xref: /dragonfly/sys/net/netmap/netmap.c (revision b5302a4e)
1 /*
2  * Copyright (C) 2011-2013 Matteo Landi, Luigi Rizzo. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *   1. Redistributions of source code must retain the above copyright
8  *      notice, this list of conditions and the following disclaimer.
9  *   2. Redistributions in binary form must reproduce the above copyright
10  *      notice, this list of conditions and the following disclaimer in the
11  *      documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 
27 /*
28  * This module supports memory mapped access to network devices,
29  * see netmap(4).
30  *
31  * The module uses a large, memory pool allocated by the kernel
32  * and accessible as mmapped memory by multiple userspace threads/processes.
33  * The memory pool contains packet buffers and "netmap rings",
34  * i.e. user-accessible copies of the interface's queues.
35  *
36  * Access to the network card works like this:
37  * 1. a process/thread issues one or more open() on /dev/netmap, to create
38  *    select()able file descriptor on which events are reported.
39  * 2. on each descriptor, the process issues an ioctl() to identify
40  *    the interface that should report events to the file descriptor.
41  * 3. on each descriptor, the process issues an mmap() request to
42  *    map the shared memory region within the process' address space.
43  *    The list of interesting queues is indicated by a location in
44  *    the shared memory region.
45  * 4. using the functions in the netmap(4) userspace API, a process
46  *    can look up the occupation state of a queue, access memory buffers,
47  *    and retrieve received packets or enqueue packets to transmit.
48  * 5. using some ioctl()s the process can synchronize the userspace view
49  *    of the queue with the actual status in the kernel. This includes both
50  *    receiving the notification of new packets, and transmitting new
51  *    packets on the output interface.
52  * 6. select() or poll() can be used to wait for events on individual
53  *    transmit or receive queues (or all queues for a given interface).
54  *
55 
56 		SYNCHRONIZATION (USER)
57 
58 The netmap rings and data structures may be shared among multiple
59 user threads or even independent processes.
60 Any synchronization among those threads/processes is delegated
61 to the threads themselves. Only one thread at a time can be in
62 a system call on the same netmap ring. The OS does not enforce
63 this and only guarantees against system crashes in case of
64 invalid usage.
65 
66 		LOCKING (INTERNAL)
67 
68 Within the kernel, access to the netmap rings is protected as follows:
69 
70 - a spinlock on each ring, to handle producer/consumer races on
71   RX rings attached to the host stack (against multiple host
72   threads writing from the host stack to the same ring),
73   and on 'destination' rings attached to a VALE switch
74   (i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
75   protecting multiple active senders for the same destination)
76 
77 - an atomic variable to guarantee that there is at most one
78   instance of *_*xsync() on the ring at any time.
79   For rings connected to user file
80   descriptors, an atomic_test_and_set() protects this, and the
81   lock on the ring is not actually used.
82   For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
83   is also used to prevent multiple executions (the driver might indeed
84   already guarantee this).
85   For NIC TX rings connected to a VALE switch, the lock arbitrates
86   access to the queue (both when allocating buffers and when pushing
87   them out).
88 
89 - *xsync() should be protected against initializations of the card.
90   On FreeBSD most devices have the reset routine protected by
91   a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
92   the RING protection on rx_reset(), this should be added.
93 
94   On linux there is an external lock on the tx path, which probably
95   also arbitrates access to the reset routine. XXX to be revised
96 
97 - a per-interface core_lock protecting access from the host stack
98   while interfaces may be detached from netmap mode.
99   XXX there should be no need for this lock if we detach the interfaces
100   only while they are down.
101 
102 
103 --- VALE SWITCH ---
104 
105 NMG_LOCK() serializes all modifications to switches and ports.
106 A switch cannot be deleted until all ports are gone.
107 
108 For each switch, an SX lock (RWlock on linux) protects
109 deletion of ports. When configuring or deleting a new port, the
110 lock is acquired in exclusive mode (after holding NMG_LOCK).
111 When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
112 The lock is held throughout the entire forwarding cycle,
113 during which the thread may incur in a page fault.
114 Hence it is important that sleepable shared locks are used.
115 
116 On the rx ring, the per-port lock is grabbed initially to reserve
117 a number of slot in the ring, then the lock is released,
118 packets are copied from source to destination, and then
119 the lock is acquired again and the receive ring is updated.
120 (A similar thing is done on the tx ring for NIC and host stack
121 ports attached to the switch)
122 
123  */
124 
125 /*
126  * OS-specific code that is used only within this file.
127  * Other OS-specific code that must be accessed by drivers
128  * is present in netmap_kern.h
129  */
130 
131 #include <sys/cdefs.h> /* prerequisite */
132 __FBSDID("$FreeBSD: head/sys/dev/netmap/netmap.c 257176 2013-10-26 17:58:36Z glebius $");
133 
134 #include <sys/types.h>
135 #include <sys/errno.h>
136 #include <sys/param.h>	/* defines used in kernel.h */
137 #include <sys/kernel.h>	/* types used in module initialization */
138 #include <sys/conf.h>	/* cdevsw struct, UID, GID */
139 #include <sys/devfs.h>
140 #include <sys/sockio.h>
141 #include <sys/socketvar.h>	/* struct socket */
142 #include <sys/malloc.h>
143 #include <sys/poll.h>
144 #include <sys/lock.h>
145 #include <sys/socket.h> /* sockaddrs */
146 #include <sys/event.h>
147 #include <sys/sysctl.h>
148 #include <net/if.h>
149 #include <net/if_var.h>
150 #include <net/bpf.h>		/* BIOCIMMEDIATE */
151 #include <sys/bus.h>	/* bus_dmamap_* */
152 #include <sys/endian.h>
153 #include <sys/refcount.h>
154 
155 /* reduce conditional code */
156 #define init_waitqueue_head(x)	// only needed in linux
157 
158 extern struct dev_ops netmap_cdevsw;
159 
160 /*
161  * common headers
162  */
163 #include <net/netmap.h>
164 #include <net/netmap/netmap_kern.h>
165 #include <net/netmap/netmap_mem2.h>
166 
167 
168 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
169 
170 /*
171  * The following variables are used by the drivers and replicate
172  * fields in the global memory pool. They only refer to buffers
173  * used by physical interfaces.
174  */
175 u_int netmap_total_buffers;
176 u_int netmap_buf_size;
177 char *netmap_buffer_base;	/* also address of an invalid buffer */
178 
179 /* user-controlled variables */
180 int netmap_verbose;
181 
182 static int netmap_no_timestamp; /* don't timestamp on rxsync */
183 
184 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
185 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
186     CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
187 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
188     CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
189 int netmap_mitigate = 1;
190 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, "");
191 int netmap_no_pendintr = 1;
192 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr,
193     CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets.");
194 int netmap_txsync_retry = 2;
195 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
196     &netmap_txsync_retry, 0 , "Number of txsync loops in bridge's flush.");
197 
198 int netmap_flags = 0;	/* debug flags */
199 int netmap_fwd = 0;	/* force transparent mode */
200 int netmap_mmap_unreg = 0; /* allow mmap of unregistered fds */
201 
202 /*
203  * netmap_admode selects the netmap mode to use.
204  * Invalid values are reset to NETMAP_ADMODE_BEST
205  */
206 enum { NETMAP_ADMODE_BEST = 0,	/* use native, fallback to generic */
207 	NETMAP_ADMODE_NATIVE,	/* either native or none */
208 	NETMAP_ADMODE_GENERIC,	/* force generic */
209 	NETMAP_ADMODE_LAST };
210 #define NETMAP_ADMODE_NATIVE        1  /* Force native netmap adapter. */
211 #define NETMAP_ADMODE_GENERIC       2  /* Force generic netmap adapter. */
212 #define NETMAP_ADMODE_BEST          0  /* Priority to native netmap adapter. */
213 static int netmap_admode = NETMAP_ADMODE_BEST;
214 
215 int netmap_generic_mit = 100*1000;   /* Generic mitigation interval in nanoseconds. */
216 int netmap_generic_ringsize = 1024;   /* Generic ringsize. */
217 
218 SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , "");
219 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , "");
220 SYSCTL_INT(_dev_netmap, OID_AUTO, mmap_unreg, CTLFLAG_RW, &netmap_mmap_unreg, 0, "");
221 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0 , "");
222 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit, 0 , "");
223 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW, &netmap_generic_ringsize, 0 , "");
224 
225 NMG_LOCK_T	netmap_global_lock;
226 
227 
228 static void
229 nm_kr_get(struct netmap_kring *kr)
230 {
231 	while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
232 		tsleep(kr, 0, "NM_KR_GET", 4);
233 }
234 
235 
236 void
237 netmap_disable_ring(struct netmap_kring *kr)
238 {
239 	kr->nkr_stopped = 1;
240 	nm_kr_get(kr);
241 	lockmgr(&kr->q_lock, LK_EXCLUSIVE);
242 	lockmgr(&kr->q_lock, LK_RELEASE);
243 	nm_kr_put(kr);
244 }
245 
246 
247 static void
248 netmap_set_all_rings(struct ifnet *ifp, int stopped)
249 {
250 	struct netmap_adapter *na;
251 	int i;
252 
253 	if (!(ifp->if_capenable & IFCAP_NETMAP))
254 		return;
255 
256 	na = NA(ifp);
257 
258 	for (i = 0; i <= na->num_tx_rings; i++) {
259 		if (stopped)
260 			netmap_disable_ring(na->tx_rings + i);
261 		else
262 			na->tx_rings[i].nkr_stopped = 0;
263 		na->nm_notify(na, i, NR_TX, NAF_DISABLE_NOTIFY |
264 			(i == na->num_tx_rings ? NAF_GLOBAL_NOTIFY: 0));
265 	}
266 
267 	for (i = 0; i <= na->num_rx_rings; i++) {
268 		if (stopped)
269 			netmap_disable_ring(na->rx_rings + i);
270 		else
271 			na->rx_rings[i].nkr_stopped = 0;
272 		na->nm_notify(na, i, NR_RX, NAF_DISABLE_NOTIFY |
273 			(i == na->num_rx_rings ? NAF_GLOBAL_NOTIFY: 0));
274 	}
275 }
276 
277 
278 void
279 netmap_disable_all_rings(struct ifnet *ifp)
280 {
281 	netmap_set_all_rings(ifp, 1 /* stopped */);
282 }
283 
284 
285 void
286 netmap_enable_all_rings(struct ifnet *ifp)
287 {
288 	netmap_set_all_rings(ifp, 0 /* enabled */);
289 }
290 
291 
292 /*
293  * generic bound_checking function
294  */
295 u_int
296 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
297 {
298 	u_int oldv = *v;
299 	const char *op = NULL;
300 
301 	if (dflt < lo)
302 		dflt = lo;
303 	if (dflt > hi)
304 		dflt = hi;
305 	if (oldv < lo) {
306 		*v = dflt;
307 		op = "Bump";
308 	} else if (oldv > hi) {
309 		*v = hi;
310 		op = "Clamp";
311 	}
312 	if (op && msg)
313 		kprintf("%s %s to %d (was %d)\n", op, msg, *v, oldv);
314 	return *v;
315 }
316 
317 
318 /*
319  * packet-dump function, user-supplied or static buffer.
