xref: /dragonfly/sys/net/pf/pf_norm.c (revision 2983445f)
1 /*	$OpenBSD: pf_norm.c,v 1.113 2008/05/07 07:07:29 markus Exp $ */
2 
3 /*
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/mbuf.h>
36 #include <sys/filio.h>
37 #include <sys/fcntl.h>
38 #include <sys/socket.h>
39 #include <sys/kernel.h>
40 #include <sys/time.h>
41 #include <vm/vm_zone.h>
42 
43 #include <net/if.h>
44 #include <net/if_types.h>
45 #include <net/bpf.h>
46 #include <net/route.h>
47 #include <net/pf/if_pflog.h>
48 
49 #include <netinet/in.h>
50 #include <netinet/in_var.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/ip.h>
53 #include <netinet/ip_var.h>
54 #include <netinet/tcp.h>
55 #include <netinet/tcp_seq.h>
56 #include <netinet/udp.h>
57 #include <netinet/ip_icmp.h>
58 
59 #ifdef INET6
60 #include <netinet/ip6.h>
61 #endif /* INET6 */
62 
63 #include <net/pf/pfvar.h>
64 
65 #define PFFRAG_SEENLAST	0x0001		/* Seen the last fragment for this */
66 #define PFFRAG_NOBUFFER	0x0002		/* Non-buffering fragment cache */
67 #define PFFRAG_DROP	0x0004		/* Drop all fragments */
68 #define BUFFER_FRAGMENTS(fr)	(!((fr)->fr_flags & PFFRAG_NOBUFFER))
69 
70 
71 TAILQ_HEAD(pf_fragqueue, pf_fragment)	pf_fragqueue;
72 TAILQ_HEAD(pf_cachequeue, pf_fragment)	pf_cachequeue;
73 
74 static __inline int	 pf_frag_compare(struct pf_fragment *,
75 			    struct pf_fragment *);
76 RB_HEAD(pf_frag_tree, pf_fragment)	pf_frag_tree, pf_cache_tree;
77 RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
78 RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
79 
80 /* Private prototypes */
81 void			 pf_ip2key(struct pf_fragment *, struct ip *);
82 void			 pf_remove_fragment(struct pf_fragment *);
83 void			 pf_flush_fragments(void);
84 void			 pf_free_fragment(struct pf_fragment *);
85 struct pf_fragment	*pf_find_fragment(struct ip *, struct pf_frag_tree *);
86 struct mbuf		*pf_reassemble(struct mbuf **, struct pf_fragment **,
87 			    struct pf_frent *, int);
88 struct mbuf		*pf_fragcache(struct mbuf **, struct ip*,
89 			    struct pf_fragment **, int, int, int *);
90 int			 pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
91 			    struct tcphdr *, int, sa_family_t);
92 
93 #define	DPFPRINTF(x) do {				\
94 	if (pf_status.debug >= PF_DEBUG_MISC) {		\
95 		kprintf("%s: ", __func__);		\
96 		kprintf x ;				\
97 	}						\
98 } while(0)
99 
100 /* Globals */
101 vm_zone_t		 pf_frent_pl, pf_frag_pl, pf_cache_pl, pf_cent_pl;
102 vm_zone_t		 pf_state_scrub_pl;
103 int			 pf_nfrents, pf_ncache;
104 
105 void
106 pf_normalize_init(void)
107 {
108 	/* XXX
109 	pool_sethiwat(&pf_frag_pl, PFFRAG_FRAG_HIWAT);
110 	pool_sethardlimit(&pf_frent_pl, PFFRAG_FRENT_HIWAT, NULL, 0);
111 	pool_sethardlimit(&pf_cache_pl, PFFRAG_FRCACHE_HIWAT, NULL, 0);
112 	pool_sethardlimit(&pf_cent_pl, PFFRAG_FRCENT_HIWAT, NULL, 0);
113 	*/
114 
115 	TAILQ_INIT(&pf_fragqueue);
116 	TAILQ_INIT(&pf_cachequeue);
117 }
118 
119 static __inline int
120 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
121 {
122 	int	diff;
123 
124 	if ((diff = a->fr_id - b->fr_id))
125 		return (diff);
126 	else if ((diff = a->fr_p - b->fr_p))
127 		return (diff);
128 	else if (a->fr_src.s_addr < b->fr_src.s_addr)
129 		return (-1);
130 	else if (a->fr_src.s_addr > b->fr_src.s_addr)
131 		return (1);
132 	else if (a->fr_dst.s_addr < b->fr_dst.s_addr)
133 		return (-1);
134 	else if (a->fr_dst.s_addr > b->fr_dst.s_addr)
135 		return (1);
136 	return (0);
137 }
138 
139 void
140 pf_purge_expired_fragments(void)
141 {
142 	struct pf_fragment	*frag;
143 	u_int32_t		 expire = time_second -
144 				    pf_default_rule.timeout[PFTM_FRAG];
145 
146 	while ((frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue)) != NULL) {
147 		KASSERT((BUFFER_FRAGMENTS(frag)),
148 			("BUFFER_FRAGMENTS(frag) == 0: %s", __func__));
149 		if (frag->fr_timeout > expire)
150 			break;
151 
152 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
153 		pf_free_fragment(frag);
154 	}
155 
156 	while ((frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue)) != NULL) {
157 		KASSERT((!BUFFER_FRAGMENTS(frag)),
158 			("BUFFER_FRAGMENTS(frag) != 0: %s", __func__));
159 		if (frag->fr_timeout > expire)
160 			break;
161 
162 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
163 		pf_free_fragment(frag);
164 		KASSERT((TAILQ_EMPTY(&pf_cachequeue) ||
165 		    TAILQ_LAST(&pf_cachequeue, pf_cachequeue) != frag),
166 		    ("!(TAILQ_EMPTY() || TAILQ_LAST() == farg): %s",
167 		    __func__));
168 	}
169 }
170 
171 /*
172  * Try to flush old fragments to make space for new ones
173  */
174 
175 void
176 pf_flush_fragments(void)
177 {
178 	struct pf_fragment	*frag;
179 	int			 goal;
180 
181 	goal = pf_nfrents * 9 / 10;
182 	DPFPRINTF(("trying to free > %d frents\n",
183 	    pf_nfrents - goal));
184 	while (goal < pf_nfrents) {
185 		frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue);
186 		if (frag == NULL)
187 			break;
188 		pf_free_fragment(frag);
189 	}
190 
191 
192 	goal = pf_ncache * 9 / 10;
193 	DPFPRINTF(("trying to free > %d cache entries\n",
194 	    pf_ncache - goal));
195 	while (goal < pf_ncache) {
196 		frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue);
197 		if (frag == NULL)
198 			break;
199 		pf_free_fragment(frag);
200 	}
201 }
202 
203 /* Frees the fragments and all associated entries */
204 
205 void
206 pf_free_fragment(struct pf_fragment *frag)
207 {
208 	struct pf_frent		*frent;
209 	struct pf_frcache	*frcache;
210 
211 	/* Free all fragments */
212 	if (BUFFER_FRAGMENTS(frag)) {
213 		for (frent = LIST_FIRST(&frag->fr_queue); frent;
214 		    frent = LIST_FIRST(&frag->fr_queue)) {
215 			LIST_REMOVE(frent, fr_next);
216 
217 			m_freem(frent->fr_m);
218 			pool_put(&pf_frent_pl, frent);
219 			pf_nfrents--;
220 		}
221 	} else {
222 		for (frcache = LIST_FIRST(&frag->fr_cache); frcache;
223 		    frcache = LIST_FIRST(&frag->fr_cache)) {
224 			LIST_REMOVE(frcache, fr_next);
225 
226 			KASSERT((LIST_EMPTY(&frag->fr_cache) ||
227 			    LIST_FIRST(&frag->fr_cache)->fr_off >
228 			    frcache->fr_end),
229 			    ("! (LIST_EMPTY() || LIST_FIRST()->fr_off >"
230                              " frcache->fr_end): %s", __func__));
231 
232 			pool_put(&pf_cent_pl, frcache);
233 			pf_ncache--;
234 		}
235 	}
236 
237 	pf_remove_fragment(frag);
238 }
239 
240 void
241 pf_ip2key(struct pf_fragment *key, struct ip *ip)
242 {
243 	key->fr_p = ip->ip_p;
244 	key->fr_id = ip->ip_id;
245 	key->fr_src.s_addr = ip->ip_src.s_addr;
246 	key->fr_dst.s_addr = ip->ip_dst.s_addr;
247 }
248 
249 struct pf_fragment *
250 pf_find_fragment(struct ip *ip, struct pf_frag_tree *tree)
251 {
252 	struct pf_fragment	 key;
253 	struct pf_fragment	*frag;
254 
255 	pf_ip2key(&key, ip);
256 
257 	frag = RB_FIND(pf_frag_tree, tree, &key);
258 	if (frag != NULL) {
259 		/* XXX Are we sure we want to update the timeout? */
260 		frag->fr_timeout = time_second;
261 		if (BUFFER_FRAGMENTS(frag)) {
262 			TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
263 			TAILQ_INSERT_HEAD(&pf_fragqueue, frag, frag_next);
264 		} else {
265 			TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
266 			TAILQ_INSERT_HEAD(&pf_cachequeue, frag, frag_next);
