFW_RULE_F_STATE) {
3149 				state = 1;
3150 				break;
3151 			}
3152 		}
3153 	}
3154 	if (!del)
3155 		return 0; /* XXX EINVAL? */
3156 
3157 	if (state) {
3158 		/*
3159 		 * Clear the STATE flag, so no more states will be
3160 		 * created based the rules in this set.
3161 		 */
3162 		bzero(&dmsg, sizeof(dmsg));
3163 		nmsg = &dmsg.nmsg;
3164 		netmsg_init(nmsg, NULL, &curthread->td_msgport,
3165 			    0, ipfw_disable_ruleset_state_dispatch);
3166 		dmsg.from_set = set;
3167 
3168 		ifnet_domsg(&nmsg->nm_lmsg, 0);
3169 
3170 		/*
3171 		 * Nuke all related states
3172 		 */
3173 		lockmgr(&dyn_lock, LK_EXCLUSIVE);
3174 		for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next) {
3175 			if (rule->set != set)
3176 				continue;
3177 
3178 			/*
3179 			 * Can't check IPFW_RULE_F_STATE here,
3180 			 * since it has been cleared previously.
3181 			 * Check 'stub' instead.
3182 			 */
3183 			if (rule->stub != NULL) {
3184 				/* Force removal */
3185 				remove_dyn_rule_locked(rule, NULL);
3186 			}
3187 		}
3188 		lockmgr(&dyn_lock, LK_RELEASE);
3189 	}
3190 
3191 	/*
3192 	 * Delete this set
3193 	 */
3194 	bzero(&dmsg, sizeof(dmsg));
3195 	nmsg = &dmsg.nmsg;
3196 	netmsg_init(nmsg, NULL, &curthread->td_msgport,
3197 		    0, ipfw_alt_delete_ruleset_dispatch);
3198 	dmsg.from_set = set;
3199 
3200 	ifnet_domsg(&nmsg->nm_lmsg, 0);
3201 	return 0;
3202 }
3203 
3204 static void
3205 ipfw_alt_move_rule_dispatch(struct netmsg *nmsg)
3206 {
3207 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
3208 	struct ip_fw *rule;
3209 
3210 	rule = dmsg->start_rule;
3211 	KKASSERT(rule->cpuid == mycpuid);
3212 
3213 	/*
3214 	 * Move to the position on the next CPU
3215 	 * before the msg is forwarded.
3216 	 */
3217 	dmsg->start_rule = rule->sibling;
3218 
3219 	while (rule && rule->rulenum <= dmsg->rulenum) {
3220 		if (rule->rulenum == dmsg->rulenum)
3221 			rule->set = dmsg->to_set;
3222 		rule = rule->next;
3223 	}
3224 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
3225 }
3226 
3227 static int
3228 ipfw_alt_move_rule(uint16_t rulenum, uint8_t set)
3229 {
3230 	struct netmsg_del dmsg;
3231 	struct netmsg *nmsg;
3232 	struct ip_fw *rule;
3233 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3234 
3235 	/*
3236 	 * Locate first rule to move
3237 	 */
3238 	for (rule = ctx->ipfw_layer3_chain; rule && rule->rulenum <= rulenum;
3239 	     rule = rule->next) {
3240 		if (rule->rulenum == rulenum && rule->set != set)
3241 			break;
3242 	}
3243 	if (rule == NULL || rule->rulenum > rulenum)
3244 		return 0; /* XXX error? */
3245 
3246 	bzero(&dmsg, sizeof(dmsg));
3247 	nmsg = &dmsg.nmsg;
3248 	netmsg_init(nmsg, NULL, &curthread->td_msgport,
3249 		    0, ipfw_alt_move_rule_dispatch);
3250 	dmsg.start_rule = rule;
3251 	dmsg.rulenum = rulenum;
3252 	dmsg.to_set = set;
3253 
3254 	ifnet_domsg(&nmsg->nm_lmsg, 0);
3255 	KKASSERT(dmsg.start_rule == NULL);
3256 	return 0;
3257 }
3258 
3259 static void
3260 ipfw_alt_move_ruleset_dispatch(struct netmsg *nmsg)
3261 {
3262 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
3263 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3264 	struct ip_fw *rule;
3265 
3266 	for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next) {
3267 		if (rule->set == dmsg->from_set)
3268 			rule->set = dmsg->to_set;
3269 	}
3270 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
3271 }
3272 
3273 static int
3274 ipfw_alt_move_ruleset(uint8_t from_set, uint8_t to_set)
3275 {
3276 	struct netmsg_del dmsg;
3277 	struct netmsg *nmsg;
3278 
3279 	bzero(&dmsg, sizeof(dmsg));
3280 	nmsg = &dmsg.nmsg;
3281 	netmsg_init(nmsg, NULL, &curthread->td_msgport,
3282 		    0, ipfw_alt_move_ruleset_dispatch);
3283 	dmsg.from_set = from_set;
3284 	dmsg.to_set = to_set;
3285 
3286 	ifnet_domsg(&nmsg->nm_lmsg, 0);
3287 	return 0;
3288 }
3289 
3290 static void
3291 ipfw_alt_swap_ruleset_dispatch(struct netmsg *nmsg)
3292 {
3293 	struct netmsg_del *dmsg = (struct netmsg_del *)nmsg;
3294 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3295 	struct ip_fw *rule;
3296 
3297 	for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next) {
3298 		if (rule->set == dmsg->from_set)
3299 			rule->set = dmsg->to_set;
3300 		else if (rule->set == dmsg->to_set)
3301 			rule->set = dmsg->from_set;
3302 	}
3303 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
3304 }
3305 
3306 static int
3307 ipfw_alt_swap_ruleset(uint8_t set1, uint8_t set2)
3308 {
3309 	struct netmsg_del dmsg;
3310 	struct netmsg *nmsg;
3311 
3312 	bzero(&dmsg, sizeof(dmsg));
3313 	nmsg = &dmsg.nmsg;
3314 	netmsg_init(nmsg, NULL, &curthread->td_msgport,
3315 		    0, ipfw_alt_swap_ruleset_dispatch);
3316 	dmsg.from_set = set1;
3317 	dmsg.to_set = set2;
3318 
3319 	ifnet_domsg(&nmsg->nm_lmsg, 0);
3320 	return 0;
3321 }
3322 
3323 /**
3324  * Remove all rules with given number, and also do set manipulation.
