xref: /dragonfly/sys/net/radix.c (revision 0cfebe3d)
1 /*
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)radix.c	8.4 (Berkeley) 11/2/94
34  * $FreeBSD: src/sys/net/radix.c,v 1.20.2.3 2002/04/28 05:40:25 suz Exp $
35  * $DragonFly: src/sys/net/radix.c,v 1.14 2006/12/22 23:44:54 swildner Exp $
36  */
37 
38 /*
39  * Routines to build and maintain radix trees for routing lookups.
40  */
41 #include <sys/param.h>
42 #ifdef	_KERNEL
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/domain.h>
46 #else
47 #include <stdlib.h>
48 #endif
49 #include <sys/syslog.h>
50 #include <net/radix.h>
51 
52 /*
53  * The arguments to the radix functions are really counted byte arrays with
54  * the length in the first byte.  struct sockaddr's fit this type structurally.
55  */
56 #define clen(c)	(*(u_char *)(c))
57 
58 static int rn_walktree_from(struct radix_node_head *h, char *a, char *m,
59 			    walktree_f_t *f, void *w);
60 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
61 
62 static struct radix_node
63     *rn_insert(char *, struct radix_node_head *, boolean_t *,
64 	       struct radix_node [2]),
65     *rn_newpair(char *, int, struct radix_node[2]),
66     *rn_search(const char *, struct radix_node *),
67     *rn_search_m(const char *, struct radix_node *, const char *);
68 
69 static struct radix_mask *rn_mkfreelist;
70 static struct radix_node_head *mask_rnhead;
71 
72 static int max_keylen;
73 static char *rn_zeros, *rn_ones;
74 
75 static int rn_lexobetter(char *m, char *n);
76 static struct radix_mask *
77     rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask);
78 static boolean_t
79     rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip);
80 
81 static __inline struct radix_mask *
82 MKGet(struct radix_mask **l)
83 {
84 	struct radix_mask *m;
85 
86 	if (*l != NULL) {
87 		m = *l;
88 		*l = m->rm_next;
89 	} else {
90 		R_Malloc(m, struct radix_mask *, sizeof *m);
91 	}
92 	return m;
93 }
94 
95 static __inline void
96 MKFree(struct radix_mask **l, struct radix_mask *m)
97 {
98 	m->rm_next = *l;
99 	*l = m;
100 }
101 
102 /*
103  * The data structure for the keys is a radix tree with one way
104  * branching removed.  The index rn_bit at an internal node n represents a bit
105  * position to be tested.  The tree is arranged so that all descendants
106  * of a node n have keys whose bits all agree up to position rn_bit - 1.
107  * (We say the index of n is rn_bit.)
108  *
109  * There is at least one descendant which has a one bit at position rn_bit,
110  * and at least one with a zero there.
111  *
112  * A route is determined by a pair of key and mask.  We require that the
113  * bit-wise logical and of the key and mask to be the key.
114  * We define the index of a route to associated with the mask to be
115  * the first bit number in the mask where 0 occurs (with bit number 0
116  * representing the highest order bit).
117  *
118  * We say a mask is normal if every bit is 0, past the index of the mask.
119  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
120  * and m is a normal mask, then the route applies to every descendant of n.
121  * If the index(m) < rn_bit, this implies the trailing last few bits of k
122  * before bit b are all 0, (and hence consequently true of every descendant
123  * of n), so the route applies to all descendants of the node as well.
124  *
125  * Similar logic shows that a non-normal mask m such that
126  * index(m) <= index(n) could potentially apply to many children of n.
127  * Thus, for each non-host route, we attach its mask to a list at an internal
128  * node as high in the tree as we can go.
129  *
130  * The present version of the code makes use of normal routes in short-
131  * circuiting an explict mask and compare operation when testing whether
132  * a key satisfies a normal route, and also in remembering the unique leaf
133  * that governs a subtree.