267 		}
268 	}
269 
270 	return (frag);
271 }
272 
273 /* Removes a fragment from the fragment queue and frees the fragment */
274 
275 void
276 pf_remove_fragment(struct pf_fragment *frag)
277 {
278 	if (BUFFER_FRAGMENTS(frag)) {
279 		RB_REMOVE(pf_frag_tree, &pf_frag_tree, frag);
280 		TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
281 		pool_put(&pf_frag_pl, frag);
282 	} else {
283 		RB_REMOVE(pf_frag_tree, &pf_cache_tree, frag);
284 		TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
285 		pool_put(&pf_cache_pl, frag);
286 	}
287 }
288 
289 #define FR_IP_OFF(fr)	(((fr)->fr_ip->ip_off & IP_OFFMASK) << 3)
290 struct mbuf *
291 pf_reassemble(struct mbuf **m0, struct pf_fragment **frag,
292     struct pf_frent *frent, int mff)
293 {
294 	struct mbuf	*m = *m0, *m2;
295 	struct pf_frent	*frea, *next;
296 	struct pf_frent	*frep = NULL;
297 	struct ip	*ip = frent->fr_ip;
298 	int		 hlen = ip->ip_hl << 2;
299 	u_int16_t	 off = (ip->ip_off & IP_OFFMASK) << 3;
300 	u_int16_t	 ip_len = ip->ip_len - ip->ip_hl * 4;
301 	u_int16_t	 max = ip_len + off;
302 
303 	KASSERT((*frag == NULL || BUFFER_FRAGMENTS(*frag)),
304 	    ("! (*frag == NULL || BUFFER_FRAGMENTS(*frag)): %s", __func__));
305 
306 	/* Strip off ip header */
307 	m->m_data += hlen;
308 	m->m_len -= hlen;
309 
310 	/* Create a new reassembly queue for this packet */
311 	if (*frag == NULL) {
312 		*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
313 		if (*frag == NULL) {
314 			pf_flush_fragments();
315 			*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
316 			if (*frag == NULL)
317 				goto drop_fragment;
318 		}
319 
320 		(*frag)->fr_flags = 0;
321 		(*frag)->fr_max = 0;
322 		(*frag)->fr_src = frent->fr_ip->ip_src;
323 		(*frag)->fr_dst = frent->fr_ip->ip_dst;
324 		(*frag)->fr_p = frent->fr_ip->ip_p;
325 		(*frag)->fr_id = frent->fr_ip->ip_id;
326 		(*frag)->fr_timeout = time_second;
327 		LIST_INIT(&(*frag)->fr_queue);
328 
329 		RB_INSERT(pf_frag_tree, &pf_frag_tree, *frag);
330 		TAILQ_INSERT_HEAD(&pf_fragqueue, *frag, frag_next);
331 
332 		/* We do not have a previous fragment */
333 		frep = NULL;
334 		goto insert;
335 	}
336 
337 	/*
338 	 * Find a fragment after the current one:
339 	 *  - off contains the real shifted offset.
340 	 */
341 	LIST_FOREACH(frea, &(*frag)->fr_queue, fr_next) {
342 		if (FR_IP_OFF(frea) > off)
343 			break;
344 		frep = frea;
345 	}
346 
347 	KASSERT((frep != NULL || frea != NULL),
348 	    ("!(frep != NULL || frea != NULL): %s", __func__));
349 
350 	if (frep != NULL &&
351 	    FR_IP_OFF(frep) + frep->fr_ip->ip_len - frep->fr_ip->ip_hl *
352 	    4 > off)
353 	{
354 		u_int16_t	precut;
355 
356 		precut = FR_IP_OFF(frep) + frep->fr_ip->ip_len -
357 		    frep->fr_ip->ip_hl * 4 - off;
358 		if (precut >= ip_len)
359 			goto drop_fragment;
360 		m_adj(frent->fr_m, precut);
361 		DPFPRINTF(("overlap -%d\n", precut));
362 		/* Enforce 8 byte boundaries */
363 		ip->ip_off = ip->ip_off + (precut >> 3);
364 		off = (ip->ip_off & IP_OFFMASK) << 3;
365 		ip_len -= precut;
366 		ip->ip_len = ip_len;
367 	}
368 
369 	for (; frea != NULL && ip_len + off > FR_IP_OFF(frea);
370 	    frea = next)
371 	{
372 		u_int16_t	aftercut;
373 
374 		aftercut = ip_len + off - FR_IP_OFF(frea);
375 		DPFPRINTF(("adjust overlap %d\n", aftercut));
376 		if (aftercut < frea->fr_ip->ip_len - frea->fr_ip->ip_hl
377 		    * 4)
378 		{
379 			frea->fr_ip->ip_len =
380 			    frea->fr_ip->ip_len - aftercut;
381 			frea->fr_ip->ip_off = frea->fr_ip->ip_off +
382 			    (aftercut >> 3);
383 			m_adj(frea->fr_m, aftercut);
384 			break;
385 		}
386 
387 		/* This fragment is completely overlapped, lose it */
388 		next = LIST_NEXT(frea, fr_next);
389 		m_freem(frea->fr_m);
390 		LIST_REMOVE(frea, fr_next);
391 		pool_put(&pf_frent_pl, frea);
392 		pf_nfrents--;
393 	}
394 
395  insert:
396 	/* Update maximum data size */
397 	if ((*frag)->fr_max < max)
398 		(*frag)->fr_max = max;
399 	/* This is the last segment */
400 	if (!mff)
401 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
402 
403 	if (frep == NULL)
404 		LIST_INSERT_HEAD(&(*frag)->fr_queue, frent, fr_next);
405 	else
406 		LIST_INSERT_AFTER(frep, frent, fr_next);
407 
408 	/* Check if we are completely reassembled */
409 	if (!((*frag)->fr_flags & PFFRAG_SEENLAST))
410 		return (NULL);
411 
412 	/* Check if we have all the data */
413 	off = 0;
414 	for (frep = LIST_FIRST(&(*frag)->fr_queue); frep; frep = next) {
415 		next = LIST_NEXT(frep, fr_next);
416 
417 		off += frep->fr_ip->ip_len - frep->fr_ip->ip_hl * 4;
418 		if (off < (*frag)->fr_max &&
419 		    (next == NULL || FR_IP_OFF(next) != off))
420 		{
421 			DPFPRINTF(("missing fragment at %d, next %d, max %d\n",
422 			    off, next == NULL ? -1 : FR_IP_OFF(next),
423 			    (*frag)->fr_max));
424 			return (NULL);
425 		}
426 	}
427 	DPFPRINTF(("%d < %d?\n", off, (*frag)->fr_max));
428 	if (off < (*frag)->fr_max)
429 		return (NULL);
430 
431 	/* We have all the data */
432 	frent = LIST_FIRST(&(*frag)->fr_queue);
433 	KASSERT((frent != NULL), ("frent == NULL: %s", __func__));
434 	if ((frent->fr_ip->ip_hl << 2) + off > IP_MAXPACKET) {
435 		DPFPRINTF(("drop: too big: %d\n", off));
436 		pf_free_fragment(*frag);
437 		*frag = NULL;
438 		return (NULL);
439 	}
440 	next = LIST_NEXT(frent, fr_next);
441 
442 	/* Magic from ip_input */
443 	ip = frent->fr_ip;
444 	m = frent->fr_m;
445 	m2 = m->m_next;
446 	m->m_next = NULL;
447 	m_cat(m, m2);
448 	pool_put(&pf_frent_pl, frent);
449 	pf_nfrents--;
450 	for (frent = next; frent != NULL; frent = next) {
451 		next = LIST_NEXT(frent, fr_next);
452 
453 		m2 = frent->fr_m;
454 		pool_put(&pf_frent_pl, frent);
455 		pf_nfrents--;
456 		m_cat(m, m2);
457 	}
458 
459 	ip->ip_src = (*frag)->fr_src;
460 	ip->ip_dst = (*frag)->fr_dst;
461 
462 	/* Remove from fragment queue */
463 	pf_remove_fragment(*frag);
464 	*frag = NULL;
465 
466 	hlen = ip->ip_hl << 2;
467 	ip->ip_len = off + hlen;
468 	m->m_len += hlen;
469 	m->m_data -= hlen;
470 
471 	/* some debugging cruft by sklower, below, will go away soon */
472 	/* XXX this should be done elsewhere */
473 	if (m->m_flags & M_PKTHDR) {
474 		int plen = 0;
475 		for (m2 = m; m2; m2 = m2->m_next)
476 			plen += m2->m_len;
477 		m->m_pkthdr.len = plen;
478 	}
479 
480 	DPFPRINTF(("complete: %p(%d)\n", m, ip->ip_len));
481 	return (m);
482 
483  drop_fragment:
484 	/* Oops - fail safe - drop packet */
485 	pool_put(&pf_frent_pl, frent);
486 	pf_nfrents--;
487 	m_freem(m);
488 	return (NULL);
489 }
490 
491 struct mbuf *
492 pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
493     int drop, int *nomem)
494 {
495 	struct mbuf		*m = *m0;
496 	struct pf_frcache	*frp, *fra, *cur = NULL;
497 	int			 ip_len = h->ip_len - (h->ip_hl << 2);
498 	u_int16_t		 off = h->ip_off << 3;
499 	u_int16_t		 max = ip_len + off;
500 	int			 hosed = 0;
501 
502 	KASSERT((*frag == NULL || !BUFFER_FRAGMENTS(*frag)),
503 	    ("!(*frag == NULL || !BUFFER_FRAGMENTS(*frag)): %s", __func__));
504 
505 	/* Create a new range queue for this packet */
506 	if (*frag == NULL) {
507 		*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
