xref: /dragonfly/sys/net/radix.c (revision 9348a738)
1 /*
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)radix.c	8.4 (Berkeley) 11/2/94
30  * $FreeBSD: src/sys/net/radix.c,v 1.20.2.3 2002/04/28 05:40:25 suz Exp $
31  */
32 
33 /*
34  * Routines to build and maintain radix trees for routing lookups.
35  */
36 #include <sys/param.h>
37 #ifdef	_KERNEL
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/domain.h>
41 #include <sys/globaldata.h>
42 #include <sys/thread.h>
43 #else
44 #include <stdlib.h>
45 #endif
46 #include <sys/syslog.h>
47 #include <net/radix.h>
48 
49 /*
50  * The arguments to the radix functions are really counted byte arrays with
51  * the length in the first byte.  struct sockaddr's fit this type structurally.
52  */
53 #define clen(c)	(*(u_char *)(c))
54 
55 static int rn_walktree_from(struct radix_node_head *h, char *a, char *m,
56 			    walktree_f_t *f, void *w);
57 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
58 static int rn_walktree_at(struct radix_node_head *h, const char *a,
59 			    const char *m, walktree_f_t *f, void *w);
60 
61 static struct radix_node
62     *rn_insert(char *, struct radix_node_head *, boolean_t *,
63 	       struct radix_node [2]),
64     *rn_newpair(char *, int, struct radix_node[2]),
65     *rn_search(const char *, struct radix_node *),
66     *rn_search_m(const char *, struct radix_node *, const char *);
67 
68 static struct radix_mask *rn_mkfreelist[MAXCPU];
69 static struct radix_node_head *mask_rnheads[MAXCPU];
70 
71 static char rn_zeros[RN_MAXKEYLEN];
72 static char rn_ones[RN_MAXKEYLEN] = RN_MAXKEYONES;
73 
74 static boolean_t rn_lexobetter(char *m, char *n);
75 static struct radix_mask *
76     rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask);
77 static boolean_t
78     rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip);
79 
80 static __inline struct radix_mask *
81 MKGet(struct radix_mask **l)
82 {
83 	struct radix_mask *m;
84 
85 	if (*l != NULL) {
86 		m = *l;
87 		*l = m->rm_next;
88 	} else {
89 		R_Malloc(m, struct radix_mask *, sizeof *m);
90 	}
91 	return m;
92 }
93 
94 static __inline void
95 MKFree(struct radix_mask **l, struct radix_mask *m)
96 {
97 	m->rm_next = *l;
98 	*l = m;
99 }
100 
101 /*
102  * The data structure for the keys is a radix tree with one way
103  * branching removed.  The index rn_bit at an internal node n represents a bit
104  * position to be tested.  The tree is arranged so that all descendants
105  * of a node n have keys whose bits all agree up to position rn_bit - 1.
106  * (We say the index of n is rn_bit.)
107  *
108  * There is at least one descendant which has a one bit at position rn_bit,
109  * and at least one with a zero there.
110  *
111  * A route is determined by a pair of key and mask.  We require that the
112  * bit-wise logical and of the key and mask to be the key.
113  * We define the index of a route to associated with the mask to be
114  * the first bit number in the mask where 0 occurs (with bit number 0
115  * representing the highest order bit).
116  *
117  * We say a mask is normal if every bit is 0, past the index of the mask.
118  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
119  * and m is a normal mask, then the route applies to every descendant of n.
120  * If the index(m) < rn_bit, this implies the trailing last few bits of k
121  * before bit b are all 0, (and hence consequently true of every descendant
122  * of n), so the route applies to all descendants of the node as well.
123  *
124  * Similar logic shows that a non-normal mask m such that
125  * index(m) <= index(n) could potentially apply to many children of n.
126  * Thus, for each non-host route, we attach its mask to a list at an internal
127  * node as high in the tree as we can go.
128  *
129  * The present version of the code makes use of normal routes in short-
130  * circuiting an explict mask and compare operation when testing whether
131  * a key satisfies a normal route, and also in remembering the unique leaf
132  * that governs a subtree.
