xref: /dragonfly/sys/net/radix.c (revision 1bf4b486)
1 /*
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)radix.c	8.4 (Berkeley) 11/2/94
34  * $FreeBSD: src/sys/net/radix.c,v 1.20.2.3 2002/04/28 05:40:25 suz Exp $
35  * $DragonFly: src/sys/net/radix.c,v 1.11 2005/03/04 02:21:48 hsu Exp $
36  */
37 
38 /*
39  * Routines to build and maintain radix trees for routing lookups.
40  */
41 #include <sys/param.h>
42 #ifdef	_KERNEL
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/domain.h>
46 #else
47 #include <stdlib.h>
48 #endif
49 #include <sys/syslog.h>
50 #include <net/radix.h>
51 
52 /*
53  * The arguments to the radix functions are really counted byte arrays with
54  * the length in the first byte.  struct sockaddr's fit this type structurally.
55  */
56 #define clen(c)	(*(u_char *)(c))
57 
58 static int rn_walktree_from(struct radix_node_head *h, char *a, char *m,
59 			    walktree_f_t *f, void *w);
60 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
61 
62 static struct radix_node
63     *rn_insert(char *, struct radix_node_head *, boolean_t *,
64 	       struct radix_node [2]),
65     *rn_newpair(char *, int, struct radix_node[2]),
66     *rn_search(const char *, struct radix_node *),
67     *rn_search_m(const char *, struct radix_node *, const char *);
68 
69 static struct radix_mask *rn_mkfreelist;
70 static struct radix_node_head *mask_rnhead;
71 
72 static int max_keylen;
73 static char *rn_zeros, *rn_ones;
74 static char *addmask_key;
75 
76 static int rn_lexobetter(char *m, char *n);
77 static struct radix_mask *
78     rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask);
79 static boolean_t
80     rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip);
81 
82 static __inline struct radix_mask *
83 MKGet(struct radix_mask **l)
84 {
85 	struct radix_mask *m;
86 
87 	if (*l != NULL) {
88 		m = *l;
89 		*l = m->rm_next;
90 	} else {
91 		R_Malloc(m, struct radix_mask *, sizeof *m);
92 	}
93 	return m;
94 }
95 
96 static __inline void
97 MKFree(struct radix_mask **l, struct radix_mask *m)
98 {
99 	m->rm_next = *l;
100 	*l = m;
101 }
102 
103 /*
104  * The data structure for the keys is a radix tree with one way
105  * branching removed.  The index rn_bit at an internal node n represents a bit
106  * position to be tested.  The tree is arranged so that all descendants
107  * of a node n have keys whose bits all agree up to position rn_bit - 1.
108  * (We say the index of n is rn_bit.)
109  *
110  * There is at least one descendant which has a one bit at position rn_bit,
111  * and at least one with a zero there.
112  *
113  * A route is determined by a pair of key and mask.  We require that the
114  * bit-wise logical and of the key and mask to be the key.
115  * We define the index of a route to associated with the mask to be
116  * the first bit number in the mask where 0 occurs (with bit number 0
117  * representing the highest order bit).
118  *
119  * We say a mask is normal if every bit is 0, past the index of the mask.
120  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
121  * and m is a normal mask, then the route applies to every descendant of n.
122  * If the index(m) < rn_bit, this implies the trailing last few bits of k
123  * before bit b are all 0, (and hence consequently true of every descendant
124  * of n), so the route applies to all descendants of the node as well.
125  *
126  * Similar logic shows that a non-normal mask m such that
127  * index(m) <= index(n) could potentially apply to many children of n.
128  * Thus, for each non-host route, we attach its mask to a list at an internal
129  * node as high in the tree as we can go.
130  *
131  * The present version of the code makes use of normal routes in short-
132  * circuiting an explict mask and compare operation when testing whether
133  * a key satisfies a normal route, and also in remembering the unique leaf
134  * that governs a subtree.