320  * The destination buffer must be at least 30+4*len
321  */
322 const char *
323 nm_dump_buf(char *p, int len, int lim, char *dst)
324 {
325 	static char _dst[8192];
326 	int i, j, i0;
327 	static char hex[] ="0123456789abcdef";
328 	char *o;	/* output position */
329 
330 #define P_HI(x)	hex[((x) & 0xf0)>>4]
331 #define P_LO(x)	hex[((x) & 0xf)]
332 #define P_C(x)	((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
333 	if (!dst)
334 		dst = _dst;
335 	if (lim <= 0 || lim > len)
336 		lim = len;
337 	o = dst;
338 	ksprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
339 	o += strlen(o);
340 	/* hexdump routine */
341 	for (i = 0; i < lim; ) {
342 		ksprintf(o, "%5d: ", i);
343 		o += strlen(o);
344 		memset(o, ' ', 48);
345 		i0 = i;
346 		for (j=0; j < 16 && i < lim; i++, j++) {
347 			o[j*3] = P_HI(p[i]);
348 			o[j*3+1] = P_LO(p[i]);
349 		}
350 		i = i0;
351 		for (j=0; j < 16 && i < lim; i++, j++)
352 			o[j + 48] = P_C(p[i]);
353 		o[j+48] = '\n';
354 		o += j+49;
355 	}
356 	*o = '\0';
357 #undef P_HI
358 #undef P_LO
359 #undef P_C
360 	return dst;
361 }
362 
363 
364 
365 /*
366  * Fetch configuration from the device, to cope with dynamic
367  * reconfigurations after loading the module.
368  */
369 int
370 netmap_update_config(struct netmap_adapter *na)
371 {
372 	struct ifnet *ifp = na->ifp;
373 	u_int txr, txd, rxr, rxd;
374 
375 	txr = txd = rxr = rxd = 0;
376 	if (na->nm_config) {
377 		na->nm_config(na, &txr, &txd, &rxr, &rxd);
378 	} else {
379 		/* take whatever we had at init time */
380 		txr = na->num_tx_rings;
381 		txd = na->num_tx_desc;
382 		rxr = na->num_rx_rings;
383 		rxd = na->num_rx_desc;
384 	}
385 
386 	if (na->num_tx_rings == txr && na->num_tx_desc == txd &&
387 	    na->num_rx_rings == rxr && na->num_rx_desc == rxd)
388 		return 0; /* nothing changed */
389 	if (netmap_verbose || na->active_fds > 0) {
390 		D("stored config %s: txring %d x %d, rxring %d x %d",
391 			NM_IFPNAME(ifp),
392 			na->num_tx_rings, na->num_tx_desc,
393 			na->num_rx_rings, na->num_rx_desc);
394 		D("new config %s: txring %d x %d, rxring %d x %d",
395 			NM_IFPNAME(ifp), txr, txd, rxr, rxd);
396 	}
397 	if (na->active_fds == 0) {
398 		D("configuration changed (but fine)");
399 		na->num_tx_rings = txr;
400 		na->num_tx_desc = txd;
401 		na->num_rx_rings = rxr;
402 		na->num_rx_desc = rxd;
403 		return 0;
404 	}
405 	D("configuration changed while active, this is bad...");
406 	return 1;
407 }
408 
409 
410 int
411 netmap_krings_create(struct netmap_adapter *na, u_int ntx, u_int nrx, u_int tailroom)
412 {
413 	u_int i, len, ndesc;
414 	struct netmap_kring *kring;
415 
416 	len = (ntx + nrx) * sizeof(struct netmap_kring) + tailroom;
417 
418 	na->tx_rings = kmalloc((size_t)len, M_DEVBUF, M_NOWAIT | M_ZERO);
419 	if (na->tx_rings == NULL) {
420 		D("Cannot allocate krings");
421 		return ENOMEM;
422 	}
423 	na->rx_rings = na->tx_rings + ntx;
424 
425 	ndesc = na->num_tx_desc;
426 	for (i = 0; i < ntx; i++) { /* Transmit rings */
427 		kring = &na->tx_rings[i];
428 		bzero(kring, sizeof(*kring));
429 		kring->na = na;
430 		kring->nkr_num_slots = ndesc;
431 		/*
432 		 * IMPORTANT:
433 		 * Always keep one slot empty, so we can detect new
434 		 * transmissions comparing cur and nr_hwcur (they are
435 		 * the same only if there are no new transmissions).
436 		 */
437 		kring->nr_hwavail = ndesc - 1;
438 		lockinit(&kring->q_lock, "nm_txq_lock", 0, LK_CANRECURSE);
439 		init_waitqueue_head(&kring->si);
440 	}
441 
442 	ndesc = na->num_rx_desc;
443 	for (i = 0; i < nrx; i++) { /* Receive rings */
444 		kring = &na->rx_rings[i];
445 		bzero(kring, sizeof(*kring));
446 		kring->na = na;
447 		kring->nkr_num_slots = ndesc;
448 		lockinit(&kring->q_lock, "nm_rxq_lock", 0, LK_CANRECURSE);
449 		init_waitqueue_head(&kring->si);
450 	}
451 	init_waitqueue_head(&na->tx_si);
452 	init_waitqueue_head(&na->rx_si);
453 
454 	na->tailroom = na->rx_rings + nrx;
455 
456 	return 0;
457 
458 }
459 
460 
461 void
462 netmap_krings_delete(struct netmap_adapter *na)
463 {
464 	int i;
465 
466 	for (i = 0; i < na->num_tx_rings + 1; i++) {
467 		lockuninit(&na->tx_rings[i].q_lock);
468 	}
469 	for (i = 0; i < na->num_rx_rings + 1; i++) {
470 		lockuninit(&na->rx_rings[i].q_lock);
471 	}
472 	kfree(na->tx_rings, M_DEVBUF);
473 	na->tx_rings = na->rx_rings = na->tailroom = NULL;
474 }
475 
476 
477 static struct netmap_if*
478 netmap_if_new(const char *ifname, struct netmap_adapter *na)
479 {
480 	struct netmap_if *nifp;
481 
482 	if (netmap_update_config(na)) {
483 		/* configuration mismatch, report and fail */
484 		return NULL;
485 	}
486 
487 	if (na->active_fds)
488 		goto final;
489 
490 	if (na->nm_krings_create(na))
491 		goto cleanup;
492 
493 	if (netmap_mem_rings_create(na))
494 		goto cleanup;
495 
496 final:
497 
498 	nifp = netmap_mem_if_new(ifname, na);
499 	if (nifp == NULL)
500 		goto cleanup;
501 
502 	return (nifp);
503 
504 cleanup:
505 
506 	if (na->active_fds == 0) {
507 		netmap_mem_rings_delete(na);
508 		na->nm_krings_delete(na);
509 	}
510 
511 	return NULL;
512 }
513 
514 
515 /* grab a reference to the memory allocator, if we don't have one already.  The
516  * reference is taken from the netmap_adapter registered with the priv.
517  *
518  */
519 static int
520 netmap_get_memory_locked(struct netmap_priv_d* p)
521 {
522 	struct netmap_mem_d *nmd;
523 	int error = 0;
524 
525 	if (p->np_na == NULL) {
526 		if (!netmap_mmap_unreg)
527 			return ENODEV;
528 		/* for compatibility with older versions of the API
529  		 * we use the global allocator when no interface has been
530  		 * registered
531  		 */
532 		nmd = &nm_mem;
533 	} else {
534 		nmd = p->np_na->nm_mem;
535 	}
536 	if (p->np_mref == NULL) {
537 		error = netmap_mem_finalize(nmd);
538 		if (!error)
539 			p->np_mref = nmd;
540 	} else if (p->np_mref != nmd) {
541 		/* a virtual port has been registered, but previous
542  		 * syscalls already used the global allocator.
543  		 * We cannot continue
544  		 */
545 		error = ENODEV;
546 	}
547 	return error;
548 }
549 
550 
551 int
552 netmap_get_memory(struct netmap_priv_d* p)
553 {
554 	int error;
555 	NMG_LOCK();
556 	error = netmap_get_memory_locked(p);
557 	NMG_UNLOCK();
558 	return error;
559 }
560 
561 
562 static int
563 netmap_have_memory_locked(struct netmap_priv_d* p)
564 {
565 	return p->np_mref != NULL;
566 }
567 
568 
569 static void
570 netmap_drop_memory_locked(struct netmap_priv_d* p)
571 {
572 	if (p->np_mref) {
573 		netmap_mem_deref(p->np_mref);
574 		p->np_mref = NULL;
575 	}
576 }
577 
578 
579 /*
580  * File descriptor's private data destructor.
581  *
582  * Call nm_register(ifp,0) to stop netmap mode on the interface and
583  * revert to normal operation. We expect that np_na->ifp has not gone.
584  * The second argument is the nifp to work on. In some cases it is
585  * not attached yet to the netmap_priv_d so we need to pass it as
586  * a separate argument.
587  */
588 /* call with NMG_LOCK held */
589 static void
590 netmap_do_unregif(struct netmap_priv_d *priv, struct netmap_if *nifp)
591 {
592 	struct netmap_adapter *na = priv->np_na;
593 	struct ifnet *ifp = na->ifp;
594 
595 	NMG_LOCK_ASSERT();
596 	na->active_fds--;
597 	if (na->active_fds <= 0) {	/* last instance */
598 
599 		if (netmap_verbose)
600 			D("deleting last instance for %s", NM_IFPNAME(ifp));
601 		/*
602 		 * (TO CHECK) This function is only called
603 		 * when the last reference to this file descriptor goes
604 		 * away. This means we cannot have any pending poll()
605 		 * or interrupt routine operating on the structure.
606 		 * XXX The file may be closed in a thread while
607 		 * another thread is using it.
