xref: /dragonfly/sys/net/radix.c (revision 21c1c48a)
1 /*
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)radix.c	8.4 (Berkeley) 11/2/94
34  * $FreeBSD: src/sys/net/radix.c,v 1.20.2.3 2002/04/28 05:40:25 suz Exp $
35  * $DragonFly: src/sys/net/radix.c,v 1.14 2006/12/22 23:44:54 swildner Exp $
36  */
37 
38 /*
39  * Routines to build and maintain radix trees for routing lookups.
40  */
41 #include <sys/param.h>
42 #ifdef	_KERNEL
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/domain.h>
46 #include <sys/globaldata.h>
47 #include <sys/thread.h>
48 #else
49 #include <stdlib.h>
50 #endif
51 #include <sys/syslog.h>
52 #include <net/radix.h>
53 
54 /*
55  * The arguments to the radix functions are really counted byte arrays with
56  * the length in the first byte.  struct sockaddr's fit this type structurally.
57  */
58 #define clen(c)	(*(u_char *)(c))
59 
60 static int rn_walktree_from(struct radix_node_head *h, char *a, char *m,
61 			    walktree_f_t *f, void *w);
62 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
63 
64 static struct radix_node
65     *rn_insert(char *, struct radix_node_head *, boolean_t *,
66 	       struct radix_node [2]),
67     *rn_newpair(char *, int, struct radix_node[2]),
68     *rn_search(const char *, struct radix_node *),
69     *rn_search_m(const char *, struct radix_node *, const char *);
70 
71 static struct radix_mask *rn_mkfreelist;
72 static struct radix_node_head *mask_rnheads[MAXCPU];
73 
74 static int max_keylen;
75 static char *rn_zeros, *rn_ones;
76 
77 static int rn_lexobetter(char *m, char *n);
78 static struct radix_mask *
79     rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask);
80 static boolean_t
81     rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip);
82 
83 static __inline struct radix_mask *
84 MKGet(struct radix_mask **l)
85 {
86 	struct radix_mask *m;
87 
88 	if (*l != NULL) {
89 		m = *l;
90 		*l = m->rm_next;
91 	} else {
92 		R_Malloc(m, struct radix_mask *, sizeof *m);
93 	}
94 	return m;
95 }
96 
97 static __inline void
98 MKFree(struct radix_mask **l, struct radix_mask *m)
99 {
100 	m->rm_next = *l;
101 	*l = m;
102 }
103 
104 /*
105  * The data structure for the keys is a radix tree with one way
106  * branching removed.  The index rn_bit at an internal node n represents a bit
107  * position to be tested.  The tree is arranged so that all descendants
108  * of a node n have keys whose bits all agree up to position rn_bit - 1.
109  * (We say the index of n is rn_bit.)
110  *
111  * There is at least one descendant which has a one bit at position rn_bit,
112  * and at least one with a zero there.
113  *
114  * A route is determined by a pair of key and mask.  We require that the
115  * bit-wise logical and of the key and mask to be the key.
116  * We define the index of a route to associated with the mask to be
117  * the first bit number in the mask where 0 occurs (with bit number 0
118  * representing the highest order bit).
119  *
120  * We say a mask is normal if every bit is 0, past the index of the mask.
121  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
122  * and m is a normal mask, then the route applies to every descendant of n.
123  * If the index(m) < rn_bit, this implies the trailing last few bits of k
124  * before bit b are all 0, (and hence consequently true of every descendant
125  * of n), so the route applies to all descendants of the node as well.
126  *
127  * Similar logic shows that a non-normal mask m such that
128  * index(m) <= index(n) could potentially apply to many children of n.
129  * Thus, for each non-host route, we attach its mask to a list at an internal
130  * node as high in the tree as we can go.
131  *
132  * The present version of the code makes use of normal routes in short-
133  * circuiting an explict mask and compare operation when testing whether
134  * a key satisfies a normal route, and also in remembering the unique leaf
135  * that governs a subtree.