3325  *
3326  * The argument is an uint32_t. The low 16 bit are the rule or set number,
3327  * the next 8 bits are the new set, the top 8 bits are the command:
3328  *
3329  *	0	delete rules with given number
3330  *	1	delete rules with given set number
3331  *	2	move rules with given number to new set
3332  *	3	move rules with given set number to new set
3333  *	4	swap sets with given numbers
3334  */
3335 static int
3336 ipfw_ctl_alter(uint32_t arg)
3337 {
3338 	uint16_t rulenum;
3339 	uint8_t cmd, new_set;
3340 	int error = 0;
3341 
3342 	rulenum = arg & 0xffff;
3343 	cmd = (arg >> 24) & 0xff;
3344 	new_set = (arg >> 16) & 0xff;
3345 
3346 	if (cmd > 4)
3347 		return EINVAL;
3348 	if (new_set >= IPFW_DEFAULT_SET)
3349 		return EINVAL;
3350 	if (cmd == 0 || cmd == 2) {
3351 		if (rulenum == IPFW_DEFAULT_RULE)
3352 			return EINVAL;
3353 	} else {
3354 		if (rulenum >= IPFW_DEFAULT_SET)
3355 			return EINVAL;
3356 	}
3357 
3358 	switch (cmd) {
3359 	case 0:	/* delete rules with given number */
3360 		error = ipfw_alt_delete_rule(rulenum);
3361 		break;
3362 
3363 	case 1:	/* delete all rules with given set number */
3364 		error = ipfw_alt_delete_ruleset(rulenum);
3365 		break;
3366 
3367 	case 2:	/* move rules with given number to new set */
3368 		error = ipfw_alt_move_rule(rulenum, new_set);
3369 		break;
3370 
3371 	case 3: /* move rules with given set number to new set */
3372 		error = ipfw_alt_move_ruleset(rulenum, new_set);
3373 		break;
3374 
3375 	case 4: /* swap two sets */
3376 		error = ipfw_alt_swap_ruleset(rulenum, new_set);
3377 		break;
3378 	}
3379 	return error;
3380 }
3381 
3382 /*
3383  * Clear counters for a specific rule.
3384  */
3385 static void
3386 clear_counters(struct ip_fw *rule, int log_only)
3387 {
3388 	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3389 
3390 	if (log_only == 0) {
3391 		rule->bcnt = rule->pcnt = 0;
3392 		rule->timestamp = 0;
3393 	}
3394 	if (l->o.opcode == O_LOG)
3395 		l->log_left = l->max_log;
3396 }
3397 
3398 static void
3399 ipfw_zero_entry_dispatch(struct netmsg *nmsg)
3400 {
3401 	struct netmsg_zent *zmsg = (struct netmsg_zent *)nmsg;
3402 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3403 	struct ip_fw *rule;
3404 
3405 	if (zmsg->rulenum == 0) {
3406 		KKASSERT(zmsg->start_rule == NULL);
3407 
3408 		ctx->ipfw_norule_counter = 0;
3409 		for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next)
3410 			clear_counters(rule, zmsg->log_only);
3411 	} else {
3412 		struct ip_fw *start = zmsg->start_rule;
3413 
3414 		KKASSERT(start->cpuid == mycpuid);
3415 		KKASSERT(start->rulenum == zmsg->rulenum);
3416 
3417 		/*
3418 		 * We can have multiple rules with the same number, so we
3419 		 * need to clear them all.
3420 		 */
3421 		for (rule = start; rule && rule->rulenum == zmsg->rulenum;
3422 		     rule = rule->next)
3423 			clear_counters(rule, zmsg->log_only);
3424 
3425 		/*
3426 		 * Move to the position on the next CPU
3427 		 * before the msg is forwarded.
3428 		 */
3429 		zmsg->start_rule = start->sibling;
3430 	}
3431 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
3432 }
3433 
3434 /**
3435  * Reset some or all counters on firewall rules.
3436  * @arg frwl is null to clear all entries, or contains a specific
3437  * rule number.
3438  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3439  */
3440 static int
3441 ipfw_ctl_zero_entry(int rulenum, int log_only)
3442 {
3443 	struct netmsg_zent zmsg;
3444 	struct netmsg *nmsg;
3445 	const char *msg;
3446 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3447 
3448 	bzero(&zmsg, sizeof(zmsg));
3449 	nmsg = &zmsg.nmsg;
3450 	netmsg_init(nmsg, NULL, &curthread->td_msgport,
3451 		    0, ipfw_zero_entry_dispatch);
3452 	zmsg.log_only = log_only;
3453 
3454 	if (rulenum == 0) {
3455 		msg = log_only ? "ipfw: All logging counts reset.\n"
3456 			       : "ipfw: Accounting cleared.\n";
3457 	} else {
3458 		struct ip_fw *rule;
3459 
3460 		/*
3461 		 * Locate the first rule with 'rulenum'
3462 		 */
3463 		for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next) {
3464 			if (rule->rulenum == rulenum)
3465 				break;
3466 		}
3467 		if (rule == NULL) /* we did not find any matching rules */
3468 			return (EINVAL);
3469 		zmsg.start_rule = rule;
3470 		zmsg.rulenum = rulenum;
3471 
3472 		msg = log_only ? "ipfw: Entry %d logging count reset.\n"
3473 			       : "ipfw: Entry %d cleared.\n";
3474 	}
3475 	ifnet_domsg(&nmsg->nm_lmsg, 0);
3476 	KKASSERT(zmsg.start_rule == NULL);
3477 
3478 	if (fw_verbose)
3479 		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3480 	return (0);
3481 }
3482 
3483 /*
3484  * Check validity of the structure before insert.
3485  * Fortunately rules are simple, so this mostly need to check rule sizes.
3486  */
3487 static int
3488 ipfw_check_ioc_rule(struct ipfw_ioc_rule *rule, int size, uint32_t *rule_flags)
3489 {
3490 	int l, cmdlen = 0;
3491 	int have_action = 0;
3492 	ipfw_insn *cmd;
3493 
3494 	*rule_flags = 0;
3495 
3496 	/* Check for valid size */
3497 	if (size < sizeof(*rule)) {
3498 		kprintf("ipfw: rule too short\n");
3499 		return EINVAL;
3500 	}
3501 	l = IOC_RULESIZE(rule);
3502 	if (l != size) {
3503 		kprintf("ipfw: size mismatch (have %d want %d)\n", size, l);
3504 		return EINVAL;
3505 	}
3506 
3507 	/* Check rule number */
3508 	if (rule->rulenum == IPFW_DEFAULT_RULE) {
3509 		kprintf("ipfw: invalid rule number\n");
3510 		return EINVAL;
3511 	}
3512 
3513 	/*
3514 	 * Now go for the individual checks. Very simple ones, basically only
3515 	 * instruction sizes.