133  */
134 
135 static struct radix_node *
136 rn_search(const char *v, struct radix_node *head)
137 {
138 	struct radix_node *x;
139 
140 	x = head;
141 	while (x->rn_bit >= 0) {
142 		if (x->rn_bmask & v[x->rn_offset])
143 			x = x->rn_right;
144 		else
145 			x = x->rn_left;
146 	}
147 	return (x);
148 }
149 
150 static struct radix_node *
151 rn_search_m(const char *v, struct radix_node *head, const char *m)
152 {
153 	struct radix_node *x;
154 
155 	for (x = head; x->rn_bit >= 0;) {
156 		if ((x->rn_bmask & m[x->rn_offset]) &&
157 		    (x->rn_bmask & v[x->rn_offset]))
158 			x = x->rn_right;
159 		else
160 			x = x->rn_left;
161 	}
162 	return x;
163 }
164 
165 boolean_t
166 rn_refines(char *m, char *n)
167 {
168 	char *lim, *lim2;
169 	int longer = clen(n++) - clen(m++);
170 	boolean_t masks_are_equal = TRUE;
171 
172 	lim2 = lim = n + clen(n);
173 	if (longer > 0)
174 		lim -= longer;
175 	while (n < lim) {
176 		if (*n & ~(*m))
177 			return FALSE;
178 		if (*n++ != *m++)
179 			masks_are_equal = FALSE;
180 	}
181 	while (n < lim2)
182 		if (*n++)
183 			return FALSE;
184 	if (masks_are_equal && (longer < 0))
185 		for (lim2 = m - longer; m < lim2; )
186 			if (*m++)
187 				return TRUE;
188 	return (!masks_are_equal);
189 }
190 
191 struct radix_node *
192 rn_lookup(char *key, char *mask, struct radix_node_head *head)
193 {
194 	struct radix_node *x;
195 	char *netmask = NULL;
196 
197 	if (mask != NULL) {
198 		x = rn_addmask(mask, TRUE, head->rnh_treetop->rn_offset,
199 			       head->rnh_maskhead);
200 		if (x == NULL)
201 			return (NULL);
202 		netmask = x->rn_key;
203 	}
204 	x = rn_match(key, head);
205 	if (x != NULL && netmask != NULL) {
206 		while (x != NULL && x->rn_mask != netmask)
207 			x = x->rn_dupedkey;
208 	}
209 	return x;
210 }
211 
212 static boolean_t
213 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
214 {
215 	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
216 	char *cplim;
217 	int length = min(clen(cp), clen(cp2));
218 
219 	if (cp3 == NULL)
220 		cp3 = rn_ones;
221 	else
222 		length = min(length, clen(cp3));
223 	cplim = cp + length;
224 	cp3 += skip;
225 	cp2 += skip;
226 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
227 		if ((*cp ^ *cp2) & *cp3)
228 			return FALSE;
229 	return TRUE;
230 }
231 
232 struct radix_node *
233 rn_match(char *key, struct radix_node_head *head)
234 {
235 	struct radix_node *t, *x;
236 	char *cp = key, *cp2;
237 	char *cplim;
238 	struct radix_node *saved_t, *top = head->rnh_treetop;
239 	int off = top->rn_offset, klen, matched_off;
240 	int test, b, rn_bit;
241 
242 	t = rn_search(key, top);
243 	/*
244 	 * See if we match exactly as a host destination
245 	 * or at least learn how many bits match, for normal mask finesse.
246 	 *
247 	 * It doesn't hurt us to limit how many bytes to check
248 	 * to the length of the mask, since if it matches we had a genuine
249 	 * match and the leaf we have is the most specific one anyway;
250 	 * if it didn't match with a shorter length it would fail
251 	 * with a long one.  This wins big for class B&C netmasks which
252 	 * are probably the most common case...
253 	 */
254 	if (t->rn_mask != NULL)
255 		klen = clen(t->rn_mask);
256 	else
257 		klen = clen(key);
258 	cp += off; cp2 = t->rn_key + off; cplim = key + klen;
259 	for (; cp < cplim; cp++, cp2++)
260 		if (*cp != *cp2)
261 			goto on1;
262 	/*
263 	 * This extra grot is in case we are explicitly asked
264 	 * to look up the default.  Ugh!
265 	 *
266 	 * Never return the root node itself, it seems to cause a
267 	 * lot of confusion.
268 	 */
269 	if (t->rn_flags & RNF_ROOT)
270 		t = t->rn_dupedkey;
271 	return t;
272 on1:
273 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
274 	for (b = 7; (test >>= 1) > 0;)
275 		b--;
276 	matched_off = cp - key;
277 	b += matched_off << 3;
278 	rn_bit = -1 - b;
279 	/*
280 	 * If there is a host route in a duped-key chain, it will be first.