136  */
137 
138 static struct radix_node *
139 rn_search(const char *v, struct radix_node *head)
140 {
141 	struct radix_node *x;
142 
143 	x = head;
144 	while (x->rn_bit >= 0) {
145 		if (x->rn_bmask & v[x->rn_offset])
146 			x = x->rn_right;
147 		else
148 			x = x->rn_left;
149 	}
150 	return (x);
151 }
152 
153 static struct radix_node *
154 rn_search_m(const char *v, struct radix_node *head, const char *m)
155 {
156 	struct radix_node *x;
157 
158 	for (x = head; x->rn_bit >= 0;) {
159 		if ((x->rn_bmask & m[x->rn_offset]) &&
160 		    (x->rn_bmask & v[x->rn_offset]))
161 			x = x->rn_right;
162 		else
163 			x = x->rn_left;
164 	}
165 	return x;
166 }
167 
168 boolean_t
169 rn_refines(char *m, char *n)
170 {
171 	char *lim, *lim2;
172 	int longer = clen(n++) - clen(m++);
173 	boolean_t masks_are_equal = TRUE;
174 
175 	lim2 = lim = n + clen(n);
176 	if (longer > 0)
177 		lim -= longer;
178 	while (n < lim) {
179 		if (*n & ~(*m))
180 			return FALSE;
181 		if (*n++ != *m++)
182 			masks_are_equal = FALSE;
183 	}
184 	while (n < lim2)
185 		if (*n++)
186 			return FALSE;
187 	if (masks_are_equal && (longer < 0))
188 		for (lim2 = m - longer; m < lim2; )
189 			if (*m++)
190 				return TRUE;
191 	return (!masks_are_equal);
192 }
193 
194 struct radix_node *
195 rn_lookup(char *key, char *mask, struct radix_node_head *head)
196 {
197 	struct radix_node *x;
198 	char *netmask = NULL;
199 
200 	if (mask != NULL) {
201 		x = rn_addmask(mask, TRUE, head->rnh_treetop->rn_offset);
202 		if (x == NULL)
203 			return (NULL);
204 		netmask = x->rn_key;
205 	}
206 	x = rn_match(key, head);
207 	if (x != NULL && netmask != NULL) {
208 		while (x != NULL && x->rn_mask != netmask)
209 			x = x->rn_dupedkey;
210 	}
211 	return x;
212 }
213 
214 static boolean_t
215 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
216 {
217 	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
218 	char *cplim;
219 	int length = min(clen(cp), clen(cp2));
220 
221 	if (cp3 == NULL)
222 		cp3 = rn_ones;
223 	else
224 		length = min(length, clen(cp3));
225 	cplim = cp + length;
226 	cp3 += skip;
227 	cp2 += skip;
228 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
229 		if ((*cp ^ *cp2) & *cp3)
230 			return FALSE;
231 	return TRUE;
232 }
233 
234 struct radix_node *
235 rn_match(char *key, struct radix_node_head *head)
236 {
237 	struct radix_node *t, *x;
238 	char *cp = key, *cp2;
239 	char *cplim;
240 	struct radix_node *saved_t, *top = head->rnh_treetop;
241 	int off = top->rn_offset, klen, matched_off;
242 	int test, b, rn_bit;
243 
244 	t = rn_search(key, top);
245 	/*
246 	 * See if we match exactly as a host destination
247 	 * or at least learn how many bits match, for normal mask finesse.
248 	 *
249 	 * It doesn't hurt us to limit how many bytes to check
250 	 * to the length of the mask, since if it matches we had a genuine
251 	 * match and the leaf we have is the most specific one anyway;
252 	 * if it didn't match with a shorter length it would fail
253 	 * with a long one.  This wins big for class B&C netmasks which
254 	 * are probably the most common case...
255 	 */
256 	if (t->rn_mask != NULL)
257 		klen = clen(t->rn_mask);
258 	else
259 		klen = clen(key);
260 	cp += off; cp2 = t->rn_key + off; cplim = key + klen;
261 	for (; cp < cplim; cp++, cp2++)
262 		if (*cp != *cp2)
263 			goto on1;
264 	/*
265 	 * This extra grot is in case we are explicitly asked
266 	 * to look up the default.  Ugh!
267 	 *
268 	 * Never return the root node itself, it seems to cause a
269 	 * lot of confusion.
270 	 */
271 	if (t->rn_flags & RNF_ROOT)
272 		t = t->rn_dupedkey;
273 	return t;
274 on1:
275 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
276 	for (b = 7; (test >>= 1) > 0;)
277 		b--;
278 	matched_off = cp - key;
279 	b += matched_off << 3;
280 	rn_bit = -1 - b;
281 	/*
282 	 * If there is a host route in a duped-key chain, it will be first.
283 	 */
284 	if ((saved_t = t)->rn_mask == NULL)
285 		t = t->rn_dupedkey;
286 	for (; t; t = t->rn_dupedkey) {
287 		/*
288 		 * Even if we don't match exactly as a host,
289 		 * we may match if the leaf we wound up at is
290 		 * a route to a net.