3516 	 */
3517 	for (l = rule->cmd_len, cmd = rule->cmd; l > 0;
3518 	     l -= cmdlen, cmd += cmdlen) {
3519 		cmdlen = F_LEN(cmd);
3520 		if (cmdlen > l) {
3521 			kprintf("ipfw: opcode %d size truncated\n",
3522 				cmd->opcode);
3523 			return EINVAL;
3524 		}
3525 
3526 		DPRINTF("ipfw: opcode %d\n", cmd->opcode);
3527 
3528 		if (cmd->opcode == O_KEEP_STATE || cmd->opcode == O_LIMIT) {
3529 			/* This rule will create states */
3530 			*rule_flags |= IPFW_RULE_F_STATE;
3531 		}
3532 
3533 		switch (cmd->opcode) {
3534 		case O_NOP:
3535 		case O_PROBE_STATE:
3536 		case O_KEEP_STATE:
3537 		case O_PROTO:
3538 		case O_IP_SRC_ME:
3539 		case O_IP_DST_ME:
3540 		case O_LAYER2:
3541 		case O_IN:
3542 		case O_FRAG:
3543 		case O_IPOPT:
3544 		case O_IPLEN:
3545 		case O_IPID:
3546 		case O_IPTOS:
3547 		case O_IPPRECEDENCE:
3548 		case O_IPTTL:
3549 		case O_IPVER:
3550 		case O_TCPWIN:
3551 		case O_TCPFLAGS:
3552 		case O_TCPOPTS:
3553 		case O_ESTAB:
3554 			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3555 				goto bad_size;
3556 			break;
3557 
3558 		case O_UID:
3559 		case O_GID:
3560 		case O_IP_SRC:
3561 		case O_IP_DST:
3562 		case O_TCPSEQ:
3563 		case O_TCPACK:
3564 		case O_PROB:
3565 		case O_ICMPTYPE:
3566 			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3567 				goto bad_size;
3568 			break;
3569 
3570 		case O_LIMIT:
3571 			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3572 				goto bad_size;
3573 			break;
3574 
3575 		case O_LOG:
3576 			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3577 				goto bad_size;
3578 
3579 			((ipfw_insn_log *)cmd)->log_left =
3580 			    ((ipfw_insn_log *)cmd)->max_log;
3581 
3582 			break;
3583 
3584 		case O_IP_SRC_MASK:
3585 		case O_IP_DST_MASK:
3586 			if (cmdlen != F_INSN_SIZE(ipfw_insn_ip))
3587 				goto bad_size;
3588 			if (((ipfw_insn_ip *)cmd)->mask.s_addr == 0) {
3589 				kprintf("ipfw: opcode %d, useless rule\n",
3590 					cmd->opcode);
3591 				return EINVAL;
3592 			}
3593 			break;
3594 
3595 		case O_IP_SRC_SET:
3596 		case O_IP_DST_SET:
3597 			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3598 				kprintf("ipfw: invalid set size %d\n",
3599 					cmd->arg1);
3600 				return EINVAL;
3601 			}
3602 			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3603 			    (cmd->arg1+31)/32 )
3604 				goto bad_size;
3605 			break;
3606 
3607 		case O_MACADDR2:
3608 			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3609 				goto bad_size;
3610 			break;
3611 
3612 		case O_MAC_TYPE:
3613 		case O_IP_SRCPORT:
3614 		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3615 			if (cmdlen < 2 || cmdlen > 31)
3616 				goto bad_size;
3617 			break;
3618 
3619 		case O_RECV:
3620 		case O_XMIT:
3621 		case O_VIA:
3622 			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3623 				goto bad_size;
3624 			break;
3625 
3626 		case O_PIPE:
3627 		case O_QUEUE:
3628 			if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
3629 				goto bad_size;
3630 			goto check_action;
3631 
3632 		case O_FORWARD_IP:
3633 			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa)) {
3634 				goto bad_size;
3635 			} else {
3636 				in_addr_t fwd_addr;
3637 
3638 				fwd_addr = ((ipfw_insn_sa *)cmd)->
3639 					   sa.sin_addr.s_addr;
3640 				if (IN_MULTICAST(ntohl(fwd_addr))) {
3641 					kprintf("ipfw: try forwarding to "
3642 						"multicast address\n");
3643 					return EINVAL;
3644 				}
3645 			}
3646 			goto check_action;
3647 
3648 		case O_FORWARD_MAC: /* XXX not implemented yet */
3649 		case O_CHECK_STATE:
3650 		case O_COUNT:
3651 		case O_ACCEPT:
3652 		case O_DENY:
3653 		case O_REJECT:
3654 		case O_SKIPTO:
3655 		case O_DIVERT:
3656 		case O_TEE:
3657 			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3658 				goto bad_size;
3659 check_action:
3660 			if (have_action) {
3661 				kprintf("ipfw: opcode %d, multiple actions"
3662 					" not allowed\n",
3663 					cmd->opcode);
3664 				return EINVAL;
3665 			}
3666 			have_action = 1;
3667 			if (l != cmdlen) {
3668 				kprintf("ipfw: opcode %d, action must be"
3669 					" last opcode\n",
3670 					cmd->opcode);
3671 				return EINVAL;
3672 			}
3673 			break;
3674 		default:
3675 			kprintf("ipfw: opcode %d, unknown opcode\n",
3676 				cmd->opcode);
3677 			return EINVAL;
3678 		}
3679 	}
3680 	if (have_action == 0) {
3681 		kprintf("ipfw: missing action\n");
3682 		return EINVAL;
3683 	}
3684 	return 0;
3685 
3686 bad_size:
3687 	kprintf("ipfw: opcode %d size %d wrong\n",
3688 		cmd->opcode, cmdlen);
3689 	return EINVAL;
3690 }
3691 
3692 static int
3693 ipfw_ctl_add_rule(struct sockopt *sopt)
3694 {
3695 	struct ipfw_ioc_rule *ioc_rule;
3696 	size_t size;
3697 	uint32_t rule_flags;