608 		 * Linux keeps the file opened until the last reference
609 		 * by any outstanding ioctl/poll or mmap is gone.
610 		 * FreeBSD does not track mmap()s (but we do) and
611 		 * wakes up any sleeping poll(). Need to check what
612 		 * happens if the close() occurs while a concurrent
613 		 * syscall is running.
614 		 */
615 		if (ifp)
616 			na->nm_register(na, 0); /* off, clear IFCAP_NETMAP */
617 		/* Wake up any sleeping threads. netmap_poll will
618 		 * then return POLLERR
619 		 * XXX The wake up now must happen during *_down(), when
620 		 * we order all activities to stop. -gl
621 		 */
622 		/* XXX kqueue(9) needed; these will mirror knlist_init. */
623 		/* knlist_destroy(&na->tx_si.si_note); */
624 		/* knlist_destroy(&na->rx_si.si_note); */
625 
626 		/* delete rings and buffers */
627 		netmap_mem_rings_delete(na);
628 		na->nm_krings_delete(na);
629 	}
630 	/* delete the nifp */
631 	netmap_mem_if_delete(na, nifp);
632 }
633 
634 
635 /*
636  * returns 1 if this is the last instance and we can free priv
637  */
638 int
639 netmap_dtor_locked(struct netmap_priv_d *priv)
640 {
641 	struct netmap_adapter *na = priv->np_na;
642 
643 	/*
644 	 * np_refcount is the number of active mmaps on
645 	 * this file descriptor
646 	 */
647 	if (--priv->np_refcount > 0) {
648 		return 0;
649 	}
650 	if (!na) {
651 	    return 1; //XXX is it correct?
652 	}
653 	netmap_do_unregif(priv, priv->np_nifp);
654 	priv->np_nifp = NULL;
655 	netmap_drop_memory_locked(priv);
656 	if (priv->np_na) {
657 		netmap_adapter_put(na);
658 		priv->np_na = NULL;
659 	}
660 	return 1;
661 }
662 
663 
664 void
665 netmap_dtor(void *data)
666 {
667 	struct netmap_priv_d *priv = data;
668 	int last_instance;
669 
670 	NMG_LOCK();
671 	last_instance = netmap_dtor_locked(priv);
672 	NMG_UNLOCK();
673 	if (last_instance) {
674 		bzero(priv, sizeof(*priv));	/* for safety */
675 		kfree(priv, M_DEVBUF);
676 	}
677 }
678 
679 
680 
681 
682 /*
683  * Handlers for synchronization of the queues from/to the host.
684  * Netmap has two operating modes:
685  * - in the default mode, the rings connected to the host stack are
686  *   just another ring pair managed by userspace;
687  * - in transparent mode (XXX to be defined) incoming packets
688  *   (from the host or the NIC) are marked as NS_FORWARD upon
689  *   arrival, and the user application has a chance to reset the
690  *   flag for packets that should be dropped.
691  *   On the RXSYNC or poll(), packets in RX rings between
692  *   kring->nr_kcur and ring->cur with NS_FORWARD still set are moved
693  *   to the other side.
694  * The transfer NIC --> host is relatively easy, just encapsulate
695  * into mbufs and we are done. The host --> NIC side is slightly
696  * harder because there might not be room in the tx ring so it
697  * might take a while before releasing the buffer.
698  */
699 
700 
701 /*
702  * pass a chain of buffers to the host stack as coming from 'dst'
703  */
704 static void
705 netmap_send_up(struct ifnet *dst, struct mbq *q)
706 {
707 	struct mbuf *m;
708 
709 	/* send packets up, outside the lock */
710 	while ((m = mbq_dequeue(q)) != NULL) {
711 		if (netmap_verbose & NM_VERB_HOST)
712 			D("sending up pkt %p size %d", m, MBUF_LEN(m));
713 		NM_SEND_UP(dst, m);
714 	}
715 	mbq_destroy(q);
716 }
717 
718 
719 /*
720  * put a copy of the buffers marked NS_FORWARD into an mbuf chain.
721  * Run from hwcur to cur - reserved
722  */
723 static void
724 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
725 {
726 	/* Take packets from hwcur to cur-reserved and pass them up.
727 	 * In case of no buffers we give up. At the end of the loop,
728 	 * the queue is drained in all cases.
729 	 * XXX handle reserved
730 	 */
731 	u_int lim = kring->nkr_num_slots - 1;
732 	struct mbuf *m;
733 	u_int k = kring->ring->cur, n = kring->ring->reserved;
734 	struct netmap_adapter *na = kring->na;
735 
736 	/* compute the final position, ring->cur - ring->reserved */
737 	if (n > 0) {
738 		if (k < n)
739 			k += kring->nkr_num_slots;
740 		k += n;
741 	}
742 	for (n = kring->nr_hwcur; n != k;) {
743 		struct netmap_slot *slot = &kring->ring->slot[n];
744 
745 		n = nm_next(n, lim);
746 		if ((slot->flags & NS_FORWARD) == 0 && !force)
747 			continue;
748 		if (slot->len < 14 || slot->len > NETMAP_BDG_BUF_SIZE(na->nm_mem)) {
749 			D("bad pkt at %d len %d", n, slot->len);
750 			continue;
751 		}
752 		slot->flags &= ~NS_FORWARD; // XXX needed ?
753 		/* XXX adapt to the case of a multisegment packet */
754 		m = m_devget(BDG_NMB(na, slot), slot->len, 0, na->ifp);
755 
756 		if (m == NULL)
757 			break;
758 		mbq_enqueue(q, m);
759 	}
760 }
761 
762 
763 /*
764  * The host ring has packets from nr_hwcur to (cur - reserved)
765  * to be sent down to the NIC.
766  * We need to use the queue lock on the source (host RX ring)
767  * to protect against netmap_transmit.
768  * If the user is well behaved we do not need to acquire locks
769  * on the destination(s),
770  * so we only need to make sure that there are no panics because
771  * of user errors.
772  * XXX verify
773  *
774  * We scan the tx rings, which have just been
775  * flushed so nr_hwcur == cur. Pushing packets down means
776  * increment cur and decrement avail.
777  * XXX to be verified
778  */
779 static void
780 netmap_sw_to_nic(struct netmap_adapter *na)
781 {
782 	struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
783 	struct netmap_kring *k1 = &na->tx_rings[0];
784 	u_int i, howmany, src_lim, dst_lim;
785 
786 	/* XXX we should also check that the carrier is on */
787 	if (kring->nkr_stopped)
788 		return;
789 
790 	lockmgr(&kring->q_lock, LK_EXCLUSIVE);
791 
792 	if (kring->nkr_stopped)
793 		goto out;
794 
795 	howmany = kring->nr_hwavail;	/* XXX otherwise cur - reserved - nr_hwcur */
796 
797 	src_lim = kring->nkr_num_slots - 1;
798 	for (i = 0; howmany > 0 && i < na->num_tx_rings; i++, k1++) {
799 		ND("%d packets left to ring %d (space %d)", howmany, i, k1->nr_hwavail);
800 		dst_lim = k1->nkr_num_slots - 1;
801 		while (howmany > 0 && k1->ring->avail > 0) {
802 			struct netmap_slot *src, *dst, tmp;
803 			src = &kring->ring->slot[kring->nr_hwcur];
804 			dst = &k1->ring->slot[k1->ring->cur];
805 			tmp = *src;
806 			src->buf_idx = dst->buf_idx;
807 			src->flags = NS_BUF_CHANGED;
808 
809 			dst->buf_idx = tmp.buf_idx;
810 			dst->len = tmp.len;
811 			dst->flags = NS_BUF_CHANGED;
812 			ND("out len %d buf %d from %d to %d",
813 				dst->len, dst->buf_idx,
814 				kring->nr_hwcur, k1->ring->cur);
815 
816 			kring->nr_hwcur = nm_next(kring->nr_hwcur, src_lim);
817 			howmany--;
818 			kring->nr_hwavail--;
819 			k1->ring->cur = nm_next(k1->ring->cur, dst_lim);
820 			k1->ring->avail--;
821 		}
822 		kring->ring->cur = kring->nr_hwcur; // XXX
823 		k1++; // XXX why?
824 	}
825 out:
826 	lockmgr(&kring->q_lock, LK_RELEASE);
827 }
828 
829 
830 /*
831  * netmap_txsync_to_host() passes packets up. We are called from a
832  * system call in user process context, and the only contention
833  * can be among multiple user threads erroneously calling
834  * this routine concurrently.
835  */
836 void
837 netmap_txsync_to_host(struct netmap_adapter *na)
838 {
839 	struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings];
840 	struct netmap_ring *ring = kring->ring;
841 	u_int k, lim = kring->nkr_num_slots - 1;
842 	struct mbq q;
843 	int error;
844 
845 	error = nm_kr_tryget(kring);
846 	if (error) {
847 		if (error == NM_KR_BUSY)
848 			D("ring %p busy (user error)", kring);
849 		return;
850 	}
851 	k = ring->cur;
852 	if (k > lim) {
853 		D("invalid ring index in stack TX kring %p", kring);
854 		netmap_ring_reinit(kring);
855 		nm_kr_put(kring);
856 		return;
857 	}
858 
859 	/* Take packets from hwcur to cur and pass them up.
860 	 * In case of no buffers we give up. At the end of the loop,
861 	 * the queue is drained in all cases.
862 	 */
863 	mbq_init(&q);
864 	netmap_grab_packets(kring, &q, 1);
865 	kring->nr_hwcur = k;
866 	kring->nr_hwavail = ring->avail = lim;
867 
868 	nm_kr_put(kring);
869 	netmap_send_up(na->ifp, &q);
870 }
871 
872 
873 /*
874  * rxsync backend for packets coming from the host stack.
875  * They have been put in the queue by netmap_transmit() so we
876  * need to protect access to the kring using a lock.
877  *
878  * This routine also does the selrecord if called from the poll handler
879  * (we know because td != NULL).
880  *
881  * NOTE: on linux, selrecord() is defined as a macro and uses pwait
882  *     as an additional hidden argument.