291 		 */
292 		if (t->rn_flags & RNF_NORMAL) {
293 			if (rn_bit <= t->rn_bit)
294 				return t;
295 		} else if (rn_satisfies_leaf(key, t, matched_off))
296 				return t;
297 	}
298 	t = saved_t;
299 	/* start searching up the tree */
300 	do {
301 		struct radix_mask *m;
302 
303 		t = t->rn_parent;
304 		/*
305 		 * If non-contiguous masks ever become important
306 		 * we can restore the masking and open coding of
307 		 * the search and satisfaction test and put the
308 		 * calculation of "off" back before the "do".
309 		 */
310 		m = t->rn_mklist;
311 		while (m != NULL) {
312 			if (m->rm_flags & RNF_NORMAL) {
313 				if (rn_bit <= m->rm_bit)
314 					return (m->rm_leaf);
315 			} else {
316 				off = min(t->rn_offset, matched_off);
317 				x = rn_search_m(key, t, m->rm_mask);
318 				while (x != NULL && x->rn_mask != m->rm_mask)
319 					x = x->rn_dupedkey;
320 				if (x && rn_satisfies_leaf(key, x, off))
321 					return x;
322 			}
323 			m = m->rm_next;
324 		}
325 	} while (t != top);
326 	return NULL;
327 }
328 
329 #ifdef RN_DEBUG
330 int rn_nodenum;
331 struct radix_node *rn_clist;
332 int rn_saveinfo;
333 boolean_t rn_debug =  TRUE;
334 #endif
335 
336 static struct radix_node *
337 rn_newpair(char *key, int indexbit, struct radix_node nodes[2])
338 {
339 	struct radix_node *leaf = &nodes[0], *interior = &nodes[1];
340 
341 	interior->rn_bit = indexbit;
342 	interior->rn_bmask = 0x80 >> (indexbit & 0x7);
343 	interior->rn_offset = indexbit >> 3;
344 	interior->rn_left = leaf;
345 	interior->rn_mklist = NULL;
346 
347 	leaf->rn_bit = -1;
348 	leaf->rn_key = key;
349 	leaf->rn_parent = interior;
350 	leaf->rn_flags = interior->rn_flags = RNF_ACTIVE;
351 	leaf->rn_mklist = NULL;
352 
353 #ifdef RN_DEBUG
354 	leaf->rn_info = rn_nodenum++;
355 	interior->rn_info = rn_nodenum++;
356 	leaf->rn_twin = interior;
357 	leaf->rn_ybro = rn_clist;
358 	rn_clist = leaf;
359 #endif
360 	return interior;
361 }
362 
363 static struct radix_node *
364 rn_insert(char *key, struct radix_node_head *head, boolean_t *dupentry,
365 	  struct radix_node nodes[2])
366 {
367 	struct radix_node *top = head->rnh_treetop;
368 	int head_off = top->rn_offset, klen = clen(key);
369 	struct radix_node *t = rn_search(key, top);
370 	char *cp = key + head_off;
371 	int b;
372 	struct radix_node *tt;
373 
374 	/*
375 	 * Find first bit at which the key and t->rn_key differ
376 	 */
377     {
378 	char *cp2 = t->rn_key + head_off;
379 	int cmp_res;
380 	char *cplim = key + klen;
381 
382 	while (cp < cplim)
383 		if (*cp2++ != *cp++)
384 			goto on1;
385 	*dupentry = TRUE;
386 	return t;
387 on1:
388 	*dupentry = FALSE;
389 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
390 	for (b = (cp - key) << 3; cmp_res; b--)
391 		cmp_res >>= 1;
392     }
393     {
394 	struct radix_node *p, *x = top;
395 
396 	cp = key;
397 	do {
398 		p = x;
399 		if (cp[x->rn_offset] & x->rn_bmask)
400 			x = x->rn_right;
401 		else
402 			x = x->rn_left;
403 	} while (b > (unsigned) x->rn_bit);
404 				/* x->rn_bit < b && x->rn_bit >= 0 */
405 #ifdef RN_DEBUG
406 	if (rn_debug)
407 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
408 #endif
409 	t = rn_newpair(key, b, nodes);
410 	tt = t->rn_left;
411 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
412 		p->rn_left = t;
413 	else
414 		p->rn_right = t;
415 	x->rn_parent = t;
416 	t->rn_parent = p; /* frees x, p as temp vars below */
417 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
418 		t->rn_right = x;
419 	} else {
420 		t->rn_right = tt;
421 		t->rn_left = x;
422 	}
423 #ifdef RN_DEBUG
424 	if (rn_debug)
425 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
426 #endif
427     }
428 	return (tt);
429 }
430 
431 struct radix_node *
432 rn_addmask(char *netmask, boolean_t search, int skip)
433 {
434 	struct radix_node *x, *saved_x;
435 	char *cp, *cplim;
436 	int b = 0, mlen, m0, j;
437 	boolean_t maskduplicated, isnormal;
438 	static int last_zeroed = 0;
439 	char *addmask_key;
440 	struct radix_node_head *mask_rnh = mask_rnheads[mycpuid];
441 
442 	if ((mlen = clen(netmask)) > max_keylen)
443 		mlen = max_keylen;
444 	if (skip == 0)
445 		skip = 1;
446 	if (mlen <= skip)
447 		return (mask_rnh->rnh_nodes);
448 	R_Malloc(addmask_key, char *, max_keylen);
449 	if (addmask_key == NULL)
450 		return NULL;
451 	if (skip > 1)
452 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
453 	if ((m0 = mlen) > skip)
454 		bcopy(netmask + skip, addmask_key + skip, mlen - skip);
455 	/*
456 	 * Trim trailing zeroes.