3698 	int error;
3699 
3700 	size = sopt->sopt_valsize;
3701 	if (size > (sizeof(uint32_t) * IPFW_RULE_SIZE_MAX) ||
3702 	    size < sizeof(*ioc_rule)) {
3703 		return EINVAL;
3704 	}
3705 	if (size != (sizeof(uint32_t) * IPFW_RULE_SIZE_MAX)) {
3706 		sopt->sopt_val = krealloc(sopt->sopt_val, sizeof(uint32_t) *
3707 					  IPFW_RULE_SIZE_MAX, M_TEMP, M_WAITOK);
3708 	}
3709 	ioc_rule = sopt->sopt_val;
3710 
3711 	error = ipfw_check_ioc_rule(ioc_rule, size, &rule_flags);
3712 	if (error)
3713 		return error;
3714 
3715 	ipfw_add_rule(ioc_rule, rule_flags);
3716 
3717 	if (sopt->sopt_dir == SOPT_GET)
3718 		sopt->sopt_valsize = IOC_RULESIZE(ioc_rule);
3719 	return 0;
3720 }
3721 
3722 static void *
3723 ipfw_copy_rule(const struct ip_fw *rule, struct ipfw_ioc_rule *ioc_rule)
3724 {
3725 	const struct ip_fw *sibling;
3726 #ifdef INVARIANTS
3727 	int i;
3728 #endif
3729 
3730 	KKASSERT(rule->cpuid == IPFW_CFGCPUID);
3731 
3732 	ioc_rule->act_ofs = rule->act_ofs;
3733 	ioc_rule->cmd_len = rule->cmd_len;
3734 	ioc_rule->rulenum = rule->rulenum;
3735 	ioc_rule->set = rule->set;
3736 	ioc_rule->usr_flags = rule->usr_flags;
3737 
3738 	ioc_rule->set_disable = ipfw_ctx[mycpuid]->ipfw_set_disable;
3739 	ioc_rule->static_count = static_count;
3740 	ioc_rule->static_len = static_ioc_len;
3741 
3742 	/*
3743 	 * Visit (read-only) all of the rule's duplications to get
3744 	 * the necessary statistics
3745 	 */
3746 #ifdef INVARIANTS
3747 	i = 0;
3748 #endif
3749 	ioc_rule->pcnt = 0;
3750 	ioc_rule->bcnt = 0;
3751 	ioc_rule->timestamp = 0;
3752 	for (sibling = rule; sibling != NULL; sibling = sibling->sibling) {
3753 		ioc_rule->pcnt += sibling->pcnt;
3754 		ioc_rule->bcnt += sibling->bcnt;
3755 		if (sibling->timestamp > ioc_rule->timestamp)
3756 			ioc_rule->timestamp = sibling->timestamp;
3757 #ifdef INVARIANTS
3758 		++i;
3759 #endif
3760 	}
3761 	KASSERT(i == ncpus, ("static rule is not duplicated on every cpu\n"));
3762 
3763 	bcopy(rule->cmd, ioc_rule->cmd, ioc_rule->cmd_len * 4 /* XXX */);
3764 
3765 	return ((uint8_t *)ioc_rule + IOC_RULESIZE(ioc_rule));
3766 }
3767 
3768 static void
3769 ipfw_copy_state(const ipfw_dyn_rule *dyn_rule,
3770 		struct ipfw_ioc_state *ioc_state)
3771 {
3772 	const struct ipfw_flow_id *id;
3773 	struct ipfw_ioc_flowid *ioc_id;
3774 
3775 	ioc_state->expire = TIME_LEQ(dyn_rule->expire, time_second) ?
3776 			    0 : dyn_rule->expire - time_second;
3777 	ioc_state->pcnt = dyn_rule->pcnt;
3778 	ioc_state->bcnt = dyn_rule->bcnt;
3779 
3780 	ioc_state->dyn_type = dyn_rule->dyn_type;
3781 	ioc_state->count = dyn_rule->count;
3782 
3783 	ioc_state->rulenum = dyn_rule->stub->rule[mycpuid]->rulenum;
3784 
3785 	id = &dyn_rule->id;
3786 	ioc_id = &ioc_state->id;
3787 
3788 	ioc_id->type = ETHERTYPE_IP;
3789 	ioc_id->u.ip.dst_ip = id->dst_ip;
3790 	ioc_id->u.ip.src_ip = id->src_ip;
3791 	ioc_id->u.ip.dst_port = id->dst_port;
3792 	ioc_id->u.ip.src_port = id->src_port;
3793 	ioc_id->u.ip.proto = id->proto;
3794 }
3795 
3796 static int
3797 ipfw_ctl_get_rules(struct sockopt *sopt)
3798 {
3799 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3800 	struct ip_fw *rule;
3801 	void *bp;
3802 	size_t size;
3803 	uint32_t dcount = 0;
3804 
3805 	/*
3806 	 * pass up a copy of the current rules. Static rules
3807 	 * come first (the last of which has number IPFW_DEFAULT_RULE),
3808 	 * followed by a possibly empty list of dynamic rule.
3809 	 */
3810 
3811 	size = static_ioc_len;	/* size of static rules */
3812 	if (ipfw_dyn_v) {	/* add size of dyn.rules */
3813 		dcount = dyn_count;
3814 		size += dcount * sizeof(struct ipfw_ioc_state);
3815 	}
3816 
3817 	if (sopt->sopt_valsize < size) {
3818 		/* short length, no need to return incomplete rules */
3819 		/* XXX: if superuser, no need to zero buffer */
3820 		bzero(sopt->sopt_val, sopt->sopt_valsize);
3821 		return 0;
3822 	}
3823 	bp = sopt->sopt_val;
3824 
3825 	for (rule = ctx->ipfw_layer3_chain; rule; rule = rule->next)
3826 		bp = ipfw_copy_rule(rule, bp);
3827 
3828 	if (ipfw_dyn_v && dcount != 0) {
3829 		struct ipfw_ioc_state *ioc_state = bp;
3830 		uint32_t dcount2 = 0;
3831 #ifdef INVARIANTS
3832 		size_t old_size = size;
3833 #endif
3834 		int i;
3835 
3836 		lockmgr(&dyn_lock, LK_SHARED);
3837 
3838 		/* Check 'ipfw_dyn_v' again with lock held */
3839 		if (ipfw_dyn_v == NULL)
3840 			goto skip;
3841 
3842 		for (i = 0; i < curr_dyn_buckets; i++) {
3843 			ipfw_dyn_rule *p;
3844 
3845 			/*
3846 			 * The # of dynamic rules may have grown after the
3847 			 * snapshot of 'dyn_count' was taken, so we will have
3848 			 * to check 'dcount' (snapshot of dyn_count) here to
3849 			 * make sure that we don't overflow the pre-allocated
3850 			 * buffer.