883  */
884 static void
885 netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait)
886 {
887 	struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
888 	struct netmap_ring *ring = kring->ring;
889 	u_int j, n, lim = kring->nkr_num_slots;
890 	u_int k = ring->cur, resvd = ring->reserved;
891 
892 	(void)pwait;	/* disable unused warnings */
893 
894 	if (kring->nkr_stopped) /* check a first time without lock */
895 		return;
896 
897 	lockmgr(&kring->q_lock, LK_EXCLUSIVE);
898 
899 	if (kring->nkr_stopped)  /* check again with lock held */
900 		goto unlock_out;
901 
902 	if (k >= lim) {
903 		netmap_ring_reinit(kring);
904 		goto unlock_out;
905 	}
906 	/* new packets are already set in nr_hwavail */
907 	/* skip past packets that userspace has released */
908 	j = kring->nr_hwcur;
909 	if (resvd > 0) {
910 		if (resvd + ring->avail >= lim + 1) {
911 			D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
912 			ring->reserved = resvd = 0; // XXX panic...
913 		}
914 		k = (k >= resvd) ? k - resvd : k + lim - resvd;
915 	}
916 	if (j != k) {
917 		n = k >= j ? k - j : k + lim - j;
918 		kring->nr_hwavail -= n;
919 		kring->nr_hwcur = k;
920 	}
921 	k = ring->avail = kring->nr_hwavail - resvd;
922 	if (k == 0 && td)
923 		KNOTE(&kring->si.ki_note, 0);
924 	if (k && (netmap_verbose & NM_VERB_HOST))
925 		D("%d pkts from stack", k);
926 unlock_out:
927 
928 	lockmgr(&kring->q_lock, LK_RELEASE);
929 }
930 
931 
932 /* Get a netmap adapter for the port.
933  *
934  * If it is possible to satisfy the request, return 0
935  * with *na containing the netmap adapter found.
936  * Otherwise return an error code, with *na containing NULL.
937  *
938  * When the port is attached to a bridge, we always return
939  * EBUSY.
940  * Otherwise, if the port is already bound to a file descriptor,
941  * then we unconditionally return the existing adapter into *na.
942  * In all the other cases, we return (into *na) either native,
943  * generic or NULL, according to the following table:
944  *
945  *					native_support
946  * active_fds   dev.netmap.admode         YES     NO
947  * -------------------------------------------------------
948  *    >0              *                 NA(ifp) NA(ifp)
949  *
950  *     0        NETMAP_ADMODE_BEST      NATIVE  GENERIC
951  *     0        NETMAP_ADMODE_NATIVE    NATIVE   NULL
952  *     0        NETMAP_ADMODE_GENERIC   GENERIC GENERIC
953  *
954  */
955 
956 int
957 netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na)
958 {
959 	/* generic support */
960 	int i = netmap_admode;	/* Take a snapshot. */
961 	int error = 0;
962 	struct netmap_adapter *prev_na;
963 	struct netmap_generic_adapter *gna;
964 
965 	*na = NULL; /* default */
966 
967 	/* reset in case of invalid value */
968 	if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
969 		i = netmap_admode = NETMAP_ADMODE_BEST;
970 
971 	if (NETMAP_CAPABLE(ifp)) {
972 		/* If an adapter already exists, but is
973 		 * attached to a vale port, we report that the
974 		 * port is busy.
975 		 */
976 		if (NETMAP_OWNED_BY_KERN(NA(ifp)))
977 			return EBUSY;
978 
979 		/* If an adapter already exists, return it if
980 		 * there are active file descriptors or if
981 		 * netmap is not forced to use generic
982 		 * adapters.
983 		 */
984 		if (NA(ifp)->active_fds > 0 ||
985 				i != NETMAP_ADMODE_GENERIC) {
986 			*na = NA(ifp);
987 			return 0;
988 		}
989 	}
990 
991 	/* If there isn't native support and netmap is not allowed
992 	 * to use generic adapters, we cannot satisfy the request.
993 	 */
994 	if (!NETMAP_CAPABLE(ifp) && i == NETMAP_ADMODE_NATIVE)
995 		return EINVAL;
996 
997 	/* Otherwise, create a generic adapter and return it,
998 	 * saving the previously used netmap adapter, if any.
999 	 *
1000 	 * Note that here 'prev_na', if not NULL, MUST be a
1001 	 * native adapter, and CANNOT be a generic one. This is
1002 	 * true because generic adapters are created on demand, and
1003 	 * destroyed when not used anymore. Therefore, if the adapter
1004 	 * currently attached to an interface 'ifp' is generic, it
1005 	 * must be that
1006 	 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
1007 	 * Consequently, if NA(ifp) is generic, we will enter one of
1008 	 * the branches above. This ensures that we never override
1009 	 * a generic adapter with another generic adapter.
1010 	 */
1011 	prev_na = NA(ifp);
1012 	error = generic_netmap_attach(ifp);
1013 	if (error)
1014 		return error;
1015 
1016 	*na = NA(ifp);
1017 	gna = (struct netmap_generic_adapter*)NA(ifp);
1018 	gna->prev = prev_na; /* save old na */
1019 	if (prev_na != NULL) {
1020 		// XXX add a refcount ?
1021 		netmap_adapter_get(prev_na);
1022 	}
1023 	D("Created generic NA %p (prev %p)", gna, gna->prev);
1024 
1025 	return 0;
1026 }
1027 
1028 
1029 /*
1030  * MUST BE CALLED UNDER NMG_LOCK()
1031  *
1032  * get a refcounted reference to an interface.
1033  * This is always called in the execution of an ioctl().
1034  *
1035  * Return ENXIO if the interface does not exist, EINVAL if netmap
1036  * is not supported by the interface.
1037  * If successful, hold a reference.
1038  *
1039  * When the NIC is attached to a bridge, reference is managed
1040  * at na->na_bdg_refcount using ADD/DROP_BDG_REF() as well as
1041  * virtual ports.  Hence, on the final DROP_BDG_REF(), the NIC
1042  * is detached from the bridge, then ifp's refcount is dropped (this
1043  * is equivalent to that ifp is destroyed in case of virtual ports.
1044  *
1045  * This function uses if_rele() when we want to prevent the NIC from
1046  * being detached from the bridge in error handling.  But once refcount
1047  * is acquired by this function, it must be released using nm_if_rele().
1048  */
1049 int
1050 netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create)
1051 {
1052 	struct ifnet *ifp;
1053 	int error = 0;
1054 	struct netmap_adapter *ret;
1055 
1056 	*na = NULL;     /* default return value */
1057 
1058 	/* first try to see if this is a bridge port. */
1059 	NMG_LOCK_ASSERT();
1060 
1061 	error = netmap_get_bdg_na(nmr, na, create);
1062 	if (error || *na != NULL) /* valid match in netmap_get_bdg_na() */
1063 		return error;
1064 
1065 	ifnet_lock();
1066 
1067 	ifp = ifunit(nmr->nr_name);
1068 	if (ifp == NULL) {
1069 		error = ENXIO;
1070 		goto out;
1071 	}
1072 
1073 	error = netmap_get_hw_na(ifp, &ret);
1074 	if (error)
1075 		goto out;
1076 
1077 	if (ret != NULL) {
1078 		/* Users cannot use the NIC attached to a bridge directly */
1079 		if (NETMAP_OWNED_BY_KERN(ret)) {
1080 			error = EINVAL;
1081 			goto out;
1082 		}
1083 		error = 0;
1084 		*na = ret;
1085 		netmap_adapter_get(ret);
1086 	}
1087 out:
1088 	ifnet_unlock();
1089 	return error;
1090 }
1091 
1092 
1093 /*
1094  * Error routine called when txsync/rxsync detects an error.
1095  * Can't do much more than resetting cur = hwcur, avail = hwavail.
1096  * Return 1 on reinit.
1097  *
1098  * This routine is only called by the upper half of the kernel.
1099  * It only reads hwcur (which is changed only by the upper half, too)
1100  * and hwavail (which may be changed by the lower half, but only on
1101  * a tx ring and only to increase it, so any error will be recovered
1102  * on the next call). For the above, we don't strictly need to call
1103  * it under lock.
1104  */
1105 int
1106 netmap_ring_reinit(struct netmap_kring *kring)
1107 {
1108 	struct netmap_ring *ring = kring->ring;
1109 	u_int i, lim = kring->nkr_num_slots - 1;
1110 	int errors = 0;
1111 
1112 	// XXX KASSERT nm_kr_tryget
1113 	RD(10, "called for %s", NM_IFPNAME(kring->na->ifp));
1114 	if (ring->cur > lim)
1115 		errors++;
1116 	for (i = 0; i <= lim; i++) {
1117 		u_int idx = ring->slot[i].buf_idx;
1118 		u_int len = ring->slot[i].len;
1119 		if (idx < 2 || idx >= netmap_total_buffers) {
1120 			if (!errors++)
1121 				D("bad buffer at slot %d idx %d len %d ", i, idx, len);
1122 			ring->slot[i].buf_idx = 0;
1123 			ring->slot[i].len = 0;
1124 		} else if (len > NETMAP_BDG_BUF_SIZE(kring->na->nm_mem)) {
1125 			ring->slot[i].len = 0;
1126 			if (!errors++)
1127 				D("bad len %d at slot %d idx %d",
1128 					len, i, idx);
1129 		}
1130 	}
1131 	if (errors) {
1132 		int pos = kring - kring->na->tx_rings;
1133 		int n = kring->na->num_tx_rings + 1;
1134 
1135 		RD(10, "total %d errors", errors);
1136 		errors++;
1137 		RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d",
1138 			NM_IFPNAME(kring->na->ifp),
1139 			pos < n ?  "TX" : "RX", pos < n ? pos : pos - n,
1140 			ring->cur, kring->nr_hwcur,
1141 			ring->avail, kring->nr_hwavail);
1142 		ring->cur = kring->nr_hwcur;
1143 		ring->avail = kring->nr_hwavail;
1144 	}
1145 	return (errors ? 1 : 0);
1146 }
1147 
1148 
1149 /*
1150  * Set the ring ID. For devices with a single queue, a request
1151  * for all rings is the same as a single ring.