281 	 */
282 	if ((saved_t = t)->rn_mask == NULL)
283 		t = t->rn_dupedkey;
284 	for (; t; t = t->rn_dupedkey) {
285 		/*
286 		 * Even if we don't match exactly as a host,
287 		 * we may match if the leaf we wound up at is
288 		 * a route to a net.
289 		 */
290 		if (t->rn_flags & RNF_NORMAL) {
291 			if (rn_bit <= t->rn_bit)
292 				return t;
293 		} else if (rn_satisfies_leaf(key, t, matched_off))
294 				return t;
295 	}
296 	t = saved_t;
297 	/* start searching up the tree */
298 	do {
299 		struct radix_mask *m;
300 
301 		t = t->rn_parent;
302 		/*
303 		 * If non-contiguous masks ever become important
304 		 * we can restore the masking and open coding of
305 		 * the search and satisfaction test and put the
306 		 * calculation of "off" back before the "do".
307 		 */
308 		m = t->rn_mklist;
309 		while (m != NULL) {
310 			if (m->rm_flags & RNF_NORMAL) {
311 				if (rn_bit <= m->rm_bit)
312 					return (m->rm_leaf);
313 			} else {
314 				off = min(t->rn_offset, matched_off);
315 				x = rn_search_m(key, t, m->rm_mask);
316 				while (x != NULL && x->rn_mask != m->rm_mask)
317 					x = x->rn_dupedkey;
318 				if (x && rn_satisfies_leaf(key, x, off))
319 					return x;
320 			}
321 			m = m->rm_next;
322 		}
323 	} while (t != top);
324 	return NULL;
325 }
326 
327 #ifdef RN_DEBUG
328 int rn_nodenum;
329 struct radix_node *rn_clist;
330 int rn_saveinfo;
331 boolean_t rn_debug =  TRUE;
332 #endif
333 
334 static struct radix_node *
335 rn_newpair(char *key, int indexbit, struct radix_node nodes[2])
336 {
337 	struct radix_node *leaf = &nodes[0], *interior = &nodes[1];
338 
339 	interior->rn_bit = indexbit;
340 	interior->rn_bmask = 0x80 >> (indexbit & 0x7);
341 	interior->rn_offset = indexbit >> 3;
342 	interior->rn_left = leaf;
343 	interior->rn_mklist = NULL;
344 
345 	leaf->rn_bit = -1;
346 	leaf->rn_key = key;
347 	leaf->rn_parent = interior;
348 	leaf->rn_flags = interior->rn_flags = RNF_ACTIVE;
349 	leaf->rn_mklist = NULL;
350 
351 #ifdef RN_DEBUG
352 	leaf->rn_info = rn_nodenum++;
353 	interior->rn_info = rn_nodenum++;
354 	leaf->rn_twin = interior;
355 	leaf->rn_ybro = rn_clist;
356 	rn_clist = leaf;
357 #endif
358 	return interior;
359 }
360 
361 static struct radix_node *
362 rn_insert(char *key, struct radix_node_head *head, boolean_t *dupentry,
363 	  struct radix_node nodes[2])
364 {
365 	struct radix_node *top = head->rnh_treetop;
366 	int head_off = top->rn_offset, klen = clen(key);
367 	struct radix_node *t = rn_search(key, top);
368 	char *cp = key + head_off;
369 	int b;
370 	struct radix_node *tt;
371 
372 	/*
373 	 * Find first bit at which the key and t->rn_key differ
374 	 */
375     {
376 	char *cp2 = t->rn_key + head_off;
377 	int cmp_res;
378 	char *cplim = key + klen;
379 
380 	while (cp < cplim)
381 		if (*cp2++ != *cp++)
382 			goto on1;
383 	*dupentry = TRUE;
384 	return t;
385 on1:
386 	*dupentry = FALSE;
387 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
388 	for (b = (cp - key) << 3; cmp_res; b--)
389 		cmp_res >>= 1;
390     }
391     {
392 	struct radix_node *p, *x = top;
393 
394 	cp = key;
395 	do {
396 		p = x;
397 		if (cp[x->rn_offset] & x->rn_bmask)
398 			x = x->rn_right;
399 		else
400 			x = x->rn_left;
401 	} while (b > (unsigned) x->rn_bit);
402 				/* x->rn_bit < b && x->rn_bit >= 0 */
403 #ifdef RN_DEBUG
404 	if (rn_debug)
405 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
406 #endif
407 	t = rn_newpair(key, b, nodes);
408 	tt = t->rn_left;
409 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
410 		p->rn_left = t;
411 	else
412 		p->rn_right = t;
413 	x->rn_parent = t;
414 	t->rn_parent = p; /* frees x, p as temp vars below */
415 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
416 		t->rn_right = x;
417 	} else {
418 		t->rn_right = tt;
419 		t->rn_left = x;
420 	}
421 #ifdef RN_DEBUG
422 	if (rn_debug)
423 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
424 #endif
425     }
426 	return (tt);
427 }
428 
429 struct radix_node *