3851 			 */
3852 			for (p = ipfw_dyn_v[i]; p != NULL && dcount != 0;
3853 			     p = p->next, ioc_state++, dcount--, dcount2++)
3854 				ipfw_copy_state(p, ioc_state);
3855 		}
3856 skip:
3857 		lockmgr(&dyn_lock, LK_RELEASE);
3858 
3859 		/*
3860 		 * The # of dynamic rules may be shrinked after the
3861 		 * snapshot of 'dyn_count' was taken.  To give user a
3862 		 * correct dynamic rule count, we use the 'dcount2'
3863 		 * calculated above (with shared lockmgr lock held).
3864 		 */
3865 		size = static_ioc_len +
3866 		       (dcount2 * sizeof(struct ipfw_ioc_state));
3867 		KKASSERT(size <= old_size);
3868 	}
3869 
3870 	sopt->sopt_valsize = size;
3871 	return 0;
3872 }
3873 
3874 static void
3875 ipfw_set_disable_dispatch(struct netmsg *nmsg)
3876 {
3877 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
3878 	struct ipfw_context *ctx = ipfw_ctx[mycpuid];
3879 
3880 	ctx->ipfw_gen++;
3881 	ctx->ipfw_set_disable = lmsg->u.ms_result32;
3882 
3883 	ifnet_forwardmsg(lmsg, mycpuid + 1);
3884 }
3885 
3886 static void
3887 ipfw_ctl_set_disable(uint32_t disable, uint32_t enable)
3888 {
3889 	struct netmsg nmsg;
3890 	struct lwkt_msg *lmsg;
3891 	uint32_t set_disable;
3892 
3893 	/* IPFW_DEFAULT_SET is always enabled */
3894 	enable |= (1 << IPFW_DEFAULT_SET);
3895 	set_disable = (ipfw_ctx[mycpuid]->ipfw_set_disable | disable) & ~enable;
3896 
3897 	bzero(&nmsg, sizeof(nmsg));
3898 	netmsg_init(&nmsg, NULL, &curthread->td_msgport,
3899 		    0, ipfw_set_disable_dispatch);
3900 	lmsg = &nmsg.nm_lmsg;
3901 	lmsg->u.ms_result32 = set_disable;
3902 
3903 	ifnet_domsg(lmsg, 0);
3904 }
3905 
3906 /**
3907  * {set|get}sockopt parser.
3908  */
3909 static int
3910 ipfw_ctl(struct sockopt *sopt)
3911 {
3912 	int error, rulenum;
3913 	uint32_t *masks;
3914 	size_t size;
3915 
3916 	error = 0;
3917 
3918 	switch (sopt->sopt_name) {
3919 	case IP_FW_GET:
3920 		error = ipfw_ctl_get_rules(sopt);
3921 		break;
3922 
3923 	case IP_FW_FLUSH:
3924 		ipfw_flush(0 /* keep default rule */);
3925 		break;
3926 
3927 	case IP_FW_ADD:
3928 		error = ipfw_ctl_add_rule(sopt);
3929 		break;
3930 
3931 	case IP_FW_DEL:
3932 		/*
3933 		 * IP_FW_DEL is used for deleting single rules or sets,
3934 		 * and (ab)used to atomically manipulate sets.
3935 		 * Argument size is used to distinguish between the two:
3936 		 *    sizeof(uint32_t)
3937 		 *	delete single rule or set of rules,
3938 		 *	or reassign rules (or sets) to a different set.
3939 		 *    2 * sizeof(uint32_t)
3940 		 *	atomic disable/enable sets.
3941 		 *	first uint32_t contains sets to be disabled,
3942 		 *	second uint32_t contains sets to be enabled.
3943 		 */
3944 		masks = sopt->sopt_val;
3945 		size = sopt->sopt_valsize;
3946 		if (size == sizeof(*masks)) {
3947 			/*
3948 			 * Delete or reassign static rule
3949 			 */
3950 			error = ipfw_ctl_alter(masks[0]);
3951 		} else if (size == (2 * sizeof(*masks))) {
3952 			/*
3953 			 * Set enable/disable
3954 			 */
3955 			ipfw_ctl_set_disable(masks[0], masks[1]);
3956 		} else {
3957 			error = EINVAL;
3958 		}
3959 		break;
3960 
3961 	case IP_FW_ZERO:
3962 	case IP_FW_RESETLOG: /* argument is an int, the rule number */
3963 		rulenum = 0;
3964 
3965 		if (sopt->sopt_val != 0) {
3966 		    error = soopt_to_kbuf(sopt, &rulenum,
3967 			    sizeof(int), sizeof(int));
3968 		    if (error)
3969 			break;
3970 		}
3971 		error = ipfw_ctl_zero_entry(rulenum,
3972 			sopt->sopt_name == IP_FW_RESETLOG);
3973 		break;
3974 
3975 	default:
3976 		kprintf("ipfw_ctl invalid option %d\n", sopt->sopt_name);
3977 		error = EINVAL;
3978 	}
3979 	return error;
3980 }
3981 
3982 /*
3983  * This procedure is only used to handle keepalives. It is invoked
3984  * every dyn_keepalive_period
3985  */
3986 static void
3987 ipfw_tick_dispatch(struct netmsg *nmsg)
3988 {
3989 	time_t keep_alive;
3990 	uint32_t gen;
3991 	int i;
3992 
3993 	IPFW_ASSERT_CFGPORT(&curthread->td_msgport);
3994 	KKASSERT(IPFW_LOADED);
3995 
3996 	/* Reply ASAP */
3997 	crit_enter();
3998 	lwkt_replymsg(&nmsg->nm_lmsg, 0);
3999 	crit_exit();
4000 
4001 	if (ipfw_dyn_v == NULL || dyn_count == 0)
4002 		goto done;
4003 
4004 	keep_alive = time_second;
4005 
4006 	lockmgr(&dyn_lock, LK_EXCLUSIVE);
4007 again:
4008 	if (ipfw_dyn_v == NULL || dyn_count == 0) {
4009 		lockmgr(&dyn_lock, LK_RELEASE);
4010 		goto done;
4011 	}
4012 	gen = dyn_buckets_gen;
4013 
4014 	for (i = 0; i < curr_dyn_buckets; i++) {
4015 		ipfw_dyn_rule *q, *prev;