134  */
135 
136 static struct radix_node *
137 rn_search(const char *v, struct radix_node *head)
138 {
139 	struct radix_node *x;
140 
141 	x = head;
142 	while (x->rn_bit >= 0) {
143 		if (x->rn_bmask & v[x->rn_offset])
144 			x = x->rn_right;
145 		else
146 			x = x->rn_left;
147 	}
148 	return (x);
149 }
150 
151 static struct radix_node *
152 rn_search_m(const char *v, struct radix_node *head, const char *m)
153 {
154 	struct radix_node *x;
155 
156 	for (x = head; x->rn_bit >= 0;) {
157 		if ((x->rn_bmask & m[x->rn_offset]) &&
158 		    (x->rn_bmask & v[x->rn_offset]))
159 			x = x->rn_right;
160 		else
161 			x = x->rn_left;
162 	}
163 	return x;
164 }
165 
166 boolean_t
167 rn_refines(char *m, char *n)
168 {
169 	char *lim, *lim2;
170 	int longer = clen(n++) - clen(m++);
171 	boolean_t masks_are_equal = TRUE;
172 
173 	lim2 = lim = n + clen(n);
174 	if (longer > 0)
175 		lim -= longer;
176 	while (n < lim) {
177 		if (*n & ~(*m))
178 			return FALSE;
179 		if (*n++ != *m++)
180 			masks_are_equal = FALSE;
181 	}
182 	while (n < lim2)
183 		if (*n++)
184 			return FALSE;
185 	if (masks_are_equal && (longer < 0))
186 		for (lim2 = m - longer; m < lim2; )
187 			if (*m++)
188 				return TRUE;
189 	return (!masks_are_equal);
190 }
191 
192 struct radix_node *
193 rn_lookup(char *key, char *mask, struct radix_node_head *head)
194 {
195 	struct radix_node *x;
196 	char *netmask = NULL;
197 
198 	if (mask != NULL) {
199 		x = rn_addmask(mask, TRUE, head->rnh_treetop->rn_offset);
200 		if (x == NULL)
201 			return (NULL);
202 		netmask = x->rn_key;
203 	}
204 	x = rn_match(key, head);
205 	if (x != NULL && netmask != NULL) {
206 		while (x != NULL && x->rn_mask != netmask)
207 			x = x->rn_dupedkey;
208 	}
209 	return x;
210 }
211 
212 static boolean_t
213 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
214 {
215 	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
216 	char *cplim;
217 	int length = min(clen(cp), clen(cp2));
218 
219 	if (cp3 == NULL)
220 		cp3 = rn_ones;
221 	else
222 		length = min(length, clen(cp3));
223 	cplim = cp + length;
224 	cp3 += skip;
225 	cp2 += skip;
226 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
227 		if ((*cp ^ *cp2) & *cp3)
228 			return FALSE;
229 	return TRUE;
230 }
231 
232 struct radix_node *
233 rn_match(char *key, struct radix_node_head *head)
234 {
235 	struct radix_node *t, *x;
236 	char *cp = key, *cp2;
237 	char *cplim;
238 	struct radix_node *saved_t, *top = head->rnh_treetop;
239 	int off = top->rn_offset, klen, matched_off;
240 	int test, b, rn_bit;
241 
242 	t = rn_search(key, top);
243 	/*
244 	 * See if we match exactly as a host destination
245 	 * or at least learn how many bits match, for normal mask finesse.
246 	 *
247 	 * It doesn't hurt us to limit how many bytes to check
248 	 * to the length of the mask, since if it matches we had a genuine
249 	 * match and the leaf we have is the most specific one anyway;
250 	 * if it didn't match with a shorter length it would fail
251 	 * with a long one.  This wins big for class B&C netmasks which
252 	 * are probably the most common case...
253 	 */
254 	if (t->rn_mask != NULL)
255 		klen = clen(t->rn_mask);
256 	else
257 		klen = clen(key);
258 	cp += off; cp2 = t->rn_key + off; cplim = key + klen;
259 	for (; cp < cplim; cp++, cp2++)
260 		if (*cp != *cp2)
261 			goto on1;
262 	/*
263 	 * This extra grot is in case we are explicitly asked
264 	 * to look up the default.  Ugh!
265 	 *
266 	 * Never return the root node itself, it seems to cause a
267 	 * lot of confusion.
268 	 */
269 	if (t->rn_flags & RNF_ROOT)
270 		t = t->rn_dupedkey;
271 	return t;
272 on1:
273 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
274 	for (b = 7; (test >>= 1) > 0;)
275 		b--;
276 	matched_off = cp - key;
277 	b += matched_off << 3;
278 	rn_bit = -1 - b;
279 	/*
280 	 * If there is a host route in a duped-key chain, it will be first.
281 	 */
282 	if ((saved_t = t)->rn_mask == NULL)
283 		t = t->rn_dupedkey;
284 	for (; t; t = t->rn_dupedkey) {
285 		/*
286 		 * Even if we don't match exactly as a host,
287 		 * we may match if the leaf we wound up at is
288 		 * a route to a net.
