xref: /dragonfly/sys/net/netisr.c (revision fae225dc)
1 /*
2  * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved.
3  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
4  * Copyright (c) 2003 Jonathan Lemon.  All rights reserved.
5  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon.
9  *
10  * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright
11  * into this one around July 8 2004.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/msgport.h>
44 #include <sys/proc.h>
45 #include <sys/interrupt.h>
46 #include <sys/socket.h>
47 #include <sys/sysctl.h>
48 #include <sys/socketvar.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/netisr2.h>
52 #include <machine/cpufunc.h>
53 #include <machine/smp.h>
54 
55 #include <sys/thread2.h>
56 #include <sys/msgport2.h>
57 #include <net/netmsg2.h>
58 #include <sys/mplock2.h>
59 
60 static void netmsg_service_port_init(lwkt_port_t);
61 static void netmsg_service_loop(void *arg);
62 static void netisr_hashfn0(struct mbuf **mp, int hoff);
63 static void netisr_nohashck(struct mbuf *, const struct pktinfo *);
64 
65 struct netmsg_port_registration {
66 	TAILQ_ENTRY(netmsg_port_registration) npr_entry;
67 	lwkt_port_t	npr_port;
68 };
69 
70 struct netmsg_rollup {
71 	TAILQ_ENTRY(netmsg_rollup) ru_entry;
72 	netisr_ru_t	ru_func;
73 	int		ru_prio;
74 };
75 
76 struct netmsg_barrier {
77 	struct netmsg_base	base;
78 	volatile cpumask_t	*br_cpumask;
79 	volatile uint32_t	br_done;
80 };
81 
82 #define NETISR_BR_NOTDONE	0x1
83 #define NETISR_BR_WAITDONE	0x80000000
84 
85 struct netisr_barrier {
86 	struct netmsg_barrier	*br_msgs[MAXCPU];
87 	int			br_isset;
88 };
89 
90 void *netlastfunc[MAXCPU];
91 static struct netisr netisrs[NETISR_MAX];
92 static TAILQ_HEAD(,netmsg_port_registration) netreglist;
93 static TAILQ_HEAD(,netmsg_rollup) netrulist;
94 
95 /* Per-CPU thread to handle any protocol.  */
96 struct thread *netisr_threads[MAXCPU];
97 
98 lwkt_port netisr_afree_rport;
99 lwkt_port netisr_afree_free_so_rport;
100 lwkt_port netisr_adone_rport;
101 lwkt_port netisr_apanic_rport;
102 lwkt_port netisr_sync_port;
103 
104 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t);
105 
106 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr");
107 
108 static int netisr_rollup_limit = 32;
109 SYSCTL_INT(_net_netisr, OID_AUTO, rollup_limit, CTLFLAG_RW,
110 	&netisr_rollup_limit, 0, "Message to process before rollup");
111 
112 int netisr_ncpus;
113 TUNABLE_INT("net.netisr.ncpus", &netisr_ncpus);
114 SYSCTL_INT(_net_netisr, OID_AUTO, ncpus, CTLFLAG_RD,
115 	&netisr_ncpus, 0, "# of CPUs to handle network messages");
116 
117 /*
118  * netisr_afree_rport replymsg function, only used to handle async
119  * messages which the sender has abandoned to their fate.
120  */
121 static void
122 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
123 {
124 	kfree(msg, M_LWKTMSG);
125 }
126 
127 static void
128 netisr_autofree_free_so_reply(lwkt_port_t port, lwkt_msg_t msg)
129 {
130 	sofree(((netmsg_t)msg)->base.nm_so);
131 	kfree(msg, M_LWKTMSG);
132 }
133 
134 /*
135  * We need a custom putport function to handle the case where the
136  * message target is the current thread's message port.  This case
137  * can occur when the TCP or UDP stack does a direct callback to NFS and NFS
138  * then turns around and executes a network operation synchronously.
139  *
140  * To prevent deadlocking, we must execute these self-referential messages
141  * synchronously, effectively turning the message into a glorified direct
142  * procedure call back into the protocol stack.  The operation must be
143  * complete on return or we will deadlock, so panic if it isn't.
144  *
145  * However, the target function is under no obligation to immediately
146  * reply the message.  It may forward it elsewhere.
