xref: /dragonfly/sys/net/pf/pf_norm.c (revision def76f9f)
1 /*	$OpenBSD: pf_norm.c,v 1.113 2008/05/07 07:07:29 markus Exp $ */
2 
3 /*
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/mbuf.h>
36 #include <sys/filio.h>
37 #include <sys/fcntl.h>
38 #include <sys/socket.h>
39 #include <sys/kernel.h>
40 #include <sys/time.h>
41 
42 #include <net/if.h>
43 #include <net/if_var.h>
44 #include <net/if_types.h>
45 #include <net/bpf.h>
46 #include <net/route.h>
47 #include <net/pf/if_pflog.h>
48 
49 #include <netinet/in.h>
50 #include <netinet/in_var.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/ip.h>
53 #include <netinet/ip_var.h>
54 #include <netinet/tcp.h>
55 #include <netinet/tcp_seq.h>
56 #include <netinet/udp.h>
57 #include <netinet/ip_icmp.h>
58 
59 #ifdef INET6
60 #include <netinet/ip6.h>
61 #endif /* INET6 */
62 
63 #include <net/pf/pfvar.h>
64 
65 #define PFFRAG_SEENLAST	0x0001		/* Seen the last fragment for this */
66 #define PFFRAG_NOBUFFER	0x0002		/* Non-buffering fragment cache */
67 #define PFFRAG_DROP	0x0004		/* Drop all fragments */
68 #define BUFFER_FRAGMENTS(fr)	(!((fr)->fr_flags & PFFRAG_NOBUFFER))
69 
70 
71 TAILQ_HEAD(pf_fragqueue, pf_fragment)	pf_fragqueue[MAXCPU];
72 TAILQ_HEAD(pf_cachequeue, pf_fragment)	pf_cachequeue[MAXCPU];
73 
74 static __inline int	 pf_frag_compare(struct pf_fragment *,
75 			    struct pf_fragment *);
76 RB_HEAD(pf_frag_tree, pf_fragment)	pf_frag_tree[MAXCPU],
77 					pf_cache_tree[MAXCPU];
78 RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
79 RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
80 
81 /* Private prototypes */
82 void			 pf_ip2key(struct pf_fragment *, struct ip *);
83 void			 pf_remove_fragment(struct pf_fragment *);
84 void			 pf_flush_fragments(void);
85 void			 pf_free_fragment(struct pf_fragment *);
86 struct pf_fragment	*pf_find_fragment(struct ip *, struct pf_frag_tree *);
87 struct mbuf		*pf_reassemble(struct mbuf **, struct pf_fragment **,
88 			    struct pf_frent *, int);
89 struct mbuf		*pf_fragcache(struct mbuf **, struct ip*,
90 			    struct pf_fragment **, int, int, int *);
91 int			 pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
92 			    struct tcphdr *, int, sa_family_t);
93 
94 #define	DPFPRINTF(x) do {				\
95 	if (pf_status.debug >= PF_DEBUG_MISC) {		\
96 		kprintf("%s: ", __func__);		\
97 		kprintf x ;				\
98 	}						\
99 } while(0)
100 
101 static MALLOC_DEFINE(M_PFFRAGPL, "pffrag", "pf fragment pool list");
102 static MALLOC_DEFINE(M_PFCACHEPL, "pffrcache", "pf fragment cache pool list");
103 static MALLOC_DEFINE(M_PFFRENTPL, "pffrent", "pf frent pool list");
104 static MALLOC_DEFINE(M_PFCENTPL, "pffrcent", "pf fragment cent pool list");
105 static MALLOC_DEFINE(M_PFSTATESCRUBPL, "pfstatescrub", "pf state scrub pool list");
106 
107 /* Globals */
108 struct malloc_type	 *pf_frent_pl, *pf_frag_pl, *pf_cache_pl, *pf_cent_pl;
109 struct malloc_type	 *pf_state_scrub_pl;
110 int			 pf_nfrents, pf_ncache;
111 
112 void
113 pf_normalize_init(void)
114 {
115 	int n;
116 
117 	/* XXX
118 	pool_sethiwat(&pf_frag_pl, PFFRAG_FRAG_HIWAT);
119 	pool_sethardlimit(&pf_frent_pl, PFFRAG_FRENT_HIWAT, NULL, 0);
120 	pool_sethardlimit(&pf_cache_pl, PFFRAG_FRCACHE_HIWAT, NULL, 0);
121 	pool_sethardlimit(&pf_cent_pl, PFFRAG_FRCENT_HIWAT, NULL, 0);
122 	*/
123 
124 	for (n = 0; n < MAXCPU; ++n) {
125 		TAILQ_INIT(&pf_fragqueue[n]);
126 		TAILQ_INIT(&pf_cachequeue[n]);
127 		RB_INIT(&pf_frag_tree[n]);
128 		RB_INIT(&pf_cache_tree[n]);
129 	}
130 }
131 
132 static __inline int
133 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
134 {
135 	int	diff;
136 
137 	if ((diff = a->fr_id - b->fr_id))
138 		return (diff);
139 	else if ((diff = a->fr_p - b->fr_p))
140 		return (diff);
141 	else if (a->fr_src.s_addr < b->fr_src.s_addr)
142 		return (-1);
143 	else if (a->fr_src.s_addr > b->fr_src.s_addr)
144 		return (1);
145 	else if (a->fr_dst.s_addr < b->fr_dst.s_addr)
146 		return (-1);
147 	else if (a->fr_dst.s_addr > b->fr_dst.s_addr)
148 		return (1);
149 	return (0);
150 }
151 
152 void
153 pf_purge_expired_fragments(void)
154 {
155 	struct pf_fragment *frag;
156 	u_int32_t expire;
157 	int cpu = mycpu->gd_cpuid;
158 
159 	expire = time_second - pf_default_rule.timeout[PFTM_FRAG];
160 
161 	while ((frag = TAILQ_LAST(&pf_fragqueue[cpu], pf_fragqueue)) != NULL) {
162 		KASSERT((BUFFER_FRAGMENTS(frag)),
163 			("BUFFER_FRAGMENTS(frag) == 0: %s", __func__));
164 		if (frag->fr_timeout > expire)
165 			break;
166 
167 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
168 		pf_free_fragment(frag);
169 	}
170 
171 	while ((frag = TAILQ_LAST(&pf_cachequeue[cpu], pf_cachequeue)) != NULL) {
172 		KASSERT((!BUFFER_FRAGMENTS(frag)),
173 			("BUFFER_FRAGMENTS(frag) != 0: %s", __func__));
174 		if (frag->fr_timeout > expire)
175 			break;
176 
177 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
178 		pf_free_fragment(frag);
179 		KASSERT((TAILQ_EMPTY(&pf_cachequeue[cpu]) ||
180 		    TAILQ_LAST(&pf_cachequeue[cpu], pf_cachequeue) != frag),
181 		    ("!(TAILQ_EMPTY() || TAILQ_LAST() == farg): %s",
182 		    __func__));
183 	}
184 }
185 
186 /*
187  * Try to flush old fragments to make space for new ones
188  */
189 
190 void
191 pf_flush_fragments(void)
192 {
193 	struct pf_fragment *frag;
194 	int goal;
195 	int cpu = mycpu->gd_cpuid;
196 
197 	goal = pf_nfrents * 9 / 10;
198 	DPFPRINTF(("trying to free > %d frents\n",
199 	    pf_nfrents - goal));
200 	while (goal < pf_nfrents) {
201 		frag = TAILQ_LAST(&pf_fragqueue[cpu], pf_fragqueue);
202 		if (frag == NULL)
203 			break;
204 		pf_free_fragment(frag);
205 	}
206 
207 
208 	goal = pf_ncache * 9 / 10;
209 	DPFPRINTF(("trying to free > %d cache entries\n",
210 	    pf_ncache - goal));
211 	while (goal < pf_ncache) {
212 		frag = TAILQ_LAST(&pf_cachequeue[cpu], pf_cachequeue);
213 		if (frag == NULL)
214 			break;
215 		pf_free_fragment(frag);
216 	}
217 }
218 
219 /* Frees the fragments and all associated entries */
220 
221 void
222 pf_free_fragment(struct pf_fragment *frag)