289 		 */
290 		if (t->rn_flags & RNF_NORMAL) {
291 			if (rn_bit <= t->rn_bit)
292 				return t;
293 		} else if (rn_satisfies_leaf(key, t, matched_off))
294 				return t;
295 	}
296 	t = saved_t;
297 	/* start searching up the tree */
298 	do {
299 		struct radix_mask *m;
300 
301 		t = t->rn_parent;
302 		/*
303 		 * If non-contiguous masks ever become important
304 		 * we can restore the masking and open coding of
305 		 * the search and satisfaction test and put the
306 		 * calculation of "off" back before the "do".
307 		 */
308 		m = t->rn_mklist;
309 		while (m != NULL) {
310 			if (m->rm_flags & RNF_NORMAL) {
311 				if (rn_bit <= m->rm_bit)
312 					return (m->rm_leaf);
313 			} else {
314 				off = min(t->rn_offset, matched_off);
315 				x = rn_search_m(key, t, m->rm_mask);
316 				while (x != NULL && x->rn_mask != m->rm_mask)
317 					x = x->rn_dupedkey;
318 				if (x && rn_satisfies_leaf(key, x, off))
319 					return x;
320 			}
321 			m = m->rm_next;
322 		}
323 	} while (t != top);
324 	return NULL;
325 }
326 
327 #ifdef RN_DEBUG
328 int rn_nodenum;
329 struct radix_node *rn_clist;
330 int rn_saveinfo;
331 boolean_t rn_debug =  TRUE;
332 #endif
333 
334 static struct radix_node *
335 rn_newpair(char *key, int indexbit, struct radix_node nodes[2])
336 {
337 	struct radix_node *leaf = &nodes[0], *interior = &nodes[1];
338 
339 	interior->rn_bit = indexbit;
340 	interior->rn_bmask = 0x80 >> (indexbit & 0x7);
341 	interior->rn_offset = indexbit >> 3;
342 	interior->rn_left = leaf;
343 	interior->rn_mklist = NULL;
344 
345 	leaf->rn_bit = -1;
346 	leaf->rn_key = key;
347 	leaf->rn_parent = interior;
348 	leaf->rn_flags = interior->rn_flags = RNF_ACTIVE;
349 	leaf->rn_mklist = NULL;
350 
351 #ifdef RN_DEBUG
352 	leaf->rn_info = rn_nodenum++;
353 	interior->rn_info = rn_nodenum++;
354 	leaf->rn_twin = interior;
355 	leaf->rn_ybro = rn_clist;
356 	rn_clist = leaf;
357 #endif
358 	return interior;
359 }
360 
361 static struct radix_node *
362 rn_insert(char *key, struct radix_node_head *head, boolean_t *dupentry,
363 	  struct radix_node nodes[2])
364 {
365 	struct radix_node *top = head->rnh_treetop;
366 	int head_off = top->rn_offset, klen = clen(key);
367 	struct radix_node *t = rn_search(key, top);
368 	char *cp = key + head_off;
369 	int b;
370 	struct radix_node *tt;
371 
372 	/*
373 	 * Find first bit at which the key and t->rn_key differ
374 	 */
375     {
376 	char *cp2 = t->rn_key + head_off;
377 	int cmp_res;
378 	char *cplim = key + klen;
379 
380 	while (cp < cplim)
381 		if (*cp2++ != *cp++)
382 			goto on1;
383 	*dupentry = TRUE;
384 	return t;
385 on1:
386 	*dupentry = FALSE;
387 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
388 	for (b = (cp - key) << 3; cmp_res; b--)
389 		cmp_res >>= 1;
390     }
391     {
392 	struct radix_node *p, *x = top;
393 
394 	cp = key;
395 	do {
396 		p = x;
397 		if (cp[x->rn_offset] & x->rn_bmask)
398 			x = x->rn_right;
399 		else
400 			x = x->rn_left;
401 	} while (b > (unsigned) x->rn_bit);
402 				/* x->rn_bit < b && x->rn_bit >= 0 */
403 #ifdef RN_DEBUG
404 	if (rn_debug)
405 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
406 #endif
407 	t = rn_newpair(key, b, nodes);
408 	tt = t->rn_left;
409 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
410 		p->rn_left = t;
411 	else
412 		p->rn_right = t;
413 	x->rn_parent = t;
414 	t->rn_parent = p; /* frees x, p as temp vars below */
415 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
416 		t->rn_right = x;
417 	} else {
418 		t->rn_right = tt;
419 		t->rn_left = x;
420 	}
421 #ifdef RN_DEBUG
422 	if (rn_debug)
423 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
424 #endif
425     }
426 	return (tt);
427 }
428 
429 struct radix_node *
430 rn_addmask(char *netmask, boolean_t search, int skip)
431 {
432 	struct radix_node *x, *saved_x;
433 	char *cp, *cplim;
434 	int b = 0, mlen, m0, j;
435 	boolean_t maskduplicated, isnormal;
436 	static int last_zeroed = 0;
437 	char *addmask_key;
438 
439 	if ((mlen = clen(netmask)) > max_keylen)
440 		mlen = max_keylen;
441 	if (skip == 0)
442 		skip = 1;
443 	if (mlen <= skip)
444 		return (mask_rnhead->rnh_nodes);
445 	R_Malloc(addmask_key, char *, max_keylen);
446 	if (addmask_key == NULL)
447 		return NULL;
448 	if (skip > 1)
449 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
450 	if ((m0 = mlen) > skip)
451 		bcopy(netmask + skip, addmask_key + skip, mlen - skip);
452 	/*
453 	 * Trim trailing zeroes.