135  */
136 
137 static struct radix_node *
138 rn_search(const char *v, struct radix_node *head)
139 {
140 	struct radix_node *x;
141 
142 	x = head;
143 	while (x->rn_bit >= 0) {
144 		if (x->rn_bmask & v[x->rn_offset])
145 			x = x->rn_right;
146 		else
147 			x = x->rn_left;
148 	}
149 	return (x);
150 }
151 
152 static struct radix_node *
153 rn_search_m(const char *v, struct radix_node *head, const char *m)
154 {
155 	struct radix_node *x;
156 
157 	for (x = head; x->rn_bit >= 0;) {
158 		if ((x->rn_bmask & m[x->rn_offset]) &&
159 		    (x->rn_bmask & v[x->rn_offset]))
160 			x = x->rn_right;
161 		else
162 			x = x->rn_left;
163 	}
164 	return x;
165 }
166 
167 boolean_t
168 rn_refines(char *m, char *n)
169 {
170 	char *lim, *lim2;
171 	int longer = clen(n++) - clen(m++);
172 	boolean_t masks_are_equal = TRUE;
173 
174 	lim2 = lim = n + clen(n);
175 	if (longer > 0)
176 		lim -= longer;
177 	while (n < lim) {
178 		if (*n & ~(*m))
179 			return FALSE;
180 		if (*n++ != *m++)
181 			masks_are_equal = FALSE;
182 	}
183 	while (n < lim2)
184 		if (*n++)
185 			return FALSE;
186 	if (masks_are_equal && (longer < 0))
187 		for (lim2 = m - longer; m < lim2; )
188 			if (*m++)
189 				return TRUE;
190 	return (!masks_are_equal);
191 }
192 
193 struct radix_node *
194 rn_lookup(char *key, char *mask, struct radix_node_head *head)
195 {
196 	struct radix_node *x;
197 	char *netmask = NULL;
198 
199 	if (mask != NULL) {
200 		x = rn_addmask(mask, TRUE, head->rnh_treetop->rn_offset);
201 		if (x == NULL)
202 			return (NULL);
203 		netmask = x->rn_key;
204 	}
205 	x = rn_match(key, head);
206 	if (x != NULL && netmask != NULL) {
207 		while (x != NULL && x->rn_mask != netmask)
208 			x = x->rn_dupedkey;
209 	}
210 	return x;
211 }
212 
213 static boolean_t
214 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
215 {
216 	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
217 	char *cplim;
218 	int length = min(clen(cp), clen(cp2));
219 
220 	if (cp3 == NULL)
221 		cp3 = rn_ones;
222 	else
223 		length = min(length, clen(cp3));
224 	cplim = cp + length;
225 	cp3 += skip;
226 	cp2 += skip;
227 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
228 		if ((*cp ^ *cp2) & *cp3)
229 			return FALSE;
230 	return TRUE;
231 }
232 
233 struct radix_node *
234 rn_match(char *key, struct radix_node_head *head)
235 {
236 	struct radix_node *t, *x;
237 	char *cp = key, *cp2;
238 	char *cplim;
239 	struct radix_node *saved_t, *top = head->rnh_treetop;
240 	int off = top->rn_offset, klen, matched_off;
241 	int test, b, rn_bit;
242 
243 	t = rn_search(key, top);
244 	/*
245 	 * See if we match exactly as a host destination
246 	 * or at least learn how many bits match, for normal mask finesse.
247 	 *
248 	 * It doesn't hurt us to limit how many bytes to check
249 	 * to the length of the mask, since if it matches we had a genuine
250 	 * match and the leaf we have is the most specific one anyway;
251 	 * if it didn't match with a shorter length it would fail
252 	 * with a long one.  This wins big for class B&C netmasks which
253 	 * are probably the most common case...
254 	 */
255 	if (t->rn_mask != NULL)
256 		klen = clen(t->rn_mask);
257 	else
258 		klen = clen(key);
259 	cp += off; cp2 = t->rn_key + off; cplim = key + klen;
260 	for (; cp < cplim; cp++, cp2++)
261 		if (*cp != *cp2)
262 			goto on1;
263 	/*
264 	 * This extra grot is in case we are explicitly asked
265 	 * to look up the default.  Ugh!
266 	 *
267 	 * Never return the root node itself, it seems to cause a
268 	 * lot of confusion.
269 	 */
270 	if (t->rn_flags & RNF_ROOT)
271 		t = t->rn_dupedkey;
272 	return t;
273 on1:
274 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
275 	for (b = 7; (test >>= 1) > 0;)
276 		b--;
277 	matched_off = cp - key;
278 	b += matched_off << 3;
279 	rn_bit = -1 - b;
280 	/*
281 	 * If there is a host route in a duped-key chain, it will be first.
282 	 */
283 	if ((saved_t = t)->rn_mask == NULL)
284 		t = t->rn_dupedkey;
285 	for (; t; t = t->rn_dupedkey) {
286 		/*
287 		 * Even if we don't match exactly as a host,
288 		 * we may match if the leaf we wound up at is
289 		 * a route to a net.