223 {
224 	struct pf_frent		*frent;
225 	struct pf_frcache	*frcache;
226 
227 	/* Free all fragments */
228 	if (BUFFER_FRAGMENTS(frag)) {
229 		for (frent = LIST_FIRST(&frag->fr_queue); frent;
230 		    frent = LIST_FIRST(&frag->fr_queue)) {
231 			LIST_REMOVE(frent, fr_next);
232 
233 			m_freem(frent->fr_m);
234 			kfree(frent, M_PFFRENTPL);
235 			pf_nfrents--;
236 		}
237 	} else {
238 		for (frcache = LIST_FIRST(&frag->fr_cache); frcache;
239 		    frcache = LIST_FIRST(&frag->fr_cache)) {
240 			LIST_REMOVE(frcache, fr_next);
241 
242 			KASSERT((LIST_EMPTY(&frag->fr_cache) ||
243 			    LIST_FIRST(&frag->fr_cache)->fr_off >
244 			    frcache->fr_end),
245 			    ("! (LIST_EMPTY() || LIST_FIRST()->fr_off >"
246                              " frcache->fr_end): %s", __func__));
247 
248 			kfree(frcache, M_PFCENTPL);
249 			pf_ncache--;
250 		}
251 	}
252 
253 	pf_remove_fragment(frag);
254 }
255 
256 void
257 pf_ip2key(struct pf_fragment *key, struct ip *ip)
258 {
259 	key->fr_p = ip->ip_p;
260 	key->fr_id = ip->ip_id;
261 	key->fr_src.s_addr = ip->ip_src.s_addr;
262 	key->fr_dst.s_addr = ip->ip_dst.s_addr;
263 }
264 
265 struct pf_fragment *
266 pf_find_fragment(struct ip *ip, struct pf_frag_tree *tree)
267 {
268 	struct pf_fragment	 key;
269 	struct pf_fragment	*frag;
270 	int cpu = mycpu->gd_cpuid;
271 
272 	pf_ip2key(&key, ip);
273 
274 	frag = RB_FIND(pf_frag_tree, tree, &key);
275 	if (frag != NULL) {
276 		/* XXX Are we sure we want to update the timeout? */
277 		frag->fr_timeout = time_second;
278 		if (BUFFER_FRAGMENTS(frag)) {
279 			TAILQ_REMOVE(&pf_fragqueue[cpu], frag, frag_next);
280 			TAILQ_INSERT_HEAD(&pf_fragqueue[cpu], frag, frag_next);
281 		} else {
282 			TAILQ_REMOVE(&pf_cachequeue[cpu], frag, frag_next);
283 			TAILQ_INSERT_HEAD(&pf_cachequeue[cpu], frag, frag_next);
284 		}
285 	}
286 
287 	return (frag);
288 }
289 
290 /* Removes a fragment from the fragment queue and frees the fragment */
291 
292 void
293 pf_remove_fragment(struct pf_fragment *frag)
294 {
295 	int cpu = mycpu->gd_cpuid;
296 
297 	if (BUFFER_FRAGMENTS(frag)) {
298 		RB_REMOVE(pf_frag_tree, &pf_frag_tree[cpu], frag);
299 		TAILQ_REMOVE(&pf_fragqueue[cpu], frag, frag_next);
300 		kfree(frag, M_PFFRAGPL);
301 	} else {
302 		RB_REMOVE(pf_frag_tree, &pf_cache_tree[cpu], frag);
303 		TAILQ_REMOVE(&pf_cachequeue[cpu], frag, frag_next);
304 		kfree(frag, M_PFCACHEPL);
305 	}
306 }
307 
308 #define FR_IP_OFF(fr)	(((fr)->fr_ip->ip_off & IP_OFFMASK) << 3)
309 struct mbuf *
310 pf_reassemble(struct mbuf **m0, struct pf_fragment **frag,
311     struct pf_frent *frent, int mff)
312 {
313 	struct mbuf	*m = *m0, *m2;
314 	struct pf_frent	*frea, *next;
315 	struct pf_frent	*frep = NULL;
316 	struct ip	*ip = frent->fr_ip;
317 	int		hlen = ip->ip_hl << 2;
318 	u_int16_t	off = (ip->ip_off & IP_OFFMASK) << 3;
319 	u_int16_t	ip_len = ip->ip_len - ip->ip_hl * 4;
320 	u_int16_t	max = ip_len + off;
321 	int		cpu = mycpu->gd_cpuid;
322 
323 	KASSERT((*frag == NULL || BUFFER_FRAGMENTS(*frag)),
324 	    ("! (*frag == NULL || BUFFER_FRAGMENTS(*frag)): %s", __func__));
325 
326 	/* Strip off ip header */
327 	m->m_data += hlen;
328 	m->m_len -= hlen;
329 
330 	/* Create a new reassembly queue for this packet */
331 	if (*frag == NULL) {
332 		*frag = kmalloc(sizeof(struct pf_fragment), M_PFFRAGPL, M_NOWAIT);
333 		if (*frag == NULL) {
334 			pf_flush_fragments();
335 			*frag = kmalloc(sizeof(struct pf_fragment), M_PFFRAGPL, M_NOWAIT);
336 			if (*frag == NULL)
337 				goto drop_fragment;
338 		}
339 
340 		(*frag)->fr_flags = 0;
341 		(*frag)->fr_max = 0;
342 		(*frag)->fr_src = frent->fr_ip->ip_src;
343 		(*frag)->fr_dst = frent->fr_ip->ip_dst;
344 		(*frag)->fr_p = frent->fr_ip->ip_p;
345 		(*frag)->fr_id = frent->fr_ip->ip_id;
346 		(*frag)->fr_timeout = time_second;
347 		LIST_INIT(&(*frag)->fr_queue);
348 
349 		RB_INSERT(pf_frag_tree, &pf_frag_tree[cpu], *frag);
350 		TAILQ_INSERT_HEAD(&pf_fragqueue[cpu], *frag, frag_next);
351 
352 		/* We do not have a previous fragment */
353 		frep = NULL;
354 		goto insert;
355 	}
356 
357 	/*
358 	 * Find a fragment after the current one:
359 	 *  - off contains the real shifted offset.
360 	 */
361 	LIST_FOREACH(frea, &(*frag)->fr_queue, fr_next) {
362 		if (FR_IP_OFF(frea) > off)
363 			break;
364 		frep = frea;
365 	}
366 
367 	KASSERT((frep != NULL || frea != NULL),
368 	    ("!(frep != NULL || frea != NULL): %s", __func__));
369 
370 	if (frep != NULL &&
371 	    FR_IP_OFF(frep) + frep->fr_ip->ip_len - frep->fr_ip->ip_hl *
372 	    4 > off)
373 	{
374 		u_int16_t	precut;
375 
376 		precut = FR_IP_OFF(frep) + frep->fr_ip->ip_len -
377 		    frep->fr_ip->ip_hl * 4 - off;
378 		if (precut >= ip_len)
379 			goto drop_fragment;
380 		m_adj(frent->fr_m, precut);
381 		DPFPRINTF(("overlap -%d\n", precut));
382 		/* Enforce 8 byte boundaries */
383 		ip->ip_off = ip->ip_off + (precut >> 3);
384 		off = (ip->ip_off & IP_OFFMASK) << 3;
385 		ip_len -= precut;
386 		ip->ip_len = ip_len;
387 	}
388 
389 	for (; frea != NULL && ip_len + off > FR_IP_OFF(frea);
390 	    frea = next)
391 	{
392 		u_int16_t	aftercut;
393 
394 		aftercut = ip_len + off - FR_IP_OFF(frea);
395 		DPFPRINTF(("adjust overlap %d\n", aftercut));
396 		if (aftercut < frea->fr_ip->ip_len - frea->fr_ip->ip_hl
397 		    * 4)
398 		{
399 			frea->fr_ip->ip_len =
400 			    frea->fr_ip->ip_len - aftercut;
401 			frea->fr_ip->ip_off = frea->fr_ip->ip_off +
402 			    (aftercut >> 3);
403 			m_adj(frea->fr_m, aftercut);
404 			break;
405 		}
406 
407 		/* This fragment is completely overlapped, lose it */
408 		next = LIST_NEXT(frea, fr_next);
409 		m_freem(frea->fr_m);
410 		LIST_REMOVE(frea, fr_next);
411 		kfree(frea, M_PFFRENTPL);
412 		pf_nfrents--;
413 	}
414 
415  insert:
416 	/* Update maximum data size */
417 	if ((*frag)->fr_max < max)
418 		(*frag)->fr_max = max;
419 	/* This is the last segment */
420 	if (!mff)
421 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
422 