457 	 */
458 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
459 		cp--;
460 	mlen = cp - addmask_key;
461 	if (mlen <= skip) {
462 		if (m0 >= last_zeroed)
463 			last_zeroed = mlen;
464 		Free(addmask_key);
465 		return (mask_rnh->rnh_nodes);
466 	}
467 	if (m0 < last_zeroed)
468 		bzero(addmask_key + m0, last_zeroed - m0);
469 	*addmask_key = last_zeroed = mlen;
470 	x = rn_search(addmask_key, mask_rnh->rnh_treetop);
471 	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
472 		x = NULL;
473 	if (x != NULL || search)
474 		goto out;
475 	R_Malloc(x, struct radix_node *, max_keylen + 2 * (sizeof *x));
476 	if ((saved_x = x) == NULL)
477 		goto out;
478 	bzero(x, max_keylen + 2 * (sizeof *x));
479 	netmask = cp = (char *)(x + 2);
480 	bcopy(addmask_key, cp, mlen);
481 	x = rn_insert(cp, mask_rnh, &maskduplicated, x);
482 	if (maskduplicated) {
483 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
484 		Free(saved_x);
485 		goto out;
486 	}
487 	/*
488 	 * Calculate index of mask, and check for normalcy.
489 	 */
490 	isnormal = TRUE;
491 	cplim = netmask + mlen;
492 	for (cp = netmask + skip; cp < cplim && clen(cp) == 0xff;)
493 		cp++;
494 	if (cp != cplim) {
495 		static const char normal_chars[] = {
496 			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
497 		};
498 
499 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
500 			b++;
501 		if (*cp != normal_chars[b] || cp != (cplim - 1))
502 			isnormal = FALSE;
503 	}
504 	b += (cp - netmask) << 3;
505 	x->rn_bit = -1 - b;
506 	if (isnormal)
507 		x->rn_flags |= RNF_NORMAL;
508 out:
509 	Free(addmask_key);
510 	return (x);
511 }
512 
513 /* XXX: arbitrary ordering for non-contiguous masks */
514 static boolean_t
515 rn_lexobetter(char *mp, char *np)
516 {
517 	char *lim;
518 
519 	if ((unsigned) *mp > (unsigned) *np)
520 		return TRUE;/* not really, but need to check longer one first */
521 	if (*mp == *np)
522 		for (lim = mp + clen(mp); mp < lim;)
523 			if (*mp++ > *np++)
524 				return TRUE;
525 	return FALSE;
526 }
527 
528 static struct radix_mask *
529 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask)
530 {
531 	struct radix_mask *m;
532 
533 	m = MKGet(&rn_mkfreelist);
534 	if (m == NULL) {
535 		log(LOG_ERR, "Mask for route not entered\n");
536 		return (NULL);
537 	}
538 	bzero(m, sizeof *m);
539 	m->rm_bit = tt->rn_bit;
540 	m->rm_flags = tt->rn_flags;
541 	if (tt->rn_flags & RNF_NORMAL)
542 		m->rm_leaf = tt;
543 	else
544 		m->rm_mask = tt->rn_mask;
545 	m->rm_next = nextmask;
546 	tt->rn_mklist = m;
547 	return m;
548 }
549 
550 struct radix_node *
551 rn_addroute(char *key, char *netmask, struct radix_node_head *head,
552 	    struct radix_node treenodes[2])
553 {
554 	struct radix_node *t, *x = NULL, *tt;
555 	struct radix_node *saved_tt, *top = head->rnh_treetop;
556 	short b = 0, b_leaf = 0;
557 	boolean_t keyduplicated;
558 	char *mmask;
559 	struct radix_mask *m, **mp;
560 
561 	/*
562 	 * In dealing with non-contiguous masks, there may be
563 	 * many different routes which have the same mask.
