xref: /dragonfly/sys/net/netisr.c (revision e8c03636)
1 /*
2  * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved.
3  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
4  * Copyright (c) 2003 Jonathan Lemon.  All rights reserved.
5  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon.
9  *
10  * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright
11  * into this one around July 8 2004.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/msgport.h>
44 #include <sys/proc.h>
45 #include <sys/interrupt.h>
46 #include <sys/socket.h>
47 #include <sys/sysctl.h>
48 #include <sys/socketvar.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/netisr2.h>
52 #include <machine/cpufunc.h>
53 #include <machine/smp.h>
54 
55 #include <sys/thread2.h>
56 #include <sys/msgport2.h>
57 #include <net/netmsg2.h>
58 #include <sys/mplock2.h>
59 
60 static void netmsg_service_loop(void *arg);
61 static void netisr_hashfn0(struct mbuf **mp, int hoff);
62 static void netisr_nohashck(struct mbuf *, const struct pktinfo *);
63 
64 struct netmsg_port_registration {
65 	TAILQ_ENTRY(netmsg_port_registration) npr_entry;
66 	lwkt_port_t	npr_port;
67 };
68 
69 struct netmsg_rollup {
70 	TAILQ_ENTRY(netmsg_rollup) ru_entry;
71 	netisr_ru_t	ru_func;
72 	int		ru_prio;
73 };
74 
75 struct netmsg_barrier {
76 	struct netmsg_base	base;
77 	volatile cpumask_t	*br_cpumask;
78 	volatile uint32_t	br_done;
79 };
80 
81 #define NETISR_BR_NOTDONE	0x1
82 #define NETISR_BR_WAITDONE	0x80000000
83 
84 struct netisr_barrier {
85 	struct netmsg_barrier	*br_msgs[MAXCPU];
86 	int			br_isset;
87 };
88 
89 static struct netisr netisrs[NETISR_MAX];
90 static TAILQ_HEAD(,netmsg_port_registration) netreglist;
91 static TAILQ_HEAD(,netmsg_rollup) netrulist;
92 
93 /* Per-CPU thread to handle any protocol.  */
94 struct thread netisr_cpu[MAXCPU];
95 lwkt_port netisr_afree_rport;
96 lwkt_port netisr_afree_free_so_rport;
97 lwkt_port netisr_adone_rport;
98 lwkt_port netisr_apanic_rport;
99 lwkt_port netisr_sync_port;
100 
101 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t);
102 
103 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr");
104 
105 /*
106  * netisr_afree_rport replymsg function, only used to handle async
107  * messages which the sender has abandoned to their fate.
108  */
109 static void
110 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
111 {
112 	kfree(msg, M_LWKTMSG);
113 }
114 
115 static void
116 netisr_autofree_free_so_reply(lwkt_port_t port, lwkt_msg_t msg)
117 {
118 	sofree(((netmsg_t)msg)->base.nm_so);
119 	kfree(msg, M_LWKTMSG);
120 }
121 
122 /*
123  * We need a custom putport function to handle the case where the
124  * message target is the current thread's message port.  This case
125  * can occur when the TCP or UDP stack does a direct callback to NFS and NFS
126  * then turns around and executes a network operation synchronously.
127  *
128  * To prevent deadlocking, we must execute these self-referential messages
129  * synchronously, effectively turning the message into a glorified direct
130  * procedure call back into the protocol stack.  The operation must be
131  * complete on return or we will deadlock, so panic if it isn't.
132  *
133  * However, the target function is under no obligation to immediately
134  * reply the message.  It may forward it elsewhere.
135  */
136 static int
137 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg)
138 {
139 	netmsg_base_t nmsg = (void *)lmsg;
140 
141 	if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) {
142 		nmsg->nm_dispatch((netmsg_t)nmsg);
143 		return(EASYNC);
144 	} else {
145 		return(netmsg_fwd_port_fn(port, lmsg));
146 	}
147 }
148 
149 /*
150  * UNIX DOMAIN sockets still have to run their uipc functions synchronously,
151  * because they depend on the user proc context for a number of things
152  * (like creds) which we have not yet incorporated into the message structure.