1152  */
1153 static int
1154 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid)
1155 {
1156 	struct netmap_adapter *na = priv->np_na;
1157 	struct ifnet *ifp = na->ifp;
1158 	u_int i = ringid & NETMAP_RING_MASK;
1159 	/* initially (np_qfirst == np_qlast) we don't want to lock */
1160 	u_int lim = na->num_rx_rings;
1161 
1162 	if (na->num_tx_rings > lim)
1163 		lim = na->num_tx_rings;
1164 	if ( (ringid & NETMAP_HW_RING) && i >= lim) {
1165 		D("invalid ring id %d", i);
1166 		return (EINVAL);
1167 	}
1168 	priv->np_ringid = ringid;
1169 	if (ringid & NETMAP_SW_RING) {
1170 		priv->np_qfirst = NETMAP_SW_RING;
1171 		priv->np_qlast = 0;
1172 	} else if (ringid & NETMAP_HW_RING) {
1173 		priv->np_qfirst = i;
1174 		priv->np_qlast = i + 1;
1175 	} else {
1176 		priv->np_qfirst = 0;
1177 		priv->np_qlast = NETMAP_HW_RING ;
1178 	}
1179 	priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1;
1180     if (netmap_verbose) {
1181 	if (ringid & NETMAP_SW_RING)
1182 		D("ringid %s set to SW RING", NM_IFPNAME(ifp));
1183 	else if (ringid & NETMAP_HW_RING)
1184 		D("ringid %s set to HW RING %d", NM_IFPNAME(ifp),
1185 			priv->np_qfirst);
1186 	else
1187 		D("ringid %s set to all %d HW RINGS", NM_IFPNAME(ifp), lim);
1188     }
1189 	return 0;
1190 }
1191 
1192 
1193 /*
1194  * possibly move the interface to netmap-mode.
1195  * If success it returns a pointer to netmap_if, otherwise NULL.
1196  * This must be called with NMG_LOCK held.
1197  */
1198 struct netmap_if *
1199 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1200 	uint16_t ringid, int *err)
1201 {
1202 	struct ifnet *ifp = na->ifp;
1203 	struct netmap_if *nifp = NULL;
1204 	int error, need_mem = 0;
1205 
1206 	NMG_LOCK_ASSERT();
1207 	/* ring configuration may have changed, fetch from the card */
1208 	netmap_update_config(na);
1209 	priv->np_na = na;     /* store the reference */
1210 	error = netmap_set_ringid(priv, ringid);
1211 	if (error)
1212 		goto out;
1213 	/* ensure allocators are ready */
1214 	need_mem = !netmap_have_memory_locked(priv);
1215 	if (need_mem) {
1216 		error = netmap_get_memory_locked(priv);
1217 		ND("get_memory returned %d", error);
1218 		if (error)
1219 			goto out;
1220 	}
1221 	nifp = netmap_if_new(NM_IFPNAME(ifp), na);
1222 	if (nifp == NULL) { /* allocation failed */
1223 		/* we should drop the allocator, but only
1224 		 * if we were the ones who grabbed it
1225 		 */
1226 		error = ENOMEM;
1227 		goto out;
1228 	}
1229 	na->active_fds++;
1230 	if (ifp->if_capenable & IFCAP_NETMAP) {
1231 		/* was already set */
1232 	} else {
1233 		/* Otherwise set the card in netmap mode
1234 		 * and make it use the shared buffers.
1235 		 *
1236 		 * do not core lock because the race is harmless here,
1237 		 * there cannot be any traffic to netmap_transmit()
1238 		 */
1239 		na->na_lut = na->nm_mem->pools[NETMAP_BUF_POOL].lut;
1240 		ND("%p->na_lut == %p", na, na->na_lut);
1241 		na->na_lut_objtotal = na->nm_mem->pools[NETMAP_BUF_POOL].objtotal;
1242 		error = na->nm_register(na, 1); /* mode on */
1243 		if (error) {
1244 			netmap_do_unregif(priv, nifp);
1245 			nifp = NULL;
1246 		}
1247 	}
1248 out:
1249 	*err = error;
1250 	if (error) {
1251 		priv->np_na = NULL;
1252 		if (need_mem)
1253 			netmap_drop_memory_locked(priv);
1254 	}
1255 	if (nifp != NULL) {
1256 		/*
1257 		 * advertise that the interface is ready bt setting ni_nifp.
1258 		 * The barrier is needed because readers (poll and *SYNC)
1259 		 * check for priv->np_nifp != NULL without locking
1260 		 */
1261 		wmb(); /* make sure previous writes are visible to all CPUs */
1262 		priv->np_nifp = nifp;
1263 	}
1264 	return nifp;
1265 }
1266 
1267 
1268 
1269 /*
1270  * ioctl(2) support for the "netmap" device.
1271  *
1272  * Following a list of accepted commands:
1273  * - NIOCGINFO
1274  * - SIOCGIFADDR	just for convenience
1275  * - NIOCREGIF
1276  * - NIOCUNREGIF
1277  * - NIOCTXSYNC
1278  * - NIOCRXSYNC
1279  *
1280  * Return 0 on success, errno otherwise.
1281  */
1282 int
1283 netmap_ioctl(struct dev_ioctl_args *ap)
1284 {
1285 	struct netmap_priv_d *priv = NULL;
1286 	struct ifnet *ifp = NULL;
1287 	struct nmreq *nmr = (struct nmreq *) ap->a_data;
1288 	struct netmap_adapter *na = NULL;
1289 	int error;
1290 	u_int i, lim;
1291 	struct netmap_if *nifp;
1292 	struct netmap_kring *krings;
1293 	u_long cmd = ap->a_cmd;
1294 
1295 	error = devfs_get_cdevpriv(ap->a_fp, (void **)&priv);
1296 	if (error) {
1297 		/* XXX ENOENT should be impossible, since the priv
1298 		 * is now created in the open */
1299 		return (error == ENOENT ? ENXIO : error);
1300 	}
1301 
1302 	nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0';	/* truncate name */
1303 	switch (cmd) {
1304 	case NIOCGINFO:		/* return capabilities etc */
1305 		if (nmr->nr_version != NETMAP_API) {
1306 			D("API mismatch got %d have %d",
1307 				nmr->nr_version, NETMAP_API);
1308 			nmr->nr_version = NETMAP_API;
1309 			error = EINVAL;
1310 			break;
1311 		}
1312 		if (nmr->nr_cmd == NETMAP_BDG_LIST) {
1313 			error = netmap_bdg_ctl(nmr, NULL);
1314 			break;
1315 		}
1316 
1317 		NMG_LOCK();
1318 		do {
1319 			/* memsize is always valid */
1320 			struct netmap_mem_d *nmd = &nm_mem;
1321 			u_int memflags;
1322 
1323 			if (nmr->nr_name[0] != '\0') {
1324 				/* get a refcount */
1325 				error = netmap_get_na(nmr, &na, 1 /* create */);
1326 				if (error)
1327 					break;
1328 				nmd = na->nm_mem; /* get memory allocator */
1329 			}
1330 
1331 			error = netmap_mem_get_info(nmd, &nmr->nr_memsize, &memflags);
1332 			if (error)
1333 				break;
1334 			if (na == NULL) /* only memory info */
1335 				break;
1336 			nmr->nr_offset = 0;
1337 			nmr->nr_rx_slots = nmr->nr_tx_slots = 0;
1338 			netmap_update_config(na);
1339 			nmr->nr_rx_rings = na->num_rx_rings;
1340 			nmr->nr_tx_rings = na->num_tx_rings;
1341 			nmr->nr_rx_slots = na->num_rx_desc;
1342 			nmr->nr_tx_slots = na->num_tx_desc;
1343 			if (memflags & NETMAP_MEM_PRIVATE)
1344 				nmr->nr_ringid |= NETMAP_PRIV_MEM;
1345 			netmap_adapter_put(na);
1346 		} while (0);
1347 		NMG_UNLOCK();
1348 		break;
1349 
1350 	case NIOCREGIF:
1351 		if (nmr->nr_version != NETMAP_API) {
1352 			nmr->nr_version = NETMAP_API;
1353 			error = EINVAL;
1354 			break;
1355 		}
1356 		/* possibly attach/detach NIC and VALE switch */
1357 		i = nmr->nr_cmd;
1358 		if (i == NETMAP_BDG_ATTACH || i == NETMAP_BDG_DETACH) {
1359 			error = netmap_bdg_ctl(nmr, NULL);
1360 			break;
1361 		} else if (i != 0) {
1362 			D("nr_cmd must be 0 not %d", i);
1363 			error = EINVAL;
1364 			break;
1365 		}
1366 
1367 		/* protect access to priv from concurrent NIOCREGIF */
1368 		NMG_LOCK();
1369 		do {
1370 			u_int memflags;
1371 
1372 			if (priv->np_na != NULL) {	/* thread already registered */
1373 				error = netmap_set_ringid(priv, nmr->nr_ringid);
1374 				break;
1375 			}
1376 			/* find the interface and a reference */
1377 			error = netmap_get_na(nmr, &na, 1 /* create */); /* keep reference */
1378 			if (error)
1379 				break;
1380 			ifp = na->ifp;
1381 			if (NETMAP_OWNED_BY_KERN(na)) {
1382 				netmap_adapter_put(na);
1383 				error = EBUSY;
1384 				break;
1385 			}
1386 			nifp = netmap_do_regif(priv, na, nmr->nr_ringid, &error);
1387 			if (!nifp) {    /* reg. failed, release priv and ref */
1388 				netmap_adapter_put(na);
1389 				priv->np_nifp = NULL;
1390 				break;
1391 			}
1392 
1393 			/* return the offset of the netmap_if object */
1394 			nmr->nr_rx_rings = na->num_rx_rings;
1395 			nmr->nr_tx_rings = na->num_tx_rings;
1396 			nmr->nr_rx_slots = na->num_rx_desc;
1397 			nmr->nr_tx_slots = na->num_tx_desc;
1398 			error = netmap_mem_get_info(na->nm_mem, &nmr->nr_memsize, &memflags);
1399 			if (error) {
1400 				netmap_adapter_put(na);
1401 				break;
1402 			}
1403 			if (memflags & NETMAP_MEM_PRIVATE) {
1404 				nmr->nr_ringid |= NETMAP_PRIV_MEM;
1405 				*(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
1406 			}
1407 			nmr->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
1408 		} while (0);
1409 		NMG_UNLOCK();
1410 		break;
1411 
1412 	case NIOCUNREGIF:
1413 		// XXX we have no data here ?
1414 		D("deprecated, data is %p", nmr);
1415 		error = EINVAL;
1416 		break;
1417 
1418 	case NIOCTXSYNC:
1419 	case NIOCRXSYNC:
1420 		nifp = priv->np_nifp;
1421 
1422 		if (nifp == NULL) {
1423 			error = ENXIO;
1424 			break;
1425 		}
1426 		rmb(); /* make sure following reads are not from cache */
1427 
1428 		na = priv->np_na;      /* we have a reference */
1429 
1430 		if (na == NULL) {
1431 			D("Internal error: nifp != NULL && na == NULL");
1432 			error = ENXIO;
1433 			break;
1434 		}
1435 
1436 		ifp = na->ifp;
1437 		if (ifp == NULL) {
1438 			RD(1, "the ifp is gone");
1439 			error = ENXIO;
1440 			break;
1441 		}
1442 
1443 		if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */
1444 			if (cmd == NIOCTXSYNC)
1445 				netmap_txsync_to_host(na);
1446 			else
1447 				netmap_rxsync_from_host(na, NULL, NULL);
1448 			break;
1449 		}
1450 		/* find the last ring to scan */
1451 		lim = priv->np_qlast;
1452 		if (lim == NETMAP_HW_RING)
1453 			lim = (cmd == NIOCTXSYNC) ?