147  */
148 static int
149 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg)
150 {
151 	netmsg_base_t nmsg = (void *)lmsg;
152 
153 	if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) {
154 		nmsg->nm_dispatch((netmsg_t)nmsg);
155 		return(EASYNC);
156 	} else {
157 		return(netmsg_fwd_port_fn(port, lmsg));
158 	}
159 }
160 
161 /*
162  * UNIX DOMAIN sockets still have to run their uipc functions synchronously,
163  * because they depend on the user proc context for a number of things
164  * (like creds) which we have not yet incorporated into the message structure.
165  *
166  * However, we maintain or message/port abstraction.  Having a special
167  * synchronous port which runs the commands synchronously gives us the
168  * ability to serialize operations in one place later on when we start
169  * removing the BGL.
170  */
171 static int
172 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg)
173 {
174 	netmsg_base_t nmsg = (void *)lmsg;
175 
176 	KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0);
177 
178 	lmsg->ms_target_port = port;	/* required for abort */
179 	nmsg->nm_dispatch((netmsg_t)nmsg);
180 	return(EASYNC);
181 }
182 
183 static void
184 netisr_init(void)
185 {
186 	int i;
187 
188 	if (netisr_ncpus <= 0) {
189 		/* Default. */
190 		netisr_ncpus = ncpus2;
191 	} else if (netisr_ncpus > ncpus) {
192 		netisr_ncpus = ncpus;
193 	}
194 	if (netisr_ncpus > NETISR_CPUMAX)
195 		netisr_ncpus = NETISR_CPUMAX;
196 
197 	TAILQ_INIT(&netreglist);
198 	TAILQ_INIT(&netrulist);
199 
200 	/*
201 	 * Create default per-cpu threads for generic protocol handling.
202 	 */
203 	for (i = 0; i < ncpus; ++i) {
204 		lwkt_create(netmsg_service_loop, NULL, &netisr_threads[i], NULL,
205 			    TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
206 			    i, "netisr %d", i);
207 		netmsg_service_port_init(&netisr_threads[i]->td_msgport);
208 		lwkt_schedule(netisr_threads[i]);
209 	}
210 
211 	/*
212 	 * The netisr_afree_rport is a special reply port which automatically
213 	 * frees the replied message.  The netisr_adone_rport simply marks
214 	 * the message as being done.  The netisr_apanic_rport panics if
215 	 * the message is replied to.
216 	 */
217 	lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply);
218 	lwkt_initport_replyonly(&netisr_afree_free_so_rport,
219 				netisr_autofree_free_so_reply);
220 	lwkt_initport_replyonly_null(&netisr_adone_rport);
221 	lwkt_initport_panic(&netisr_apanic_rport);
222 
223 	/*
224 	 * The netisr_syncport is a special port which executes the message
225 	 * synchronously and waits for it if EASYNC is returned.
226 	 */
227 	lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport);
228 }
229 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL);
230 
231 /*
232  * Finish initializing the message port for a netmsg service.  This also
233  * registers the port for synchronous cleanup operations such as when an
234  * ifnet is being destroyed.  There is no deregistration API yet.
235  */
236 static void
237 netmsg_service_port_init(lwkt_port_t port)
238 {
239 	struct netmsg_port_registration *reg;
240 
241 	/*
242 	 * Override the putport function.  Our custom function checks for
243 	 * self-references and executes such commands synchronously.
244 	 */
245 	if (netmsg_fwd_port_fn == NULL)
246 		netmsg_fwd_port_fn = port->mp_putport;
247 	KKASSERT(netmsg_fwd_port_fn == port->mp_putport);
248 	port->mp_putport = netmsg_put_port;
249 
250 	/*
251 	 * Keep track of ports using the netmsg API so we can synchronize
252 	 * certain operations (such as freeing an ifnet structure) across all
253 	 * consumers.
254 	 */
255 	reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO);
256 	reg->npr_port = port;
257 	TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry);
258 }
259 
260 /*
261  * This function synchronizes the caller with all netmsg services.  For
262  * example, if an interface is being removed we must make sure that all
263  * packets related to that interface complete processing before the structure
264  * can actually be freed.  This sort of synchronization is an alternative to
265  * ref-counting the netif, removing the ref counting overhead in favor of
266  * placing additional overhead in the netif freeing sequence (where it is
267  * inconsequential).