290 		 */
291 		if (t->rn_flags & RNF_NORMAL) {
292 			if (rn_bit <= t->rn_bit)
293 				return t;
294 		} else if (rn_satisfies_leaf(key, t, matched_off))
295 				return t;
296 	}
297 	t = saved_t;
298 	/* start searching up the tree */
299 	do {
300 		struct radix_mask *m;
301 
302 		t = t->rn_parent;
303 		/*
304 		 * If non-contiguous masks ever become important
305 		 * we can restore the masking and open coding of
306 		 * the search and satisfaction test and put the
307 		 * calculation of "off" back before the "do".
308 		 */
309 		m = t->rn_mklist;
310 		while (m != NULL) {
311 			if (m->rm_flags & RNF_NORMAL) {
312 				if (rn_bit <= m->rm_bit)
313 					return (m->rm_leaf);
314 			} else {
315 				off = min(t->rn_offset, matched_off);
316 				x = rn_search_m(key, t, m->rm_mask);
317 				while (x != NULL && x->rn_mask != m->rm_mask)
318 					x = x->rn_dupedkey;
319 				if (x && rn_satisfies_leaf(key, x, off))
320 					return x;
321 			}
322 			m = m->rm_next;
323 		}
324 	} while (t != top);
325 	return NULL;
326 }
327 
328 #ifdef RN_DEBUG
329 int rn_nodenum;
330 struct radix_node *rn_clist;
331 int rn_saveinfo;
332 boolean_t rn_debug =  TRUE;
333 #endif
334 
335 static struct radix_node *
336 rn_newpair(char *key, int indexbit, struct radix_node nodes[2])
337 {
338 	struct radix_node *leaf = &nodes[0], *interior = &nodes[1];
339 
340 	interior->rn_bit = indexbit;
341 	interior->rn_bmask = 0x80 >> (indexbit & 0x7);
342 	interior->rn_offset = indexbit >> 3;
343 	interior->rn_left = leaf;
344 	interior->rn_mklist = NULL;
345 
346 	leaf->rn_bit = -1;
347 	leaf->rn_key = key;
348 	leaf->rn_parent = interior;
349 	leaf->rn_flags = interior->rn_flags = RNF_ACTIVE;
350 	leaf->rn_mklist = NULL;
351 
352 #ifdef RN_DEBUG
353 	leaf->rn_info = rn_nodenum++;
354 	interior->rn_info = rn_nodenum++;
355 	leaf->rn_twin = interior;
356 	leaf->rn_ybro = rn_clist;
357 	rn_clist = leaf;
358 #endif
359 	return interior;
360 }
361 
362 static struct radix_node *
363 rn_insert(char *key, struct radix_node_head *head, boolean_t *dupentry,
364 	  struct radix_node nodes[2])
365 {
366 	struct radix_node *top = head->rnh_treetop;
367 	int head_off = top->rn_offset, klen = clen(key);
368 	struct radix_node *t = rn_search(key, top);
369 	char *cp = key + head_off;
370 	int b;
371 	struct radix_node *tt;
372 
373 	/*
374 	 * Find first bit at which the key and t->rn_key differ
375 	 */
376     {
377 	char *cp2 = t->rn_key + head_off;
378 	int cmp_res;
379 	char *cplim = key + klen;
380 
381 	while (cp < cplim)
382 		if (*cp2++ != *cp++)
383 			goto on1;
384 	*dupentry = TRUE;
385 	return t;
386 on1:
387 	*dupentry = FALSE;
388 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
389 	for (b = (cp - key) << 3; cmp_res; b--)
390 		cmp_res >>= 1;
391     }
392     {
393 	struct radix_node *p, *x = top;
394 
395 	cp = key;
396 	do {
397 		p = x;
398 		if (cp[x->rn_offset] & x->rn_bmask)
399 			x = x->rn_right;
400 		else
401 			x = x->rn_left;
402 	} while (b > (unsigned) x->rn_bit);
403 				/* x->rn_bit < b && x->rn_bit >= 0 */
404 #ifdef RN_DEBUG
405 	if (rn_debug)
406 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
407 #endif
408 	t = rn_newpair(key, b, nodes);
409 	tt = t->rn_left;
410 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
411 		p->rn_left = t;
412 	else
413 		p->rn_right = t;
414 	x->rn_parent = t;
415 	t->rn_parent = p; /* frees x, p as temp vars below */
416 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
417 		t->rn_right = x;
418 	} else {
419 		t->rn_right = tt;
420 		t->rn_left = x;
421 	}
422 #ifdef RN_DEBUG
423 	if (rn_debug)
424 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
425 #endif
426     }
427 	return (tt);
428 }
429 
430 struct radix_node *
431 rn_addmask(char *netmask, boolean_t search, int skip)
432 {
433 	struct radix_node *x, *saved_x;
434 	char *cp, *cplim;
435 	int b = 0, mlen, m0, j;
436 	boolean_t maskduplicated, isnormal;
437 	static int last_zeroed = 0;
438 
439 	if ((mlen = clen(netmask)) > max_keylen)
440 		mlen = max_keylen;
441 	if (skip == 0)
442 		skip = 1;
443 	if (mlen <= skip)
444 		return (mask_rnhead->rnh_nodes);
445 	if (skip > 1)
446 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
447 	if ((m0 = mlen) > skip)
448 		bcopy(netmask + skip, addmask_key + skip, mlen - skip);
449 	/*
450 	 * Trim trailing zeroes.