430 rn_addmask(char *netmask, boolean_t search, int skip,
431 	   struct radix_node_head *mask_rnh)
432 {
433 	struct radix_node *x, *saved_x;
434 	char *cp, *cplim;
435 	int b = 0, mlen, m0, j;
436 	boolean_t maskduplicated, isnormal;
437 	char *addmask_key;
438 
439 	if ((mlen = clen(netmask)) > RN_MAXKEYLEN)
440 		mlen = RN_MAXKEYLEN;
441 	if (skip == 0)
442 		skip = 1;
443 	if (mlen <= skip)
444 		return (mask_rnh->rnh_nodes);
445 	R_Malloc(addmask_key, char *, RN_MAXKEYLEN);
446 	if (addmask_key == NULL)
447 		return NULL;
448 	if (skip > 1)
449 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
450 	if ((m0 = mlen) > skip)
451 		bcopy(netmask + skip, addmask_key + skip, mlen - skip);
452 	/*
453 	 * Trim trailing zeroes.
454 	 */
455 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
456 		cp--;
457 	mlen = cp - addmask_key;
458 	if (mlen <= skip) {
459 		if (m0 >= mask_rnh->rnh_last_zeroed)
460 			mask_rnh->rnh_last_zeroed = mlen;
461 		Free(addmask_key);
462 		return (mask_rnh->rnh_nodes);
463 	}
464 	if (m0 < mask_rnh->rnh_last_zeroed)
465 		bzero(addmask_key + m0, mask_rnh->rnh_last_zeroed - m0);
466 	*addmask_key = mask_rnh->rnh_last_zeroed = mlen;
467 	x = rn_search(addmask_key, mask_rnh->rnh_treetop);
468 	if (x->rn_key == NULL) {
469 		kprintf("WARNING: radix_node->rn_key is NULL rn=%p\n", x);
470 		print_backtrace(-1);
471 		x = NULL;
472 	} else if (bcmp(addmask_key, x->rn_key, mlen) != 0) {
473 		x = NULL;
474 	}
475 	if (x != NULL || search)
476 		goto out;
477 	R_Malloc(x, struct radix_node *, RN_MAXKEYLEN + 2 * (sizeof *x));
478 	if ((saved_x = x) == NULL)
479 		goto out;
480 	bzero(x, RN_MAXKEYLEN + 2 * (sizeof *x));
481 	netmask = cp = (char *)(x + 2);
482 	bcopy(addmask_key, cp, mlen);
483 	x = rn_insert(cp, mask_rnh, &maskduplicated, x);
484 	if (maskduplicated) {
485 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
486 		Free(saved_x);
487 		goto out;
488 	}
489 	/*
490 	 * Calculate index of mask, and check for normalcy.
491 	 */
492 	isnormal = TRUE;
493 	cplim = netmask + mlen;
494 	for (cp = netmask + skip; cp < cplim && clen(cp) == 0xff;)
495 		cp++;
496 	if (cp != cplim) {
497 		static const char normal_chars[] = {
498 			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
499 		};
500 
501 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
502 			b++;
503 		if (*cp != normal_chars[b] || cp != (cplim - 1))
504 			isnormal = FALSE;
505 	}
506 	b += (cp - netmask) << 3;
507 	x->rn_bit = -1 - b;
508 	if (isnormal)
509 		x->rn_flags |= RNF_NORMAL;
510 out:
511 	Free(addmask_key);
512 	return (x);
513 }
514 
515 /* XXX: arbitrary ordering for non-contiguous masks */
516 static boolean_t
517 rn_lexobetter(char *mp, char *np)
518 {
519 	char *lim;
520 
521 	if ((unsigned) *mp > (unsigned) *np)
522 		return TRUE;/* not really, but need to check longer one first */
523 	if (*mp == *np)
524 		for (lim = mp + clen(mp); mp < lim;)
525 			if (*mp++ > *np++)
526 				return TRUE;
527 	return FALSE;
528 }
529 
530 static struct radix_mask *
531 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask)
532 {
533 	struct radix_mask *m;
534 
535 	m = MKGet(&rn_mkfreelist[mycpuid]);
536 	if (m == NULL) {
537 		log(LOG_ERR, "Mask for route not entered\n");
538 		return (NULL);
539 	}
540 	bzero(m, sizeof *m);
541 	m->rm_bit = tt->rn_bit;
542 	m->rm_flags = tt->rn_flags;
543 	if (tt->rn_flags & RNF_NORMAL)
544 		m->rm_leaf = tt;
545 	else
546 		m->rm_mask = tt->rn_mask;
547 	m->rm_next = nextmask;
548 	tt->rn_mklist = m;
549 	return m;
550 }
551 
552 struct radix_node *
553 rn_addroute(char *key, char *netmask, struct radix_node_head *head,
554 	    struct radix_node treenodes[2])
555 {
556 	struct radix_node *t, *x = NULL, *tt;
557 	struct radix_node *saved_tt, *top = head->rnh_treetop;
558 	short b = 0, b_leaf = 0;
559 	boolean_t keyduplicated;
560 	char *mmask;
561 	struct radix_mask *m, **mp;
562 
563 	/*
564 	 * In dealing with non-contiguous masks, there may be
565 	 * many different routes which have the same mask.