454 	 */
455 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
456 		cp--;
457 	mlen = cp - addmask_key;
458 	if (mlen <= skip) {
459 		if (m0 >= last_zeroed)
460 			last_zeroed = mlen;
461 		Free(addmask_key);
462 		return (mask_rnhead->rnh_nodes);
463 	}
464 	if (m0 < last_zeroed)
465 		bzero(addmask_key + m0, last_zeroed - m0);
466 	*addmask_key = last_zeroed = mlen;
467 	x = rn_search(addmask_key, mask_rnhead->rnh_treetop);
468 	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
469 		x = NULL;
470 	if (x != NULL || search)
471 		goto out;
472 	R_Malloc(x, struct radix_node *, max_keylen + 2 * (sizeof *x));
473 	if ((saved_x = x) == NULL)
474 		goto out;
475 	bzero(x, max_keylen + 2 * (sizeof *x));
476 	netmask = cp = (char *)(x + 2);
477 	bcopy(addmask_key, cp, mlen);
478 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
479 	if (maskduplicated) {
480 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
481 		Free(saved_x);
482 		goto out;
483 	}
484 	/*
485 	 * Calculate index of mask, and check for normalcy.
486 	 */
487 	isnormal = TRUE;
488 	cplim = netmask + mlen;
489 	for (cp = netmask + skip; cp < cplim && clen(cp) == 0xff;)
490 		cp++;
491 	if (cp != cplim) {
492 		static const char normal_chars[] = {
493 			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
494 		};
495 
496 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
497 			b++;
498 		if (*cp != normal_chars[b] || cp != (cplim - 1))
499 			isnormal = FALSE;
500 	}
501 	b += (cp - netmask) << 3;
502 	x->rn_bit = -1 - b;
503 	if (isnormal)
504 		x->rn_flags |= RNF_NORMAL;
505 out:
506 	Free(addmask_key);
507 	return (x);
508 }
509 
510 /* XXX: arbitrary ordering for non-contiguous masks */
511 static boolean_t
512 rn_lexobetter(char *mp, char *np)
513 {
514 	char *lim;
515 
516 	if ((unsigned) *mp > (unsigned) *np)
517 		return TRUE;/* not really, but need to check longer one first */
518 	if (*mp == *np)
519 		for (lim = mp + clen(mp); mp < lim;)
520 			if (*mp++ > *np++)
521 				return TRUE;
522 	return FALSE;
523 }
524 
525 static struct radix_mask *
526 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask)
527 {
528 	struct radix_mask *m;
529 
530 	m = MKGet(&rn_mkfreelist);
531 	if (m == NULL) {
532 		log(LOG_ERR, "Mask for route not entered\n");
533 		return (NULL);
534 	}
535 	bzero(m, sizeof *m);
536 	m->rm_bit = tt->rn_bit;
537 	m->rm_flags = tt->rn_flags;
538 	if (tt->rn_flags & RNF_NORMAL)
539 		m->rm_leaf = tt;
540 	else
541 		m->rm_mask = tt->rn_mask;
542 	m->rm_next = nextmask;
543 	tt->rn_mklist = m;
544 	return m;
545 }
546 
547 struct radix_node *
548 rn_addroute(char *key, char *netmask, struct radix_node_head *head,
549 	    struct radix_node treenodes[2])
550 {
551 	struct radix_node *t, *x = NULL, *tt;
552 	struct radix_node *saved_tt, *top = head->rnh_treetop;
553 	short b = 0, b_leaf = 0;
554 	boolean_t keyduplicated;
555 	char *mmask;
556 	struct radix_mask *m, **mp;
557 
558 	/*
559 	 * In dealing with non-contiguous masks, there may be
560 	 * many different routes which have the same mask.