451 	 */
452 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
453 		cp--;
454 	mlen = cp - addmask_key;
455 	if (mlen <= skip) {
456 		if (m0 >= last_zeroed)
457 			last_zeroed = mlen;
458 		return (mask_rnhead->rnh_nodes);
459 	}
460 	if (m0 < last_zeroed)
461 		bzero(addmask_key + m0, last_zeroed - m0);
462 	*addmask_key = last_zeroed = mlen;
463 	x = rn_search(addmask_key, mask_rnhead->rnh_treetop);
464 	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
465 		x = NULL;
466 	if (x != NULL || search)
467 		return (x);
468 	R_Malloc(x, struct radix_node *, max_keylen + 2 * (sizeof *x));
469 	if ((saved_x = x) == NULL)
470 		return (NULL);
471 	bzero(x, max_keylen + 2 * (sizeof *x));
472 	netmask = cp = (char *)(x + 2);
473 	bcopy(addmask_key, cp, mlen);
474 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
475 	if (maskduplicated) {
476 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
477 		Free(saved_x);
478 		return (x);
479 	}
480 	/*
481 	 * Calculate index of mask, and check for normalcy.
482 	 */
483 	isnormal = TRUE;
484 	cplim = netmask + mlen;
485 	for (cp = netmask + skip; cp < cplim && clen(cp) == 0xff;)
486 		cp++;
487 	if (cp != cplim) {
488 		static const char normal_chars[] = {
489 			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
490 		};
491 
492 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
493 			b++;
494 		if (*cp != normal_chars[b] || cp != (cplim - 1))
495 			isnormal = FALSE;
496 	}
497 	b += (cp - netmask) << 3;
498 	x->rn_bit = -1 - b;
499 	if (isnormal)
500 		x->rn_flags |= RNF_NORMAL;
501 	return (x);
502 }
503 
504 static boolean_t	/* XXX: arbitrary ordering for non-contiguous masks */
505 rn_lexobetter(char *mp, char *np)
506 {
507 	char *lim;
508 
509 	if ((unsigned) *mp > (unsigned) *np)
510 		return TRUE;/* not really, but need to check longer one first */
511 	if (*mp == *np)
512 		for (lim = mp + clen(mp); mp < lim;)
513 			if (*mp++ > *np++)
514 				return TRUE;
515 	return FALSE;
516 }
517 
518 static struct radix_mask *
519 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask)
520 {
521 	struct radix_mask *m;
522 
523 	m = MKGet(&rn_mkfreelist);
524 	if (m == NULL) {
525 		log(LOG_ERR, "Mask for route not entered\n");
526 		return (NULL);
527 	}
528 	bzero(m, sizeof *m);
529 	m->rm_bit = tt->rn_bit;
530 	m->rm_flags = tt->rn_flags;
531 	if (tt->rn_flags & RNF_NORMAL)
532 		m->rm_leaf = tt;
533 	else
534 		m->rm_mask = tt->rn_mask;
535 	m->rm_next = nextmask;
536 	tt->rn_mklist = m;
537 	return m;
538 }
539 
540 struct radix_node *
541 rn_addroute(char *key, char *netmask, struct radix_node_head *head,
542 	    struct radix_node treenodes[2])
543 {
544 	struct radix_node *t, *x = NULL, *tt;
545 	struct radix_node *saved_tt, *top = head->rnh_treetop;
546 	short b = 0, b_leaf = 0;
547 	boolean_t keyduplicated;
548 	char *mmask;
549 	struct radix_mask *m, **mp;
550 
551 	/*
552 	 * In dealing with non-contiguous masks, there may be
553 	 * many different routes which have the same mask.