153  *
154  * However, we maintain or message/port abstraction.  Having a special
155  * synchronous port which runs the commands synchronously gives us the
156  * ability to serialize operations in one place later on when we start
157  * removing the BGL.
158  */
159 static int
160 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg)
161 {
162 	netmsg_base_t nmsg = (void *)lmsg;
163 
164 	KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0);
165 
166 	lmsg->ms_target_port = port;	/* required for abort */
167 	nmsg->nm_dispatch((netmsg_t)nmsg);
168 	return(EASYNC);
169 }
170 
171 static void
172 netisr_init(void)
173 {
174 	int i;
175 
176 	TAILQ_INIT(&netreglist);
177 	TAILQ_INIT(&netrulist);
178 
179 	/*
180 	 * Create default per-cpu threads for generic protocol handling.
181 	 */
182 	for (i = 0; i < ncpus; ++i) {
183 		lwkt_create(netmsg_service_loop, NULL, NULL,
184 			    &netisr_cpu[i], TDF_NOSTART|TDF_FORCE_SPINPORT,
185 			    i, "netisr_cpu %d", i);
186 		netmsg_service_port_init(&netisr_cpu[i].td_msgport);
187 		lwkt_schedule(&netisr_cpu[i]);
188 	}
189 
190 	/*
191 	 * The netisr_afree_rport is a special reply port which automatically
192 	 * frees the replied message.  The netisr_adone_rport simply marks
193 	 * the message as being done.  The netisr_apanic_rport panics if
194 	 * the message is replied to.
195 	 */
196 	lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply);
197 	lwkt_initport_replyonly(&netisr_afree_free_so_rport,
198 				netisr_autofree_free_so_reply);
199 	lwkt_initport_replyonly_null(&netisr_adone_rport);
200 	lwkt_initport_panic(&netisr_apanic_rport);
201 
202 	/*
203 	 * The netisr_syncport is a special port which executes the message
204 	 * synchronously and waits for it if EASYNC is returned.
205 	 */
206 	lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport);
207 }
208 
209 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL);
210 
211 /*
212  * Finish initializing the message port for a netmsg service.  This also
213  * registers the port for synchronous cleanup operations such as when an
214  * ifnet is being destroyed.  There is no deregistration API yet.
215  */
216 void
217 netmsg_service_port_init(lwkt_port_t port)
218 {
219 	struct netmsg_port_registration *reg;
220 
221 	/*
222 	 * Override the putport function.  Our custom function checks for
223 	 * self-references and executes such commands synchronously.
224 	 */
225 	if (netmsg_fwd_port_fn == NULL)
226 		netmsg_fwd_port_fn = port->mp_putport;
227 	KKASSERT(netmsg_fwd_port_fn == port->mp_putport);
228 	port->mp_putport = netmsg_put_port;
229 
230 	/*
231 	 * Keep track of ports using the netmsg API so we can synchronize
232 	 * certain operations (such as freeing an ifnet structure) across all
233 	 * consumers.
234 	 */
235 	reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO);
236 	reg->npr_port = port;
237 	TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry);
238 }
239 
240 /*
241  * This function synchronizes the caller with all netmsg services.  For
242  * example, if an interface is being removed we must make sure that all
243  * packets related to that interface complete processing before the structure
244  * can actually be freed.  This sort of synchronization is an alternative to
245  * ref-counting the netif, removing the ref counting overhead in favor of
246  * placing additional overhead in the netif freeing sequence (where it is
247  * inconsequential).
248  */
249 void
250 netmsg_service_sync(void)
251 {
252 	struct netmsg_port_registration *reg;
253 	struct netmsg_base smsg;
254 
255 	netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_handler);
256 
257 	TAILQ_FOREACH(reg, &netreglist, npr_entry) {
258 		lwkt_domsg(reg->npr_port, &smsg.lmsg, 0);
259 	}
260 }
261 
262 /*
263  * The netmsg function simply replies the message.  API semantics require
264  * EASYNC to be returned if the netmsg function disposes of the message.