561 	 * We will find it useful to have a unique pointer to
562 	 * the mask to speed avoiding duplicate references at
563 	 * nodes and possibly save time in calculating indices.
564 	 */
565 	if (netmask != NULL)  {
566 		if ((x = rn_addmask(netmask, FALSE, top->rn_offset)) == NULL)
567 			return (NULL);
568 		b_leaf = x->rn_bit;
569 		b = -1 - x->rn_bit;
570 		netmask = x->rn_key;
571 	}
572 	/*
573 	 * Deal with duplicated keys: attach node to previous instance
574 	 */
575 	saved_tt = tt = rn_insert(key, head, &keyduplicated, treenodes);
576 	if (keyduplicated) {
577 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
578 			if (tt->rn_mask == netmask)
579 				return (NULL);
580 			if (netmask == NULL ||
581 			    (tt->rn_mask &&
582 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
583 			      || rn_refines(netmask, tt->rn_mask)
584 			      || rn_lexobetter(netmask, tt->rn_mask))))
585 				break;
586 		}
587 		/*
588 		 * If the mask is not duplicated, we wouldn't
589 		 * find it among possible duplicate key entries
590 		 * anyway, so the above test doesn't hurt.
591 		 *
592 		 * We sort the masks for a duplicated key the same way as
593 		 * in a masklist -- most specific to least specific.
594 		 * This may require the unfortunate nuisance of relocating
595 		 * the head of the list.
596 		 */
597 		if (tt == saved_tt) {
598 			struct	radix_node *xx = x;
599 			/* link in at head of list */
600 			(tt = treenodes)->rn_dupedkey = t;
601 			tt->rn_flags = t->rn_flags;
602 			tt->rn_parent = x = t->rn_parent;
603 			t->rn_parent = tt;			/* parent */
604 			if (x->rn_left == t)
605 				x->rn_left = tt;
606 			else
607 				x->rn_right = tt;
608 			saved_tt = tt; x = xx;
609 		} else {
610 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
611 			t->rn_dupedkey = tt;
612 			tt->rn_parent = t;			/* parent */
613 			if (tt->rn_dupedkey != NULL)		/* parent */
614 				tt->rn_dupedkey->rn_parent = tt; /* parent */
615 		}
616 #ifdef RN_DEBUG
617 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
618 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
619 #endif
620 		tt->rn_key = key;
621 		tt->rn_bit = -1;
622 		tt->rn_flags = RNF_ACTIVE;
623 	}
624 	/*
625 	 * Put mask in tree.
626 	 */
627 	if (netmask != NULL) {
628 		tt->rn_mask = netmask;
629 		tt->rn_bit = x->rn_bit;
630 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
631 	}
632 	t = saved_tt->rn_parent;
633 	if (keyduplicated)
634 		goto on2;
635 	b_leaf = -1 - t->rn_bit;
636 	if (t->rn_right == saved_tt)
637 		x = t->rn_left;
638 	else
639 		x = t->rn_right;
640 	/* Promote general routes from below */
641 	if (x->rn_bit < 0) {
642 		mp = &t->rn_mklist;
643 		while (x != NULL) {
644 			if (x->rn_mask != NULL &&
645 			    x->rn_bit >= b_leaf &&
646 			    x->rn_mklist == NULL) {
647 				*mp = m = rn_new_radix_mask(x, NULL);
648 				if (m != NULL)
649 					mp = &m->rm_next;
650 			}
651 			x = x->rn_dupedkey;
652 		}
653 	} else if (x->rn_mklist != NULL) {
654 		/*
655 		 * Skip over masks whose index is > that of new node
656 		 */
657 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
658 			if (m->rm_bit >= b_leaf)
659 				break;
660 		t->rn_mklist = m;
661 		*mp = NULL;
662 	}
663 on2:
664 	/* Add new route to highest possible ancestor's list */
665 	if ((netmask == NULL) || (b > t->rn_bit ))
666 		return tt; /* can't lift at all */
667 	b_leaf = tt->rn_bit;
668 	do {
669 		x = t;
670 		t = t->rn_parent;
671 	} while (b <= t->rn_bit && x != top);
672 	/*
673 	 * Search through routes associated with node to
674 	 * insert new route according to index.
675 	 * Need same criteria as when sorting dupedkeys to avoid
676 	 * double loop on deletion.