566 	 * We will find it useful to have a unique pointer to
567 	 * the mask to speed avoiding duplicate references at
568 	 * nodes and possibly save time in calculating indices.
569 	 */
570 	if (netmask != NULL)  {
571 		if ((x = rn_addmask(netmask, FALSE, top->rn_offset,
572 				    head->rnh_maskhead)) == NULL)
573 			return (NULL);
574 		b_leaf = x->rn_bit;
575 		b = -1 - x->rn_bit;
576 		netmask = x->rn_key;
577 	}
578 	/*
579 	 * Deal with duplicated keys: attach node to previous instance
580 	 */
581 	saved_tt = tt = rn_insert(key, head, &keyduplicated, treenodes);
582 	if (keyduplicated) {
583 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
584 			if (tt->rn_mask == netmask)
585 				return (NULL);
586 			if (netmask == NULL ||
587 			    (tt->rn_mask &&
588 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
589 			      || rn_refines(netmask, tt->rn_mask)
590 			      || rn_lexobetter(netmask, tt->rn_mask))))
591 				break;
592 		}
593 		/*
594 		 * If the mask is not duplicated, we wouldn't
595 		 * find it among possible duplicate key entries
596 		 * anyway, so the above test doesn't hurt.
597 		 *
598 		 * We sort the masks for a duplicated key the same way as
599 		 * in a masklist -- most specific to least specific.
600 		 * This may require the unfortunate nuisance of relocating
601 		 * the head of the list.
602 		 */
603 		if (tt == saved_tt) {
604 			struct	radix_node *xx = x;
605 			/* link in at head of list */
606 			(tt = treenodes)->rn_dupedkey = t;
607 			tt->rn_flags = t->rn_flags;
608 			tt->rn_parent = x = t->rn_parent;
609 			t->rn_parent = tt;			/* parent */
610 			if (x->rn_left == t)
611 				x->rn_left = tt;
612 			else
613 				x->rn_right = tt;
614 			saved_tt = tt; x = xx;
615 		} else {
616 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
617 			t->rn_dupedkey = tt;
618 			tt->rn_parent = t;			/* parent */
619 			if (tt->rn_dupedkey != NULL)		/* parent */
620 				tt->rn_dupedkey->rn_parent = tt; /* parent */
621 		}
622 #ifdef RN_DEBUG
623 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
624 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
625 #endif
626 		tt->rn_key = key;
627 		tt->rn_bit = -1;
628 		tt->rn_flags = RNF_ACTIVE;
629 	}
630 	/*
631 	 * Put mask in tree.