508 		if (*frag == NULL) {
509 			pf_flush_fragments();
510 			*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
511 			if (*frag == NULL)
512 				goto no_mem;
513 		}
514 
515 		/* Get an entry for the queue */
516 		cur = pool_get(&pf_cent_pl, PR_NOWAIT);
517 		if (cur == NULL) {
518 			pool_put(&pf_cache_pl, *frag);
519 			*frag = NULL;
520 			goto no_mem;
521 		}
522 		pf_ncache++;
523 
524 		(*frag)->fr_flags = PFFRAG_NOBUFFER;
525 		(*frag)->fr_max = 0;
526 		(*frag)->fr_src = h->ip_src;
527 		(*frag)->fr_dst = h->ip_dst;
528 		(*frag)->fr_p = h->ip_p;
529 		(*frag)->fr_id = h->ip_id;
530 		(*frag)->fr_timeout = time_second;
531 
532 		cur->fr_off = off;
533 		cur->fr_end = max;
534 		LIST_INIT(&(*frag)->fr_cache);
535 		LIST_INSERT_HEAD(&(*frag)->fr_cache, cur, fr_next);
536 
537 		RB_INSERT(pf_frag_tree, &pf_cache_tree, *frag);
538 		TAILQ_INSERT_HEAD(&pf_cachequeue, *frag, frag_next);
539 
540 		DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off, max));
541 
542 		goto pass;
543 	}
544 
545 	/*
546 	 * Find a fragment after the current one:
547 	 *  - off contains the real shifted offset.
548 	 */
549 	frp = NULL;
550 	LIST_FOREACH(fra, &(*frag)->fr_cache, fr_next) {
551 		if (fra->fr_off > off)
552 			break;
553 		frp = fra;
554 	}
555 
556 	KASSERT((frp != NULL || fra != NULL),
557 	    ("!(frp != NULL || fra != NULL): %s", __func__));
558 
559 	if (frp != NULL) {
560 		int	precut;
561 
562 		precut = frp->fr_end - off;
563 		if (precut >= ip_len) {
564 			/* Fragment is entirely a duplicate */
565 			DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
566 			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
567 			goto drop_fragment;
568 		}
569 		if (precut == 0) {
570 			/* They are adjacent.  Fixup cache entry */
571 			DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
572 			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
573 			frp->fr_end = max;
574 		} else if (precut > 0) {
575 			/* The first part of this payload overlaps with a
576 			 * fragment that has already been passed.
577 			 * Need to trim off the first part of the payload.
578 			 * But to do so easily, we need to create another
579 			 * mbuf to throw the original header into.
580 			 */
581 
582 			DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
583 			    h->ip_id, precut, frp->fr_off, frp->fr_end, off,
584 			    max));
585 
586 			off += precut;
587 			max -= precut;
588 			/* Update the previous frag to encompass this one */
589 			frp->fr_end = max;
590 
591 			if (!drop) {
592 				/* XXX Optimization opportunity
593 				 * This is a very heavy way to trim the payload.
594 				 * we could do it much faster by diddling mbuf
595 				 * internals but that would be even less legible
596 				 * than this mbuf magic.  For my next trick,
597 				 * I'll pull a rabbit out of my laptop.
598 				 */
599 				*m0 = m_dup(m, MB_DONTWAIT);
600 				/* From KAME Project : We have missed this! */
601 				m_adj(*m0, (h->ip_hl << 2) -
602 				    (*m0)->m_pkthdr.len);
603 				if (*m0 == NULL)
604 					goto no_mem;
605 				KASSERT(((*m0)->m_next == NULL),
606 				    ("(*m0)->m_next != NULL: %s",
607 				    __func__));
608 				m_adj(m, precut + (h->ip_hl << 2));
609 				m_cat(*m0, m);
610 				m = *m0;
611 				if (m->m_flags & M_PKTHDR) {
612 					int plen = 0;
613 					struct mbuf *t;
614 					for (t = m; t; t = t->m_next)
615 						plen += t->m_len;
616 					m->m_pkthdr.len = plen;
617 				}
618 
619 
620 				h = mtod(m, struct ip *);
621 
622 				KASSERT(((int)m->m_len ==
623 				    h->ip_len - precut),
624 				    ("m->m_len != h->ip_len - precut: %s",
625 				    __func__));
626 				h->ip_off = h->ip_off +
627 				    (precut >> 3);
628 				h->ip_len = h->ip_len - precut;
629 			} else {
630 				hosed++;
631 			}
632 		} else {
633 			/* There is a gap between fragments */
634 
635 			DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
636 			    h->ip_id, -precut, frp->fr_off, frp->fr_end, off,
637 			    max));
638 
639 			cur = pool_get(&pf_cent_pl, PR_NOWAIT);
640 			if (cur == NULL)
641 				goto no_mem;
642 			pf_ncache++;
643 
644 			cur->fr_off = off;
645 			cur->fr_end = max;
646 			LIST_INSERT_AFTER(frp, cur, fr_next);
647 		}
648 	}
649 
650 	if (fra != NULL) {
651 		int	aftercut;
652 		int	merge = 0;
653 
654 		aftercut = max - fra->fr_off;
655 		if (aftercut == 0) {
656 			/* Adjacent fragments */
657 			DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
658 			    h->ip_id, off, max, fra->fr_off, fra->fr_end));
659 			fra->fr_off = off;
660 			merge = 1;
661 		} else if (aftercut > 0) {
662 			/* Need to chop off the tail of this fragment */
663 			DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
664 			    h->ip_id, aftercut, off, max, fra->fr_off,
665 			    fra->fr_end));
666 			fra->fr_off = off;
667 			max -= aftercut;
668 
669 			merge = 1;
670 
671 			if (!drop) {
672 				m_adj(m, -aftercut);
673 				if (m->m_flags & M_PKTHDR) {
674 					int plen = 0;
675 					struct mbuf *t;
676 					for (t = m; t; t = t->m_next)
677 						plen += t->m_len;
678 					m->m_pkthdr.len = plen;
679 				}
680 				h = mtod(m, struct ip *);
681 				KASSERT(((int)m->m_len == h->ip_len - aftercut),
682 				    ("m->m_len != h->ip_len - aftercut: %s",
683 				    __func__));
684 				h->ip_len = h->ip_len - aftercut;
685 			} else {
686 				hosed++;
687 			}
688 		} else if (frp == NULL) {
689 			/* There is a gap between fragments */
690 			DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
691 			    h->ip_id, -aftercut, off, max, fra->fr_off,
692 			    fra->fr_end));
693 
694 			cur = pool_get(&pf_cent_pl, PR_NOWAIT);
695 			if (cur == NULL)
696 				goto no_mem;
697 			pf_ncache++;
698 
699 			cur->fr_off = off;
700 			cur->fr_end = max;
701 			LIST_INSERT_BEFORE(fra, cur, fr_next);
702 		}
703 
704 
705 		/* Need to glue together two separate fragment descriptors */
706 		if (merge) {
707 			if (cur && fra->fr_off <= cur->fr_end) {
708 				/* Need to merge in a previous 'cur' */
709 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
710 				    "%d-%d) %d-%d (%d-%d)\n",
711 				    h->ip_id, cur->fr_off, cur->fr_end, off,
712 				    max, fra->fr_off, fra->fr_end));
713 				fra->fr_off = cur->fr_off;
714 				LIST_REMOVE(cur, fr_next);
715 				pool_put(&pf_cent_pl, cur);
716 				pf_ncache--;
717 				cur = NULL;
718 
719 			} else if (frp && fra->fr_off <= frp->fr_end) {
720 				/* Need to merge in a modified 'frp' */
721 				KASSERT((cur == NULL), ("cur != NULL: %s",
722 				    __func__));
723 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
724 				    "%d-%d) %d-%d (%d-%d)\n",
725 				    h->ip_id, frp->fr_off, frp->fr_end, off,
726 				    max, fra->fr_off, fra->fr_end));
727 				fra->fr_off = frp->fr_off;
728 				LIST_REMOVE(frp, fr_next);
729 				pool_put(&pf_cent_pl, frp);
730 				pf_ncache--;
731 				frp = NULL;
732 
733 			}
734 		}
735 	}
736 
737 	if (hosed) {
738 		/*
739 		 * We must keep tracking the overall fragment even when
740 		 * we're going to drop it anyway so that we know when to
741 		 * free the overall descriptor.  Thus we drop the frag late.