265  */
266 void
267 netmsg_sync_handler(netmsg_t msg)
268 {
269 	lwkt_replymsg(&msg->lmsg, 0);
270 }
271 
272 /*
273  * Generic netmsg service loop.  Some protocols may roll their own but all
274  * must do the basic command dispatch function call done here.
275  */
276 static void
277 netmsg_service_loop(void *arg)
278 {
279 	struct netmsg_rollup *ru;
280 	netmsg_base_t msg;
281 	thread_t td = curthread;
282 	int limit;
283 
284 	td->td_type = TD_TYPE_NETISR;
285 
286 	while ((msg = lwkt_waitport(&td->td_msgport, 0))) {
287 		/*
288 		 * Run up to 512 pending netmsgs.
289 		 */
290 		limit = 512;
291 		do {
292 			KASSERT(msg->nm_dispatch != NULL,
293 				("netmsg_service isr %d badmsg",
294 				msg->lmsg.u.ms_result));
295 			if (msg->nm_so &&
296 			    msg->nm_so->so_port != &td->td_msgport) {
297 				/*
298 				 * Sockets undergoing connect or disconnect
299 				 * ops can change ports on us.  Chase the
300 				 * port.
301 				 */
302 				kprintf("netmsg_service_loop: Warning, "
303 					"port changed so=%p\n", msg->nm_so);
304 				lwkt_forwardmsg(msg->nm_so->so_port,
305 						&msg->lmsg);
306 			} else {
307 				/*
308 				 * We are on the correct port, dispatch it.
309 				 */
310 				msg->nm_dispatch((netmsg_t)msg);
311 			}
312 			if (--limit == 0)
313 				break;
314 		} while ((msg = lwkt_getport(&td->td_msgport)) != NULL);
315 
316 		/*
317 		 * Run all registered rollup functions for this cpu
318 		 * (e.g. tcp_willblock()).
319 		 */
320 		TAILQ_FOREACH(ru, &netrulist, ru_entry)
321 			ru->ru_func();
322 	}
323 }
324 
325 /*
326  * Forward a packet to a netisr service function.
327  *
328  * If the packet has not been assigned to a protocol thread we call
329  * the port characterization function to assign it.  The caller must
330  * clear M_HASH (or not have set it in the first place) if the caller
331  * wishes the packet to be recharacterized.
332  */
333 int
334 netisr_queue(int num, struct mbuf *m)
335 {
336 	struct netisr *ni;
337 	struct netmsg_packet *pmsg;
338 	lwkt_port_t port;
339 
340 	KASSERT((num > 0 && num <= NELEM(netisrs)),
341 		("Bad isr %d", num));
342 
343 	ni = &netisrs[num];
344 	if (ni->ni_handler == NULL) {
345 		kprintf("Unregistered isr %d\n", num);
346 		m_freem(m);
347 		return (EIO);
348 	}
349 
350 	/*
351 	 * Figure out which protocol thread to send to.  This does not
352 	 * have to be perfect but performance will be really good if it
353 	 * is correct.  Major protocol inputs such as ip_input() will
354 	 * re-characterize the packet as necessary.
355 	 */
356 	if ((m->m_flags & M_HASH) == 0) {
357 		ni->ni_hashfn(&m, 0);
358 		if (m == NULL) {
359 			m_freem(m);
360 			return (EIO);
361 		}
362 		if ((m->m_flags & M_HASH) == 0) {
363 			kprintf("netisr_queue(%d): packet hash failed\n", num);
364 			m_freem(m);
365 			return (EIO);
366 		}
367 	}
368 
369 	/*
370 	 * Get the protocol port based on the packet hash, initialize
371 	 * the netmsg, and send it off.