632 	 */
633 	if (netmask != NULL) {
634 		tt->rn_mask = netmask;
635 		tt->rn_bit = x->rn_bit;
636 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
637 	}
638 	t = saved_tt->rn_parent;
639 	if (keyduplicated)
640 		goto on2;
641 	b_leaf = -1 - t->rn_bit;
642 	if (t->rn_right == saved_tt)
643 		x = t->rn_left;
644 	else
645 		x = t->rn_right;
646 	/* Promote general routes from below */
647 	if (x->rn_bit < 0) {
648 		mp = &t->rn_mklist;
649 		while (x != NULL) {
650 			if (x->rn_mask != NULL &&
651 			    x->rn_bit >= b_leaf &&
652 			    x->rn_mklist == NULL) {
653 				*mp = m = rn_new_radix_mask(x, NULL);
654 				if (m != NULL)
655 					mp = &m->rm_next;
656 			}
657 			x = x->rn_dupedkey;
658 		}
659 	} else if (x->rn_mklist != NULL) {
660 		/*
661 		 * Skip over masks whose index is > that of new node
662 		 */
663 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
664 			if (m->rm_bit >= b_leaf)
665 				break;
666 		t->rn_mklist = m;
667 		*mp = NULL;
668 	}
669 on2:
670 	/* Add new route to highest possible ancestor's list */
671 	if ((netmask == NULL) || (b > t->rn_bit ))
672 		return tt; /* can't lift at all */
673 	b_leaf = tt->rn_bit;
674 	do {
675 		x = t;
676 		t = t->rn_parent;
677 	} while (b <= t->rn_bit && x != top);
678 	/*
679 	 * Search through routes associated with node to
680 	 * insert new route according to index.
681 	 * Need same criteria as when sorting dupedkeys to avoid
682 	 * double loop on deletion.
683 	 */
684 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next) {
685 		if (m->rm_bit < b_leaf)
686 			continue;
687 		if (m->rm_bit > b_leaf)
688 			break;
689 		if (m->rm_flags & RNF_NORMAL) {
690 			mmask = m->rm_leaf->rn_mask;
691 			if (tt->rn_flags & RNF_NORMAL) {
692 			    log(LOG_ERR,
693 			        "Non-unique normal route, mask not entered\n");
694 				return tt;
695 			}
696 		} else
697 			mmask = m->rm_mask;
698 		if (mmask == netmask) {
699 			m->rm_refs++;
700 			tt->rn_mklist = m;
701 			return tt;
702 		}
703 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
704 			break;
705 	}
706 	*mp = rn_new_radix_mask(tt, *mp);
707 	return tt;
708 }
709 
710 struct radix_node *
711 rn_delete(char *key, char *netmask, struct radix_node_head *head)
712 {
713 	struct radix_node *t, *p, *x, *tt;
714 	struct radix_mask *m, *saved_m, **mp;
715 	struct radix_node *dupedkey, *saved_tt, *top;
716 	int b, head_off, klen;
717 	int cpu = mycpuid;
718 
719 	x = head->rnh_treetop;
720 	tt = rn_search(key, x);
721 	head_off = x->rn_offset;
722 	klen =  clen(key);
723 	saved_tt = tt;
724 	top = x;
725 	if (tt == NULL ||
726 	    bcmp(key + head_off, tt->rn_key + head_off, klen - head_off))
727 		return (NULL);
728 	/*
729 	 * Delete our route from mask lists.
730 	 */
731 	if (netmask != NULL) {
732 		if ((x = rn_addmask(netmask, TRUE, head_off,
733 				    head->rnh_maskhead)) == NULL)
734 			return (NULL);
735 		netmask = x->rn_key;
736 		while (tt->rn_mask != netmask)
737 			if ((tt = tt->rn_dupedkey) == NULL)
738 				return (NULL);
739 	}
740 	if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
741 		goto on1;
742 	if (tt->rn_flags & RNF_NORMAL) {
743 		if (m->rm_leaf != tt || m->rm_refs > 0) {
744 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
745 			return (NULL);  /* dangling ref could cause disaster */
746 		}
747 	} else {
748 		if (m->rm_mask != tt->rn_mask) {
749 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
750 			goto on1;
751 		}
752 		if (--m->rm_refs >= 0)
753 			goto on1;
754 	}
755 	b = -1 - tt->rn_bit;
756 	t = saved_tt->rn_parent;
757 	if (b > t->rn_bit)
758 		goto on1; /* Wasn't lifted at all */
759 	do {
760 		x = t;
761 		t = t->rn_parent;
762 	} while (b <= t->rn_bit && x != top);
763 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