268  */
269 void
270 netmsg_service_sync(void)
271 {
272 	struct netmsg_port_registration *reg;
273 	struct netmsg_base smsg;
274 
275 	netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_handler);
276 
277 	TAILQ_FOREACH(reg, &netreglist, npr_entry) {
278 		lwkt_domsg(reg->npr_port, &smsg.lmsg, 0);
279 	}
280 }
281 
282 /*
283  * The netmsg function simply replies the message.  API semantics require
284  * EASYNC to be returned if the netmsg function disposes of the message.
285  */
286 void
287 netmsg_sync_handler(netmsg_t msg)
288 {
289 	lwkt_replymsg(&msg->lmsg, 0);
290 }
291 
292 /*
293  * Generic netmsg service loop.  Some protocols may roll their own but all
294  * must do the basic command dispatch function call done here.
295  */
296 static void
297 netmsg_service_loop(void *arg)
298 {
299 	struct netmsg_rollup *ru;
300 	netmsg_base_t msg;
301 	thread_t td = curthread;
302 	int limit;
303 
304 	td->td_type = TD_TYPE_NETISR;
305 
306 	while ((msg = lwkt_waitport(&td->td_msgport, 0))) {
307 		/*
308 		 * Run up to 512 pending netmsgs.
309 		 */
310 		limit = netisr_rollup_limit;
311 		do {
312 			KASSERT(msg->nm_dispatch != NULL,
313 				("netmsg_service isr %d badmsg",
314 				msg->lmsg.u.ms_result));
315 			/*
316 			 * Don't match so_port, if the msg explicitly
317 			 * asks us to ignore its so_port.
318 			 */
319 			if ((msg->lmsg.ms_flags & MSGF_IGNSOPORT) == 0 &&
320 			    msg->nm_so &&
321 			    msg->nm_so->so_port != &td->td_msgport) {
322 				/*
323 				 * Sockets undergoing connect or disconnect
324 				 * ops can change ports on us.  Chase the
325 				 * port.
326 				 */
327 #ifdef foo
328 				/*
329 				 * This could be quite common for protocols
330 				 * which support asynchronous pru_connect,
331 				 * e.g. TCP, so kprintf socket port chasing
332 				 * could be too verbose for the console.
333 				 */
334 				kprintf("%s: Warning, port changed so=%p\n",
335 					__func__, msg->nm_so);
336 #endif
337 				lwkt_forwardmsg(msg->nm_so->so_port,
338 						&msg->lmsg);
339 			} else {
340 				/*
341 				 * We are on the correct port, dispatch it.
342 				 */
343 				netlastfunc[mycpuid] = msg->nm_dispatch;
344 				msg->nm_dispatch((netmsg_t)msg);
345 			}
346 			if (--limit == 0)
347 				break;
348 		} while ((msg = lwkt_getport(&td->td_msgport)) != NULL);
349 
350 		/*
351 		 * Run all registered rollup functions for this cpu
352 		 * (e.g. tcp_willblock()).
353 		 */
354 		TAILQ_FOREACH(ru, &netrulist, ru_entry)
355 			ru->ru_func();
356 	}
357 }
358 
359 /*
360  * Forward a packet to a netisr service function.
361  *
362  * If the packet has not been assigned to a protocol thread we call
363  * the port characterization function to assign it.  The caller must
364  * clear M_HASH (or not have set it in the first place) if the caller
365  * wishes the packet to be recharacterized.
366  */
367 int
368 netisr_queue(int num, struct mbuf *m)
369 {
370 	struct netisr *ni;
371 	struct netmsg_packet *pmsg;
372 	lwkt_port_t port;
373 
374 	KASSERT((num > 0 && num <= NELEM(netisrs)),
375 		("Bad isr %d", num));
376 
377 	ni = &netisrs[num];
378 	if (ni->ni_handler == NULL) {
379 		kprintf("%s: Unregistered isr %d\n", __func__, num);
380 		m_freem(m);
381 		return (EIO);
382 	}
383 
384 	/*
385 	 * Figure out which protocol thread to send to.  This does not
386 	 * have to be perfect but performance will be really good if it
387 	 * is correct.  Major protocol inputs such as ip_input() will
388 	 * re-characterize the packet as necessary.