372 	 */
373 	port = netisr_hashport(m->m_pkthdr.hash);
374 	pmsg = &m->m_hdr.mh_netmsg;
375 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
376 		    0, ni->ni_handler);
377 	pmsg->nm_packet = m;
378 	pmsg->base.lmsg.u.ms_result = num;
379 	lwkt_sendmsg(port, &pmsg->base.lmsg);
380 
381 	return (0);
382 }
383 
384 /*
385  * Run a netisr service function on the packet.
386  *
387  * The packet must have been correctly characterized!
388  */
389 int
390 netisr_handle(int num, struct mbuf *m)
391 {
392 	struct netisr *ni;
393 	struct netmsg_packet *pmsg;
394 	lwkt_port_t port;
395 
396 	/*
397 	 * Get the protocol port based on the packet hash
398 	 */
399 	KASSERT((m->m_flags & M_HASH), ("packet not characterized"));
400 	port = netisr_hashport(m->m_pkthdr.hash);
401 	KASSERT(&curthread->td_msgport == port, ("wrong msgport"));
402 
403 	KASSERT((num > 0 && num <= NELEM(netisrs)), ("bad isr %d", num));
404 	ni = &netisrs[num];
405 	if (ni->ni_handler == NULL) {
406 		kprintf("unregistered isr %d\n", num);
407 		m_freem(m);
408 		return EIO;
409 	}
410 
411 	/*
412 	 * Initialize the netmsg, and run the handler directly.
413 	 */
414 	pmsg = &m->m_hdr.mh_netmsg;
415 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
416 		    0, ni->ni_handler);
417 	pmsg->nm_packet = m;
418 	pmsg->base.lmsg.u.ms_result = num;
419 	ni->ni_handler((netmsg_t)&pmsg->base);
420 
421 	return 0;
422 }
423 
424 /*
425  * Pre-characterization of a deeper portion of the packet for the
426  * requested isr.
427  *
428  * The base of the ISR type (e.g. IP) that we want to characterize is
429  * at (hoff) relative to the beginning of the mbuf.  This allows
430  * e.g. ether_characterize() to not have to adjust the m_data/m_len.
431  */
432 void
433 netisr_characterize(int num, struct mbuf **mp, int hoff)
434 {
435 	struct netisr *ni;
436 	struct mbuf *m;
437 
438 	/*
439 	 * Validation
440 	 */
441 	m = *mp;
442 	KKASSERT(m != NULL);
443 
444 	if (num < 0 || num >= NETISR_MAX) {
445 		if (num == NETISR_MAX) {
446 			m->m_flags |= M_HASH;
447 			m->m_pkthdr.hash = 0;
448 			return;
449 		}
450 		panic("Bad isr %d", num);
451 	}
452 
453 	/*
454 	 * Valid netisr?
455 	 */
456 	ni = &netisrs[num];
457 	if (ni->ni_handler == NULL) {
458 		kprintf("Unregistered isr %d\n", num);
459 		m_freem(m);
460 		*mp = NULL;
461 	}
462 
463 	/*
464 	 * Characterize the packet
465 	 */
466 	if ((m->m_flags & M_HASH) == 0) {
467 		ni->ni_hashfn(mp, hoff);
468 		m = *mp;
469 		if (m && (m->m_flags & M_HASH) == 0)
470 			kprintf("netisr_queue(%d): packet hash failed\n", num);
471 	}
472 }
473 
474 void
475 netisr_register(int num, netisr_fn_t handler, netisr_hashfn_t hashfn)
476 {
477 	struct netisr *ni;
478 
479 	KASSERT((num > 0 && num <= NELEM(netisrs)),
480 		("netisr_register: bad isr %d", num));
481 	KKASSERT(handler != NULL);
482 
483 	if (hashfn == NULL)
484 		hashfn = netisr_hashfn0;
485 
486 	ni = &netisrs[num];
487 
488 	ni->ni_handler = handler;
489 	ni->ni_hashck = netisr_nohashck;
490 	ni->ni_hashfn = hashfn;
491 	netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL);