764 		if (m == saved_m) {
765 			*mp = m->rm_next;
766 			MKFree(&rn_mkfreelist[cpu], m);
767 			break;
768 		}
769 	if (m == NULL) {
770 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
771 		if (tt->rn_flags & RNF_NORMAL)
772 			return (NULL); /* Dangling ref to us */
773 	}
774 on1:
775 	/*
776 	 * Eliminate us from tree
777 	 */
778 	if (tt->rn_flags & RNF_ROOT)
779 		return (NULL);
780 #ifdef RN_DEBUG
781 	/* Get us out of the creation list */
782 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
783 	if (t) t->rn_ybro = tt->rn_ybro;
784 #endif
785 	t = tt->rn_parent;
786 	dupedkey = saved_tt->rn_dupedkey;
787 	if (dupedkey != NULL) {
788 		/*
789 		 * at this point, tt is the deletion target and saved_tt
790 		 * is the head of the dupekey chain
791 		 */
792 		if (tt == saved_tt) {
793 			/* remove from head of chain */
794 			x = dupedkey; x->rn_parent = t;
795 			if (t->rn_left == tt)
796 				t->rn_left = x;
797 			else
798 				t->rn_right = x;
799 		} else {
800 			/* find node in front of tt on the chain */
801 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
802 				p = p->rn_dupedkey;
803 			if (p) {
804 				p->rn_dupedkey = tt->rn_dupedkey;
805 				if (tt->rn_dupedkey)		/* parent */
806 					tt->rn_dupedkey->rn_parent = p;
807 								/* parent */
808 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
809 		}
810 		t = tt + 1;
811 		if  (t->rn_flags & RNF_ACTIVE) {
812 #ifndef RN_DEBUG
813 			*++x = *t;
814 			p = t->rn_parent;
815 #else
816 			b = t->rn_info;
817 			*++x = *t;
818 			t->rn_info = b;
819 			p = t->rn_parent;
820 #endif
821 			if (p->rn_left == t)
822 				p->rn_left = x;
823 			else
824 				p->rn_right = x;
825 			x->rn_left->rn_parent = x;
826 			x->rn_right->rn_parent = x;
827 		}
828 		goto out;
829 	}
830 	if (t->rn_left == tt)
831 		x = t->rn_right;
832 	else
833 		x = t->rn_left;
834 	p = t->rn_parent;
835 	if (p->rn_right == t)
836 		p->rn_right = x;
837 	else
838 		p->rn_left = x;
839 	x->rn_parent = p;
840 	/*
841 	 * Demote routes attached to us.
842 	 */
843 	if (t->rn_mklist != NULL) {
844 		if (x->rn_bit >= 0) {
845 			for (mp = &x->rn_mklist; (m = *mp);)
846 				mp = &m->rm_next;
847 			*mp = t->rn_mklist;
848 		} else {
849 			/*
850 			 * If there are any (key, mask) pairs in a sibling
851 			 * duped-key chain, some subset will appear sorted
852 			 * in the same order attached to our mklist.
853 			 */
854 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
855 				if (m == x->rn_mklist) {
856 					struct radix_mask *mm = m->rm_next;
857 
858 					x->rn_mklist = NULL;
859 					if (--(m->rm_refs) < 0)
860 						MKFree(&rn_mkfreelist[cpu], m);
861 					m = mm;
862 				}
863 			if (m)
864 				log(LOG_ERR,
865 				    "rn_delete: Orphaned Mask %p at %p\n",
866 				    (void *)m, (void *)x);
867 		}
868 	}
869 	/*
870 	 * We may be holding an active internal node in the tree.
871 	 */
872 	x = tt + 1;
873 	if (t != x) {
874 #ifndef RN_DEBUG
875 		*t = *x;
876 #else
877 		b = t->rn_info;
878 		*t = *x;
879 		t->rn_info = b;
880 #endif
881 		t->rn_left->rn_parent = t;
882 		t->rn_right->rn_parent = t;
883 		p = x->rn_parent;
884 		if (p->rn_left == x)
885 			p->rn_left = t;
886 		else
887 			p->rn_right = t;
888 	}
889 out:
890 	tt->rn_flags &= ~RNF_ACTIVE;
891 	tt[1].rn_flags &= ~RNF_ACTIVE;
892 	return (tt);
893 }
894 
895 /*
896  * This is the same as rn_walktree() except for the parameters and the
897  * exit.
898  */
899 static int
900 rn_walktree_from(struct radix_node_head *h, char *xa, char *xm,
901 		 walktree_f_t *f, void *w)
902 {
903 	struct radix_node *base, *next;
904 	struct radix_node *rn, *last = NULL /* shut up gcc */;
905 	boolean_t stopping = FALSE;
906 	int lastb, error;
907 
908 	/*
909 	 * rn_search_m is sort-of-open-coded here.