554 	 * We will find it useful to have a unique pointer to
555 	 * the mask to speed avoiding duplicate references at
556 	 * nodes and possibly save time in calculating indices.
557 	 */
558 	if (netmask != NULL)  {
559 		if ((x = rn_addmask(netmask, FALSE, top->rn_offset)) == NULL)
560 			return (NULL);
561 		b_leaf = x->rn_bit;
562 		b = -1 - x->rn_bit;
563 		netmask = x->rn_key;
564 	}
565 	/*
566 	 * Deal with duplicated keys: attach node to previous instance
567 	 */
568 	saved_tt = tt = rn_insert(key, head, &keyduplicated, treenodes);
569 	if (keyduplicated) {
570 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
571 			if (tt->rn_mask == netmask)
572 				return (NULL);
573 			if (netmask == NULL ||
574 			    (tt->rn_mask &&
575 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
576 			      || rn_refines(netmask, tt->rn_mask)
577 			      || rn_lexobetter(netmask, tt->rn_mask))))
578 				break;
579 		}
580 		/*
581 		 * If the mask is not duplicated, we wouldn't
582 		 * find it among possible duplicate key entries
583 		 * anyway, so the above test doesn't hurt.
584 		 *
585 		 * We sort the masks for a duplicated key the same way as
586 		 * in a masklist -- most specific to least specific.
587 		 * This may require the unfortunate nuisance of relocating
588 		 * the head of the list.
589 		 */
590 		if (tt == saved_tt) {
591 			struct	radix_node *xx = x;
592 			/* link in at head of list */
593 			(tt = treenodes)->rn_dupedkey = t;
594 			tt->rn_flags = t->rn_flags;
595 			tt->rn_parent = x = t->rn_parent;
596 			t->rn_parent = tt;			/* parent */
597 			if (x->rn_left == t)
598 				x->rn_left = tt;
599 			else
600 				x->rn_right = tt;
601 			saved_tt = tt; x = xx;
602 		} else {
603 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
604 			t->rn_dupedkey = tt;
605 			tt->rn_parent = t;			/* parent */
606 			if (tt->rn_dupedkey != NULL)		/* parent */
607 				tt->rn_dupedkey->rn_parent = tt; /* parent */
608 		}
609 #ifdef RN_DEBUG
610 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
611 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
612 #endif
613 		tt->rn_key = key;
614 		tt->rn_bit = -1;
615 		tt->rn_flags = RNF_ACTIVE;
616 	}
617 	/*
618 	 * Put mask in tree.
619 	 */
620 	if (netmask != NULL) {
621 		tt->rn_mask = netmask;
622 		tt->rn_bit = x->rn_bit;
623 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
624 	}
625 	t = saved_tt->rn_parent;
626 	if (keyduplicated)
627 		goto on2;
628 	b_leaf = -1 - t->rn_bit;
629 	if (t->rn_right == saved_tt)
630 		x = t->rn_left;
631 	else
632 		x = t->rn_right;
633 	/* Promote general routes from below */
634 	if (x->rn_bit < 0) {
635 		mp = &t->rn_mklist;
636 		while (x != NULL) {
637 			if (x->rn_mask != NULL &&
638 			    x->rn_bit >= b_leaf &&
639 			    x->rn_mklist == NULL) {
640 				*mp = m = rn_new_radix_mask(x, NULL);
641 				if (m != NULL)
642 					mp = &m->rm_next;
643 			}
644 			x = x->rn_dupedkey;
645 		}
646 	} else if (x->rn_mklist != NULL) {
647 		/*
648 		 * Skip over masks whose index is > that of new node
649 		 */
650 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
651 			if (m->rm_bit >= b_leaf)
652 				break;
653 		t->rn_mklist = m;
654 		*mp = NULL;
655 	}
656 on2:
657 	/* Add new route to highest possible ancestor's list */
658 	if ((netmask == NULL) || (b > t->rn_bit ))
659 		return tt; /* can't lift at all */
660 	b_leaf = tt->rn_bit;
661 	do {
662 		x = t;
663 		t = t->rn_parent;
664 	} while (b <= t->rn_bit && x != top);
665 	/*
666 	 * Search through routes associated with node to
667 	 * insert new route according to index.
668 	 * Need same criteria as when sorting dupedkeys to avoid
669 	 * double loop on deletion.