677 	 */
678 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next) {
679 		if (m->rm_bit < b_leaf)
680 			continue;
681 		if (m->rm_bit > b_leaf)
682 			break;
683 		if (m->rm_flags & RNF_NORMAL) {
684 			mmask = m->rm_leaf->rn_mask;
685 			if (tt->rn_flags & RNF_NORMAL) {
686 			    log(LOG_ERR,
687 			        "Non-unique normal route, mask not entered\n");
688 				return tt;
689 			}
690 		} else
691 			mmask = m->rm_mask;
692 		if (mmask == netmask) {
693 			m->rm_refs++;
694 			tt->rn_mklist = m;
695 			return tt;
696 		}
697 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
698 			break;
699 	}
700 	*mp = rn_new_radix_mask(tt, *mp);
701 	return tt;
702 }
703 
704 struct radix_node *
705 rn_delete(char *key, char *netmask, struct radix_node_head *head)
706 {
707 	struct radix_node *t, *p, *x, *tt;
708 	struct radix_mask *m, *saved_m, **mp;
709 	struct radix_node *dupedkey, *saved_tt, *top;
710 	int b, head_off, klen;
711 
712 	x = head->rnh_treetop;
713 	tt = rn_search(key, x);
714 	head_off = x->rn_offset;
715 	klen =  clen(key);
716 	saved_tt = tt;
717 	top = x;
718 	if (tt == NULL ||
719 	    bcmp(key + head_off, tt->rn_key + head_off, klen - head_off))
720 		return (NULL);
721 	/*
722 	 * Delete our route from mask lists.
723 	 */
724 	if (netmask != NULL) {
725 		if ((x = rn_addmask(netmask, TRUE, head_off)) == NULL)
726 			return (NULL);
727 		netmask = x->rn_key;
728 		while (tt->rn_mask != netmask)
729 			if ((tt = tt->rn_dupedkey) == NULL)
730 				return (NULL);
731 	}
732 	if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
733 		goto on1;
734 	if (tt->rn_flags & RNF_NORMAL) {
735 		if (m->rm_leaf != tt || m->rm_refs > 0) {
736 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
737 			return (NULL);  /* dangling ref could cause disaster */
738 		}
739 	} else {
740 		if (m->rm_mask != tt->rn_mask) {
741 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
742 			goto on1;
743 		}
744 		if (--m->rm_refs >= 0)
745 			goto on1;
746 	}
747 	b = -1 - tt->rn_bit;
748 	t = saved_tt->rn_parent;
749 	if (b > t->rn_bit)
750 		goto on1; /* Wasn't lifted at all */
751 	do {
752 		x = t;
753 		t = t->rn_parent;
754 	} while (b <= t->rn_bit && x != top);
755 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
756 		if (m == saved_m) {
757 			*mp = m->rm_next;
758 			MKFree(&rn_mkfreelist, m);
759 			break;
760 		}
761 	if (m == NULL) {
762 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
763 		if (tt->rn_flags & RNF_NORMAL)
764 			return (NULL); /* Dangling ref to us */
765 	}
766 on1:
767 	/*
768 	 * Eliminate us from tree
769 	 */
770 	if (tt->rn_flags & RNF_ROOT)
771 		return (NULL);
772 #ifdef RN_DEBUG
773 	/* Get us out of the creation list */
774 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
775 	if (t) t->rn_ybro = tt->rn_ybro;
776 #endif
777 	t = tt->rn_parent;
778 	dupedkey = saved_tt->rn_dupedkey;
779 	if (dupedkey != NULL) {
780 		/*
781 		 * at this point, tt is the deletion target and saved_tt
782 		 * is the head of the dupekey chain
783 		 */
784 		if (tt == saved_tt) {
785 			/* remove from head of chain */
786 			x = dupedkey; x->rn_parent = t;
787 			if (t->rn_left == tt)
788 				t->rn_left = x;
789 			else
790 				t->rn_right = x;
791 		} else {
792 			/* find node in front of tt on the chain */
793 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
794 				p = p->rn_dupedkey;
795 			if (p) {
796 				p->rn_dupedkey = tt->rn_dupedkey;
797 				if (tt->rn_dupedkey)		/* parent */
798 					tt->rn_dupedkey->rn_parent = p;
799 								/* parent */
800 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
801 		}
802 		t = tt + 1;
803 		if  (t->rn_flags & RNF_ACTIVE) {
804 #ifndef RN_DEBUG
805 			*++x = *t;
806 			p = t->rn_parent;
807 #else
808 			b = t->rn_info;
809 			*++x = *t;
810 			t->rn_info = b;
811 			p = t->rn_parent;
812 #endif
813 			if (p->rn_left == t)
814 				p->rn_left = x;
815 			else
816 				p->rn_right = x;
817 			x->rn_left->rn_parent = x;
818 			x->rn_right->rn_parent = x;
819 		}
820 		goto out;
821 	}
822 	if (t->rn_left == tt)
823 		x = t->rn_right;
824 	else
825 		x = t->rn_left;
826 	p = t->rn_parent;
827 	if (p->rn_right == t)
828 		p->rn_right = x;
829 	else
830 		p->rn_left = x;
831 	x->rn_parent = p;
832 	/*
833 	 * Demote routes attached to us.