564 	 * We will find it useful to have a unique pointer to
565 	 * the mask to speed avoiding duplicate references at
566 	 * nodes and possibly save time in calculating indices.
567 	 */
568 	if (netmask != NULL)  {
569 		if ((x = rn_addmask(netmask, FALSE, top->rn_offset)) == NULL)
570 			return (NULL);
571 		b_leaf = x->rn_bit;
572 		b = -1 - x->rn_bit;
573 		netmask = x->rn_key;
574 	}
575 	/*
576 	 * Deal with duplicated keys: attach node to previous instance
577 	 */
578 	saved_tt = tt = rn_insert(key, head, &keyduplicated, treenodes);
579 	if (keyduplicated) {
580 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
581 			if (tt->rn_mask == netmask)
582 				return (NULL);
583 			if (netmask == NULL ||
584 			    (tt->rn_mask &&
585 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
586 			      || rn_refines(netmask, tt->rn_mask)
587 			      || rn_lexobetter(netmask, tt->rn_mask))))
588 				break;
589 		}
590 		/*
591 		 * If the mask is not duplicated, we wouldn't
592 		 * find it among possible duplicate key entries
593 		 * anyway, so the above test doesn't hurt.
594 		 *
595 		 * We sort the masks for a duplicated key the same way as
596 		 * in a masklist -- most specific to least specific.
597 		 * This may require the unfortunate nuisance of relocating
598 		 * the head of the list.
599 		 */
600 		if (tt == saved_tt) {
601 			struct	radix_node *xx = x;
602 			/* link in at head of list */
603 			(tt = treenodes)->rn_dupedkey = t;
604 			tt->rn_flags = t->rn_flags;
605 			tt->rn_parent = x = t->rn_parent;
606 			t->rn_parent = tt;			/* parent */
607 			if (x->rn_left == t)
608 				x->rn_left = tt;
609 			else
610 				x->rn_right = tt;
611 			saved_tt = tt; x = xx;
612 		} else {
613 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
614 			t->rn_dupedkey = tt;
615 			tt->rn_parent = t;			/* parent */
616 			if (tt->rn_dupedkey != NULL)		/* parent */
617 				tt->rn_dupedkey->rn_parent = tt; /* parent */
618 		}
619 #ifdef RN_DEBUG
620 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
621 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
622 #endif
623 		tt->rn_key = key;
624 		tt->rn_bit = -1;
625 		tt->rn_flags = RNF_ACTIVE;
626 	}
627 	/*
628 	 * Put mask in tree.
629 	 */
630 	if (netmask != NULL) {
631 		tt->rn_mask = netmask;
632 		tt->rn_bit = x->rn_bit;
633 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
634 	}
635 	t = saved_tt->rn_parent;
636 	if (keyduplicated)
637 		goto on2;
638 	b_leaf = -1 - t->rn_bit;
639 	if (t->rn_right == saved_tt)
640 		x = t->rn_left;
641 	else
642 		x = t->rn_right;
643 	/* Promote general routes from below */
644 	if (x->rn_bit < 0) {
645 		mp = &t->rn_mklist;
646 		while (x != NULL) {
647 			if (x->rn_mask != NULL &&
648 			    x->rn_bit >= b_leaf &&
649 			    x->rn_mklist == NULL) {
650 				*mp = m = rn_new_radix_mask(x, NULL);
651 				if (m != NULL)
652 					mp = &m->rm_next;
653 			}
654 			x = x->rn_dupedkey;
655 		}
656 	} else if (x->rn_mklist != NULL) {
657 		/*
658 		 * Skip over masks whose index is > that of new node
659 		 */
660 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
661 			if (m->rm_bit >= b_leaf)
662 				break;
663 		t->rn_mklist = m;
664 		*mp = NULL;
665 	}
666 on2:
667 	/* Add new route to highest possible ancestor's list */
668 	if ((netmask == NULL) || (b > t->rn_bit ))
669 		return tt; /* can't lift at all */
670 	b_leaf = tt->rn_bit;
671 	do {
672 		x = t;
673 		t = t->rn_parent;
674 	} while (b <= t->rn_bit && x != top);
675 	/*
676 	 * Search through routes associated with node to
677 	 * insert new route according to index.
678 	 * Need same criteria as when sorting dupedkeys to avoid
679 	 * double loop on deletion.