670 	 */
671 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next) {
672 		if (m->rm_bit < b_leaf)
673 			continue;
674 		if (m->rm_bit > b_leaf)
675 			break;
676 		if (m->rm_flags & RNF_NORMAL) {
677 			mmask = m->rm_leaf->rn_mask;
678 			if (tt->rn_flags & RNF_NORMAL) {
679 			    log(LOG_ERR,
680 			        "Non-unique normal route, mask not entered\n");
681 				return tt;
682 			}
683 		} else
684 			mmask = m->rm_mask;
685 		if (mmask == netmask) {
686 			m->rm_refs++;
687 			tt->rn_mklist = m;
688 			return tt;
689 		}
690 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
691 			break;
692 	}
693 	*mp = rn_new_radix_mask(tt, *mp);
694 	return tt;
695 }
696 
697 struct radix_node *
698 rn_delete(char *key, char *netmask, struct radix_node_head *head)
699 {
700 	struct radix_node *t, *p, *x, *tt;
701 	struct radix_mask *m, *saved_m, **mp;
702 	struct radix_node *dupedkey, *saved_tt, *top;
703 	int b, head_off, klen;
704 
705 	x = head->rnh_treetop;
706 	tt = rn_search(key, x);
707 	head_off = x->rn_offset;
708 	klen =  clen(key);
709 	saved_tt = tt;
710 	top = x;
711 	if (tt == NULL ||
712 	    bcmp(key + head_off, tt->rn_key + head_off, klen - head_off))
713 		return (NULL);
714 	/*
715 	 * Delete our route from mask lists.
716 	 */
717 	if (netmask != NULL) {
718 		if ((x = rn_addmask(netmask, TRUE, head_off)) == NULL)
719 			return (NULL);
720 		netmask = x->rn_key;
721 		while (tt->rn_mask != netmask)
722 			if ((tt = tt->rn_dupedkey) == NULL)
723 				return (NULL);
724 	}
725 	if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
726 		goto on1;
727 	if (tt->rn_flags & RNF_NORMAL) {
728 		if (m->rm_leaf != tt || m->rm_refs > 0) {
729 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
730 			return (NULL);  /* dangling ref could cause disaster */
731 		}
732 	} else {
733 		if (m->rm_mask != tt->rn_mask) {
734 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
735 			goto on1;
736 		}
737 		if (--m->rm_refs >= 0)
738 			goto on1;
739 	}
740 	b = -1 - tt->rn_bit;
741 	t = saved_tt->rn_parent;
742 	if (b > t->rn_bit)
743 		goto on1; /* Wasn't lifted at all */
744 	do {
745 		x = t;
746 		t = t->rn_parent;
747 	} while (b <= t->rn_bit && x != top);
748 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
749 		if (m == saved_m) {
750 			*mp = m->rm_next;
751 			MKFree(&rn_mkfreelist, m);
752 			break;
753 		}
754 	if (m == NULL) {
755 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
756 		if (tt->rn_flags & RNF_NORMAL)
757 			return (NULL); /* Dangling ref to us */
758 	}
759 on1:
760 	/*
761 	 * Eliminate us from tree
762 	 */
763 	if (tt->rn_flags & RNF_ROOT)
764 		return (NULL);
765 #ifdef RN_DEBUG
766 	/* Get us out of the creation list */
767 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
768 	if (t) t->rn_ybro = tt->rn_ybro;
769 #endif
770 	t = tt->rn_parent;
771 	dupedkey = saved_tt->rn_dupedkey;
772 	if (dupedkey != NULL) {
773 		/*
774 		 * at this point, tt is the deletion target and saved_tt
775 		 * is the head of the dupekey chain
776 		 */
777 		if (tt == saved_tt) {
778 			/* remove from head of chain */
779 			x = dupedkey; x->rn_parent = t;
780 			if (t->rn_left == tt)
781 				t->rn_left = x;
782 			else
783 				t->rn_right = x;
784 		} else {
785 			/* find node in front of tt on the chain */
786 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
787 				p = p->rn_dupedkey;
788 			if (p) {
789 				p->rn_dupedkey = tt->rn_dupedkey;
790 				if (tt->rn_dupedkey)		/* parent */
791 					tt->rn_dupedkey->rn_parent = p;
792 								/* parent */
793 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
794 		}
795 		t = tt + 1;
796 		if  (t->rn_flags & RNF_ACTIVE) {
797 #ifndef RN_DEBUG
798 			*++x = *t;
799 			p = t->rn_parent;
800 #else
801 			b = t->rn_info;
802 			*++x = *t;
803 			t->rn_info = b;
804 			p = t->rn_parent;
805 #endif
806 			if (p->rn_left == t)
807 				p->rn_left = x;
808 			else
809 				p->rn_right = x;
810 			x->rn_left->rn_parent = x;
811 			x->rn_right->rn_parent = x;
812 		}
813 		goto out;
814 	}
815 	if (t->rn_left == tt)
816 		x = t->rn_right;
817 	else
818 		x = t->rn_left;
819 	p = t->rn_parent;
820 	if (p->rn_right == t)
821 		p->rn_right = x;
822 	else
823 		p->rn_left = x;
824 	x->rn_parent = p;
825 	/*
826 	 * Demote routes attached to us.