423 	if (frep == NULL)
424 		LIST_INSERT_HEAD(&(*frag)->fr_queue, frent, fr_next);
425 	else
426 		LIST_INSERT_AFTER(frep, frent, fr_next);
427 
428 	/* Check if we are completely reassembled */
429 	if (!((*frag)->fr_flags & PFFRAG_SEENLAST))
430 		return (NULL);
431 
432 	/* Check if we have all the data */
433 	off = 0;
434 	for (frep = LIST_FIRST(&(*frag)->fr_queue); frep; frep = next) {
435 		next = LIST_NEXT(frep, fr_next);
436 
437 		off += frep->fr_ip->ip_len - frep->fr_ip->ip_hl * 4;
438 		if (off < (*frag)->fr_max &&
439 		    (next == NULL || FR_IP_OFF(next) != off))
440 		{
441 			DPFPRINTF(("missing fragment at %d, next %d, max %d\n",
442 			    off, next == NULL ? -1 : FR_IP_OFF(next),
443 			    (*frag)->fr_max));
444 			return (NULL);
445 		}
446 	}
447 	DPFPRINTF(("%d < %d?\n", off, (*frag)->fr_max));
448 	if (off < (*frag)->fr_max)
449 		return (NULL);
450 
451 	/* We have all the data */
452 	frent = LIST_FIRST(&(*frag)->fr_queue);
453 	KASSERT((frent != NULL), ("frent == NULL: %s", __func__));
454 	if ((frent->fr_ip->ip_hl << 2) + off > IP_MAXPACKET) {
455 		DPFPRINTF(("drop: too big: %d\n", off));
456 		pf_free_fragment(*frag);
457 		*frag = NULL;
458 		return (NULL);
459 	}
460 	next = LIST_NEXT(frent, fr_next);
461 
462 	/* Magic from ip_input */
463 	ip = frent->fr_ip;
464 	m = frent->fr_m;
465 	m2 = m->m_next;
466 	m->m_next = NULL;
467 	m_cat(m, m2);
468 	kfree(frent, M_PFFRENTPL);
469 	pf_nfrents--;
470 	for (frent = next; frent != NULL; frent = next) {
471 		next = LIST_NEXT(frent, fr_next);
472 
473 		m2 = frent->fr_m;
474 		kfree(frent, M_PFFRENTPL);
475 		pf_nfrents--;
476 		m_cat(m, m2);
477 	}
478 
479 	ip->ip_src = (*frag)->fr_src;
480 	ip->ip_dst = (*frag)->fr_dst;
481 
482 	/* Remove from fragment queue */
483 	pf_remove_fragment(*frag);
484 	*frag = NULL;
485 
486 	hlen = ip->ip_hl << 2;
487 	ip->ip_len = off + hlen;
488 	m->m_len += hlen;
489 	m->m_data -= hlen;
490 
491 	/* some debugging cruft by sklower, below, will go away soon */
492 	/* XXX this should be done elsewhere */
493 	if (m->m_flags & M_PKTHDR) {
494 		int plen = 0;
495 		for (m2 = m; m2; m2 = m2->m_next)
496 			plen += m2->m_len;
497 		m->m_pkthdr.len = plen;
498 	}
499 
500 	DPFPRINTF(("complete: %p(%d)\n", m, ip->ip_len));
501 	return (m);
502 
503  drop_fragment:
504 	/* Oops - fail safe - drop packet */
505 	kfree(frent, M_PFFRENTPL);
506 	pf_nfrents--;
507 	m_freem(m);
508 	return (NULL);
509 }
510 
511 struct mbuf *
512 pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
513     int drop, int *nomem)
514 {
515 	struct mbuf	*m = *m0;
516 	struct pf_frcache *frp, *fra, *cur = NULL;
517 	int		ip_len = h->ip_len - (h->ip_hl << 2);
518 	u_int16_t	off = h->ip_off << 3;
519 	u_int16_t	max = ip_len + off;
520 	int		hosed = 0;
521 	int		cpu = mycpu->gd_cpuid;
522 
523 	KASSERT((*frag == NULL || !BUFFER_FRAGMENTS(*frag)),
524 	    ("!(*frag == NULL || !BUFFER_FRAGMENTS(*frag)): %s", __func__));
525 
526 	/* Create a new range queue for this packet */
527 	if (*frag == NULL) {
528 		*frag = kmalloc(sizeof(struct pf_fragment), M_PFCACHEPL, M_NOWAIT);
529 		if (*frag == NULL) {
530 			pf_flush_fragments();
531 			*frag = kmalloc(sizeof(struct pf_fragment), M_PFCACHEPL, M_NOWAIT);
532 			if (*frag == NULL)
533 				goto no_mem;
534 		}
535 
536 		/* Get an entry for the queue */
537 		cur = kmalloc(sizeof(struct pf_frcache), M_PFCENTPL, M_NOWAIT);
538 		if (cur == NULL) {
539 			kfree(*frag, M_PFCACHEPL);
540 			*frag = NULL;
541 			goto no_mem;
542 		}
543 		pf_ncache++;
544 
545 		(*frag)->fr_flags = PFFRAG_NOBUFFER;
546 		(*frag)->fr_max = 0;
547 		(*frag)->fr_src = h->ip_src;
548 		(*frag)->fr_dst = h->ip_dst;
549 		(*frag)->fr_p = h->ip_p;
550 		(*frag)->fr_id = h->ip_id;
551 		(*frag)->fr_timeout = time_second;
552 
553 		cur->fr_off = off;
554 		cur->fr_end = max;
555 		LIST_INIT(&(*frag)->fr_cache);
556 		LIST_INSERT_HEAD(&(*frag)->fr_cache, cur, fr_next);
557 
558 		RB_INSERT(pf_frag_tree, &pf_cache_tree[cpu], *frag);
559 		TAILQ_INSERT_HEAD(&pf_cachequeue[cpu], *frag, frag_next);
560 
561 		DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off, max));
562 
563 		goto pass;
564 	}
565 
566 	/*
567 	 * Find a fragment after the current one:
568 	 *  - off contains the real shifted offset.
569 	 */
570 	frp = NULL;
571 	LIST_FOREACH(fra, &(*frag)->fr_cache, fr_next) {
572 		if (fra->fr_off > off)
573 			break;
574 		frp = fra;
575 	}
576 
577 	KASSERT((frp != NULL || fra != NULL),
578 	    ("!(frp != NULL || fra != NULL): %s", __func__));
579 
580 	if (frp != NULL) {
581 		int	precut;
582 
583 		precut = frp->fr_end - off;
584 		if (precut >= ip_len) {
585 			/* Fragment is entirely a duplicate */
586 			DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
587 			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
588 			goto drop_fragment;
589 		}
590 		if (precut == 0) {
591 			/* They are adjacent.  Fixup cache entry */
592 			DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
593 			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
594 			frp->fr_end = max;
595 		} else if (precut > 0) {
596 			/* The first part of this payload overlaps with a
597 			 * fragment that has already been passed.
598 			 * Need to trim off the first part of the payload.
599 			 * But to do so easily, we need to create another
600 			 * mbuf to throw the original header into.
601 			 */
602 
603 			DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
604 			    h->ip_id, precut, frp->fr_off, frp->fr_end, off,
605 			    max));
606 
607 			off += precut;
608 			max -= precut;
609 			/* Update the previous frag to encompass this one */
610 			frp->fr_end = max;
611 
612 			if (!drop) {
613 				/* XXX Optimization opportunity
614 				 * This is a very heavy way to trim the payload.
615 				 * we could do it much faster by diddling mbuf
616 				 * internals but that would be even less legible
617 				 * than this mbuf magic.  For my next trick,
618 				 * I'll pull a rabbit out of my laptop.