680 	 */
681 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next) {
682 		if (m->rm_bit < b_leaf)
683 			continue;
684 		if (m->rm_bit > b_leaf)
685 			break;
686 		if (m->rm_flags & RNF_NORMAL) {
687 			mmask = m->rm_leaf->rn_mask;
688 			if (tt->rn_flags & RNF_NORMAL) {
689 			    log(LOG_ERR,
690 			        "Non-unique normal route, mask not entered\n");
691 				return tt;
692 			}
693 		} else
694 			mmask = m->rm_mask;
695 		if (mmask == netmask) {
696 			m->rm_refs++;
697 			tt->rn_mklist = m;
698 			return tt;
699 		}
700 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
701 			break;
702 	}
703 	*mp = rn_new_radix_mask(tt, *mp);
704 	return tt;
705 }
706 
707 struct radix_node *
708 rn_delete(char *key, char *netmask, struct radix_node_head *head)
709 {
710 	struct radix_node *t, *p, *x, *tt;
711 	struct radix_mask *m, *saved_m, **mp;
712 	struct radix_node *dupedkey, *saved_tt, *top;
713 	int b, head_off, klen;
714 
715 	x = head->rnh_treetop;
716 	tt = rn_search(key, x);
717 	head_off = x->rn_offset;
718 	klen =  clen(key);
719 	saved_tt = tt;
720 	top = x;
721 	if (tt == NULL ||
722 	    bcmp(key + head_off, tt->rn_key + head_off, klen - head_off))
723 		return (NULL);
724 	/*
725 	 * Delete our route from mask lists.
726 	 */
727 	if (netmask != NULL) {
728 		if ((x = rn_addmask(netmask, TRUE, head_off)) == NULL)
729 			return (NULL);
730 		netmask = x->rn_key;
731 		while (tt->rn_mask != netmask)
732 			if ((tt = tt->rn_dupedkey) == NULL)
733 				return (NULL);
734 	}
735 	if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
736 		goto on1;
737 	if (tt->rn_flags & RNF_NORMAL) {
738 		if (m->rm_leaf != tt || m->rm_refs > 0) {
739 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
740 			return (NULL);  /* dangling ref could cause disaster */
741 		}
742 	} else {
743 		if (m->rm_mask != tt->rn_mask) {
744 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
745 			goto on1;
746 		}
747 		if (--m->rm_refs >= 0)
748 			goto on1;
749 	}
750 	b = -1 - tt->rn_bit;
751 	t = saved_tt->rn_parent;
752 	if (b > t->rn_bit)
753 		goto on1; /* Wasn't lifted at all */
754 	do {
755 		x = t;
756 		t = t->rn_parent;
757 	} while (b <= t->rn_bit && x != top);
758 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
759 		if (m == saved_m) {
760 			*mp = m->rm_next;
761 			MKFree(&rn_mkfreelist, m);
762 			break;
763 		}
764 	if (m == NULL) {
765 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
766 		if (tt->rn_flags & RNF_NORMAL)
767 			return (NULL); /* Dangling ref to us */
768 	}
769 on1:
770 	/*
771 	 * Eliminate us from tree
772 	 */
773 	if (tt->rn_flags & RNF_ROOT)
774 		return (NULL);
775 #ifdef RN_DEBUG
776 	/* Get us out of the creation list */
777 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
778 	if (t) t->rn_ybro = tt->rn_ybro;
779 #endif
780 	t = tt->rn_parent;
781 	dupedkey = saved_tt->rn_dupedkey;
782 	if (dupedkey != NULL) {
783 		/*
784 		 * at this point, tt is the deletion target and saved_tt
785 		 * is the head of the dupekey chain
786 		 */
787 		if (tt == saved_tt) {
788 			/* remove from head of chain */
789 			x = dupedkey; x->rn_parent = t;
790 			if (t->rn_left == tt)
791 				t->rn_left = x;
792 			else
793 				t->rn_right = x;
794 		} else {
795 			/* find node in front of tt on the chain */
796 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
797 				p = p->rn_dupedkey;
798 			if (p) {
799 				p->rn_dupedkey = tt->rn_dupedkey;
800 				if (tt->rn_dupedkey)		/* parent */
801 					tt->rn_dupedkey->rn_parent = p;
802 								/* parent */
803 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
804 		}
805 		t = tt + 1;
806 		if  (t->rn_flags & RNF_ACTIVE) {
807 #ifndef RN_DEBUG
808 			*++x = *t;
809 			p = t->rn_parent;
810 #else
811 			b = t->rn_info;
812 			*++x = *t;
813 			t->rn_info = b;
814 			p = t->rn_parent;
815 #endif
816 			if (p->rn_left == t)
817 				p->rn_left = x;
818 			else
819 				p->rn_right = x;
820 			x->rn_left->rn_parent = x;
821 			x->rn_right->rn_parent = x;
822 		}
823 		goto out;
824 	}
825 	if (t->rn_left == tt)
826 		x = t->rn_right;
827 	else
828 		x = t->rn_left;
829 	p = t->rn_parent;
830 	if (p->rn_right == t)
831 		p->rn_right = x;
832 	else
833 		p->rn_left = x;
834 	x->rn_parent = p;
835 	/*
836 	 * Demote routes attached to us.