742 		 */
743 		goto drop_fragment;
744 	}
745 
746 
747  pass:
748 	/* Update maximum data size */
749 	if ((*frag)->fr_max < max)
750 		(*frag)->fr_max = max;
751 
752 	/* This is the last segment */
753 	if (!mff)
754 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
755 
756 	/* Check if we are completely reassembled */
757 	if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
758 	    LIST_FIRST(&(*frag)->fr_cache)->fr_off == 0 &&
759 	    LIST_FIRST(&(*frag)->fr_cache)->fr_end == (*frag)->fr_max) {
760 		/* Remove from fragment queue */
761 		DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
762 		    (*frag)->fr_max));
763 		pf_free_fragment(*frag);
764 		*frag = NULL;
765 	}
766 
767 	return (m);
768 
769  no_mem:
770 	*nomem = 1;
771 
772 	/* Still need to pay attention to !IP_MF */
773 	if (!mff && *frag != NULL)
774 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
775 
776 	m_freem(m);
777 	return (NULL);
778 
779  drop_fragment:
780 
781 	/* Still need to pay attention to !IP_MF */
782 	if (!mff && *frag != NULL)
783 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
784 
785 	if (drop) {
786 		/* This fragment has been deemed bad.  Don't reass */
787 		if (((*frag)->fr_flags & PFFRAG_DROP) == 0)
788 			DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
789 			    h->ip_id));
790 		(*frag)->fr_flags |= PFFRAG_DROP;
791 	}
792 
793 	m_freem(m);
794 	return (NULL);
795 }
796 
797 int
798 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
799     struct pf_pdesc *pd)
800 {
801 	struct mbuf		*m = *m0;
802 	struct pf_rule		*r;
803 	struct pf_frent		*frent;
804 	struct pf_fragment	*frag = NULL;
805 	struct ip		*h = mtod(m, struct ip *);
806 	int			 mff = (h->ip_off & IP_MF);
807 	int			 hlen = h->ip_hl << 2;
808 	u_int16_t		 fragoff = (h->ip_off & IP_OFFMASK) << 3;
809 	u_int16_t		 max;
810 	int			 ip_len;
811 	int			 ip_off;
812 	int			 tag = -1;
813 
814 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
815 	while (r != NULL) {
816 		r->evaluations++;
817 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
818 			r = r->skip[PF_SKIP_IFP].ptr;
819 		else if (r->direction && r->direction != dir)
820 			r = r->skip[PF_SKIP_DIR].ptr;
821 		else if (r->af && r->af != AF_INET)
822 			r = r->skip[PF_SKIP_AF].ptr;
823 		else if (r->proto && r->proto != h->ip_p)
824 			r = r->skip[PF_SKIP_PROTO].ptr;
825 		else if (PF_MISMATCHAW(&r->src.addr,
826 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
827 		    r->src.neg, kif))
828 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
829 		else if (PF_MISMATCHAW(&r->dst.addr,
830 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
831 		    r->dst.neg, NULL))
832 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
833 		else if (r->match_tag && !pf_match_tag(m, r, &tag))
834 			r = TAILQ_NEXT(r, entries);
835 		else
836 			break;
837 	}
838 
839 	if (r == NULL || r->action == PF_NOSCRUB)
840 		return (PF_PASS);
841 	else {
842 		r->packets[dir == PF_OUT]++;
843 		r->bytes[dir == PF_OUT] += pd->tot_len;
844 	}
845 
846 	/* Check for illegal packets */
847 	if (hlen < (int)sizeof(struct ip))
848 		goto drop;
849 
850 	if (hlen > h->ip_len)
851 		goto drop;
852 
853 	/* Clear IP_DF if the rule uses the no-df option */
854 	if (r->rule_flag & PFRULE_NODF && h->ip_off & IP_DF) {
855 		u_int16_t ip_off = h->ip_off;
856 
857 		h->ip_off &= ~IP_DF;
858 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
859 	}
860 
861 	/* We will need other tests here */
862 	if (!fragoff && !mff)
863 		goto no_fragment;
864 
865 	/* We're dealing with a fragment now. Don't allow fragments
866 	 * with IP_DF to enter the cache. If the flag was cleared by
867 	 * no-df above, fine. Otherwise drop it.
868 	 */
869 	if (h->ip_off & IP_DF) {
870 		DPFPRINTF(("IP_DF\n"));
871 		goto bad;
872 	}
873 
874 	ip_len = h->ip_len - hlen;
875 	ip_off = (h->ip_off & IP_OFFMASK) << 3;
876 
877 	/* All fragments are 8 byte aligned */
878 	if (mff && (ip_len & 0x7)) {
879 		DPFPRINTF(("mff and %d\n", ip_len));
880 		goto bad;
881 	}
882 
883 	/* Respect maximum length */
884 	if (fragoff + ip_len > IP_MAXPACKET) {
885 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
886 		goto bad;
887 	}
888 	max = fragoff + ip_len;
889 
890 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0) {
891 		/* Fully buffer all of the fragments */
892 
893 		frag = pf_find_fragment(h, &pf_frag_tree);
894 
895 		/* Check if we saw the last fragment already */
896 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
897 		    max > frag->fr_max)
898 			goto bad;
899 
900 		/* Get an entry for the fragment queue */
901 		frent = pool_get(&pf_frent_pl, PR_NOWAIT);
902 		if (frent == NULL) {
903 			REASON_SET(reason, PFRES_MEMORY);
904 			return (PF_DROP);
905 		}
906 		pf_nfrents++;
907 		frent->fr_ip = h;
908 		frent->fr_m = m;
909 
910 		/* Might return a completely reassembled mbuf, or NULL */
911 		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
912 		*m0 = m = pf_reassemble(m0, &frag, frent, mff);
913 
914 		if (m == NULL)
915 			return (PF_DROP);
916 
917 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
918 			goto drop;
919 
920 		h = mtod(m, struct ip *);
921 	} else {
922 		/* non-buffering fragment cache (drops or masks overlaps) */
923 		int	nomem = 0;
924 
925 		if (dir == PF_OUT && m->m_pkthdr.pf.flags & PF_TAG_FRAGCACHE) {
926 			/*
927 			 * Already passed the fragment cache in the
928 			 * input direction.  If we continued, it would
929 			 * appear to be a dup and would be dropped.