619 				 */
620 				*m0 = m_dup(m, M_NOWAIT);
621 				/* From KAME Project : We have missed this! */
622 				m_adj(*m0, (h->ip_hl << 2) -
623 				    (*m0)->m_pkthdr.len);
624 				if (*m0 == NULL)
625 					goto no_mem;
626 				KASSERT(((*m0)->m_next == NULL),
627 				    ("(*m0)->m_next != NULL: %s",
628 				    __func__));
629 				m_adj(m, precut + (h->ip_hl << 2));
630 				m_cat(*m0, m);
631 				m = *m0;
632 				if (m->m_flags & M_PKTHDR) {
633 					int plen = 0;
634 					struct mbuf *t;
635 					for (t = m; t; t = t->m_next)
636 						plen += t->m_len;
637 					m->m_pkthdr.len = plen;
638 				}
639 
640 
641 				h = mtod(m, struct ip *);
642 
643 				KASSERT(((int)m->m_len ==
644 				    h->ip_len - precut),
645 				    ("m->m_len != h->ip_len - precut: %s",
646 				    __func__));
647 				h->ip_off = h->ip_off +
648 				    (precut >> 3);
649 				h->ip_len = h->ip_len - precut;
650 			} else {
651 				hosed++;
652 			}
653 		} else {
654 			/* There is a gap between fragments */
655 
656 			DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
657 			    h->ip_id, -precut, frp->fr_off, frp->fr_end, off,
658 			    max));
659 
660 			cur = kmalloc(sizeof(struct pf_frcache), M_PFCENTPL, M_NOWAIT);
661 			if (cur == NULL)
662 				goto no_mem;
663 			pf_ncache++;
664 
665 			cur->fr_off = off;
666 			cur->fr_end = max;
667 			LIST_INSERT_AFTER(frp, cur, fr_next);
668 		}
669 	}
670 
671 	if (fra != NULL) {
672 		int	aftercut;
673 		int	merge = 0;
674 
675 		aftercut = max - fra->fr_off;
676 		if (aftercut == 0) {
677 			/* Adjacent fragments */
678 			DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
679 			    h->ip_id, off, max, fra->fr_off, fra->fr_end));
680 			fra->fr_off = off;
681 			merge = 1;
682 		} else if (aftercut > 0) {
683 			/* Need to chop off the tail of this fragment */
684 			DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
685 			    h->ip_id, aftercut, off, max, fra->fr_off,
686 			    fra->fr_end));
687 			fra->fr_off = off;
688 			max -= aftercut;
689 
690 			merge = 1;
691 
692 			if (!drop) {
693 				m_adj(m, -aftercut);
694 				if (m->m_flags & M_PKTHDR) {
695 					int plen = 0;
696 					struct mbuf *t;
697 					for (t = m; t; t = t->m_next)
698 						plen += t->m_len;
699 					m->m_pkthdr.len = plen;
700 				}
701 				h = mtod(m, struct ip *);
702 				KASSERT(((int)m->m_len == h->ip_len - aftercut),
703 				    ("m->m_len != h->ip_len - aftercut: %s",
704 				    __func__));
705 				h->ip_len = h->ip_len - aftercut;
706 			} else {
707 				hosed++;
708 			}
709 		} else if (frp == NULL) {
710 			/* There is a gap between fragments */
711 			DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
712 			    h->ip_id, -aftercut, off, max, fra->fr_off,
713 			    fra->fr_end));
714 
715 			cur = kmalloc(sizeof(struct pf_frcache), M_PFCENTPL, M_NOWAIT);
716 			if (cur == NULL)
717 				goto no_mem;
718 			pf_ncache++;
719 
720 			cur->fr_off = off;
721 			cur->fr_end = max;
722 			LIST_INSERT_BEFORE(fra, cur, fr_next);
723 		}
724 
725 
726 		/* Need to glue together two separate fragment descriptors */
727 		if (merge) {
728 			if (cur && fra->fr_off <= cur->fr_end) {
729 				/* Need to merge in a previous 'cur' */
730 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
731 				    "%d-%d) %d-%d (%d-%d)\n",
732 				    h->ip_id, cur->fr_off, cur->fr_end, off,
733 				    max, fra->fr_off, fra->fr_end));
734 				fra->fr_off = cur->fr_off;
735 				LIST_REMOVE(cur, fr_next);
736 				kfree(cur, M_PFCENTPL);
737 				pf_ncache--;
738 				cur = NULL;
739 
740 			} else if (frp && fra->fr_off <= frp->fr_end) {
741 				/* Need to merge in a modified 'frp' */
742 				KASSERT((cur == NULL), ("cur != NULL: %s",
743 				    __func__));
744 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
745 				    "%d-%d) %d-%d (%d-%d)\n",
746 				    h->ip_id, frp->fr_off, frp->fr_end, off,
747 				    max, fra->fr_off, fra->fr_end));
748 				fra->fr_off = frp->fr_off;
749 				LIST_REMOVE(frp, fr_next);
750 				kfree(frp, M_PFCENTPL);
751 				pf_ncache--;
752 				frp = NULL;
753 
754 			}
755 		}
756 	}
757 
758 	if (hosed) {
759 		/*
760 		 * We must keep tracking the overall fragment even when
761 		 * we're going to drop it anyway so that we know when to
762 		 * free the overall descriptor.  Thus we drop the frag late.
763 		 */
764 		goto drop_fragment;
765 	}
766 
767 
768  pass:
769 	/* Update maximum data size */
770 	if ((*frag)->fr_max < max)
771 		(*frag)->fr_max = max;
772 
773 	/* This is the last segment */
774 	if (!mff)
775 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
776 
777 	/* Check if we are completely reassembled */
778 	if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
779 	    LIST_FIRST(&(*frag)->fr_cache)->fr_off == 0 &&
780 	    LIST_FIRST(&(*frag)->fr_cache)->fr_end == (*frag)->fr_max) {
781 		/* Remove from fragment queue */
782 		DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
783 		    (*frag)->fr_max));
784 		pf_free_fragment(*frag);
785 		*frag = NULL;
786 	}
787 
788 	return (m);
789 
790  no_mem:
791 	*nomem = 1;
792 
793 	/* Still need to pay attention to !IP_MF */
794 	if (!mff && *frag != NULL)
795 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
796 
797 	m_freem(m);
798 	return (NULL);
799 
800  drop_fragment:
801 
802 	/* Still need to pay attention to !IP_MF */
803 	if (!mff && *frag != NULL)
804 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
805 
806 	if (drop) {
807 		/* This fragment has been deemed bad.  Don't reass */
808 		if (((*frag)->fr_flags & PFFRAG_DROP) == 0)
809 			DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
810 			    h->ip_id));
811 		(*frag)->fr_flags |= PFFRAG_DROP;
812 	}
813 
814 	m_freem(m);
815 	return (NULL);
816 }
817 
818 int
819 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
820     struct pf_pdesc *pd)
821 {
822 	struct mbuf	*m = *m0;
823 	struct pf_rule	*r;
824 	struct pf_frent	*frent;
825 	struct pf_fragment *frag = NULL;
826 	struct ip	*h = mtod(m, struct ip *);
827 	int		mff = (h->ip_off & IP_MF);
828 	int		hlen = h->ip_hl << 2;
829 	u_int16_t	fragoff = (h->ip_off & IP_OFFMASK) << 3;
830 	u_int16_t	max;
831 	int		ip_len;
832 	int		tag = -1;
833 	int		cpu = mycpu->gd_cpuid;
834 
835 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
836 	while (r != NULL) {
837 		r->evaluations++;
838 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
839 			r = r->skip[PF_SKIP_IFP].ptr;
840 		else if (r->direction && r->direction != dir)
841 			r = r->skip[PF_SKIP_DIR].ptr;
842 		else if (r->af && r->af != AF_INET)
843 			r = r->skip[PF_SKIP_AF].ptr;
844 		else if (r->proto && r->proto != h->ip_p)
845 			r = r->skip[PF_SKIP_PROTO].ptr;
846 		else if (PF_MISMATCHAW(&r->src.addr,
847 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
848 		    r->src.neg, kif))
849 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
850 		else if (PF_MISMATCHAW(&r->dst.addr,
851 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
852 		    r->dst.neg, NULL))
853 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
854 		else if (r->match_tag && !pf_match_tag(m, r, &tag))
855 			r = TAILQ_NEXT(r, entries);
856 		else
857 			break;
858 	}
859 
860 	if (r == NULL || r->action == PF_NOSCRUB)
861 		return (PF_PASS);
862 	else {
863 		r->packets[dir == PF_OUT]++;
864 		r->bytes[dir == PF_OUT] += pd->tot_len;
865 	}
866 
867 	/* Check for illegal packets */
868 	if (hlen < (int)sizeof(struct ip))
869 		goto drop;
870 
871 	if (hlen > h->ip_len)
872 		goto drop;
873 
874 	/* Clear IP_DF if the rule uses the no-df option */
875 	if (r->rule_flag & PFRULE_NODF && h->ip_off & IP_DF) {
876 		u_int16_t ip_off = h->ip_off;
877 
878 		h->ip_off &= ~IP_DF;
879 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
880 	}
881 
882 	/* We will need other tests here */
883 	if (!fragoff && !mff)
884 		goto no_fragment;
885 
886 	/* A fragment; rehash required. */
887 	m->m_flags &= ~M_HASH;
888 
889 	/* We're dealing with a fragment now. Don't allow fragments
890 	 * with IP_DF to enter the cache. If the flag was cleared by
891 	 * no-df above, fine. Otherwise drop it.
892 	 */
893 	if (h->ip_off & IP_DF) {
894 		DPFPRINTF(("IP_DF\n"));
895 		goto bad;
896 	}
897 
898 	ip_len = h->ip_len - hlen;
899 
900 	/* All fragments are 8 byte aligned */
901 	if (mff && (ip_len & 0x7)) {
902 		DPFPRINTF(("mff and %d\n", ip_len));
903 		goto bad;
904 	}
905 
906 	/* Respect maximum length */
907 	if (fragoff + ip_len > IP_MAXPACKET) {
908 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
909 		goto bad;
910 	}
911 	max = fragoff + ip_len;
912 
913 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0) {
914 		/* Fully buffer all of the fragments */
915 
916 		frag = pf_find_fragment(h, &pf_frag_tree[cpu]);
917 
918 		/* Check if we saw the last fragment already */
919 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
920 		    max > frag->fr_max)
921 			goto bad;
922 
923 		/* Get an entry for the fragment queue */
924 		frent = kmalloc(sizeof(struct pf_frent), M_PFFRENTPL, M_NOWAIT);
925 		if (frent == NULL) {
926 			REASON_SET(reason, PFRES_MEMORY);
927 			return (PF_DROP);
928 		}
929 		pf_nfrents++;
930 		frent->fr_ip = h;
931 		frent->fr_m = m;
932 
933 		/* Might return a completely reassembled mbuf, or NULL */
934 		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
935 		*m0 = m = pf_reassemble(m0, &frag, frent, mff);
936 
937 		if (m == NULL)
938 			return (PF_DROP);
939 
940 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
941 			goto drop;
942 
943 		h = mtod(m, struct ip *);
944 	} else {
945 		/* non-buffering fragment cache (drops or masks overlaps) */
946 		int	nomem = 0;
947 
948 		if (dir == PF_OUT && m->m_pkthdr.pf.flags & PF_TAG_FRAGCACHE) {
949 			/*
950 			 * Already passed the fragment cache in the
951 			 * input direction.  If we continued, it would
952 			 * appear to be a dup and would be dropped.