837 	 */
838 	if (t->rn_mklist != NULL) {
839 		if (x->rn_bit >= 0) {
840 			for (mp = &x->rn_mklist; (m = *mp);)
841 				mp = &m->rm_next;
842 			*mp = t->rn_mklist;
843 		} else {
844 			/*
845 			 * If there are any (key, mask) pairs in a sibling
846 			 * duped-key chain, some subset will appear sorted
847 			 * in the same order attached to our mklist.
848 			 */
849 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
850 				if (m == x->rn_mklist) {
851 					struct radix_mask *mm = m->rm_next;
852 
853 					x->rn_mklist = NULL;
854 					if (--(m->rm_refs) < 0)
855 						MKFree(&rn_mkfreelist, m);
856 					m = mm;
857 				}
858 			if (m)
859 				log(LOG_ERR,
860 				    "rn_delete: Orphaned Mask %p at %p\n",
861 				    (void *)m, (void *)x);
862 		}
863 	}
864 	/*
865 	 * We may be holding an active internal node in the tree.
866 	 */
867 	x = tt + 1;
868 	if (t != x) {
869 #ifndef RN_DEBUG
870 		*t = *x;
871 #else
872 		b = t->rn_info;
873 		*t = *x;
874 		t->rn_info = b;
875 #endif
876 		t->rn_left->rn_parent = t;
877 		t->rn_right->rn_parent = t;
878 		p = x->rn_parent;
879 		if (p->rn_left == x)
880 			p->rn_left = t;
881 		else
882 			p->rn_right = t;
883 	}
884 out:
885 	tt->rn_flags &= ~RNF_ACTIVE;
886 	tt[1].rn_flags &= ~RNF_ACTIVE;
887 	return (tt);
888 }
889 
890 /*
891  * This is the same as rn_walktree() except for the parameters and the
892  * exit.
893  */
894 static int
895 rn_walktree_from(struct radix_node_head *h, char *xa, char *xm,
896 		 walktree_f_t *f, void *w)
897 {
898 	struct radix_node *base, *next;
899 	struct radix_node *rn, *last = NULL /* shut up gcc */;
900 	boolean_t stopping = FALSE;
901 	int lastb, error;
902 
903 	/*
904 	 * rn_search_m is sort-of-open-coded here.
905 	 */
906 	/* kprintf("about to search\n"); */
907 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
908 		last = rn;
909 		/* kprintf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
910 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
911 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
912 			break;
913 		}
914 		if (rn->rn_bmask & xa[rn->rn_offset]) {
915 			rn = rn->rn_right;
916 		} else {
917 			rn = rn->rn_left;
918 		}
919 	}
920 	/* kprintf("done searching\n"); */
921 
922 	/*
923 	 * Two cases: either we stepped off the end of our mask,
924 	 * in which case last == rn, or we reached a leaf, in which
925 	 * case we want to start from the last node we looked at.
926 	 * Either way, last is the node we want to start from.
927 	 */
928 	rn = last;
929 	lastb = rn->rn_bit;
930 
931 	/* kprintf("rn %p, lastb %d\n", rn, lastb);*/
932 
933 	/*
934 	 * This gets complicated because we may delete the node
935 	 * while applying the function f to it, so we need to calculate
936 	 * the successor node in advance.