4016 
4017 		for (prev = NULL, q = ipfw_dyn_v[i]; q != NULL;) {
4018 			uint32_t ack_rev, ack_fwd;
4019 			struct ipfw_flow_id id;
4020 
4021 			if (q->dyn_type == O_LIMIT_PARENT)
4022 				goto next;
4023 
4024 			if (TIME_LEQ(q->expire, time_second)) {
4025 				/* State expired */
4026 				UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
4027 				continue;
4028 			}
4029 
4030 			/*
4031 			 * Keep alive processing
4032 			 */
4033 
4034 			if (!dyn_keepalive)
4035 				goto next;
4036 			if (q->id.proto != IPPROTO_TCP)
4037 				goto next;
4038 			if ((q->state & BOTH_SYN) != BOTH_SYN)
4039 				goto next;
4040 			if (TIME_LEQ(time_second + dyn_keepalive_interval,
4041 			    q->expire))
4042 				goto next;	/* too early */
4043 			if (q->keep_alive == keep_alive)
4044 				goto next;	/* alreay done */
4045 
4046 			/*
4047 			 * Save necessary information, so that they could
4048 			 * survive after possible blocking in send_pkt()
4049 			 */
4050 			id = q->id;
4051 			ack_rev = q->ack_rev;
4052 			ack_fwd = q->ack_fwd;
4053 
4054 			/* Sending has been started */
4055 			q->keep_alive = keep_alive;
4056 
4057 			/* Release lock to avoid possible dead lock */
4058 			lockmgr(&dyn_lock, LK_RELEASE);
4059 			send_pkt(&id, ack_rev - 1, ack_fwd, TH_SYN);
4060 			send_pkt(&id, ack_fwd - 1, ack_rev, 0);
4061 			lockmgr(&dyn_lock, LK_EXCLUSIVE);
4062 
4063 			if (gen != dyn_buckets_gen) {
4064 				/*
4065 				 * Dyn bucket array has been changed during
4066 				 * the above two sending; reiterate.
4067 				 */
4068 				goto again;
4069 			}
4070 next:
4071 			prev = q;
4072 			q = q->next;
4073 		}
4074 	}
4075 	lockmgr(&dyn_lock, LK_RELEASE);
4076 done:
4077 	callout_reset(&ipfw_timeout_h, dyn_keepalive_period * hz,
4078 		      ipfw_tick, NULL);
4079 }
4080 
4081 /*
4082  * This procedure is only used to handle keepalives. It is invoked
4083  * every dyn_keepalive_period
4084  */
4085 static void
4086 ipfw_tick(void *dummy __unused)
4087 {
4088 	struct lwkt_msg *lmsg = &ipfw_timeout_netmsg.nm_lmsg;
4089 
4090 	KKASSERT(mycpuid == IPFW_CFGCPUID);
4091 
4092 	crit_enter();
4093 
4094 	KKASSERT(lmsg->ms_flags & MSGF_DONE);
4095 	if (IPFW_LOADED) {
4096 		lwkt_sendmsg(IPFW_CFGPORT, lmsg);
4097 		/* ipfw_timeout_netmsg's handler reset this callout */
4098 	}
4099 
4100 	crit_exit();
4101 }
4102 
4103 static int
4104 ipfw_check_in(void *arg, struct mbuf **m0, struct ifnet *ifp, int dir)
4105 {
4106 	struct ip_fw_args args;
4107 	struct mbuf *m = *m0;
4108 	struct m_tag *mtag;
4109 	int tee = 0, error = 0, ret;
4110 
4111 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
4112 		/* Extract info from dummynet tag */
4113 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
4114 		KKASSERT(mtag != NULL);
4115 		args.rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
4116 		KKASSERT(args.rule != NULL);
4117 
4118 		m_tag_delete(m, mtag);
4119 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
4120 	} else {
4121 		args.rule = NULL;
4122 	}
4123 
4124 	args.eh = NULL;
4125 	args.oif = NULL;
4126 	args.m = m;
4127 	ret = ipfw_chk(&args);
4128 	m = args.m;
4129 
4130 	if (m == NULL) {
4131 		error = EACCES;
4132 		goto back;
4133 	}
4134 
4135 	switch (ret) {
4136 	case IP_FW_PASS:
4137 		break;
4138 
4139 	case IP_FW_DENY:
4140 		m_freem(m);
4141 		m = NULL;
4142 		error = EACCES;
4143 		break;
4144 
4145 	case IP_FW_DUMMYNET:
4146 		/* Send packet to the appropriate pipe */
4147 		ipfw_dummynet_io(m, args.cookie, DN_TO_IP_IN, &args);
4148 		break;
4149 
4150 	case IP_FW_TEE:
4151 		tee = 1;
4152 		/* FALL THROUGH */
4153 
4154 	case IP_FW_DIVERT:
4155 		if (ip_divert_p != NULL) {
4156 			m = ip_divert_p(m, tee, 1);
4157 		} else {
4158 			m_freem(m);
4159 			m = NULL;
4160 			/* not sure this is the right error msg */
4161 			error = EACCES;
4162 		}
4163 		break;
4164 
4165 	default:
4166 		panic("unknown ipfw return value: %d\n", ret);
4167 	}
4168 back:
4169 	*m0 = m;
4170 	return error;
4171 }
4172 
4173 static int
4174 ipfw_check_out(void *arg, struct mbuf **m0, struct ifnet *ifp, int dir)
4175 {
4176 	struct ip_fw_args args;
4177 	struct mbuf *m = *m0;
4178 	struct m_tag *mtag;
4179 	int tee = 0, error = 0, ret;
4180 
4181 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
4182 		/* Extract info from dummynet tag */
4183 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
4184 		KKASSERT(mtag != NULL);
4185 		args.rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