492 }
493 
494 void
495 netisr_register_hashcheck(int num, netisr_hashck_t hashck)
496 {
497 	struct netisr *ni;
498 
499 	KASSERT((num > 0 && num <= NELEM(netisrs)),
500 		("netisr_register: bad isr %d", num));
501 
502 	ni = &netisrs[num];
503 	ni->ni_hashck = hashck;
504 }
505 
506 void
507 netisr_register_rollup(netisr_ru_t ru_func, int prio)
508 {
509 	struct netmsg_rollup *new_ru, *ru;
510 
511 	new_ru = kmalloc(sizeof(*new_ru), M_TEMP, M_WAITOK|M_ZERO);
512 	new_ru->ru_func = ru_func;
513 	new_ru->ru_prio = prio;
514 
515 	/*
516 	 * Higher priority "rollup" appears first
517 	 */
518 	TAILQ_FOREACH(ru, &netrulist, ru_entry) {
519 		if (ru->ru_prio < new_ru->ru_prio) {
520 			TAILQ_INSERT_BEFORE(ru, new_ru, ru_entry);
521 			return;
522 		}
523 	}
524 	TAILQ_INSERT_TAIL(&netrulist, new_ru, ru_entry);
525 }
526 
527 /*
528  * Return a default protocol control message processing thread port
529  */
530 lwkt_port_t
531 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused,
532 	     void *extra __unused)
533 {
534 	return (&netisr_cpu[0].td_msgport);
535 }
536 
537 /*
538  * This is a default netisr packet characterization function which
539  * sets M_HASH.  If a netisr is registered with a NULL hashfn function
540  * this one is assigned.
541  *
542  * This function makes no attempt to validate the packet.
543  */
544 static void
545 netisr_hashfn0(struct mbuf **mp, int hoff __unused)
546 {
547 	struct mbuf *m = *mp;
548 
549 	m->m_flags |= M_HASH;
550 	m->m_pkthdr.hash = 0;
551 }
552 
553 /*
554  * schednetisr() is used to call the netisr handler from the appropriate
555  * netisr thread for polling and other purposes.
556  *
557  * This function may be called from a hard interrupt or IPI and must be
558  * MP SAFE and non-blocking.  We use a fixed per-cpu message instead of
559  * trying to allocate one.  We must get ourselves onto the target cpu
560  * to safely check the MSGF_DONE bit on the message but since the message
561  * will be sent to that cpu anyway this does not add any extra work beyond
562  * what lwkt_sendmsg() would have already had to do to schedule the target
563  * thread.
564  */
565 static void
566 schednetisr_remote(void *data)
567 {
568 	int num = (int)(intptr_t)data;
569 	struct netisr *ni = &netisrs[num];
570 	lwkt_port_t port = &netisr_cpu[0].td_msgport;
571 	netmsg_base_t pmsg;
572 
573 	pmsg = &netisrs[num].ni_netmsg;
574 	if (pmsg->lmsg.ms_flags & MSGF_DONE) {
575 		netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler);
576 		pmsg->lmsg.u.ms_result = num;
577 		lwkt_sendmsg(port, &pmsg->lmsg);
578 	}
579 }
580 
581 void
582 schednetisr(int num)
583 {
584 	KASSERT((num > 0 && num <= NELEM(netisrs)),
585 		("schednetisr: bad isr %d", num));
586 	KKASSERT(netisrs[num].ni_handler != NULL);
587 	if (mycpu->gd_cpuid != 0) {
588 		lwkt_send_ipiq(globaldata_find(0),
589 			       schednetisr_remote, (void *)(intptr_t)num);
590 	} else {
591 		crit_enter();
592 		schednetisr_remote((void *)(intptr_t)num);
593 		crit_exit();
594 	}
595 }
596 
597 static void