389 	 */
390 	if ((m->m_flags & M_HASH) == 0) {
391 		ni->ni_hashfn(&m, 0);
392 		if (m == NULL)
393 			return (EIO);
394 		if ((m->m_flags & M_HASH) == 0) {
395 			kprintf("%s(%d): packet hash failed\n",
396 				__func__, num);
397 			m_freem(m);
398 			return (EIO);
399 		}
400 	}
401 
402 	/*
403 	 * Get the protocol port based on the packet hash, initialize
404 	 * the netmsg, and send it off.
405 	 */
406 	port = netisr_hashport(m->m_pkthdr.hash);
407 	pmsg = &m->m_hdr.mh_netmsg;
408 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
409 		    0, ni->ni_handler);
410 	pmsg->nm_packet = m;
411 	pmsg->base.lmsg.u.ms_result = num;
412 	lwkt_sendmsg(port, &pmsg->base.lmsg);
413 
414 	return (0);
415 }
416 
417 /*
418  * Run a netisr service function on the packet.
419  *
420  * The packet must have been correctly characterized!
421  */
422 int
423 netisr_handle(int num, struct mbuf *m)
424 {
425 	struct netisr *ni;
426 	struct netmsg_packet *pmsg;
427 	lwkt_port_t port;
428 
429 	/*
430 	 * Get the protocol port based on the packet hash
431 	 */
432 	KASSERT((m->m_flags & M_HASH), ("packet not characterized"));
433 	port = netisr_hashport(m->m_pkthdr.hash);
434 	KASSERT(&curthread->td_msgport == port, ("wrong msgport"));
435 
436 	KASSERT((num > 0 && num <= NELEM(netisrs)), ("bad isr %d", num));
437 	ni = &netisrs[num];
438 	if (ni->ni_handler == NULL) {
439 		kprintf("%s: unregistered isr %d\n", __func__, num);
440 		m_freem(m);
441 		return EIO;
442 	}
443 
444 	/*
445 	 * Initialize the netmsg, and run the handler directly.
446 	 */
447 	pmsg = &m->m_hdr.mh_netmsg;
448 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
449 		    0, ni->ni_handler);
450 	pmsg->nm_packet = m;
451 	pmsg->base.lmsg.u.ms_result = num;
452 	ni->ni_handler((netmsg_t)&pmsg->base);
453 
454 	return 0;
455 }
456 
457 /*
458  * Pre-characterization of a deeper portion of the packet for the
459  * requested isr.
460  *
461  * The base of the ISR type (e.g. IP) that we want to characterize is
462  * at (hoff) relative to the beginning of the mbuf.  This allows
463  * e.g. ether_characterize() to not have to adjust the m_data/m_len.
464  */
465 void
466 netisr_characterize(int num, struct mbuf **mp, int hoff)
467 {
468 	struct netisr *ni;
469 	struct mbuf *m;
470 
471 	/*
472 	 * Validation
473 	 */
474 	m = *mp;
475 	KKASSERT(m != NULL);
476 
477 	if (num < 0 || num >= NETISR_MAX) {
478 		if (num == NETISR_MAX) {
479 			m_sethash(m, 0);
480 			return;
481 		}
482 		panic("Bad isr %d", num);
483 	}
484 
485 	/*
486 	 * Valid netisr?