1454 			    na->num_tx_rings : na->num_rx_rings;
1455 
1456 		krings = (cmd == NIOCTXSYNC) ? na->tx_rings : na->rx_rings;
1457 		for (i = priv->np_qfirst; i < lim; i++) {
1458 			struct netmap_kring *kring = krings + i;
1459 			if (nm_kr_tryget(kring)) {
1460 				error = EBUSY;
1461 				goto out;
1462 			}
1463 			if (cmd == NIOCTXSYNC) {
1464 				if (netmap_verbose & NM_VERB_TXSYNC)
1465 					D("pre txsync ring %d cur %d hwcur %d",
1466 					    i, kring->ring->cur,
1467 					    kring->nr_hwcur);
1468 				na->nm_txsync(na, i, NAF_FORCE_RECLAIM);
1469 				if (netmap_verbose & NM_VERB_TXSYNC)
1470 					D("post txsync ring %d cur %d hwcur %d",
1471 					    i, kring->ring->cur,
1472 					    kring->nr_hwcur);
1473 			} else {
1474 				na->nm_rxsync(na, i, NAF_FORCE_READ);
1475 				microtime(&na->rx_rings[i].ring->ts);
1476 			}
1477 			nm_kr_put(kring);
1478 		}
1479 
1480 		break;
1481 	case BIOCIMMEDIATE:
1482 	case BIOCGHDRCMPLT:
1483 	case BIOCSHDRCMPLT:
1484 	case BIOCSSEESENT:
1485 		D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT");
1486 		break;
1487 
1488 	default:	/* allow device-specific ioctls */
1489 	    {
1490 		struct socket so;
1491 
1492 		bzero(&so, sizeof(so));
1493 		NMG_LOCK();
1494 		error = netmap_get_na(nmr, &na, 0 /* don't create */); /* keep reference */
1495 		if (error) {
1496 			netmap_adapter_put(na);
1497 			NMG_UNLOCK();
1498 			break;
1499 		}
1500 		ifp = na->ifp;
1501 		// so->so_proto not null.
1502 		error = ifioctl(&so, cmd, ap->a_data, ap->a_cred);
1503 		netmap_adapter_put(na);
1504 		NMG_UNLOCK();
1505 		break;
1506 	    }
1507 	}
1508 out:
1509 
1510 	return (error);
1511 }
1512 
1513 static int
1514 netmap_kqfilter_event(struct knote *kn, long hint)
1515 {
1516 	return (0);
1517 }
1518 
1519 static void
1520 netmap_kqfilter_detach(struct knote *kn)
1521 {
1522 }
1523 
1524 static struct filterops netmap_kqfilter_ops = {
1525 	FILTEROP_ISFD, NULL, netmap_kqfilter_detach, netmap_kqfilter_event,
1526 };
1527 
1528 int
1529 netmap_kqfilter(struct dev_kqfilter_args *ap)
1530 {
1531 	struct knote *kn = ap->a_kn;
1532 
1533 	ap->a_result = 0;
1534 
1535 	switch (kn->kn_filter) {
1536 	case EVFILT_READ:
1537 	case EVFILT_WRITE:
1538 		kn->kn_fop = &netmap_kqfilter_ops;
1539 		break;
1540 	default:
1541 		ap->a_result = EOPNOTSUPP;
1542 		return (0);
1543 	}
1544 
1545 	return (0);
1546 }
1547 
1548 /*
1549  * select(2) and poll(2) handlers for the "netmap" device.
1550  *
1551  * Can be called for one or more queues.
1552  * Return true the event mask corresponding to ready events.
1553  * If there are no ready events, do a selrecord on either individual
1554  * selinfo or on the global one.
1555  * Device-dependent parts (locking and sync of tx/rx rings)
1556  * are done through callbacks.
1557  *
1558  * On linux, arguments are really pwait, the poll table, and 'td' is struct file *
1559  * The first one is remapped to pwait as selrecord() uses the name as an
1560  * hidden argument.
1561  */
1562 static inline int	/* XXX mute unused for now */
1563 netmap_poll(struct cdev *dev, int events, struct thread *td)
1564 {
1565 	struct netmap_priv_d *priv = NULL;
1566 	struct netmap_adapter *na;
1567 	struct ifnet *ifp;
1568 	struct netmap_kring *kring;
1569 	u_int i, check_all_tx, check_all_rx, want_tx, want_rx, revents = 0;
1570 	u_int lim_tx, lim_rx, host_forwarded = 0;
1571 	struct mbq q;
1572 	void *pwait = dev;	/* linux compatibility */
1573 
1574 	/*
1575 	 * In order to avoid nested locks, we need to "double check"
1576 	 * txsync and rxsync if we decide to do a selrecord().
1577 	 * retry_tx (and retry_rx, later) prevent looping forever.
1578 	 */
1579 	int retry_tx = 1;
1580 
1581 	(void)pwait;
1582 	mbq_init(&q);
1583 
1584 	/* XXX poll isn't ported yet so fill in NULL as a placeholder: */
1585 	if (devfs_get_cdevpriv(NULL, (void **)&priv) != 0 || priv == NULL)
1586 		return POLLERR;
1587 
1588 	if (priv->np_nifp == NULL) {
1589 		D("No if registered");
1590 		return POLLERR;
1591 	}
1592 	rmb(); /* make sure following reads are not from cache */
1593 
1594 	na = priv->np_na;
1595 	ifp = na->ifp;
1596 	// check for deleted
1597 	if (ifp == NULL) {
1598 		RD(1, "the ifp is gone");
1599 		return POLLERR;
1600 	}
1601 
1602 	if ( (ifp->if_capenable & IFCAP_NETMAP) == 0)
1603 		return POLLERR;
1604 
1605 	if (netmap_verbose & 0x8000)
1606 		D("device %s events 0x%x", NM_IFPNAME(ifp), events);
1607 	want_tx = events & (POLLOUT | POLLWRNORM);
1608 	want_rx = events & (POLLIN | POLLRDNORM);
1609 
1610 	lim_tx = na->num_tx_rings;
1611 	lim_rx = na->num_rx_rings;
1612 
1613 	if (priv->np_qfirst == NETMAP_SW_RING) {
1614 		/* handle the host stack ring */
1615 		if (priv->np_txpoll || want_tx) {
1616 			/* push any packets up, then we are always ready */
1617 			netmap_txsync_to_host(na);
1618 			revents |= want_tx;
1619 		}
1620 		if (want_rx) {
1621 			kring = &na->rx_rings[lim_rx];
1622 			if (kring->ring->avail == 0)
1623 				netmap_rxsync_from_host(na, td, dev);
1624 			if (kring->ring->avail > 0) {
1625 				revents |= want_rx;
1626 			}
1627 		}
1628 		return (revents);
1629 	}
1630 
1631 	/*
1632 	 * If we are in transparent mode, check also the host rx ring
1633 	 * XXX Transparent mode at the moment requires to bind all
1634  	 * rings to a single file descriptor.
1635 	 */
1636 	kring = &na->rx_rings[lim_rx];
1637 	if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all
1638 			&& want_rx
1639 			&& (netmap_fwd || kring->ring->flags & NR_FORWARD) ) {
1640 		if (kring->ring->avail == 0)
1641 			netmap_rxsync_from_host(na, td, dev);
1642 		if (kring->ring->avail > 0)
1643 			revents |= want_rx;
1644 	}
1645 
1646 	/*
1647 	 * check_all_{tx|rx} are set if the card has more than one queue AND
1648 	 * the file descriptor is bound to all of them. If so, we sleep on
1649 	 * the "global" selinfo, otherwise we sleep on individual selinfo
1650 	 * (FreeBSD only allows two selinfo's per file descriptor).
1651 	 * The interrupt routine in the driver wake one or the other
1652 	 * (or both) depending on which clients are active.
1653 	 *
1654 	 * rxsync() is only called if we run out of buffers on a POLLIN.
1655 	 * txsync() is called if we run out of buffers on POLLOUT, or
1656 	 * there are pending packets to send. The latter can be disabled
1657 	 * passing NETMAP_NO_TX_POLL in the NIOCREG call.
1658 	 */
1659 	check_all_tx = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1);
1660 	check_all_rx = (priv->np_qlast == NETMAP_HW_RING) && (lim_rx > 1);
1661 
1662 	if (priv->np_qlast != NETMAP_HW_RING) {
1663 		lim_tx = lim_rx = priv->np_qlast;
1664 	}
1665 
1666 	/*
1667 	 * We start with a lock free round which is cheap if we have
1668 	 * slots available. If this fails, then lock and call the sync
1669 	 * routines.
1670 	 */
1671 	for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) {
1672 		kring = &na->rx_rings[i];
1673 		if (kring->ring->avail > 0) {
1674 			revents |= want_rx;
1675 			want_rx = 0;	/* also breaks the loop */
1676 		}
1677 	}
1678 	for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) {
1679 		kring = &na->tx_rings[i];
1680 		if (kring->ring->avail > 0) {
1681 			revents |= want_tx;
1682 			want_tx = 0;	/* also breaks the loop */
1683 		}
1684 	}
1685 
1686 	/*
1687 	 * If we to push packets out (priv->np_txpoll) or want_tx is
1688 	 * still set, we do need to run the txsync calls (on all rings,
1689 	 * to avoid that the tx rings stall).
1690 	 * XXX should also check cur != hwcur on the tx rings.
1691 	 * Fortunately, normal tx mode has np_txpoll set.
1692 	 */
1693 	if (priv->np_txpoll || want_tx) {
1694 		/* If we really want to be woken up (want_tx),
1695 		 * do a selrecord, either on the global or on
1696 		 * the private structure.  Then issue the txsync
1697 		 * so there is no race in the selrecord/selwait
1698 		 */
1699 flush_tx:
1700 		for (i = priv->np_qfirst; i < lim_tx; i++) {
1701 			kring = &na->tx_rings[i];
1702 			/*
1703 			 * Skip this ring if want_tx == 0
1704 			 * (we have already done a successful sync on
1705 			 * a previous ring) AND kring->cur == kring->hwcur
1706 			 * (there are no pending transmissions for this ring).