930 			 */
931 			goto fragment_pass;
932 		}
933 
934 		frag = pf_find_fragment(h, &pf_cache_tree);
935 
936 		/* Check if we saw the last fragment already */
937 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
938 		    max > frag->fr_max) {
939 			if (r->rule_flag & PFRULE_FRAGDROP)
940 				frag->fr_flags |= PFFRAG_DROP;
941 			goto bad;
942 		}
943 
944 		*m0 = m = pf_fragcache(m0, h, &frag, mff,
945 		    (r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
946 		if (m == NULL) {
947 			if (nomem)
948 				goto no_mem;
949 			goto drop;
950 		}
951 
952 		if (dir == PF_IN)
953 			m->m_pkthdr.pf.flags |= PF_TAG_FRAGCACHE;
954 
955 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
956 			goto drop;
957 		goto fragment_pass;
958 	}
959 
960  no_fragment:
961 	/* At this point, only IP_DF is allowed in ip_off */
962 	if (h->ip_off & ~IP_DF) {
963 		u_int16_t ip_off = h->ip_off;
964 
965 		h->ip_off &= IP_DF;
966 		h->ip_sum = pf_cksum_fixup(h->ip_sum, htons(ip_off), htons(h->ip_off), 0);
967 	}
968 
969 	/* Enforce a minimum ttl, may cause endless packet loops */
970 	if (r->min_ttl && h->ip_ttl < r->min_ttl) {
971 		u_int16_t ip_ttl = h->ip_ttl;
972 
973 		h->ip_ttl = r->min_ttl;
974 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
975 	}
976 
977 	/* Enforce tos */
978 	if (r->rule_flag & PFRULE_SET_TOS) {
979 		u_int16_t	ov, nv;
980 
981 		ov = *(u_int16_t *)h;
982 		h->ip_tos = r->set_tos;
983 		nv = *(u_int16_t *)h;
984 
985 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
986 	}
987 
988 	if (r->rule_flag & PFRULE_RANDOMID) {
989 		u_int16_t ip_id = h->ip_id;
990 
991 		h->ip_id = ip_randomid();
992 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
993 	}
994 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
995 		pd->flags |= PFDESC_IP_REAS;
996 
997 	return (PF_PASS);
998 
999  fragment_pass:
1000 	/* Enforce a minimum ttl, may cause endless packet loops */
1001 	if (r->min_ttl && h->ip_ttl < r->min_ttl) {
1002 		u_int16_t ip_ttl = h->ip_ttl;
1003 
1004 		h->ip_ttl = r->min_ttl;
1005 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
1006 	}
1007 	/* Enforce tos */
1008 	if (r->rule_flag & PFRULE_SET_TOS) {
1009 		u_int16_t	ov, nv;
1010 
1011 		ov = *(u_int16_t *)h;
1012 		h->ip_tos = r->set_tos;
1013 		nv = *(u_int16_t *)h;
1014 
1015 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1016 	}
1017 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
1018 		pd->flags |= PFDESC_IP_REAS;
1019 	return (PF_PASS);
1020 
1021  no_mem:
1022 	REASON_SET(reason, PFRES_MEMORY);
1023 	if (r != NULL && r->log)
1024 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
1025 	return (PF_DROP);
1026 
1027  drop:
1028 	REASON_SET(reason, PFRES_NORM);
1029 	if (r != NULL && r->log)
1030 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
1031 	return (PF_DROP);
1032 
1033  bad:
1034 	DPFPRINTF(("dropping bad fragment\n"));
1035 
1036 	/* Free associated fragments */
1037 	if (frag != NULL)
1038 		pf_free_fragment(frag);
1039 
1040 	REASON_SET(reason, PFRES_FRAG);
1041 	if (r != NULL && r->log)
1042 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
1043 
1044 	return (PF_DROP);
1045 }
1046 
1047 #ifdef INET6
1048 int
1049 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
1050     u_short *reason, struct pf_pdesc *pd)
1051 {
1052 	struct mbuf		*m = *m0;
1053 	struct pf_rule		*r;
1054 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1055 	int			 off;
1056 	struct ip6_ext		 ext;
1057 	struct ip6_opt		 opt;
1058 	struct ip6_opt_jumbo	 jumbo;
1059 	struct ip6_frag		 frag;
1060 	u_int32_t		 jumbolen = 0, plen;
1061 	u_int16_t		 fragoff = 0;
1062 	int			 optend;
1063 	int			 ooff;
1064 	u_int8_t		 proto;
1065 	int			 terminal;
1066 
1067 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1068 	while (r != NULL) {
1069 		r->evaluations++;
1070 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1071 			r = r->skip[PF_SKIP_IFP].ptr;
1072 		else if (r->direction && r->direction != dir)
1073 			r = r->skip[PF_SKIP_DIR].ptr;
1074 		else if (r->af && r->af != AF_INET6)
1075 			r = r->skip[PF_SKIP_AF].ptr;
1076 #if 0 /* header chain! */
1077 		else if (r->proto && r->proto != h->ip6_nxt)
1078 			r = r->skip[PF_SKIP_PROTO].ptr;
1079 #endif
1080 		else if (PF_MISMATCHAW(&r->src.addr,
1081 		    (struct pf_addr *)&h->ip6_src, AF_INET6,
1082 		    r->src.neg, kif))
1083 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1084 		else if (PF_MISMATCHAW(&r->dst.addr,
1085 		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
1086 		    r->dst.neg, NULL))
1087 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1088 		else
1089 			break;
1090 	}
1091 
1092 	if (r == NULL || r->action == PF_NOSCRUB)
1093 		return (PF_PASS);
1094 	else {
1095 		r->packets[dir == PF_OUT]++;
1096 		r->bytes[dir == PF_OUT] += pd->tot_len;
1097 	}
1098 
1099 	/* Check for illegal packets */
1100 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1101 		goto drop;
1102 
1103 	off = sizeof(struct ip6_hdr);
1104 	proto = h->ip6_nxt;
1105 	terminal = 0;
1106 	do {
1107 		switch (proto) {
1108 		case IPPROTO_FRAGMENT:
1109 			goto fragment;
1110 			break;
1111 		case IPPROTO_AH:
1112 		case IPPROTO_ROUTING:
1113 		case IPPROTO_DSTOPTS:
1114 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1115 			    NULL, AF_INET6))
1116 				goto shortpkt;
1117 			if (proto == IPPROTO_AH)
1118 				off += (ext.ip6e_len + 2) * 4;
1119 			else
1120 				off += (ext.ip6e_len + 1) * 8;
1121 			proto = ext.ip6e_nxt;
1122 			break;
1123 		case IPPROTO_HOPOPTS:
1124 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1125 			    NULL, AF_INET6))
1126 				goto shortpkt;
1127 			optend = off + (ext.ip6e_len + 1) * 8;
1128 			ooff = off + sizeof(ext);
1129 			do {
1130 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1131 				    sizeof(opt.ip6o_type), NULL, NULL,
1132 				    AF_INET6))
1133 					goto shortpkt;
1134 				if (opt.ip6o_type == IP6OPT_PAD1) {
1135 					ooff++;
1136 					continue;
1137 				}
1138 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1139 				    NULL, NULL, AF_INET6))
1140 					goto shortpkt;
1141 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1142 					goto drop;
1143 				switch (opt.ip6o_type) {
1144 				case IP6OPT_JUMBO:
1145 					if (h->ip6_plen != 0)
1146 						goto drop;
1147 					if (!pf_pull_hdr(m, ooff, &jumbo,
1148 					    sizeof(jumbo), NULL, NULL,
1149 					    AF_INET6))
1150 						goto shortpkt;
1151 					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
1152 					    sizeof(jumbolen));
1153 					jumbolen = ntohl(jumbolen);
1154 					if (jumbolen <= IPV6_MAXPACKET)
1155 						goto drop;
1156 					if (sizeof(struct ip6_hdr) + jumbolen !=
1157 					    m->m_pkthdr.len)
1158 						goto drop;
1159 					break;
1160 				default:
1161 					break;
1162 				}
1163 				ooff += sizeof(opt) + opt.ip6o_len;
1164 			} while (ooff < optend);
1165 
1166 			off = optend;
1167 			proto = ext.ip6e_nxt;
1168 			break;
1169 		default:
1170 			terminal = 1;
1171 			break;
1172 		}
1173 	} while (!terminal);
1174 
1175 	/* jumbo payload option must be present, or plen > 0 */
1176 	if (ntohs(h->ip6_plen) == 0)
1177 		plen = jumbolen;
1178 	else
1179 		plen = ntohs(h->ip6_plen);
1180 	if (plen == 0)
1181 		goto drop;
1182 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1183 		goto shortpkt;
1184 
1185 	/* Enforce a minimum ttl, may cause endless packet loops */
1186 	if (r->min_ttl && h->ip6_hlim < r->min_ttl)
1187 		h->ip6_hlim = r->min_ttl;
1188 
1189 	return (PF_PASS);
1190 
1191  fragment:
1192 	if (ntohs(h->ip6_plen) == 0 || jumbolen)
1193 		goto drop;
1194 	plen = ntohs(h->ip6_plen);
1195 
1196 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1197 		goto shortpkt;
1198 	fragoff = ntohs(frag.ip6f_offlg & IP6F_OFF_MASK);