827 	 */
828 	if (t->rn_mklist != NULL) {
829 		if (x->rn_bit >= 0) {
830 			for (mp = &x->rn_mklist; (m = *mp);)
831 				mp = &m->rm_next;
832 			*mp = t->rn_mklist;
833 		} else {
834 			/*
835 			 * If there are any (key, mask) pairs in a sibling
836 			 * duped-key chain, some subset will appear sorted
837 			 * in the same order attached to our mklist.
838 			 */
839 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
840 				if (m == x->rn_mklist) {
841 					struct radix_mask *mm = m->rm_next;
842 
843 					x->rn_mklist = NULL;
844 					if (--(m->rm_refs) < 0)
845 						MKFree(&rn_mkfreelist, m);
846 					m = mm;
847 				}
848 			if (m)
849 				log(LOG_ERR,
850 				    "rn_delete: Orphaned Mask %p at %p\n",
851 				    (void *)m, (void *)x);
852 		}
853 	}
854 	/*
855 	 * We may be holding an active internal node in the tree.
856 	 */
857 	x = tt + 1;
858 	if (t != x) {
859 #ifndef RN_DEBUG
860 		*t = *x;
861 #else
862 		b = t->rn_info;
863 		*t = *x;
864 		t->rn_info = b;
865 #endif
866 		t->rn_left->rn_parent = t;
867 		t->rn_right->rn_parent = t;
868 		p = x->rn_parent;
869 		if (p->rn_left == x)
870 			p->rn_left = t;
871 		else
872 			p->rn_right = t;
873 	}
874 out:
875 	tt->rn_flags &= ~RNF_ACTIVE;
876 	tt[1].rn_flags &= ~RNF_ACTIVE;
877 	return (tt);
878 }
879 
880 /*
881  * This is the same as rn_walktree() except for the parameters and the
882  * exit.
883  */
884 static int
885 rn_walktree_from(struct radix_node_head *h, char *xa, char *xm,
886 		 walktree_f_t *f, void *w)
887 {
888 	struct radix_node *base, *next;
889 	struct radix_node *rn, *last = NULL /* shut up gcc */;
890 	boolean_t stopping = FALSE;
891 	int lastb, error;
892 
893 	/*
894 	 * rn_search_m is sort-of-open-coded here.
895 	 */
896 	/* printf("about to search\n"); */
897 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
898 		last = rn;
899 		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
900 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
901 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
902 			break;
903 		}
904 		if (rn->rn_bmask & xa[rn->rn_offset]) {
905 			rn = rn->rn_right;
906 		} else {
907 			rn = rn->rn_left;
908 		}
909 	}
910 	/* printf("done searching\n"); */
911 
912 	/*
913 	 * Two cases: either we stepped off the end of our mask,
914 	 * in which case last == rn, or we reached a leaf, in which
915 	 * case we want to start from the last node we looked at.
916 	 * Either way, last is the node we want to start from.
917 	 */
918 	rn = last;
919 	lastb = rn->rn_bit;
920 
921 	/* printf("rn %p, lastb %d\n", rn, lastb);*/
922 
923 	/*
924 	 * This gets complicated because we may delete the node
925 	 * while applying the function f to it, so we need to calculate
926 	 * the successor node in advance.