834 	 */
835 	if (t->rn_mklist != NULL) {
836 		if (x->rn_bit >= 0) {
837 			for (mp = &x->rn_mklist; (m = *mp);)
838 				mp = &m->rm_next;
839 			*mp = t->rn_mklist;
840 		} else {
841 			/*
842 			 * If there are any (key, mask) pairs in a sibling
843 			 * duped-key chain, some subset will appear sorted
844 			 * in the same order attached to our mklist.
845 			 */
846 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
847 				if (m == x->rn_mklist) {
848 					struct radix_mask *mm = m->rm_next;
849 
850 					x->rn_mklist = NULL;
851 					if (--(m->rm_refs) < 0)
852 						MKFree(&rn_mkfreelist, m);
853 					m = mm;
854 				}
855 			if (m)
856 				log(LOG_ERR,
857 				    "rn_delete: Orphaned Mask %p at %p\n",
858 				    (void *)m, (void *)x);
859 		}
860 	}
861 	/*
862 	 * We may be holding an active internal node in the tree.
863 	 */
864 	x = tt + 1;
865 	if (t != x) {
866 #ifndef RN_DEBUG
867 		*t = *x;
868 #else
869 		b = t->rn_info;
870 		*t = *x;
871 		t->rn_info = b;
872 #endif
873 		t->rn_left->rn_parent = t;
874 		t->rn_right->rn_parent = t;
875 		p = x->rn_parent;
876 		if (p->rn_left == x)
877 			p->rn_left = t;
878 		else
879 			p->rn_right = t;
880 	}
881 out:
882 	tt->rn_flags &= ~RNF_ACTIVE;
883 	tt[1].rn_flags &= ~RNF_ACTIVE;
884 	return (tt);
885 }
886 
887 /*
888  * This is the same as rn_walktree() except for the parameters and the
889  * exit.
890  */
891 static int
892 rn_walktree_from(struct radix_node_head *h, char *xa, char *xm,
893 		 walktree_f_t *f, void *w)
894 {
895 	struct radix_node *base, *next;
896 	struct radix_node *rn, *last = NULL /* shut up gcc */;
897 	boolean_t stopping = FALSE;
898 	int lastb, error;
899 
900 	/*
901 	 * rn_search_m is sort-of-open-coded here.
902 	 */
903 	/* kprintf("about to search\n"); */
904 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
905 		last = rn;
906 		/* kprintf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
907 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
908 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
909 			break;
910 		}
911 		if (rn->rn_bmask & xa[rn->rn_offset]) {
912 			rn = rn->rn_right;
913 		} else {
914 			rn = rn->rn_left;
915 		}
916 	}
917 	/* kprintf("done searching\n"); */
918 
919 	/*
920 	 * Two cases: either we stepped off the end of our mask,
921 	 * in which case last == rn, or we reached a leaf, in which
922 	 * case we want to start from the last node we looked at.
923 	 * Either way, last is the node we want to start from.
924 	 */
925 	rn = last;
926 	lastb = rn->rn_bit;
927 
928 	/* kprintf("rn %p, lastb %d\n", rn, lastb);*/
929 
930 	/*
931 	 * This gets complicated because we may delete the node
932 	 * while applying the function f to it, so we need to calculate
933 	 * the successor node in advance.