1199 	if (fragoff + (plen - off - sizeof(frag)) > IPV6_MAXPACKET)
1200 		goto badfrag;
1201 
1202 	/* do something about it */
1203 	/* remember to set pd->flags |= PFDESC_IP_REAS */
1204 	return (PF_PASS);
1205 
1206  shortpkt:
1207 	REASON_SET(reason, PFRES_SHORT);
1208 	if (r != NULL && r->log)
1209 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
1210 	return (PF_DROP);
1211 
1212  drop:
1213 	REASON_SET(reason, PFRES_NORM);
1214 	if (r != NULL && r->log)
1215 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
1216 	return (PF_DROP);
1217 
1218  badfrag:
1219 	REASON_SET(reason, PFRES_FRAG);
1220 	if (r != NULL && r->log)
1221 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
1222 	return (PF_DROP);
1223 }
1224 #endif /* INET6 */
1225 
1226 int
1227 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1228     int off, void *h, struct pf_pdesc *pd)
1229 {
1230 	struct pf_rule	*r, *rm = NULL;
1231 	struct tcphdr	*th = pd->hdr.tcp;
1232 	int		 rewrite = 0;
1233 	u_short		 reason;
1234 	u_int8_t	 flags;
1235 	sa_family_t	 af = pd->af;
1236 
1237 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1238 	while (r != NULL) {
1239 		r->evaluations++;
1240 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1241 			r = r->skip[PF_SKIP_IFP].ptr;
1242 		else if (r->direction && r->direction != dir)
1243 			r = r->skip[PF_SKIP_DIR].ptr;
1244 		else if (r->af && r->af != af)
1245 			r = r->skip[PF_SKIP_AF].ptr;
1246 		else if (r->proto && r->proto != pd->proto)
1247 			r = r->skip[PF_SKIP_PROTO].ptr;
1248 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1249 		    r->src.neg, kif))
1250 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1251 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1252 			    r->src.port[0], r->src.port[1], th->th_sport))
1253 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
1254 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1255 		    r->dst.neg, NULL))
1256 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1257 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1258 			    r->dst.port[0], r->dst.port[1], th->th_dport))
1259 			r = r->skip[PF_SKIP_DST_PORT].ptr;
1260 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1261 			    pf_osfp_fingerprint(pd, m, off, th),
1262 			    r->os_fingerprint))
1263 			r = TAILQ_NEXT(r, entries);
1264 		else {
1265 			rm = r;
1266 			break;
1267 		}
1268 	}
1269 
1270 	if (rm == NULL || rm->action == PF_NOSCRUB)
1271 		return (PF_PASS);
1272 	else {
1273 		r->packets[dir == PF_OUT]++;
1274 		r->bytes[dir == PF_OUT] += pd->tot_len;
1275 	}
1276 
1277 	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1278 		pd->flags |= PFDESC_TCP_NORM;
1279 
1280 	flags = th->th_flags;
1281 	if (flags & TH_SYN) {
1282 		/* Illegal packet */
1283 		if (flags & TH_RST)
1284 			goto tcp_drop;
1285 
1286 		if (flags & TH_FIN)
1287 			flags &= ~TH_FIN;
1288 	} else {
1289 		/* Illegal packet */
1290 		if (!(flags & (TH_ACK|TH_RST)))
1291 			goto tcp_drop;
1292 	}
1293 
1294 	if (!(flags & TH_ACK)) {
1295 		/* These flags are only valid if ACK is set */
1296 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1297 			goto tcp_drop;
1298 	}
1299 
1300 	/* Check for illegal header length */
1301 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1302 		goto tcp_drop;
1303 
1304 	/* If flags changed, or reserved data set, then adjust */
1305 	if (flags != th->th_flags || th->th_x2 != 0) {
1306 		u_int16_t	ov, nv;
1307 
1308 		ov = *(u_int16_t *)(&th->th_ack + 1);
1309 		th->th_flags = flags;
1310 		th->th_x2 = 0;
1311 		nv = *(u_int16_t *)(&th->th_ack + 1);
1312 
1313 		th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
1314 		rewrite = 1;
1315 	}
1316 
1317 	/* Remove urgent pointer, if TH_URG is not set */
1318 	if (!(flags & TH_URG) && th->th_urp) {
1319 		th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
1320 		th->th_urp = 0;
1321 		rewrite = 1;
1322 	}
1323 
1324 	/* Process options */
1325 	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1326 		rewrite = 1;
1327 
1328 	/* copy back packet headers if we sanitized */
1329 	if (rewrite)
1330 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
1331 
1332 	return (PF_PASS);
1333 
1334  tcp_drop:
1335 	REASON_SET(&reason, PFRES_NORM);
1336 	if (rm != NULL && r->log)
1337 		PFLOG_PACKET(kif, h, m, AF_INET, dir, reason, r, NULL, NULL, pd);
1338 	return (PF_DROP);
1339 }
1340 
1341 int
1342 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1343     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1344 {
1345 	u_int32_t tsval, tsecr;
1346 	u_int8_t hdr[60];
1347 	u_int8_t *opt;
1348 
1349 	KASSERT((src->scrub == NULL),
1350 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1351 
1352 	src->scrub = pool_get(&pf_state_scrub_pl, PR_NOWAIT);
1353 	if (src->scrub == NULL)
1354 		return (1);
1355 	bzero(src->scrub, sizeof(*src->scrub));
1356 
1357 	switch (pd->af) {
1358 #ifdef INET
1359 	case AF_INET: {
1360 		struct ip *h = mtod(m, struct ip *);
1361 		src->scrub->pfss_ttl = h->ip_ttl;
1362 		break;
1363 	}
1364 #endif /* INET */
1365 #ifdef INET6
1366 	case AF_INET6: {
1367 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1368 		src->scrub->pfss_ttl = h->ip6_hlim;
1369 		break;
1370 	}
1371 #endif /* INET6 */
1372 	}
1373 
1374 
1375 	/*
1376 	 * All normalizations below are only begun if we see the start of
1377 	 * the connections.  They must all set an enabled bit in pfss_flags
1378 	 */
1379 	if ((th->th_flags & TH_SYN) == 0)
1380 		return (0);
1381 
1382 
1383 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1384 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1385 		/* Diddle with TCP options */
1386 		int hlen;
1387 		opt = hdr + sizeof(struct tcphdr);
1388 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1389 		while (hlen >= TCPOLEN_TIMESTAMP) {
1390 			switch (*opt) {
1391 			case TCPOPT_EOL:	/* FALLTHROUGH */
1392 			case TCPOPT_NOP:
1393 				opt++;
1394 				hlen--;
1395 				break;
1396 			case TCPOPT_TIMESTAMP:
1397 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1398 					src->scrub->pfss_flags |=
1399 					    PFSS_TIMESTAMP;
1400 					src->scrub->pfss_ts_mod = karc4random();
1401 
1402 					/* note PFSS_PAWS not set yet */
1403 					memcpy(&tsval, &opt[2],
1404 					    sizeof(u_int32_t));
1405 					memcpy(&tsecr, &opt[6],
1406 					    sizeof(u_int32_t));
1407 					src->scrub->pfss_tsval0 = ntohl(tsval);
1408 					src->scrub->pfss_tsval = ntohl(tsval);
1409 					src->scrub->pfss_tsecr = ntohl(tsecr);
1410 					getmicrouptime(&src->scrub->pfss_last);
1411 				}
1412 				/* FALLTHROUGH */
1413 			default:
1414 				hlen -= MAX(opt[1], 2);
1415 				opt += MAX(opt[1], 2);
1416 				break;
1417 			}
1418 		}
1419 	}
1420 
1421 	return (0);
1422 }
1423 
1424 void
1425 pf_normalize_tcp_cleanup(struct pf_state *state)
1426 {
1427 	if (state->src.scrub)
1428 		pool_put(&pf_state_scrub_pl, state->src.scrub);
1429 	if (state->dst.scrub)
1430 		pool_put(&pf_state_scrub_pl, state->dst.scrub);
1431 
1432 	/* Someday... flush the TCP segment reassembly descriptors. */
1433 }
1434 
1435 int
1436 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1437     u_short *reason, struct tcphdr *th, struct pf_state *state,
1438     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1439 {
1440 	struct timeval uptime;
1441 	u_int32_t tsval, tsecr;
1442 	u_int tsval_from_last;
1443 	u_int8_t hdr[60];
1444 	u_int8_t *opt;
1445 	int copyback = 0;
1446 	int got_ts = 0;
1447 
1448 	KASSERT((src->scrub || dst->scrub),
1449 	    ("pf_normalize_tcp_statefull: src->scrub && dst->scrub!"));
1450 
1451 	/*
1452 	 * Enforce the minimum TTL seen for this connection.  Negate a common
1453 	 * technique to evade an intrusion detection system and confuse
1454 	 * firewall state code.