953 			 */
954 			goto fragment_pass;
955 		}
956 
957 		frag = pf_find_fragment(h, &pf_cache_tree[cpu]);
958 
959 		/* Check if we saw the last fragment already */
960 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
961 		    max > frag->fr_max) {
962 			if (r->rule_flag & PFRULE_FRAGDROP)
963 				frag->fr_flags |= PFFRAG_DROP;
964 			goto bad;
965 		}
966 
967 		*m0 = m = pf_fragcache(m0, h, &frag, mff,
968 		    (r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
969 		if (m == NULL) {
970 			if (nomem)
971 				goto no_mem;
972 			goto drop;
973 		}
974 
975 		if (dir == PF_IN)
976 			m->m_pkthdr.pf.flags |= PF_TAG_FRAGCACHE;
977 
978 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
979 			goto drop;
980 		goto fragment_pass;
981 	}
982 
983  no_fragment:
984 	/* At this point, only IP_DF is allowed in ip_off */
985 	if (h->ip_off & ~IP_DF) {
986 		u_int16_t ip_off = h->ip_off;
987 
988 		h->ip_off &= IP_DF;
989 		h->ip_sum = pf_cksum_fixup(h->ip_sum, htons(ip_off), htons(h->ip_off), 0);
990 	}
991 
992 	/* Enforce a minimum ttl, may cause endless packet loops */
993 	if (r->min_ttl && h->ip_ttl < r->min_ttl) {
994 		u_int16_t ip_ttl = h->ip_ttl;
995 
996 		h->ip_ttl = r->min_ttl;
997 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
998 	}
999 
1000 	/* Enforce tos */
1001 	if (r->rule_flag & PFRULE_SET_TOS) {
1002 		u_int16_t	ov, nv;
1003 
1004 		ov = *(u_int16_t *)h;
1005 		h->ip_tos = r->set_tos;
1006 		nv = *(u_int16_t *)h;
1007 
1008 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1009 	}
1010 
1011 	if (r->rule_flag & PFRULE_RANDOMID) {
1012 		u_int16_t ip_id = h->ip_id;
1013 
1014 		h->ip_id = ip_randomid();
1015 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
1016 	}
1017 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
1018 		pd->flags |= PFDESC_IP_REAS;
1019 
1020 	return (PF_PASS);
1021 
1022  fragment_pass:
1023 	/* Enforce a minimum ttl, may cause endless packet loops */
1024 	if (r->min_ttl && h->ip_ttl < r->min_ttl) {
1025 		u_int16_t ip_ttl = h->ip_ttl;
1026 
1027 		h->ip_ttl = r->min_ttl;
1028 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
1029 	}
1030 	/* Enforce tos */
1031 	if (r->rule_flag & PFRULE_SET_TOS) {
1032 		u_int16_t	ov, nv;
1033 
1034 		ov = *(u_int16_t *)h;
1035 		h->ip_tos = r->set_tos;
1036 		nv = *(u_int16_t *)h;
1037 
1038 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1039 	}
1040 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
1041 		pd->flags |= PFDESC_IP_REAS;
1042 	return (PF_PASS);
1043 
1044  no_mem:
1045 	REASON_SET(reason, PFRES_MEMORY);
1046 	if (r != NULL && r->log)
1047 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
1048 	return (PF_DROP);
1049 
1050  drop:
1051 	REASON_SET(reason, PFRES_NORM);
1052 	if (r != NULL && r->log)
1053 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
1054 	return (PF_DROP);
1055 
1056  bad:
1057 	DPFPRINTF(("dropping bad fragment\n"));
1058 
1059 	/* Free associated fragments */
1060 	if (frag != NULL)
1061 		pf_free_fragment(frag);
1062 
1063 	REASON_SET(reason, PFRES_FRAG);
1064 	if (r != NULL && r->log)
1065 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
1066 
1067 	return (PF_DROP);
1068 }
1069 
1070 #ifdef INET6
1071 int
1072 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
1073     u_short *reason, struct pf_pdesc *pd)
1074 {
1075 	struct mbuf		*m = *m0;
1076 	struct pf_rule		*r;
1077 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1078 	int			 off;
1079 	struct ip6_ext		 ext;
1080 	struct ip6_opt		 opt;
1081 	struct ip6_opt_jumbo	 jumbo;
1082 	struct ip6_frag		 frag;
1083 	u_int32_t		 jumbolen = 0, plen;
1084 	u_int16_t		 fragoff = 0;
1085 	int			 optend;
1086 	int			 ooff;
1087 	u_int8_t		 proto;
1088 	int			 terminal;
1089 
1090 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1091 	while (r != NULL) {
1092 		r->evaluations++;
1093 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1094 			r = r->skip[PF_SKIP_IFP].ptr;
1095 		else if (r->direction && r->direction != dir)
1096 			r = r->skip[PF_SKIP_DIR].ptr;
1097 		else if (r->af && r->af != AF_INET6)
1098 			r = r->skip[PF_SKIP_AF].ptr;
1099 #if 0 /* header chain! */
1100 		else if (r->proto && r->proto != h->ip6_nxt)
1101 			r = r->skip[PF_SKIP_PROTO].ptr;
1102 #endif
1103 		else if (PF_MISMATCHAW(&r->src.addr,
1104 		    (struct pf_addr *)&h->ip6_src, AF_INET6,
1105 		    r->src.neg, kif))
1106 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1107 		else if (PF_MISMATCHAW(&r->dst.addr,
1108 		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
1109 		    r->dst.neg, NULL))
1110 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1111 		else
1112 			break;
1113 	}
1114 
1115 	if (r == NULL || r->action == PF_NOSCRUB)
1116 		return (PF_PASS);
1117 	else {
1118 		r->packets[dir == PF_OUT]++;
1119 		r->bytes[dir == PF_OUT] += pd->tot_len;
1120 	}
1121 
1122 	/* Check for illegal packets */
1123 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1124 		goto drop;
1125 
1126 	off = sizeof(struct ip6_hdr);
1127 	proto = h->ip6_nxt;
1128 	terminal = 0;
1129 	do {
1130 		switch (proto) {
1131 		case IPPROTO_FRAGMENT:
1132 			goto fragment;
1133 			break;
1134 		case IPPROTO_AH:
1135 		case IPPROTO_ROUTING:
1136 		case IPPROTO_DSTOPTS:
1137 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1138 			    NULL, AF_INET6))
1139 				goto shortpkt;
1140 			if (proto == IPPROTO_AH)
1141 				off += (ext.ip6e_len + 2) * 4;
1142 			else
1143 				off += (ext.ip6e_len + 1) * 8;
1144 			proto = ext.ip6e_nxt;
1145 			break;
1146 		case IPPROTO_HOPOPTS:
1147 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1148 			    NULL, AF_INET6))
1149 				goto shortpkt;
1150 			optend = off + (ext.ip6e_len + 1) * 8;
1151 			ooff = off + sizeof(ext);
1152 			do {
1153 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1154 				    sizeof(opt.ip6o_type), NULL, NULL,
1155 				    AF_INET6))
1156 					goto shortpkt;
1157 				if (opt.ip6o_type == IP6OPT_PAD1) {
1158 					ooff++;
1159 					continue;
1160 				}
1161 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1162 				    NULL, NULL, AF_INET6))
1163 					goto shortpkt;
1164 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1165 					goto drop;
1166 				switch (opt.ip6o_type) {
1167 				case IP6OPT_JUMBO:
1168 					if (h->ip6_plen != 0)
1169 						goto drop;
1170 					if (!pf_pull_hdr(m, ooff, &jumbo,
1171 					    sizeof(jumbo), NULL, NULL,
1172 					    AF_INET6))
1173 						goto shortpkt;
1174 					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
1175 					    sizeof(jumbolen));
1176 					jumbolen = ntohl(jumbolen);
1177 					if (jumbolen <= IPV6_MAXPACKET)
1178 						goto drop;
1179 					if (sizeof(struct ip6_hdr) + jumbolen !=
1180 					    m->m_pkthdr.len)
1181 						goto drop;
1182 					break;
1183 				default:
1184 					break;
1185 				}
1186 				ooff += sizeof(opt) + opt.ip6o_len;
1187 			} while (ooff < optend);
1188 
1189 			off = optend;
1190 			proto = ext.ip6e_nxt;
1191 			break;
1192 		default:
1193 			terminal = 1;
1194 			break;
1195 		}
1196 	} while (!terminal);
1197 
1198 	/* jumbo payload option must be present, or plen > 0 */
1199 	if (ntohs(h->ip6_plen) == 0)
1200 		plen = jumbolen;
1201 	else
1202 		plen = ntohs(h->ip6_plen);
1203 	if (plen == 0)
1204 		goto drop;
1205 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1206 		goto shortpkt;
1207 
1208 	/* Enforce a minimum ttl, may cause endless packet loops */
1209 	if (r->min_ttl && h->ip6_hlim < r->min_ttl)
1210 		h->ip6_hlim = r->min_ttl;
1211 
1212 	return (PF_PASS);
1213 
1214  fragment:
1215 	if (ntohs(h->ip6_plen) == 0 || jumbolen)
1216 		goto drop;
1217 	plen = ntohs(h->ip6_plen);
1218 
1219 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1220 		goto shortpkt;
1221 	fragoff = ntohs(frag.ip6f_offlg & IP6F_OFF_MASK);