934 	 */
935 	while (rn->rn_bit >= 0)
936 		rn = rn->rn_left;
937 
938 	while (!stopping) {
939 		/* kprintf("node %p (%d)\n", rn, rn->rn_bit); */
940 		base = rn;
941 		/* If at right child go back up, otherwise, go right */
942 		while (rn->rn_parent->rn_right == rn &&
943 		    !(rn->rn_flags & RNF_ROOT)) {
944 			rn = rn->rn_parent;
945 
946 			/* if went up beyond last, stop */
947 			if (rn->rn_bit < lastb) {
948 				stopping = TRUE;
949 				/* kprintf("up too far\n"); */
950 			}
951 		}
952 
953 		/* Find the next *leaf* since next node might vanish, too */
954 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
955 			rn = rn->rn_left;
956 		next = rn;
957 		/* Process leaves */
958 		while ((rn = base) != NULL) {
959 			base = rn->rn_dupedkey;
960 			/* kprintf("leaf %p\n", rn); */
961 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
962 				return (error);
963 		}
964 		rn = next;
965 
966 		if (rn->rn_flags & RNF_ROOT) {
967 			/* kprintf("root, stopping"); */
968 			stopping = TRUE;
969 		}
970 
971 	}
972 	return 0;
973 }
974 
975 static int
976 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
977 {
978 	struct radix_node *base, *next;
979 	struct radix_node *rn = h->rnh_treetop;
980 	int error;
981 
982 	/*
983 	 * This gets complicated because we may delete the node
984 	 * while applying the function f to it, so we need to calculate
985 	 * the successor node in advance.
986 	 */
987 	/* First time through node, go left */
988 	while (rn->rn_bit >= 0)
989 		rn = rn->rn_left;
990 	for (;;) {
991 		base = rn;
992 		/* If at right child go back up, otherwise, go right */
993 		while (rn->rn_parent->rn_right == rn &&
994 		    !(rn->rn_flags & RNF_ROOT))
995 			rn = rn->rn_parent;
996 		/* Find the next *leaf* since next node might vanish, too */
997 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
998 			rn = rn->rn_left;
999 		next = rn;
1000 		/* Process leaves */
1001 		while ((rn = base)) {
1002 			base = rn->rn_dupedkey;
1003 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
1004 				return (error);
1005 		}
1006 		rn = next;
1007 		if (rn->rn_flags & RNF_ROOT)
1008 			return (0);
1009 	}
1010 	/* NOTREACHED */
1011 }
1012 
1013 int
1014 rn_inithead(void **head, int off)
1015 {
1016 	struct radix_node_head *rnh;
1017 	struct radix_node *root, *left, *right;
1018 
1019 	if (*head != NULL)	/* already initialized */
1020 		return (1);
1021 
1022 	R_Malloc(rnh, struct radix_node_head *, sizeof *rnh);
1023 	if (rnh == NULL)
1024 		return (0);
1025 	bzero(rnh, sizeof *rnh);
1026 	*head = rnh;
1027 
1028 	root = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1029 	right = &rnh->rnh_nodes[2];
1030 	root->rn_parent = root;
1031 	root->rn_flags = RNF_ROOT | RNF_ACTIVE;
1032 	root->rn_right = right;
1033 
1034 	left = root->rn_left;
1035 	left->rn_bit = -1 - off;
1036 	left->rn_flags = RNF_ROOT | RNF_ACTIVE;
1037 
1038 	*right = *left;
1039 	right->rn_key = rn_ones;
1040 
1041 	rnh->rnh_treetop = root;
1042 
1043 	rnh->rnh_addaddr = rn_addroute;
1044 	rnh->rnh_deladdr = rn_delete;
1045 	rnh->rnh_matchaddr = rn_match;
1046 	rnh->rnh_lookup = rn_lookup;
1047 	rnh->rnh_walktree = rn_walktree;
1048 	rnh->rnh_walktree_from = rn_walktree_from;
1049 
1050 	return (1);
1051 }
1052 
1053 void
1054 rn_init(void)
1055 {
1056 	char *cp, *cplim;
1057 #ifdef _KERNEL
1058 	struct domain *dom;
1059 
1060 	SLIST_FOREACH(dom, &domains, dom_next)
1061 		if (dom->dom_maxrtkey > max_keylen)
1062 			max_keylen = dom->dom_maxrtkey;
1063 #endif
1064 	if (max_keylen == 0) {
1065 		log(LOG_ERR,
1066 		    "rn_init: radix functions require max_keylen be set\n");
1067 		return;
1068 	}
1069 	R_Malloc(rn_zeros, char *, 2 * max_keylen);
1070 	if (rn_zeros == NULL)
1071 		panic("rn_init");
1072 	bzero(rn_zeros, 2 * max_keylen);
1073 	rn_ones = cp = rn_zeros + max_keylen;
1074 	cplim = rn_ones + max_keylen;
1075 	while (cp < cplim)
1076 		*cp++ = -1;
1077 	if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1078 		panic("rn_init 2");
1079 }
1080