1455 	 */
1456 	switch (pd->af) {
1457 #ifdef INET
1458 	case AF_INET: {
1459 		if (src->scrub) {
1460 			struct ip *h = mtod(m, struct ip *);
1461 			if (h->ip_ttl > src->scrub->pfss_ttl)
1462 				src->scrub->pfss_ttl = h->ip_ttl;
1463 			h->ip_ttl = src->scrub->pfss_ttl;
1464 		}
1465 		break;
1466 	}
1467 #endif /* INET */
1468 #ifdef INET6
1469 	case AF_INET6: {
1470 		if (src->scrub) {
1471 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1472 			if (h->ip6_hlim > src->scrub->pfss_ttl)
1473 				src->scrub->pfss_ttl = h->ip6_hlim;
1474 			h->ip6_hlim = src->scrub->pfss_ttl;
1475 		}
1476 		break;
1477 	}
1478 #endif /* INET6 */
1479 	}
1480 
1481 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1482 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1483 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1484 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1485 		/* Diddle with TCP options */
1486 		int hlen;
1487 		opt = hdr + sizeof(struct tcphdr);
1488 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1489 		while (hlen >= TCPOLEN_TIMESTAMP) {
1490 			switch (*opt) {
1491 			case TCPOPT_EOL:	/* FALLTHROUGH */
1492 			case TCPOPT_NOP:
1493 				opt++;
1494 				hlen--;
1495 				break;
1496 			case TCPOPT_TIMESTAMP:
1497 				/* Modulate the timestamps.  Can be used for
1498 				 * NAT detection, OS uptime determination or
1499 				 * reboot detection.
1500 				 */
1501 
1502 				if (got_ts) {
1503 					/* Huh?  Multiple timestamps!? */
1504 					if (pf_status.debug >= PF_DEBUG_MISC) {
1505 						DPFPRINTF(("multiple TS??"));
1506 						pf_print_state(state);
1507 						kprintf("\n");
1508 					}
1509 					REASON_SET(reason, PFRES_TS);
1510 					return (PF_DROP);
1511 				}
1512 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1513 					memcpy(&tsval, &opt[2],
1514 					    sizeof(u_int32_t));
1515 					if (tsval && src->scrub &&
1516 					    (src->scrub->pfss_flags &
1517 					    PFSS_TIMESTAMP)) {
1518 						tsval = ntohl(tsval);
1519 						pf_change_a(&opt[2],
1520 						    &th->th_sum,
1521 						    htonl(tsval +
1522 						    src->scrub->pfss_ts_mod),
1523 						    0);
1524 						copyback = 1;
1525 					}
1526 
1527 					/* Modulate TS reply iff valid (!0) */
1528 					memcpy(&tsecr, &opt[6],
1529 					    sizeof(u_int32_t));
1530 					if (tsecr && dst->scrub &&
1531 					    (dst->scrub->pfss_flags &
1532 					    PFSS_TIMESTAMP)) {
1533 						tsecr = ntohl(tsecr)
1534 						    - dst->scrub->pfss_ts_mod;
1535 						pf_change_a(&opt[6],
1536 						    &th->th_sum, htonl(tsecr),
1537 						    0);
1538 						copyback = 1;
1539 					}
1540 					got_ts = 1;
1541 				}
1542 				/* FALLTHROUGH */
1543 			default:
1544 				hlen -= MAX(opt[1], 2);
1545 				opt += MAX(opt[1], 2);
1546 				break;
1547 			}
1548 		}
1549 		if (copyback) {
1550 			/* Copyback the options, caller copys back header */
1551 			*writeback = 1;
1552 			m_copyback(m, off + sizeof(struct tcphdr),
1553 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1554 			    sizeof(struct tcphdr));
1555 		}
1556 	}
1557 
1558 
1559 	/*
1560 	 * Must invalidate PAWS checks on connections idle for too long.
1561 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1562 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1563 	 * TS echo check only works for the first 12 days of a connection
1564 	 * when the TS has exhausted half its 32bit space
1565 	 */
1566 #define TS_MAX_IDLE	(24*24*60*60)
1567 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1568 
1569 	getmicrouptime(&uptime);
1570 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1571 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1572 	    time_second - state->creation > TS_MAX_CONN))  {
1573 		if (pf_status.debug >= PF_DEBUG_MISC) {
1574 			DPFPRINTF(("src idled out of PAWS\n"));
1575 			pf_print_state(state);
1576 			kprintf("\n");
1577 		}
1578 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1579 		    | PFSS_PAWS_IDLED;
1580 	}
1581 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1582 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1583 		if (pf_status.debug >= PF_DEBUG_MISC) {
1584 			DPFPRINTF(("dst idled out of PAWS\n"));
1585 			pf_print_state(state);
1586 			kprintf("\n");
1587 		}
1588 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1589 		    | PFSS_PAWS_IDLED;
1590 	}
1591 
1592 	if (got_ts && src->scrub && dst->scrub &&
1593 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1594 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1595 		/* Validate that the timestamps are "in-window".
1596 		 * RFC1323 describes TCP Timestamp options that allow
1597 		 * measurement of RTT (round trip time) and PAWS
1598 		 * (protection against wrapped sequence numbers).  PAWS
1599 		 * gives us a set of rules for rejecting packets on
1600 		 * long fat pipes (packets that were somehow delayed
1601 		 * in transit longer than the time it took to send the
1602 		 * full TCP sequence space of 4Gb).  We can use these
1603 		 * rules and infer a few others that will let us treat
1604 		 * the 32bit timestamp and the 32bit echoed timestamp
1605 		 * as sequence numbers to prevent a blind attacker from
1606 		 * inserting packets into a connection.
1607 		 *
1608 		 * RFC1323 tells us:
1609 		 *  - The timestamp on this packet must be greater than
1610 		 *    or equal to the last value echoed by the other
1611 		 *    endpoint.  The RFC says those will be discarded
1612 		 *    since it is a dup that has already been acked.
1613 		 *    This gives us a lowerbound on the timestamp.
1614 		 *        timestamp >= other last echoed timestamp
1615 		 *  - The timestamp will be less than or equal to
1616 		 *    the last timestamp plus the time between the
1617 		 *    last packet and now.  The RFC defines the max
1618 		 *    clock rate as 1ms.  We will allow clocks to be
1619 		 *    up to 10% fast and will allow a total difference
1620 		 *    or 30 seconds due to a route change.  And this
1621 		 *    gives us an upperbound on the timestamp.
1622 		 *        timestamp <= last timestamp + max ticks
1623 		 *    We have to be careful here.  Windows will send an
1624 		 *    initial timestamp of zero and then initialize it
1625 		 *    to a random value after the 3whs; presumably to
1626 		 *    avoid a DoS by having to call an expensive RNG
1627 		 *    during a SYN flood.  Proof MS has at least one
1628 		 *    good security geek.
1629 		 *
1630 		 *  - The TCP timestamp option must also echo the other
1631 		 *    endpoints timestamp.  The timestamp echoed is the
1632 		 *    one carried on the earliest unacknowledged segment
1633 		 *    on the left edge of the sequence window.  The RFC
1634 		 *    states that the host will reject any echoed
1635 		 *    timestamps that were larger than any ever sent.
1636 		 *    This gives us an upperbound on the TS echo.
1637 		 *        tescr <= largest_tsval
1638 		 *  - The lowerbound on the TS echo is a little more
1639 		 *    tricky to determine.  The other endpoint's echoed
1640 		 *    values will not decrease.  But there may be
1641 		 *    network conditions that re-order packets and
1642 		 *    cause our view of them to decrease.  For now the
1643 		 *    only lowerbound we can safely determine is that
1644 		 *    the TS echo will never be less than the original
1645 		 *    TS.  XXX There is probably a better lowerbound.