937 	 */
938 	while (rn->rn_bit >= 0)
939 		rn = rn->rn_left;
940 
941 	while (!stopping) {
942 		/* kprintf("node %p (%d)\n", rn, rn->rn_bit); */
943 		base = rn;
944 		/* If at right child go back up, otherwise, go right */
945 		while (rn->rn_parent->rn_right == rn &&
946 		    !(rn->rn_flags & RNF_ROOT)) {
947 			rn = rn->rn_parent;
948 
949 			/* if went up beyond last, stop */
950 			if (rn->rn_bit < lastb) {
951 				stopping = TRUE;
952 				/* kprintf("up too far\n"); */
953 			}
954 		}
955 
956 		/* Find the next *leaf* since next node might vanish, too */
957 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
958 			rn = rn->rn_left;
959 		next = rn;
960 		/* Process leaves */
961 		while ((rn = base) != NULL) {
962 			base = rn->rn_dupedkey;
963 			/* kprintf("leaf %p\n", rn); */
964 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
965 				return (error);
966 		}
967 		rn = next;
968 
969 		if (rn->rn_flags & RNF_ROOT) {
970 			/* kprintf("root, stopping"); */
971 			stopping = TRUE;
972 		}
973 
974 	}
975 	return 0;
976 }
977 
978 static int
979 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
980 {
981 	struct radix_node *base, *next;
982 	struct radix_node *rn = h->rnh_treetop;
983 	int error;
984 
985 	/*
986 	 * This gets complicated because we may delete the node
987 	 * while applying the function f to it, so we need to calculate
988 	 * the successor node in advance.
989 	 */
990 	/* First time through node, go left */
991 	while (rn->rn_bit >= 0)
992 		rn = rn->rn_left;
993 	for (;;) {
994 		base = rn;
995 		/* If at right child go back up, otherwise, go right */
996 		while (rn->rn_parent->rn_right == rn &&
997 		    !(rn->rn_flags & RNF_ROOT))
998 			rn = rn->rn_parent;
999 		/* Find the next *leaf* since next node might vanish, too */
1000 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1001 			rn = rn->rn_left;
1002 		next = rn;
1003 		/* Process leaves */
1004 		while ((rn = base)) {
1005 			base = rn->rn_dupedkey;
1006 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
1007 				return (error);
1008 		}
1009 		rn = next;
1010 		if (rn->rn_flags & RNF_ROOT)
1011 			return (0);
1012 	}
1013 	/* NOTREACHED */
1014 }
1015 
1016 int
1017 rn_inithead(void **head, int off)
1018 {
1019 	struct radix_node_head *rnh;
1020 	struct radix_node *root, *left, *right;
1021 
1022 	if (*head != NULL)	/* already initialized */
1023 		return (1);
1024 
1025 	R_Malloc(rnh, struct radix_node_head *, sizeof *rnh);
1026 	if (rnh == NULL)
1027 		return (0);
1028 	bzero(rnh, sizeof *rnh);
1029 	*head = rnh;
1030 
1031 	root = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1032 	right = &rnh->rnh_nodes[2];
1033 	root->rn_parent = root;
1034 	root->rn_flags = RNF_ROOT | RNF_ACTIVE;
1035 	root->rn_right = right;
1036 
1037 	left = root->rn_left;
1038 	left->rn_bit = -1 - off;
1039 	left->rn_flags = RNF_ROOT | RNF_ACTIVE;
1040 
1041 	*right = *left;
1042 	right->rn_key = rn_ones;
1043 
1044 	rnh->rnh_treetop = root;
1045 
1046 	rnh->rnh_addaddr = rn_addroute;
1047 	rnh->rnh_deladdr = rn_delete;
1048 	rnh->rnh_matchaddr = rn_match;
1049 	rnh->rnh_lookup = rn_lookup;
1050 	rnh->rnh_walktree = rn_walktree;
1051 	rnh->rnh_walktree_from = rn_walktree_from;
1052 
1053 	return (1);
1054 }
1055 
1056 void
1057 rn_init(void)
1058 {
1059 	char *cp, *cplim;
1060 	int cpu;
1061 #ifdef _KERNEL
1062 	struct domain *dom;
1063 
1064 	SLIST_FOREACH(dom, &domains, dom_next)
1065 		if (dom->dom_maxrtkey > max_keylen)
1066 			max_keylen = dom->dom_maxrtkey;
1067 #endif
1068 	if (max_keylen == 0) {
1069 		log(LOG_ERR,
1070 		    "rn_init: radix functions require max_keylen be set\n");
1071 		return;
1072 	}
1073 	R_Malloc(rn_zeros, char *, 2 * max_keylen);
1074 	if (rn_zeros == NULL)
1075 		panic("rn_init");
1076 	bzero(rn_zeros, 2 * max_keylen);
1077 	rn_ones = cp = rn_zeros + max_keylen;
1078 	cplim = rn_ones + max_keylen;
1079 	while (cp < cplim)
1080 		*cp++ = -1;
1081 
1082 	for (cpu = 0; cpu < ncpus; ++cpu) {
1083 		if (rn_inithead((void **)&mask_rnheads[cpu], 0) == 0)
1084 			panic("rn_init 2");
1085 	}
1086 }
1087