4186 		KKASSERT(args.rule != NULL);
4187 
4188 		m_tag_delete(m, mtag);
4189 		m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
4190 	} else {
4191 		args.rule = NULL;
4192 	}
4193 
4194 	args.eh = NULL;
4195 	args.m = m;
4196 	args.oif = ifp;
4197 	ret = ipfw_chk(&args);
4198 	m = args.m;
4199 
4200 	if (m == NULL) {
4201 		error = EACCES;
4202 		goto back;
4203 	}
4204 
4205 	switch (ret) {
4206 	case IP_FW_PASS:
4207 		break;
4208 
4209 	case IP_FW_DENY:
4210 		m_freem(m);
4211 		m = NULL;
4212 		error = EACCES;
4213 		break;
4214 
4215 	case IP_FW_DUMMYNET:
4216 		ipfw_dummynet_io(m, args.cookie, DN_TO_IP_OUT, &args);
4217 		break;
4218 
4219 	case IP_FW_TEE:
4220 		tee = 1;
4221 		/* FALL THROUGH */
4222 
4223 	case IP_FW_DIVERT:
4224 		if (ip_divert_p != NULL) {
4225 			m = ip_divert_p(m, tee, 0);
4226 		} else {
4227 			m_freem(m);
4228 			m = NULL;
4229 			/* not sure this is the right error msg */
4230 			error = EACCES;
4231 		}
4232 		break;
4233 
4234 	default:
4235 		panic("unknown ipfw return value: %d\n", ret);
4236 	}
4237 back:
4238 	*m0 = m;
4239 	return error;
4240 }
4241 
4242 static void
4243 ipfw_hook(void)
4244 {
4245 	struct pfil_head *pfh;
4246 
4247 	IPFW_ASSERT_CFGPORT(&curthread->td_msgport);
4248 
4249 	pfh = pfil_head_get(PFIL_TYPE_AF, AF_INET);
4250 	if (pfh == NULL)
4251 		return;
4252 
4253 	pfil_add_hook(ipfw_check_in, NULL, PFIL_IN | PFIL_MPSAFE, pfh);
4254 	pfil_add_hook(ipfw_check_out, NULL, PFIL_OUT | PFIL_MPSAFE, pfh);
4255 }
4256 
4257 static void
4258 ipfw_dehook(void)
4259 {
4260 	struct pfil_head *pfh;
4261 
4262 	IPFW_ASSERT_CFGPORT(&curthread->td_msgport);
4263 
4264 	pfh = pfil_head_get(PFIL_TYPE_AF, AF_INET);
4265 	if (pfh == NULL)
4266 		return;
4267 
4268 	pfil_remove_hook(ipfw_check_in, NULL, PFIL_IN, pfh);
4269 	pfil_remove_hook(ipfw_check_out, NULL, PFIL_OUT, pfh);
4270 }
4271 
4272 static void
4273 ipfw_sysctl_enable_dispatch(struct netmsg *nmsg)
4274 {
4275 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
4276 	int enable = lmsg->u.ms_result;
4277 
4278 	if (fw_enable == enable)
4279 		goto reply;
4280 
4281 	fw_enable = enable;
4282 	if (fw_enable)
4283 		ipfw_hook();
4284 	else
4285 		ipfw_dehook();
4286 reply:
4287 	lwkt_replymsg(lmsg, 0);
4288 }
4289 
4290 static int
4291 ipfw_sysctl_enable(SYSCTL_HANDLER_ARGS)
4292 {
4293 	struct netmsg nmsg;
4294 	struct lwkt_msg *lmsg;
4295 	int enable, error;
4296 
4297 	enable = fw_enable;
4298 	error = sysctl_handle_int(oidp, &enable, 0, req);
4299 	if (error || req->newptr == NULL)
4300 		return error;
4301 
4302 	netmsg_init(&nmsg, NULL, &curthread->td_msgport,
4303 		    0, ipfw_sysctl_enable_dispatch);
4304 	lmsg = &nmsg.nm_lmsg;
4305 	lmsg->u.ms_result = enable;
4306 
4307 	return lwkt_domsg(IPFW_CFGPORT, lmsg, 0);
4308 }
4309 
4310 static int
4311 ipfw_sysctl_autoinc_step(SYSCTL_HANDLER_ARGS)
4312 {
4313 	return sysctl_int_range(oidp, arg1, arg2, req,
4314 	       IPFW_AUTOINC_STEP_MIN, IPFW_AUTOINC_STEP_MAX);
4315 }
4316 
4317 static int
4318 ipfw_sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
4319 {
4320 	int error, value;
4321 
4322 	lockmgr(&dyn_lock, LK_EXCLUSIVE);
4323 
4324 	value = dyn_buckets;
4325 	error = sysctl_handle_int(oidp, &value, 0, req);
4326 	if (error || !req->newptr)
4327 		goto back;
4328 
4329 	/*
4330 	 * Make sure we have a power of 2 and
4331 	 * do not allow more than 64k entries.
4332 	 */
4333 	error = EINVAL;
4334 	if (value <= 1 || value > 65536)
4335 		goto back;
4336 	if ((value & (value - 1)) != 0)
4337 		goto back;
4338 
4339 	error = 0;
4340 	dyn_buckets = value;
4341 back:
4342 	lockmgr(&dyn_lock, LK_RELEASE);
4343 	return error;
4344 }
4345 
4346 static int
4347 ipfw_sysctl_dyn_fin(SYSCTL_HANDLER_ARGS)
4348 {
4349 	return sysctl_int_range(oidp, arg1, arg2, req,
4350 				1, dyn_keepalive_period - 1);
4351 }
4352 
4353 static int
4354 ipfw_sysctl_dyn_rst(SYSCTL_HANDLER_ARGS)
4355 {
4356 	return sysctl_int_range(oidp, arg1, arg2, req,
4357 				1, dyn_keepalive_period - 1);
4358 }
4359 
4360 static void
4361 ipfw_ctx_init_dispatch(struct netmsg *nmsg)
4362 {
4363 	struct netmsg_ipfw *fwmsg = (struct netmsg_ipfw *)nmsg;
4364 	struct ipfw_context *ctx;
4365 	struct ip_fw *def_rule;
4366 
4367 	ctx = kmalloc(sizeof(*ctx), M_IPFW, M_WAITOK | M_ZERO);
4368 	ipfw_ctx[mycpuid] = ctx;
4369 
4370 	def_rule = kmalloc(sizeof(*def_rule), M_IPFW, M_WAITOK | M_ZERO);
4371 
4372 	def_rule->act_ofs = 0;