1222 	if (fragoff + (plen - off - sizeof(frag)) > IPV6_MAXPACKET)
1223 		goto badfrag;
1224 
1225 	/* do something about it */
1226 	/* remember to set pd->flags |= PFDESC_IP_REAS */
1227 	return (PF_PASS);
1228 
1229  shortpkt:
1230 	REASON_SET(reason, PFRES_SHORT);
1231 	if (r != NULL && r->log)
1232 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
1233 	return (PF_DROP);
1234 
1235  drop:
1236 	REASON_SET(reason, PFRES_NORM);
1237 	if (r != NULL && r->log)
1238 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
1239 	return (PF_DROP);
1240 
1241  badfrag:
1242 	REASON_SET(reason, PFRES_FRAG);
1243 	if (r != NULL && r->log)
1244 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
1245 	return (PF_DROP);
1246 }
1247 #endif /* INET6 */
1248 
1249 int
1250 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1251     int off, void *h, struct pf_pdesc *pd)
1252 {
1253 	struct pf_rule	*r, *rm = NULL;
1254 	struct tcphdr	*th = pd->hdr.tcp;
1255 	int		 rewrite = 0;
1256 	u_short		 reason;
1257 	u_int8_t	 flags;
1258 	sa_family_t	 af = pd->af;
1259 
1260 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1261 	while (r != NULL) {
1262 		r->evaluations++;
1263 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1264 			r = r->skip[PF_SKIP_IFP].ptr;
1265 		else if (r->direction && r->direction != dir)
1266 			r = r->skip[PF_SKIP_DIR].ptr;
1267 		else if (r->af && r->af != af)
1268 			r = r->skip[PF_SKIP_AF].ptr;
1269 		else if (r->proto && r->proto != pd->proto)
1270 			r = r->skip[PF_SKIP_PROTO].ptr;
1271 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1272 		    r->src.neg, kif))
1273 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1274 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1275 			    r->src.port[0], r->src.port[1], th->th_sport))
1276 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
1277 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1278 		    r->dst.neg, NULL))
1279 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1280 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1281 			    r->dst.port[0], r->dst.port[1], th->th_dport))
1282 			r = r->skip[PF_SKIP_DST_PORT].ptr;
1283 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1284 			    pf_osfp_fingerprint(pd, m, off, th),
1285 			    r->os_fingerprint))
1286 			r = TAILQ_NEXT(r, entries);
1287 		else {
1288 			rm = r;
1289 			break;
1290 		}
1291 	}
1292 
1293 	if (rm == NULL || rm->action == PF_NOSCRUB)
1294 		return (PF_PASS);
1295 	else {
1296 		r->packets[dir == PF_OUT]++;
1297 		r->bytes[dir == PF_OUT] += pd->tot_len;
1298 	}
1299 
1300 	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1301 		pd->flags |= PFDESC_TCP_NORM;
1302 
1303 	flags = th->th_flags;
1304 	if (flags & TH_SYN) {
1305 		/* Illegal packet */
1306 		if (flags & TH_RST)
1307 			goto tcp_drop;
1308 
1309 		if (flags & TH_FIN)
1310 			flags &= ~TH_FIN;
1311 	} else {
1312 		/* Illegal packet */
1313 		if (!(flags & (TH_ACK|TH_RST)))
1314 			goto tcp_drop;
1315 	}
1316 
1317 	if (!(flags & TH_ACK)) {
1318 		/* These flags are only valid if ACK is set */
1319 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1320 			goto tcp_drop;
1321 	}
1322 
1323 	/* Check for illegal header length */
1324 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1325 		goto tcp_drop;
1326 
1327 	/* If flags changed, or reserved data set, then adjust */
1328 	if (flags != th->th_flags || th->th_x2 != 0) {
1329 		u_int16_t	ov, nv;
1330 
1331 		ov = *(u_int16_t *)(&th->th_ack + 1);
1332 		th->th_flags = flags;
1333 		th->th_x2 = 0;
1334 		nv = *(u_int16_t *)(&th->th_ack + 1);
1335 
1336 		th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
1337 		rewrite = 1;
1338 	}
1339 
1340 	/* Remove urgent pointer, if TH_URG is not set */
1341 	if (!(flags & TH_URG) && th->th_urp) {
1342 		th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
1343 		th->th_urp = 0;
1344 		rewrite = 1;
1345 	}
1346 
1347 	/* Process options */
1348 	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1349 		rewrite = 1;
1350 
1351 	/* copy back packet headers if we sanitized */
1352 	if (rewrite)
1353 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
1354 
1355 	return (PF_PASS);
1356 
1357  tcp_drop:
1358 	REASON_SET(&reason, PFRES_NORM);
1359 	if (rm != NULL && r->log)
1360 		PFLOG_PACKET(kif, h, m, AF_INET, dir, reason, r, NULL, NULL, pd);
1361 	return (PF_DROP);
1362 }
1363 
1364 int
1365 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1366     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1367 {
1368 	u_int32_t tsval, tsecr;
1369 	u_int8_t hdr[60];
1370 	u_int8_t *opt;
1371 
1372 	KASSERT((src->scrub == NULL),
1373 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1374 
1375 	src->scrub = kmalloc(sizeof(struct pf_state_scrub), M_PFSTATESCRUBPL,
1376 	    M_NOWAIT | M_ZERO);
1377 	if (src->scrub == NULL)
1378 		return (1);
1379 
1380 	switch (pd->af) {
1381 #ifdef INET
1382 	case AF_INET: {
1383 		struct ip *h = mtod(m, struct ip *);
1384 		src->scrub->pfss_ttl = h->ip_ttl;
1385 		break;
1386 	}
1387 #endif /* INET */
1388 #ifdef INET6
1389 	case AF_INET6: {
1390 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1391 		src->scrub->pfss_ttl = h->ip6_hlim;
1392 		break;
1393 	}
1394 #endif /* INET6 */
1395 	}
1396 
1397 
1398 	/*
1399 	 * All normalizations below are only begun if we see the start of
1400 	 * the connections.  They must all set an enabled bit in pfss_flags
1401 	 */
1402 	if ((th->th_flags & TH_SYN) == 0)
1403 		return (0);
1404 
1405 
1406 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1407 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1408 		/* Diddle with TCP options */
1409 		int hlen;
1410 		opt = hdr + sizeof(struct tcphdr);
1411 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1412 		while (hlen >= TCPOLEN_TIMESTAMP) {
1413 			switch (*opt) {
1414 			case TCPOPT_EOL:	/* FALLTHROUGH */
1415 			case TCPOPT_NOP:
1416 				opt++;
1417 				hlen--;
1418 				break;
1419 			case TCPOPT_TIMESTAMP:
1420 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1421 					src->scrub->pfss_flags |=
1422 					    PFSS_TIMESTAMP;
1423 					src->scrub->pfss_ts_mod = karc4random();
1424 
1425 					/* note PFSS_PAWS not set yet */
1426 					memcpy(&tsval, &opt[2],
1427 					    sizeof(u_int32_t));
1428 					memcpy(&tsecr, &opt[6],
1429 					    sizeof(u_int32_t));
1430 					src->scrub->pfss_tsval0 = ntohl(tsval);
1431 					src->scrub->pfss_tsval = ntohl(tsval);
1432 					src->scrub->pfss_tsecr = ntohl(tsecr);
1433 					getmicrouptime(&src->scrub->pfss_last);
1434 				}
1435 				/* FALLTHROUGH */
1436 			default:
1437 				hlen -= MAX(opt[1], 2);
1438 				opt += MAX(opt[1], 2);
1439 				break;
1440 			}
1441 		}
1442 	}
1443 
1444 	return (0);
1445 }
1446 
1447 void
1448 pf_normalize_tcp_cleanup(struct pf_state *state)
1449 {
1450 	if (state->src.scrub)
1451 		kfree(state->src.scrub, M_PFSTATESCRUBPL);
1452 	if (state->dst.scrub)
1453 		kfree(state->dst.scrub, M_PFSTATESCRUBPL);
1454 
1455 	/* Someday... flush the TCP segment reassembly descriptors. */
1456 }
1457 
1458 int
1459 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1460     u_short *reason, struct tcphdr *th, struct pf_state *state,
1461     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1462 {
1463 	struct timeval uptime;
1464 	u_int32_t tsval, tsecr;
1465 	u_int tsval_from_last;
1466 	u_int8_t hdr[60];
1467 	u_int8_t *opt;
1468 	int copyback = 0;
1469 	int got_ts = 0;
1470 
1471 	KASSERT((src->scrub || dst->scrub),
1472 	    ("pf_normalize_tcp_statefull: src->scrub && dst->scrub!"));
1473 
1474 	tsval = 0;	/* avoid gcc complaint */
1475 	tsecr = 0;	/* avoid gcc complaint */
1476 
1477 	/*
1478 	 * Enforce the minimum TTL seen for this connection.  Negate a common
1479 	 * technique to evade an intrusion detection system and confuse
1480 	 * firewall state code.