927 	 */
928 	while (rn->rn_bit >= 0)
929 		rn = rn->rn_left;
930 
931 	while (!stopping) {
932 		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
933 		base = rn;
934 		/* If at right child go back up, otherwise, go right */
935 		while (rn->rn_parent->rn_right == rn &&
936 		    !(rn->rn_flags & RNF_ROOT)) {
937 			rn = rn->rn_parent;
938 
939 			/* if went up beyond last, stop */
940 			if (rn->rn_bit < lastb) {
941 				stopping = TRUE;
942 				/* printf("up too far\n"); */
943 			}
944 		}
945 
946 		/* Find the next *leaf* since next node might vanish, too */
947 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
948 			rn = rn->rn_left;
949 		next = rn;
950 		/* Process leaves */
951 		while ((rn = base) != NULL) {
952 			base = rn->rn_dupedkey;
953 			/* printf("leaf %p\n", rn); */
954 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
955 				return (error);
956 		}
957 		rn = next;
958 
959 		if (rn->rn_flags & RNF_ROOT) {
960 			/* printf("root, stopping"); */
961 			stopping = TRUE;
962 		}
963 
964 	}
965 	return 0;
966 }
967 
968 static int
969 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
970 {
971 	struct radix_node *base, *next;
972 	struct radix_node *rn = h->rnh_treetop;
973 	int error;
974 
975 	/*
976 	 * This gets complicated because we may delete the node
977 	 * while applying the function f to it, so we need to calculate
978 	 * the successor node in advance.
979 	 */
980 	/* First time through node, go left */
981 	while (rn->rn_bit >= 0)
982 		rn = rn->rn_left;
983 	for (;;) {
984 		base = rn;
985 		/* If at right child go back up, otherwise, go right */
986 		while (rn->rn_parent->rn_right == rn &&
987 		    !(rn->rn_flags & RNF_ROOT))
988 			rn = rn->rn_parent;
989 		/* Find the next *leaf* since next node might vanish, too */
990 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
991 			rn = rn->rn_left;
992 		next = rn;
993 		/* Process leaves */
994 		while ((rn = base)) {
995 			base = rn->rn_dupedkey;
996 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
997 				return (error);
998 		}
999 		rn = next;
1000 		if (rn->rn_flags & RNF_ROOT)
1001 			return (0);
1002 	}
1003 	/* NOTREACHED */
1004 }
1005 
1006 int
1007 rn_inithead(void **head, int off)
1008 {
1009 	struct radix_node_head *rnh;
1010 	struct radix_node *root, *left, *right;
1011 
1012 	if (*head != NULL)	/* already initialized */
1013 		return (1);
1014 
1015 	R_Malloc(rnh, struct radix_node_head *, sizeof *rnh);
1016 	if (rnh == NULL)
1017 		return (0);
1018 	bzero(rnh, sizeof *rnh);
1019 	*head = rnh;
1020 
1021 	root = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1022 	right = &rnh->rnh_nodes[2];
1023 	root->rn_parent = root;
1024 	root->rn_flags = RNF_ROOT | RNF_ACTIVE;
1025 	root->rn_right = right;
1026 
1027 	left = root->rn_left;
1028 	left->rn_bit = -1 - off;
1029 	left->rn_flags = RNF_ROOT | RNF_ACTIVE;
1030 
1031 	*right = *left;
1032 	right->rn_key = rn_ones;
1033 
1034 	rnh->rnh_treetop = root;
1035 
1036 	rnh->rnh_addaddr = rn_addroute;
1037 	rnh->rnh_deladdr = rn_delete;
1038 	rnh->rnh_matchaddr = rn_match;
1039 	rnh->rnh_lookup = rn_lookup;
1040 	rnh->rnh_walktree = rn_walktree;
1041 	rnh->rnh_walktree_from = rn_walktree_from;
1042 
1043 	return (1);
1044 }
1045 
1046 void
1047 rn_init()
1048 {
1049 	char *cp, *cplim;
1050 #ifdef _KERNEL
1051 	struct domain *dom;
1052 
1053 	SLIST_FOREACH(dom, &domains, dom_next)
1054 		if (dom->dom_maxrtkey > max_keylen)
1055 			max_keylen = dom->dom_maxrtkey;
1056 #endif
1057 	if (max_keylen == 0) {
1058 		log(LOG_ERR,
1059 		    "rn_init: radix functions require max_keylen be set\n");
1060 		return;
1061 	}
1062 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1063 	if (rn_zeros == NULL)
1064 		panic("rn_init");
1065 	bzero(rn_zeros, 3 * max_keylen);
1066 	rn_ones = cp = rn_zeros + max_keylen;
1067 	addmask_key = cplim = rn_ones + max_keylen;
1068 	while (cp < cplim)
1069 		*cp++ = -1;
1070 	if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1071 		panic("rn_init 2");
1072 }
1073