598 netisr_barrier_dispatch(netmsg_t nmsg)
599 {
600 	struct netmsg_barrier *msg = (struct netmsg_barrier *)nmsg;
601 
602 	atomic_clear_cpumask(msg->br_cpumask, mycpu->gd_cpumask);
603 	if (*msg->br_cpumask == 0)
604 		wakeup(msg->br_cpumask);
605 
606 	for (;;) {
607 		uint32_t done = msg->br_done;
608 
609 		cpu_ccfence();
610 		if ((done & NETISR_BR_NOTDONE) == 0)
611 			break;
612 
613 		tsleep_interlock(&msg->br_done, 0);
614 		if (atomic_cmpset_int(&msg->br_done,
615 		    done, done | NETISR_BR_WAITDONE))
616 			tsleep(&msg->br_done, PINTERLOCKED, "nbrdsp", 0);
617 	}
618 
619 	lwkt_replymsg(&nmsg->lmsg, 0);
620 }
621 
622 struct netisr_barrier *
623 netisr_barrier_create(void)
624 {
625 	struct netisr_barrier *br;
626 
627 	br = kmalloc(sizeof(*br), M_LWKTMSG, M_WAITOK | M_ZERO);
628 	return br;
629 }
630 
631 void
632 netisr_barrier_set(struct netisr_barrier *br)
633 {
634 	volatile cpumask_t other_cpumask;
635 	int i, cur_cpuid;
636 
637 	KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
638 	KKASSERT(!br->br_isset);
639 
640 	other_cpumask = mycpu->gd_other_cpus & smp_active_mask;
641 	cur_cpuid = mycpuid;
642 
643 	for (i = 0; i < ncpus; ++i) {
644 		struct netmsg_barrier *msg;
645 
646 		if (i == cur_cpuid)
647 			continue;
648 
649 		msg = kmalloc(sizeof(struct netmsg_barrier),
650 			      M_LWKTMSG, M_WAITOK);
651 		netmsg_init(&msg->base, NULL, &netisr_afree_rport,
652 			    MSGF_PRIORITY, netisr_barrier_dispatch);
653 		msg->br_cpumask = &other_cpumask;
654 		msg->br_done = NETISR_BR_NOTDONE;
655 
656 		KKASSERT(br->br_msgs[i] == NULL);
657 		br->br_msgs[i] = msg;
658 	}
659 
660 	for (i = 0; i < ncpus; ++i) {
661 		if (i == cur_cpuid)
662 			continue;
663 		lwkt_sendmsg(netisr_cpuport(i), &br->br_msgs[i]->base.lmsg);
664 	}
665 
666 	while (other_cpumask != 0) {
667 		tsleep_interlock(&other_cpumask, 0);
668 		if (other_cpumask != 0)
669 			tsleep(&other_cpumask, PINTERLOCKED, "nbrset", 0);
670 	}
671 	br->br_isset = 1;
672 }
673 
674 void
675 netisr_barrier_rem(struct netisr_barrier *br)
676 {
677 	int i, cur_cpuid;
678 
679 	KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
680 	KKASSERT(br->br_isset);
681 
682 	cur_cpuid = mycpuid;
683 	for (i = 0; i < ncpus; ++i) {
684 		struct netmsg_barrier *msg = br->br_msgs[i];
685 		uint32_t done;
686 
687 		msg = br->br_msgs[i];
688 		br->br_msgs[i] = NULL;
689 
690 		if (i == cur_cpuid)
691 			continue;
692 
693 		done = atomic_swap_int(&msg->br_done, 0);
694 		if (done & NETISR_BR_WAITDONE)
695 			wakeup(&msg->br_done);
696 	}
697 	br->br_isset = 0;
698 }
699 
700 static void
701 netisr_nohashck(struct mbuf *m, const struct pktinfo *pi __unused)
702 {
703 	m->m_flags &= ~M_HASH;
704 }
705 
706 void
707 netisr_hashcheck(int num, struct mbuf *m, const struct pktinfo *pi)
708 {
709 	struct netisr *ni;
710 
711 	if (num < 0 || num >= NETISR_MAX)
712 		panic("Bad isr %d", num);
713 
714 	/*
715 	 * Valid netisr?
716 	 */
717 	ni = &netisrs[num];
718 	if (ni->ni_handler == NULL)
719 		panic("Unregistered isr %d", num);
720 
721 	ni->ni_hashck(m, pi);
722 }
723