1646 		 *    Remove TS_MAX_CONN with better lowerbound check.
1647 		 *        tescr >= other original TS
1648 		 *
1649 		 * It is also important to note that the fastest
1650 		 * timestamp clock of 1ms will wrap its 32bit space in
1651 		 * 24 days.  So we just disable TS checking after 24
1652 		 * days of idle time.  We actually must use a 12d
1653 		 * connection limit until we can come up with a better
1654 		 * lowerbound to the TS echo check.
1655 		 */
1656 		struct timeval delta_ts;
1657 		int ts_fudge;
1658 
1659 
1660 		/*
1661 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1662 		 * a host's timestamp.  This can happen if the previous
1663 		 * packet got delayed in transit for much longer than
1664 		 * this packet.
1665 		 */
1666 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1667 			ts_fudge = pf_default_rule.timeout[PFTM_TS_DIFF];
1668 
1669 
1670 		/* Calculate max ticks since the last timestamp */
1671 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1672 #define TS_MICROSECS	1000000		/* microseconds per second */
1673 #ifndef timersub
1674 #define timersub(tvp, uvp, vvp)						\
1675 	do {								\
1676 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
1677 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
1678 		if ((vvp)->tv_usec < 0) {				\
1679 			(vvp)->tv_sec--;				\
1680 			(vvp)->tv_usec += 1000000;			\
1681 		}							\
1682 	} while (0)
1683 #endif
1684 
1685 		timersub(&uptime, &src->scrub->pfss_last, &delta_ts);
1686 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1687 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1688 
1689 
1690 		if ((src->state >= TCPS_ESTABLISHED &&
1691 		    dst->state >= TCPS_ESTABLISHED) &&
1692 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1693 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1694 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1695 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1696 			/* Bad RFC1323 implementation or an insertion attack.
1697 			 *
1698 			 * - Solaris 2.6 and 2.7 are known to send another ACK
1699 			 *   after the FIN,FIN|ACK,ACK closing that carries
1700 			 *   an old timestamp.
1701 			 */
1702 
1703 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1704 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1705 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1706 			    tsval_from_last) ? '1' : ' ',
1707 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1708 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1709 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1710 			    "idle: %lus %lums\n",
1711 			    tsval, tsecr, tsval_from_last, delta_ts.tv_sec,
1712 			    delta_ts.tv_usec / 1000));
1713 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1714 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1715 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1716 			    "\n", dst->scrub->pfss_tsval,
1717 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1718 			if (pf_status.debug >= PF_DEBUG_MISC) {
1719 				pf_print_state(state);
1720 				pf_print_flags(th->th_flags);
1721 				kprintf("\n");
1722 			}
1723 			REASON_SET(reason, PFRES_TS);
1724 			return (PF_DROP);
1725 		}
1726 
1727 		/* XXX I'd really like to require tsecr but it's optional */
1728 
1729 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1730 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1731 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1732 	    src->scrub && dst->scrub &&
1733 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1734 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1735 		/* Didn't send a timestamp.  Timestamps aren't really useful
1736 		 * when:
1737 		 *  - connection opening or closing (often not even sent).
1738 		 *    but we must not let an attacker to put a FIN on a
1739 		 *    data packet to sneak it through our ESTABLISHED check.
1740 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1741 		 *  - on an empty ACK.  The TS will not be echoed so it will
1742 		 *    probably not help keep the RTT calculation in sync and
1743 		 *    there isn't as much danger when the sequence numbers
1744 		 *    got wrapped.  So some stacks don't include TS on empty
1745 		 *    ACKs :-(
1746 		 *
1747 		 * To minimize the disruption to mostly RFC1323 conformant
1748 		 * stacks, we will only require timestamps on data packets.
1749 		 *
1750 		 * And what do ya know, we cannot require timestamps on data
1751 		 * packets.  There appear to be devices that do legitimate
1752 		 * TCP connection hijacking.  There are HTTP devices that allow
1753 		 * a 3whs (with timestamps) and then buffer the HTTP request.
1754 		 * If the intermediate device has the HTTP response cache, it
1755 		 * will spoof the response but not bother timestamping its
1756 		 * packets.  So we can look for the presence of a timestamp in
1757 		 * the first data packet and if there, require it in all future
1758 		 * packets.
1759 		 */
1760 
1761 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1762 			/*
1763 			 * Hey!  Someone tried to sneak a packet in.  Or the
1764 			 * stack changed its RFC1323 behavior?!?!
1765 			 */
1766 			if (pf_status.debug >= PF_DEBUG_MISC) {
1767 				DPFPRINTF(("Did not receive expected RFC1323 "
1768 				    "timestamp\n"));
1769 				pf_print_state(state);
1770 				pf_print_flags(th->th_flags);
1771 				kprintf("\n");
1772 			}
1773 			REASON_SET(reason, PFRES_TS);
1774 			return (PF_DROP);
1775 		}
1776 	}
1777 
1778 
1779 	/*
1780 	 * We will note if a host sends his data packets with or without
1781 	 * timestamps.  And require all data packets to contain a timestamp
1782 	 * if the first does.  PAWS implicitly requires that all data packets be
1783 	 * timestamped.  But I think there are middle-man devices that hijack
1784 	 * TCP streams immediately after the 3whs and don't timestamp their
1785 	 * packets (seen in a WWW accelerator or cache).
1786 	 */
1787 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1788 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1789 		if (got_ts)
1790 			src->scrub->pfss_flags |= PFSS_DATA_TS;
1791 		else {
1792 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1793 			if (pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1794 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1795 				/* Don't warn if other host rejected RFC1323 */
1796 				DPFPRINTF(("Broken RFC1323 stack did not "
1797 				    "timestamp data packet. Disabled PAWS "
1798 				    "security.\n"));
1799 				pf_print_state(state);
1800 				pf_print_flags(th->th_flags);
1801 				kprintf("\n");
1802 			}
1803 		}
1804 	}
1805 
1806 
1807 	/*
1808 	 * Update PAWS values
1809 	 */
1810 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1811 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1812 		getmicrouptime(&src->scrub->pfss_last);
1813 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1814 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1815 			src->scrub->pfss_tsval = tsval;
1816 
1817 		if (tsecr) {
1818 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1819 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1820 				src->scrub->pfss_tsecr = tsecr;
1821 
1822 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1823 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1824 			    src->scrub->pfss_tsval0 == 0)) {
1825 				/* tsval0 MUST be the lowest timestamp */
1826 				src->scrub->pfss_tsval0 = tsval;
1827 			}
1828 
1829 			/* Only fully initialized after a TS gets echoed */
1830 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1831 				src->scrub->pfss_flags |= PFSS_PAWS;
1832 		}
1833 	}
1834 
1835 	/* I have a dream....  TCP segment reassembly.... */
1836 	return (0);
1837 }
1838 
1839 int
1840 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
1841     int off, sa_family_t af)
1842 {
1843 	u_int16_t	*mss;
1844 	int		 thoff;
1845 	int		 opt, cnt, optlen = 0;
1846 	int		 rewrite = 0;
1847 	u_char		 opts[TCP_MAXOLEN];
1848 	u_char		*optp = opts;
1849 
1850 	thoff = th->th_off << 2;
1851 	cnt = thoff - sizeof(struct tcphdr);
1852 
1853 	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
1854 	    NULL, NULL, af))
1855 		return (rewrite);
1856 
1857 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1858 		opt = optp[0];
1859 		if (opt == TCPOPT_EOL)
1860 			break;
1861 		if (opt == TCPOPT_NOP)
1862 			optlen = 1;
1863 		else {
1864 			if (cnt < 2)
1865 				break;
1866 			optlen = optp[1];
1867 			if (optlen < 2 || optlen > cnt)
1868 				break;
1869 		}
1870 		switch (opt) {
1871 		case TCPOPT_MAXSEG:
1872 			mss = (u_int16_t *)(optp + 2);
1873 			if ((ntohs(*mss)) > r->max_mss) {
1874 				th->th_sum = pf_cksum_fixup(th->th_sum,
1875 				    *mss, htons(r->max_mss), 0);
1876 				*mss = htons(r->max_mss);
1877 				rewrite = 1;
1878 			}
1879 			break;
1880 		default:
1881 			break;
1882 		}
1883 	}
1884 
1885 	if (rewrite)
1886 		m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
1887 
1888 	return (rewrite);
1889 }
1890