487 	 */
488 	ni = &netisrs[num];
489 	if (ni->ni_handler == NULL) {
490 		kprintf("%s: Unregistered isr %d\n", __func__, num);
491 		m_freem(m);
492 		*mp = NULL;
493 	}
494 
495 	/*
496 	 * Characterize the packet
497 	 */
498 	if ((m->m_flags & M_HASH) == 0) {
499 		ni->ni_hashfn(mp, hoff);
500 		m = *mp;
501 		if (m && (m->m_flags & M_HASH) == 0) {
502 			kprintf("%s(%d): packet hash failed\n",
503 				__func__, num);
504 		}
505 	}
506 }
507 
508 void
509 netisr_register(int num, netisr_fn_t handler, netisr_hashfn_t hashfn)
510 {
511 	struct netisr *ni;
512 
513 	KASSERT((num > 0 && num <= NELEM(netisrs)),
514 		("netisr_register: bad isr %d", num));
515 	KKASSERT(handler != NULL);
516 
517 	if (hashfn == NULL)
518 		hashfn = netisr_hashfn0;
519 
520 	ni = &netisrs[num];
521 
522 	ni->ni_handler = handler;
523 	ni->ni_hashck = netisr_nohashck;
524 	ni->ni_hashfn = hashfn;
525 	netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL);
526 }
527 
528 void
529 netisr_register_hashcheck(int num, netisr_hashck_t hashck)
530 {
531 	struct netisr *ni;
532 
533 	KASSERT((num > 0 && num <= NELEM(netisrs)),
534 		("netisr_register: bad isr %d", num));
535 
536 	ni = &netisrs[num];
537 	ni->ni_hashck = hashck;
538 }
539 
540 void
541 netisr_register_rollup(netisr_ru_t ru_func, int prio)
542 {
543 	struct netmsg_rollup *new_ru, *ru;
544 
545 	new_ru = kmalloc(sizeof(*new_ru), M_TEMP, M_WAITOK|M_ZERO);
546 	new_ru->ru_func = ru_func;
547 	new_ru->ru_prio = prio;
548 
549 	/*
550 	 * Higher priority "rollup" appears first
551 	 */
552 	TAILQ_FOREACH(ru, &netrulist, ru_entry) {
553 		if (ru->ru_prio < new_ru->ru_prio) {
554 			TAILQ_INSERT_BEFORE(ru, new_ru, ru_entry);
555 			return;
556 		}
557 	}
558 	TAILQ_INSERT_TAIL(&netrulist, new_ru, ru_entry);
559 }
560 
561 /*
562  * Return a default protocol control message processing thread port
563  */
564 lwkt_port_t
565 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused,
566     void *extra __unused, int *cpuid)
567 {
568 	*cpuid = 0;
569 	return netisr_cpuport(*cpuid);
570 }
571 
572 /*
573  * This is a default netisr packet characterization function which
574  * sets M_HASH.  If a netisr is registered with a NULL hashfn function
575  * this one is assigned.
576  *
577  * This function makes no attempt to validate the packet.
578  */
579 static void
580 netisr_hashfn0(struct mbuf **mp, int hoff __unused)
581 {
582 
583 	m_sethash(*mp, 0);
584 }
585 
586 /*
587  * schednetisr() is used to call the netisr handler from the appropriate
588  * netisr thread for polling and other purposes.
589  *
590  * This function may be called from a hard interrupt or IPI and must be
591  * MP SAFE and non-blocking.  We use a fixed per-cpu message instead of
592  * trying to allocate one.  We must get ourselves onto the target cpu
593  * to safely check the MSGF_DONE bit on the message but since the message
594  * will be sent to that cpu anyway this does not add any extra work beyond
595  * what lwkt_sendmsg() would have already had to do to schedule the target
596  * thread.
597  */
598 static void
599 schednetisr_remote(void *data)
600 {
601 	int num = (int)(intptr_t)data;
602 	struct netisr *ni = &netisrs[num];
603 	lwkt_port_t port = &netisr_threads[0]->td_msgport;
604 	netmsg_base_t pmsg;
605 
606 	pmsg = &netisrs[num].ni_netmsg;
607 	if (pmsg->lmsg.ms_flags & MSGF_DONE) {
608 		netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler);
609 		pmsg->lmsg.u.ms_result = num;
610 		lwkt_sendmsg(port, &pmsg->lmsg);
611 	}
612 }
613 
614 void
615 schednetisr(int num)
616 {
617 	KASSERT((num > 0 && num <= NELEM(netisrs)),