1481 	 */
1482 	switch (pd->af) {
1483 #ifdef INET
1484 	case AF_INET: {
1485 		if (src->scrub) {
1486 			struct ip *h = mtod(m, struct ip *);
1487 			if (h->ip_ttl > src->scrub->pfss_ttl)
1488 				src->scrub->pfss_ttl = h->ip_ttl;
1489 			h->ip_ttl = src->scrub->pfss_ttl;
1490 		}
1491 		break;
1492 	}
1493 #endif /* INET */
1494 #ifdef INET6
1495 	case AF_INET6: {
1496 		if (src->scrub) {
1497 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1498 			if (h->ip6_hlim > src->scrub->pfss_ttl)
1499 				src->scrub->pfss_ttl = h->ip6_hlim;
1500 			h->ip6_hlim = src->scrub->pfss_ttl;
1501 		}
1502 		break;
1503 	}
1504 #endif /* INET6 */
1505 	}
1506 
1507 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1508 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1509 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1510 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1511 		/* Diddle with TCP options */
1512 		int hlen;
1513 		opt = hdr + sizeof(struct tcphdr);
1514 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1515 		while (hlen >= TCPOLEN_TIMESTAMP) {
1516 			switch (*opt) {
1517 			case TCPOPT_EOL:	/* FALLTHROUGH */
1518 			case TCPOPT_NOP:
1519 				opt++;
1520 				hlen--;
1521 				break;
1522 			case TCPOPT_TIMESTAMP:
1523 				/* Modulate the timestamps.  Can be used for
1524 				 * NAT detection, OS uptime determination or
1525 				 * reboot detection.
1526 				 */
1527 
1528 				if (got_ts) {
1529 					/* Huh?  Multiple timestamps!? */
1530 					if (pf_status.debug >= PF_DEBUG_MISC) {
1531 						DPFPRINTF(("multiple TS??"));
1532 						pf_print_state(state);
1533 						kprintf("\n");
1534 					}
1535 					REASON_SET(reason, PFRES_TS);
1536 					return (PF_DROP);
1537 				}
1538 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1539 					memcpy(&tsval, &opt[2],
1540 					    sizeof(u_int32_t));
1541 					if (tsval && src->scrub &&
1542 					    (src->scrub->pfss_flags &
1543 					    PFSS_TIMESTAMP)) {
1544 						tsval = ntohl(tsval);
1545 						pf_change_a(&opt[2],
1546 						    &th->th_sum,
1547 						    htonl(tsval +
1548 						    src->scrub->pfss_ts_mod),
1549 						    0);
1550 						copyback = 1;
1551 					}
1552 
1553 					/* Modulate TS reply iff valid (!0) */
1554 					memcpy(&tsecr, &opt[6],
1555 					    sizeof(u_int32_t));
1556 					if (tsecr && dst->scrub &&
1557 					    (dst->scrub->pfss_flags &
1558 					    PFSS_TIMESTAMP)) {
1559 						tsecr = ntohl(tsecr)
1560 						    - dst->scrub->pfss_ts_mod;
1561 						pf_change_a(&opt[6],
1562 						    &th->th_sum, htonl(tsecr),
1563 						    0);
1564 						copyback = 1;
1565 					}
1566 					got_ts = 1;
1567 				}
1568 				/* FALLTHROUGH */
1569 			default:
1570 				hlen -= MAX(opt[1], 2);
1571 				opt += MAX(opt[1], 2);
1572 				break;
1573 			}
1574 		}
1575 		if (copyback) {
1576 			/* Copyback the options, caller copys back header */
1577 			*writeback = 1;
1578 			m_copyback(m, off + sizeof(struct tcphdr),
1579 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1580 			    sizeof(struct tcphdr));
1581 		}
1582 	}
1583 
1584 
1585 	/*
1586 	 * Must invalidate PAWS checks on connections idle for too long.
1587 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1588 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1589 	 * TS echo check only works for the first 12 days of a connection
1590 	 * when the TS has exhausted half its 32bit space
1591 	 */
1592 #define TS_MAX_IDLE	(24*24*60*60)
1593 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1594 
1595 	getmicrouptime(&uptime);
1596 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1597 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1598 	    time_second - state->creation > TS_MAX_CONN))  {
1599 		if (pf_status.debug >= PF_DEBUG_MISC) {
1600 			DPFPRINTF(("src idled out of PAWS\n"));
1601 			pf_print_state(state);
1602 			kprintf("\n");
1603 		}
1604 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1605 		    | PFSS_PAWS_IDLED;
1606 	}
1607 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1608 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1609 		if (pf_status.debug >= PF_DEBUG_MISC) {
1610 			DPFPRINTF(("dst idled out of PAWS\n"));
1611 			pf_print_state(state);
1612 			kprintf("\n");
1613 		}
1614 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1615 		    | PFSS_PAWS_IDLED;
1616 	}
1617 
1618 	if (got_ts && src->scrub && dst->scrub &&
1619 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1620 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1621 		/* Validate that the timestamps are "in-window".
1622 		 * RFC1323 describes TCP Timestamp options that allow
1623 		 * measurement of RTT (round trip time) and PAWS
1624 		 * (protection against wrapped sequence numbers).  PAWS
1625 		 * gives us a set of rules for rejecting packets on
1626 		 * long fat pipes (packets that were somehow delayed
1627 		 * in transit longer than the time it took to send the
1628 		 * full TCP sequence space of 4Gb).  We can use these
1629 		 * rules and infer a few others that will let us treat
1630 		 * the 32bit timestamp and the 32bit echoed timestamp
1631 		 * as sequence numbers to prevent a blind attacker from
1632 		 * inserting packets into a connection.
1633 		 *
1634 		 * RFC1323 tells us:
1635 		 *  - The timestamp on this packet must be greater than
1636 		 *    or equal to the last value echoed by the other
1637 		 *    endpoint.  The RFC says those will be discarded
1638 		 *    since it is a dup that has already been acked.
1639 		 *    This gives us a lowerbound on the timestamp.
1640 		 *        timestamp >= other last echoed timestamp
1641 		 *  - The timestamp will be less than or equal to
1642 		 *    the last timestamp plus the time between the
1643 		 *    last packet and now.  The RFC defines the max
1644 		 *    clock rate as 1ms.  We will allow clocks to be
1645 		 *    up to 10% fast and will allow a total difference
1646 		 *    or 30 seconds due to a route change.  And this
1647 		 *    gives us an upperbound on the timestamp.
1648 		 *        timestamp <= last timestamp + max ticks
1649 		 *    We have to be careful here.  Windows will send an
1650 		 *    initial timestamp of zero and then initialize it
1651 		 *    to a random value after the 3whs; presumably to
1652 		 *    avoid a DoS by having to call an expensive RNG
1653 		 *    during a SYN flood.  Proof MS has at least one
1654 		 *    good security geek.
1655 		 *
1656 		 *  - The TCP timestamp option must also echo the other
1657 		 *    endpoints timestamp.  The timestamp echoed is the
1658 		 *    one carried on the earliest unacknowledged segment
1659 		 *    on the left edge of the sequence window.  The RFC
1660 		 *    states that the host will reject any echoed
1661 		 *    timestamps that were larger than any ever sent.
1662 		 *    This gives us an upperbound on the TS echo.