4373 	def_rule->rulenum = IPFW_DEFAULT_RULE;
4374 	def_rule->cmd_len = 1;
4375 	def_rule->set = IPFW_DEFAULT_SET;
4376 
4377 	def_rule->cmd[0].len = 1;
4378 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4379 	def_rule->cmd[0].opcode = O_ACCEPT;
4380 #else
4381 	def_rule->cmd[0].opcode = O_DENY;
4382 #endif
4383 
4384 	def_rule->refcnt = 1;
4385 	def_rule->cpuid = mycpuid;
4386 
4387 	/* Install the default rule */
4388 	ctx->ipfw_default_rule = def_rule;
4389 	ctx->ipfw_layer3_chain = def_rule;
4390 
4391 	/* Link rule CPU sibling */
4392 	ipfw_link_sibling(fwmsg, def_rule);
4393 
4394 	/* Statistics only need to be updated once */
4395 	if (mycpuid == 0)
4396 		ipfw_inc_static_count(def_rule);
4397 
4398 	ifnet_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
4399 }
4400 
4401 static void
4402 ipfw_init_dispatch(struct netmsg *nmsg)
4403 {
4404 	struct netmsg_ipfw fwmsg;
4405 	int error = 0;
4406 
4407 	if (IPFW_LOADED) {
4408 		kprintf("IP firewall already loaded\n");
4409 		error = EEXIST;
4410 		goto reply;
4411 	}
4412 
4413 	bzero(&fwmsg, sizeof(fwmsg));
4414 	netmsg_init(&fwmsg.nmsg, NULL, &curthread->td_msgport,
4415 		    0, ipfw_ctx_init_dispatch);
4416 	ifnet_domsg(&fwmsg.nmsg.nm_lmsg, 0);
4417 
4418 	ip_fw_chk_ptr = ipfw_chk;
4419 	ip_fw_ctl_ptr = ipfw_ctl;
4420 	ip_fw_dn_io_ptr = ipfw_dummynet_io;
4421 
4422 	kprintf("ipfw2 initialized, default to %s, logging ",
4423 		ipfw_ctx[mycpuid]->ipfw_default_rule->cmd[0].opcode ==
4424 		O_ACCEPT ? "accept" : "deny");
4425 
4426 #ifdef IPFIREWALL_VERBOSE
4427 	fw_verbose = 1;
4428 #endif
4429 #ifdef IPFIREWALL_VERBOSE_LIMIT
4430 	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4431 #endif
4432 	if (fw_verbose == 0) {
4433 		kprintf("disabled\n");
4434 	} else if (verbose_limit == 0) {
4435 		kprintf("unlimited\n");
4436 	} else {
4437 		kprintf("limited to %d packets/entry by default\n",
4438 			verbose_limit);
4439 	}
4440 
4441 	callout_init_mp(&ipfw_timeout_h);
4442 	netmsg_init(&ipfw_timeout_netmsg, NULL, &netisr_adone_rport,
4443 		    MSGF_MPSAFE | MSGF_DROPABLE | MSGF_PRIORITY,
4444 		    ipfw_tick_dispatch);
4445 	lockinit(&dyn_lock, "ipfw_dyn", 0, 0);
4446 
4447 	ip_fw_loaded = 1;
4448 	callout_reset(&ipfw_timeout_h, hz, ipfw_tick, NULL);
4449 
4450 	if (fw_enable)
4451 		ipfw_hook();
4452 reply:
4453 	lwkt_replymsg(&nmsg->nm_lmsg, error);
4454 }
4455 
4456 static int
4457 ipfw_init(void)
4458 {
4459 	struct netmsg smsg;
4460 
4461 	netmsg_init(&smsg, NULL, &curthread->td_msgport,
4462 		    0, ipfw_init_dispatch);
4463 	return lwkt_domsg(IPFW_CFGPORT, &smsg.nm_lmsg, 0);
4464 }
4465 
4466 #ifdef KLD_MODULE
4467 
4468 static void
4469 ipfw_fini_dispatch(struct netmsg *nmsg)
4470 {
4471 	int error = 0, cpu;
4472 
4473 	if (ipfw_refcnt != 0) {
4474 		error = EBUSY;
4475 		goto reply;
4476 	}
4477 
4478 	ip_fw_loaded = 0;
4479 
4480 	ipfw_dehook();
4481 	callout_stop(&ipfw_timeout_h);
4482 
4483 	netmsg_service_sync();
4484 
4485 	crit_enter();
4486 	if ((ipfw_timeout_netmsg.nm_lmsg.ms_flags & MSGF_DONE) == 0) {
4487 		/*
4488 		 * Callout message is pending; drop it
4489 		 */
4490 		lwkt_dropmsg(&ipfw_timeout_netmsg.nm_lmsg);
4491 	}
4492 	crit_exit();
4493 
4494 	ip_fw_chk_ptr = NULL;
4495 	ip_fw_ctl_ptr = NULL;
4496 	ip_fw_dn_io_ptr = NULL;
4497 	ipfw_flush(1 /* kill default rule */);
4498 
4499 	/* Free pre-cpu context */
4500 	for (cpu = 0; cpu < ncpus; ++cpu)
4501 		kfree(ipfw_ctx[cpu], M_IPFW);
4502 
4503 	kprintf("IP firewall unloaded\n");
4504 reply:
4505 	lwkt_replymsg(&nmsg->nm_lmsg, error);
4506 }
4507 
4508 static int
4509 ipfw_fini(void)
4510 {
4511 	struct netmsg smsg;
4512 
4513 	netmsg_init(&smsg, NULL, &curthread->td_msgport,
4514 		    0, ipfw_fini_dispatch);
4515 	return lwkt_domsg(IPFW_CFGPORT, &smsg.nm_lmsg, 0);
4516 }
4517 
4518 #endif	/* KLD_MODULE */
4519 
4520 static int
4521 ipfw_modevent(module_t mod, int type, void *unused)
4522 {
4523 	int err = 0;
4524 
4525 	switch (type) {
4526 	case MOD_LOAD:
4527 		err = ipfw_init();
4528 		break;
4529 
4530 	case MOD_UNLOAD:
4531 #ifndef KLD_MODULE
4532 		kprintf("ipfw statically compiled, cannot unload\n");
4533 		err = EBUSY;
4534 #else
4535 		err = ipfw_fini();
4536 #endif
4537 		break;
4538 	default:
4539 		break;
4540 	}
4541 	return err;
4542 }
4543 
4544 static moduledata_t ipfwmod = {
4545 	"ipfw",
4546 	ipfw_modevent,
4547 	0
4548 };
4549 DECLARE_MODULE(ipfw, ipfwmod, SI_SUB_PROTO_END, SI_ORDER_ANY);
4550 MODULE_VERSION(ipfw, 1);
4551