618 		("schednetisr: bad isr %d", num));
619 	KKASSERT(netisrs[num].ni_handler != NULL);
620 	if (mycpu->gd_cpuid != 0) {
621 		lwkt_send_ipiq(globaldata_find(0),
622 			       schednetisr_remote, (void *)(intptr_t)num);
623 	} else {
624 		crit_enter();
625 		schednetisr_remote((void *)(intptr_t)num);
626 		crit_exit();
627 	}
628 }
629 
630 static void
631 netisr_barrier_dispatch(netmsg_t nmsg)
632 {
633 	struct netmsg_barrier *msg = (struct netmsg_barrier *)nmsg;
634 
635 	ATOMIC_CPUMASK_NANDBIT(*msg->br_cpumask, mycpu->gd_cpuid);
636 	if (CPUMASK_TESTZERO(*msg->br_cpumask))
637 		wakeup(msg->br_cpumask);
638 
639 	for (;;) {
640 		uint32_t done = msg->br_done;
641 
642 		cpu_ccfence();
643 		if ((done & NETISR_BR_NOTDONE) == 0)
644 			break;
645 
646 		tsleep_interlock(&msg->br_done, 0);
647 		if (atomic_cmpset_int(&msg->br_done,
648 		    done, done | NETISR_BR_WAITDONE))
649 			tsleep(&msg->br_done, PINTERLOCKED, "nbrdsp", 0);
650 	}
651 
652 	lwkt_replymsg(&nmsg->lmsg, 0);
653 }
654 
655 struct netisr_barrier *
656 netisr_barrier_create(void)
657 {
658 	struct netisr_barrier *br;
659 
660 	br = kmalloc(sizeof(*br), M_LWKTMSG, M_WAITOK | M_ZERO);
661 	return br;
662 }
663 
664 void
665 netisr_barrier_set(struct netisr_barrier *br)
666 {
667 	volatile cpumask_t other_cpumask;
668 	int i, cur_cpuid;
669 
670 	ASSERT_NETISR0;
671 	KKASSERT(!br->br_isset);
672 
673 	other_cpumask = mycpu->gd_other_cpus;
674 	CPUMASK_ANDMASK(other_cpumask, smp_active_mask);
675 	cur_cpuid = mycpuid;
676 
677 	for (i = 0; i < ncpus; ++i) {
678 		struct netmsg_barrier *msg;
679 
680 		if (i == cur_cpuid)
681 			continue;
682 
683 		msg = kmalloc(sizeof(struct netmsg_barrier),
684 			      M_LWKTMSG, M_WAITOK);
685 
686 		/*
687 		 * Don't use priority message here; mainly to keep
688 		 * it ordered w/ the previous data packets sent by
689 		 * the caller.
690 		 */
691 		netmsg_init(&msg->base, NULL, &netisr_afree_rport, 0,
692 			    netisr_barrier_dispatch);
693 		msg->br_cpumask = &other_cpumask;
694 		msg->br_done = NETISR_BR_NOTDONE;
695 
696 		KKASSERT(br->br_msgs[i] == NULL);
697 		br->br_msgs[i] = msg;
698 	}
699 
700 	for (i = 0; i < ncpus; ++i) {
701 		if (i == cur_cpuid)
702 			continue;
703 		lwkt_sendmsg(netisr_cpuport(i), &br->br_msgs[i]->base.lmsg);
704 	}
705 
706 	while (CPUMASK_TESTNZERO(other_cpumask)) {
707 		tsleep_interlock(&other_cpumask, 0);
708 		if (CPUMASK_TESTNZERO(other_cpumask))
709 			tsleep(&other_cpumask, PINTERLOCKED, "nbrset", 0);
710 	}
711 	br->br_isset = 1;
712 }
713 
714 void
715 netisr_barrier_rem(struct netisr_barrier *br)
716 {
717 	int i, cur_cpuid;
718 
719 	ASSERT_NETISR0;
720 	KKASSERT(br->br_isset);
721 
722 	cur_cpuid = mycpuid;
723 	for (i = 0; i < ncpus; ++i) {
724 		struct netmsg_barrier *msg = br->br_msgs[i];
725 		uint32_t done;
726 
727 		msg = br->br_msgs[i];
728 		br->br_msgs[i] = NULL;
729 
730 		if (i == cur_cpuid)
731 			continue;
732 
733 		done = atomic_swap_int(&msg->br_done, 0);
734 		if (done & NETISR_BR_WAITDONE)
735 			wakeup(&msg->br_done);
736 	}
737 	br->br_isset = 0;
738 }
739 
740 static void
741 netisr_nohashck(struct mbuf *m, const struct pktinfo *pi __unused)
742 {
743 	m->m_flags &= ~M_HASH;
744 }
745 
746 void
747 netisr_hashcheck(int num, struct mbuf *m, const struct pktinfo *pi)
748 {
749 	struct netisr *ni;
750 
751 	if (num < 0 || num >= NETISR_MAX)
752 		panic("Bad isr %d", num);
753 
754 	/*
755 	 * Valid netisr?
756 	 */
757 	ni = &netisrs[num];
758 	if (ni->ni_handler == NULL)
759 		panic("Unregistered isr %d", num);
760 
761 	ni->ni_hashck(m, pi);
762 }
763