1663 		 *        tescr <= largest_tsval
1664 		 *  - The lowerbound on the TS echo is a little more
1665 		 *    tricky to determine.  The other endpoint's echoed
1666 		 *    values will not decrease.  But there may be
1667 		 *    network conditions that re-order packets and
1668 		 *    cause our view of them to decrease.  For now the
1669 		 *    only lowerbound we can safely determine is that
1670 		 *    the TS echo will never be less than the original
1671 		 *    TS.  XXX There is probably a better lowerbound.
1672 		 *    Remove TS_MAX_CONN with better lowerbound check.
1673 		 *        tescr >= other original TS
1674 		 *
1675 		 * It is also important to note that the fastest
1676 		 * timestamp clock of 1ms will wrap its 32bit space in
1677 		 * 24 days.  So we just disable TS checking after 24
1678 		 * days of idle time.  We actually must use a 12d
1679 		 * connection limit until we can come up with a better
1680 		 * lowerbound to the TS echo check.
1681 		 */
1682 		struct timeval delta_ts;
1683 		int ts_fudge;
1684 
1685 
1686 		/*
1687 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1688 		 * a host's timestamp.  This can happen if the previous
1689 		 * packet got delayed in transit for much longer than
1690 		 * this packet.
1691 		 */
1692 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1693 			ts_fudge = pf_default_rule.timeout[PFTM_TS_DIFF];
1694 
1695 
1696 		/* Calculate max ticks since the last timestamp */
1697 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1698 #define TS_MICROSECS	1000000		/* microseconds per second */
1699 #ifndef timersub
1700 #define timersub(tvp, uvp, vvp)						\
1701 	do {								\
1702 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
1703 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
1704 		if ((vvp)->tv_usec < 0) {				\
1705 			(vvp)->tv_sec--;				\
1706 			(vvp)->tv_usec += 1000000;			\
1707 		}							\
1708 	} while (0)
1709 #endif
1710 
1711 		timersub(&uptime, &src->scrub->pfss_last, &delta_ts);
1712 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1713 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1714 
1715 
1716 		if ((src->state >= TCPS_ESTABLISHED &&
1717 		    dst->state >= TCPS_ESTABLISHED) &&
1718 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1719 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1720 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1721 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1722 			/* Bad RFC1323 implementation or an insertion attack.
1723 			 *
1724 			 * - Solaris 2.6 and 2.7 are known to send another ACK
1725 			 *   after the FIN,FIN|ACK,ACK closing that carries
1726 			 *   an old timestamp.
1727 			 */
1728 
1729 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1730 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1731 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1732 			    tsval_from_last) ? '1' : ' ',
1733 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1734 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1735 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1736 			    "idle: %lus %lums\n",
1737 			    tsval, tsecr, tsval_from_last, delta_ts.tv_sec,
1738 			    delta_ts.tv_usec / 1000));
1739 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1740 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1741 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1742 			    "\n", dst->scrub->pfss_tsval,
1743 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1744 			if (pf_status.debug >= PF_DEBUG_MISC) {
1745 				pf_print_state(state);
1746 				pf_print_flags(th->th_flags);
1747 				kprintf("\n");
1748 			}
1749 			REASON_SET(reason, PFRES_TS);
1750 			return (PF_DROP);
1751 		}
1752 
1753 		/* XXX I'd really like to require tsecr but it's optional */
1754 
1755 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1756 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1757 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1758 	    src->scrub && dst->scrub &&
1759 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1760 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1761 		/* Didn't send a timestamp.  Timestamps aren't really useful
1762 		 * when:
1763 		 *  - connection opening or closing (often not even sent).
1764 		 *    but we must not let an attacker to put a FIN on a
1765 		 *    data packet to sneak it through our ESTABLISHED check.
1766 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1767 		 *  - on an empty ACK.  The TS will not be echoed so it will
1768 		 *    probably not help keep the RTT calculation in sync and
1769 		 *    there isn't as much danger when the sequence numbers
1770 		 *    got wrapped.  So some stacks don't include TS on empty
1771 		 *    ACKs :-(
1772 		 *
1773 		 * To minimize the disruption to mostly RFC1323 conformant
1774 		 * stacks, we will only require timestamps on data packets.
1775 		 *
1776 		 * And what do ya know, we cannot require timestamps on data
1777 		 * packets.  There appear to be devices that do legitimate
1778 		 * TCP connection hijacking.  There are HTTP devices that allow
1779 		 * a 3whs (with timestamps) and then buffer the HTTP request.
1780 		 * If the intermediate device has the HTTP response cache, it
1781 		 * will spoof the response but not bother timestamping its
1782 		 * packets.  So we can look for the presence of a timestamp in
1783 		 * the first data packet and if there, require it in all future
1784 		 * packets.
1785 		 */
1786 
1787 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1788 			/*
1789 			 * Hey!  Someone tried to sneak a packet in.  Or the
1790 			 * stack changed its RFC1323 behavior?!?!
1791 			 */
1792 			if (pf_status.debug >= PF_DEBUG_MISC) {
1793 				DPFPRINTF(("Did not receive expected RFC1323 "
1794 				    "timestamp\n"));
1795 				pf_print_state(state);
1796 				pf_print_flags(th->th_flags);
1797 				kprintf("\n");
1798 			}
1799 			REASON_SET(reason, PFRES_TS);
1800 			return (PF_DROP);
1801 		}
1802 	}
1803 
1804 
1805 	/*
1806 	 * We will note if a host sends his data packets with or without
1807 	 * timestamps.  And require all data packets to contain a timestamp
1808 	 * if the first does.  PAWS implicitly requires that all data packets be
1809 	 * timestamped.  But I think there are middle-man devices that hijack
1810 	 * TCP streams immediately after the 3whs and don't timestamp their
1811 	 * packets (seen in a WWW accelerator or cache).
1812 	 */
1813 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1814 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1815 		if (got_ts)
1816 			src->scrub->pfss_flags |= PFSS_DATA_TS;
1817 		else {
1818 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1819 			if (pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1820 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1821 				/* Don't warn if other host rejected RFC1323 */
1822 				DPFPRINTF(("Broken RFC1323 stack did not "
1823 				    "timestamp data packet. Disabled PAWS "
1824 				    "security.\n"));
1825 				pf_print_state(state);
1826 				pf_print_flags(th->th_flags);
1827 				kprintf("\n");
1828 			}
1829 		}
1830 	}
1831 
1832 
1833 	/*
1834 	 * Update PAWS values
1835 	 */
1836 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1837 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1838 		getmicrouptime(&src->scrub->pfss_last);
1839 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1840 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1841 			src->scrub->pfss_tsval = tsval;
1842 
1843 		if (tsecr) {
1844 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1845 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1846 				src->scrub->pfss_tsecr = tsecr;
1847 
1848 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1849 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1850 			    src->scrub->pfss_tsval0 == 0)) {
1851 				/* tsval0 MUST be the lowest timestamp */
1852 				src->scrub->pfss_tsval0 = tsval;
1853 			}
1854 
1855 			/* Only fully initialized after a TS gets echoed */
1856 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1857 				src->scrub->pfss_flags |= PFSS_PAWS;
1858 		}
1859 	}
1860 
1861 	/* I have a dream....  TCP segment reassembly.... */
1862 	return (0);
1863 }
1864 
1865 int
1866 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
1867     int off, sa_family_t af)
1868 {
1869 	u_int16_t	*mss;
1870 	int		 thoff;
1871 	int		 opt, cnt, optlen = 0;
1872 	int		 rewrite = 0;
1873 	u_char		 opts[TCP_MAXOLEN];
1874 	u_char		*optp = opts;
1875 
1876 	thoff = th->th_off << 2;
1877 	cnt = thoff - sizeof(struct tcphdr);
1878 
1879 	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
1880 	    NULL, NULL, af))
1881 		return (rewrite);
1882 
1883 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1884 		opt = optp[0];
1885 		if (opt == TCPOPT_EOL)
1886 			break;
1887 		if (opt == TCPOPT_NOP)
1888 			optlen = 1;
1889 		else {
1890 			if (cnt < 2)
1891 				break;
1892 			optlen = optp[1];
1893 			if (optlen < 2 || optlen > cnt)
1894 				break;
1895 		}
1896 		switch (opt) {
1897 		case TCPOPT_MAXSEG:
1898 			mss = (u_int16_t *)(optp + 2);
1899 			if ((ntohs(*mss)) > r->max_mss) {
1900 				th->th_sum = pf_cksum_fixup(th->th_sum,
1901 				    *mss, htons(r->max_mss), 0);
1902 				*mss = htons(r->max_mss);
1903 				rewrite = 1;
1904 			}
1905 			break;
1906 		default:
1907 			break;
1908 		}
1909 	}
1910 
1911 	if (rewrite)
1912 		m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
1913 
1914 	return (rewrite);
1915 }
1916