1707 			 */
1708 			if (!want_tx && kring->ring->cur == kring->nr_hwcur)
1709 				continue;
1710 			/* make sure only one user thread is doing this */
1711 			if (nm_kr_tryget(kring)) {
1712 				ND("ring %p busy is %d",
1713 				    kring, (int)kring->nr_busy);
1714 				revents |= POLLERR;
1715 				goto out;
1716 			}
1717 
1718 			if (netmap_verbose & NM_VERB_TXSYNC)
1719 				D("send %d on %s %d",
1720 					kring->ring->cur, NM_IFPNAME(ifp), i);
1721 			if (na->nm_txsync(na, i, 0))
1722 				revents |= POLLERR;
1723 
1724 			/* Check avail/call selrecord only if called with POLLOUT */
1725 			if (want_tx) {
1726 				if (kring->ring->avail > 0) {
1727 					/* stop at the first ring. We don't risk
1728 					 * starvation.
1729 					 */
1730 					revents |= want_tx;
1731 					want_tx = 0;
1732 				}
1733 			}
1734 			nm_kr_put(kring);
1735 		}
1736 		if (want_tx && retry_tx) {
1737 			KNOTE(check_all_tx ? &na->tx_si.ki_note :
1738 			    &na->tx_rings[priv->np_qfirst].si.ki_note, 0);
1739 			retry_tx = 0;
1740 			goto flush_tx;
1741 		}
1742 	}
1743 
1744 	/*
1745 	 * now if want_rx is still set we need to lock and rxsync.
1746 	 * Do it on all rings because otherwise we starve.
1747 	 */
1748 	if (want_rx) {
1749 		int retry_rx = 1;
1750 do_retry_rx:
1751 		for (i = priv->np_qfirst; i < lim_rx; i++) {
1752 			kring = &na->rx_rings[i];
1753 
1754 			if (nm_kr_tryget(kring)) {
1755 				revents |= POLLERR;
1756 				goto out;
1757 			}
1758 
1759 			/* XXX NR_FORWARD should only be read on
1760 			 * physical or NIC ports
1761 			 */
1762 			if (netmap_fwd ||kring->ring->flags & NR_FORWARD) {
1763 				ND(10, "forwarding some buffers up %d to %d",
1764 				    kring->nr_hwcur, kring->ring->cur);
1765 				netmap_grab_packets(kring, &q, netmap_fwd);
1766 			}
1767 
1768 			if (na->nm_rxsync(na, i, 0))
1769 				revents |= POLLERR;
1770 			if (netmap_no_timestamp == 0 ||
1771 					kring->ring->flags & NR_TIMESTAMP) {
1772 				microtime(&kring->ring->ts);
1773 			}
1774 
1775 			if (kring->ring->avail > 0) {
1776 				revents |= want_rx;
1777 				retry_rx = 0;
1778 			}
1779 			nm_kr_put(kring);
1780 		}
1781 		if (retry_rx) {
1782 			retry_rx = 0;
1783 			KNOTE(check_all_rx ? &na->rx_si.ki_note :
1784 			    &na->rx_rings[priv->np_qfirst].si.ki_note, 0);
1785 			goto do_retry_rx;
1786 		}
1787 	}
1788 
1789 	/* forward host to the netmap ring.
1790 	 * I am accessing nr_hwavail without lock, but netmap_transmit
1791 	 * can only increment it, so the operation is safe.
1792 	 */
1793 	kring = &na->rx_rings[lim_rx];
1794 	if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all
1795 			&& (netmap_fwd || kring->ring->flags & NR_FORWARD)
1796 			 && kring->nr_hwavail > 0 && !host_forwarded) {
1797 		netmap_sw_to_nic(na);
1798 		host_forwarded = 1; /* prevent another pass */
1799 		want_rx = 0;
1800 		goto flush_tx;
1801 	}
1802 
1803 	if (q.head)
1804 		netmap_send_up(na->ifp, &q);
1805 
1806 out:
1807 
1808 	return (revents);
1809 }
1810 
1811 /*------- driver support routines ------*/
1812 
1813 static int netmap_hw_krings_create(struct netmap_adapter *);
1814 
1815 static int
1816 netmap_notify(struct netmap_adapter *na, u_int n_ring, enum txrx tx, int flags)
1817 {
1818 	struct netmap_kring *kring;
1819 
1820 	if (tx == NR_TX) {
1821 		kring = na->tx_rings + n_ring;
1822 		KNOTE(&kring->si.ki_note, 0);
1823 		wakeup(&kring->si.ki_note);
1824 		if (flags & NAF_GLOBAL_NOTIFY)
1825 			wakeup(&na->tx_si.ki_note);
1826 	} else {
1827 		kring = na->rx_rings + n_ring;
1828 		KNOTE(&kring->si.ki_note, 0);
1829 		wakeup(&kring->si.ki_note);
1830 		if (flags & NAF_GLOBAL_NOTIFY)
1831 			wakeup(&na->rx_si.ki_note);
1832 	}
1833 	return 0;
1834 }
1835 
1836 
1837 // XXX check handling of failures
1838 int
1839 netmap_attach_common(struct netmap_adapter *na)
1840 {
1841 	struct ifnet *ifp = na->ifp;
1842 
1843 	if (na->num_tx_rings == 0 || na->num_rx_rings == 0) {
1844 		D("%s: invalid rings tx %d rx %d",
1845 			ifp->if_xname, na->num_tx_rings, na->num_rx_rings);
1846 		return EINVAL;
1847 	}
1848 	WNA(ifp) = na;
1849 	NETMAP_SET_CAPABLE(ifp);
1850 	if (na->nm_krings_create == NULL) {
1851 		na->nm_krings_create = netmap_hw_krings_create;
1852 		na->nm_krings_delete = netmap_krings_delete;
1853 	}
1854 	if (na->nm_notify == NULL)
1855 		na->nm_notify = netmap_notify;
1856 	na->active_fds = 0;
1857 
1858 	if (na->nm_mem == NULL)
1859 		na->nm_mem = &nm_mem;
1860 	return 0;
1861 }
1862 
1863 
1864 void
1865 netmap_detach_common(struct netmap_adapter *na)
1866 {
1867 	if (na->ifp)
1868 		WNA(na->ifp) = NULL; /* XXX do we need this? */
1869 
1870 	if (na->tx_rings) { /* XXX should not happen */
1871 		D("freeing leftover tx_rings");
1872 		na->nm_krings_delete(na);
1873 	}
1874 	if (na->na_flags & NAF_MEM_OWNER)
1875 		netmap_mem_private_delete(na->nm_mem);
1876 	bzero(na, sizeof(*na));
1877 	kfree(na, M_DEVBUF);
1878 }
1879 
1880 
1881 /*
1882  * Initialize a ``netmap_adapter`` object created by driver on attach.
1883  * We allocate a block of memory with room for a struct netmap_adapter
1884  * plus two sets of N+2 struct netmap_kring (where N is the number
1885  * of hardware rings):
1886  * krings	0..N-1	are for the hardware queues.
1887  * kring	N	is for the host stack queue
1888  * kring	N+1	is only used for the selinfo for all queues.
1889  * Return 0 on success, ENOMEM otherwise.
1890  *
1891  * By default the receive and transmit adapter ring counts are both initialized
1892  * to num_queues.  na->num_tx_rings can be set for cards with different tx/rx
1893  * setups.
1894  */
1895 int
1896 netmap_attach(struct netmap_adapter *arg)
1897 {
1898 	struct netmap_hw_adapter *hwna = NULL;
1899 	// XXX when is arg == NULL ?
1900 	struct ifnet *ifp = arg ? arg->ifp : NULL;
1901 
1902 	if (arg == NULL || ifp == NULL)
1903 		goto fail;
1904 	hwna = kmalloc(sizeof(*hwna), M_DEVBUF, M_NOWAIT | M_ZERO);
1905 	if (hwna == NULL)
1906 		goto fail;
1907 	hwna->up = *arg;
1908 	if (netmap_attach_common(&hwna->up)) {
1909 		kfree(hwna, M_DEVBUF);
1910 		goto fail;
1911 	}
1912 	netmap_adapter_get(&hwna->up);
1913 
1914 	D("success for %s", NM_IFPNAME(ifp));
1915 	return 0;
1916 
1917 fail:
1918 	D("fail, arg %p ifp %p na %p", arg, ifp, hwna);
1919 	netmap_detach(ifp);
1920 	return (hwna ? EINVAL : ENOMEM);
1921 }
1922 
1923 
1924 void
1925 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
1926 {
1927 	if (!na) {
1928 		return;
1929 	}
1930 
1931 	refcount_acquire(&na->na_refcount);
1932 }
1933 
1934 
1935 /* returns 1 iff the netmap_adapter is destroyed */
1936 int
1937 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
1938 {
1939 	if (!na)
1940 		return 1;
1941 
1942 	if (!refcount_release(&na->na_refcount))
1943 		return 0;
1944 
1945 	if (na->nm_dtor)
1946 		na->nm_dtor(na);
1947 
1948 	netmap_detach_common(na);
1949 
1950 	return 1;
1951 }
1952 
1953 
1954 int
1955 netmap_hw_krings_create(struct netmap_adapter *na)
1956 {
1957 	return netmap_krings_create(na,
1958 		na->num_tx_rings + 1, na->num_rx_rings + 1, 0);
1959 }
1960 
1961 
1962 
1963 /*
1964  * Free the allocated memory linked to the given ``netmap_adapter``
1965  * object.
1966  */
1967 void
1968 netmap_detach(struct ifnet *ifp)
1969 {
1970 	struct netmap_adapter *na = NA(ifp);
1971 
1972 	if (!na)
1973 		return;
1974 
1975 	NMG_LOCK();
1976 	netmap_disable_all_rings(ifp);
1977 	netmap_adapter_put(na);
1978 	na->ifp = NULL;
1979 	netmap_enable_all_rings(ifp);
1980 	NMG_UNLOCK();
1981 }
1982 
1983 
1984 /*
1985  * Intercept packets from the network stack and pass them
1986  * to netmap as incoming packets on the 'software' ring.
1987  * We rely on the OS to make sure that the ifp and na do not go
1988  * away (typically the caller checks for IFF_DRV_RUNNING or the like).
1989  * In nm_register() or whenever there is a reinitialization,
1990  * we make sure to access the core lock and per-ring locks
1991  * so that IFCAP_NETMAP is visible here.
1992  */
1993 int
1994 netmap_transmit(struct ifnet *ifp, struct mbuf *m)
1995 {
1996 	struct netmap_adapter *na = NA(ifp);
1997 	struct netmap_kring *kring;
1998 	u_int i, len = MBUF_LEN(m);
1999 	u_int error = EBUSY, lim;
2000 	struct netmap_slot *slot;
2001 
2002 	// XXX [Linux] we do not need this lock
2003 	// if we follow the down/configure/up protocol -gl
2004 	// mtx_lock(&na->core_lock);
2005 	if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) {
2006 		/* interface not in netmap mode anymore */
2007 		error = ENXIO;
2008 		goto done;
2009 	}
2010 
2011 	kring = &na->rx_rings[na->num_rx_rings];
2012 	lim = kring->nkr_num_slots - 1;
2013 	if (netmap_verbose & NM_VERB_HOST)
2014 		D("%s packet %d len %d from the stack", NM_IFPNAME(ifp),
2015 			kring->nr_hwcur + kring->nr_hwavail, len);
2016 	// XXX reconsider long packets if we handle fragments
2017 	if (len > NETMAP_BDG_BUF_SIZE(na->nm_mem)) { /* too long for us */
2018 		D("%s from_host, drop packet size %d > %d", NM_IFPNAME(ifp),
2019 			len, NETMAP_BDG_BUF_SIZE(na->nm_mem));
2020 		goto done;
2021 	}
2022 	/* protect against other instances of netmap_transmit,
2023 	 * and userspace invocations of rxsync().
2024 	 */
2025 	// XXX [Linux] there can be no other instances of netmap_transmit
2026 	// on this same ring, but we still need this lock to protect
2027 	// concurrent access from netmap_sw_to_nic() -gl
2028 	lockmgr(&kring->q_lock, LK_EXCLUSIVE);
2029 	if (kring->nr_hwavail >= lim) {
2030 		if (netmap_verbose)
2031 			D("stack ring %s full\n", NM_IFPNAME(ifp));
2032 	} else {
2033 		/* compute the insert position */
2034 		i = nm_kr_rxpos(kring);
2035 		slot = &kring->ring->slot[i];
2036 		m_copydata(m, 0, (int)len, BDG_NMB(na, slot));
2037 		slot->len = len;
2038 		slot->flags = kring->nkr_slot_flags;
2039 		kring->nr_hwavail++;
2040 		if (netmap_verbose  & NM_VERB_HOST)
2041 			D("wake up host ring %s %d", NM_IFPNAME(na->ifp), na->num_rx_rings);
2042 		na->nm_notify(na, na->num_rx_rings, NR_RX, 0);
2043 		error = 0;
2044 	}
2045 	lockmgr(&kring->q_lock, LK_RELEASE);
2046 
2047 done:
2048 	// mtx_unlock(&na->core_lock);
2049 
2050 	/* release the mbuf in either cases of success or failure. As an
2051 	 * alternative, put the mbuf in a free list and free the list
2052 	 * only when really necessary.
2053 	 */
2054 	m_freem(m);
2055 
2056 	return (error);
2057 }
2058 
2059 
2060 /*
2061  * netmap_reset() is called by the driver routines when reinitializing
2062  * a ring. The driver is in charge of locking to protect the kring.
2063  * If native netmap mode is not set just return NULL.
2064  */
2065 struct netmap_slot *
2066 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
2067 	u_int new_cur)
2068 {
2069 	struct netmap_kring *kring;
2070 	int new_hwofs, lim;
2071 
2072 	if (na == NULL) {
2073 		D("NULL na, should not happen");
2074 		return NULL;	/* no netmap support here */
2075 	}
2076 	if (!(na->ifp->if_capenable & IFCAP_NETMAP) || nma_is_generic(na)) {
2077 		ND("interface not in netmap mode");
2078 		return NULL;	/* nothing to reinitialize */
2079 	}
2080 
2081 	/* XXX note- in the new scheme, we are not guaranteed to be
2082 	 * under lock (e.g. when called on a device reset).
2083 	 * In this case, we should set a flag and do not trust too
2084 	 * much the values. In practice: TODO
2085 	 * - set a RESET flag somewhere in the kring
2086 	 * - do the processing in a conservative way
2087 	 * - let the *sync() fixup at the end.
2088 	 */
2089 	if (tx == NR_TX) {
2090 		if (n >= na->num_tx_rings)
2091 			return NULL;
2092 		kring = na->tx_rings + n;
2093 		new_hwofs = kring->nr_hwcur - new_cur;
2094 	} else {
2095 		if (n >= na->num_rx_rings)
2096 			return NULL;
2097 		kring = na->rx_rings + n;
2098 		new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur;
2099 	}
2100 	lim = kring->nkr_num_slots - 1;
2101 	if (new_hwofs > lim)
2102 		new_hwofs -= lim + 1;
2103 
2104 	/* Always set the new offset value and realign the ring. */
2105 	D("%s hwofs %d -> %d, hwavail %d -> %d",
2106 		tx == NR_TX ? "TX" : "RX",
2107 		kring->nkr_hwofs, new_hwofs,
2108 		kring->nr_hwavail,
2109 		tx == NR_TX ? lim : kring->nr_hwavail);
2110 	kring->nkr_hwofs = new_hwofs;
2111 	if (tx == NR_TX)
2112 		kring->nr_hwavail = lim;
2113 	kring->nr_hwreserved = 0;
2114 
2115 	/*
2116 	 * Wakeup on the individual and global selwait
2117 	 * We do the wakeup here, but the ring is not yet reconfigured.
2118 	 * However, we are under lock so there are no races.
2119 	 */
2120 	na->nm_notify(na, n, tx, NAF_GLOBAL_NOTIFY);
2121 	return kring->ring->slot;
2122 }
2123 
2124 
2125 /*
2126  * Default functions to handle rx/tx interrupts from a physical device.
2127  * "work_done" is non-null on the RX path, NULL for the TX path.
2128  * "generic" is 0 when we are called by a device driver, and 1 when we
2129  * are called by the generic netmap adapter layer.
2130  * We rely on the OS to make sure that there is only one active
2131  * instance per queue, and that there is appropriate locking.
2132  *
2133  * If the card is not in netmap mode, simply return 0,
2134  * so that the caller proceeds with regular processing.
2135  *
2136  * We return 0 also when the card is in netmap mode but the current
2137  * netmap adapter is the generic one, because this function will be
2138  * called by the generic layer.
2139  *
2140  * If the card is connected to a netmap file descriptor,
2141  * do a selwakeup on the individual queue, plus one on the global one
2142  * if needed (multiqueue card _and_ there are multiqueue listeners),
2143  * and return 1.
2144  *
2145  * Finally, if called on rx from an interface connected to a switch,
2146  * calls the proper forwarding routine, and return 1.
2147  */
2148 int
2149 netmap_common_irq(struct ifnet *ifp, u_int q, u_int *work_done)
2150 {
2151 	struct netmap_adapter *na = NA(ifp);
2152 	struct netmap_kring *kring;
2153 
2154 	q &= NETMAP_RING_MASK;
2155 
2156 	if (netmap_verbose) {
2157 	        RD(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
2158 	}
2159 
2160 	if (work_done) { /* RX path */
2161 		if (q >= na->num_rx_rings)
2162 			return 0;	// not a physical queue
2163 		kring = na->rx_rings + q;
2164 		kring->nr_kflags |= NKR_PENDINTR;	// XXX atomic ?
2165 		na->nm_notify(na, q, NR_RX,
2166 			(na->num_rx_rings > 1 ? NAF_GLOBAL_NOTIFY : 0));
2167 		*work_done = 1; /* do not fire napi again */
2168 	} else { /* TX path */
2169 		if (q >= na->num_tx_rings)
2170 			return 0;	// not a physical queue
2171 		kring = na->tx_rings + q;
2172 		na->nm_notify(na, q, NR_TX,
2173 			(na->num_tx_rings > 1 ? NAF_GLOBAL_NOTIFY : 0));
2174 	}
2175 	return 1;
2176 }
2177 
2178 /*
2179  * Default functions to handle rx/tx interrupts from a physical device.
2180  * "work_done" is non-null on the RX path, NULL for the TX path.
2181  * "generic" is 0 when we are called by a device driver, and 1 when we
2182  * are called by the generic netmap adapter layer.
2183  * We rely on the OS to make sure that there is only one active
2184  * instance per queue, and that there is appropriate locking.
2185  *
2186  * If the card is not in netmap mode, simply return 0,
2187  * so that the caller proceeds with regular processing.
2188  *
2189  * If the card is connected to a netmap file descriptor,
2190  * do a selwakeup on the individual queue, plus one on the global one
2191  * if needed (multiqueue card _and_ there are multiqueue listeners),
2192  * and return 1.
2193  *
2194  * Finally, if called on rx from an interface connected to a switch,
2195  * calls the proper forwarding routine, and return 1.
2196  */
2197 int
2198 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done)
2199 {
2200 	// XXX could we check NAF_NATIVE_ON ?
2201 	if (!(ifp->if_capenable & IFCAP_NETMAP))
2202 		return 0;
2203 
2204 	if (NA(ifp)->na_flags & NAF_SKIP_INTR) {
2205 		ND("use regular interrupt");
2206 		return 0;
2207 	}
2208 
2209 	return netmap_common_irq(ifp, q, work_done);
2210 }
2211 
2212 
2213 static struct cdev *netmap_dev; /* /dev/netmap character device. */
2214 
2215 
2216 /*
2217  * Module loader.
2218  *
2219  * Create the /dev/netmap device and initialize all global
2220  * variables.
2221  *
2222  * Return 0 on success, errno on failure.
2223  */
2224 int
2225 netmap_init(void)
2226 {
2227 	int error;
2228 
2229 	NMG_LOCK_INIT();
2230 
2231 	error = netmap_mem_init();
2232 	if (error != 0) {
2233 		kprintf("netmap: unable to initialize the memory allocator.\n");
2234 		return (error);
2235 	}
2236 	kprintf("netmap: loaded module\n");
2237 	netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660,
2238 			      "netmap");
2239 
2240 	netmap_init_bridges();
2241 	return (error);
2242 }
2243 
2244 
2245 /*
2246  * Module unloader.
2247  *
2248  * Free all the memory, and destroy the ``/dev/netmap`` device.
2249  */
2250 void
2251 netmap_fini(void)
2252 {
2253 	destroy_dev(netmap_dev);
2254 	netmap_mem_fini();
2255 	NMG_LOCK_DESTROY();
2256 	kprintf("netmap: unloaded module.\n");
2257 }
2258