910 	 */
911 	/* kprintf("about to search\n"); */
912 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
913 		last = rn;
914 		/* kprintf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
915 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
916 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
917 			break;
918 		}
919 		if (rn->rn_bmask & xa[rn->rn_offset]) {
920 			rn = rn->rn_right;
921 		} else {
922 			rn = rn->rn_left;
923 		}
924 	}
925 	/* kprintf("done searching\n"); */
926 
927 	/*
928 	 * Two cases: either we stepped off the end of our mask,
929 	 * in which case last == rn, or we reached a leaf, in which
930 	 * case we want to start from the last node we looked at.
931 	 * Either way, last is the node we want to start from.
932 	 */
933 	rn = last;
934 	lastb = rn->rn_bit;
935 
936 	/* kprintf("rn %p, lastb %d\n", rn, lastb);*/
937 
938 	/*
939 	 * This gets complicated because we may delete the node
940 	 * while applying the function f to it, so we need to calculate
941 	 * the successor node in advance.
942 	 */
943 	while (rn->rn_bit >= 0)
944 		rn = rn->rn_left;
945 
946 	while (!stopping) {
947 		/* kprintf("node %p (%d)\n", rn, rn->rn_bit); */
948 		base = rn;
949 		/* If at right child go back up, otherwise, go right */
950 		while (rn->rn_parent->rn_right == rn &&
951 		    !(rn->rn_flags & RNF_ROOT)) {
952 			rn = rn->rn_parent;
953 
954 			/* if went up beyond last, stop */
955 			if (rn->rn_bit < lastb) {
956 				stopping = TRUE;
957 				/* kprintf("up too far\n"); */
958 			}
959 		}
960 
961 		/* Find the next *leaf* since next node might vanish, too */
962 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
963 			rn = rn->rn_left;
964 		next = rn;
965 		/* Process leaves */
966 		while ((rn = base) != NULL) {
967 			base = rn->rn_dupedkey;
968 			/* kprintf("leaf %p\n", rn); */
969 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
970 				return (error);
971 		}
972 		rn = next;
973 
974 		if (rn->rn_flags & RNF_ROOT) {
975 			/* kprintf("root, stopping"); */
976 			stopping = TRUE;
977 		}
978 
979 	}
980 	return 0;
981 }
982 
983 static int
984 rn_walktree_at(struct radix_node_head *h, const char *a, const char *m,
985     walktree_f_t *f, void *w)
986 {
987 	struct radix_node *base, *next;
988 	struct radix_node *rn = h->rnh_treetop;
989 	int error;
990 
991 	/*
992 	 * This gets complicated because we may delete the node
993 	 * while applying the function f to it, so we need to calculate
994 	 * the successor node in advance.
995 	 */
996 	if (a == NULL) {
997 		/* First time through node, go left */
998 		while (rn->rn_bit >= 0)
999 			rn = rn->rn_left;
1000 	} else {
1001 		if (m != NULL)
1002 			rn = rn_search_m(a, rn, m);
1003 		else
1004 			rn = rn_search(a, rn);
1005 	}
1006 	for (;;) {
1007 		base = rn;
1008 		/* If at right child go back up, otherwise, go right */
1009 		while (rn->rn_parent->rn_right == rn &&
1010 		    !(rn->rn_flags & RNF_ROOT))
1011 			rn = rn->rn_parent;
1012 		/* Find the next *leaf* since next node might vanish, too */
1013 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1014 			rn = rn->rn_left;
1015 		next = rn;
1016 		/* Process leaves */
1017 		while ((rn = base)) {
1018 			base = rn->rn_dupedkey;
1019 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
1020 				return (error);
1021 		}
1022 		rn = next;
1023 		if (rn->rn_flags & RNF_ROOT)
1024 			return (0);
1025 	}
1026 	/* NOTREACHED */
1027 }
1028 
1029 static int
1030 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
1031 {
1032 	return rn_walktree_at(h, NULL, NULL, f, w);
1033 }
1034 
1035 int
1036 rn_inithead(void **head, struct radix_node_head *maskhead, int off)
1037 {
1038 	struct radix_node_head *rnh;
1039 	struct radix_node *root, *left, *right;
1040 
1041 	if (*head != NULL)	/* already initialized */
1042 		return (1);
1043 
1044 	R_Malloc(rnh, struct radix_node_head *, sizeof *rnh);
1045 	if (rnh == NULL)
1046 		return (0);
1047 	bzero(rnh, sizeof *rnh);
1048 	*head = rnh;
1049 
1050 	root = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1051 	right = &rnh->rnh_nodes[2];
1052 	root->rn_parent = root;
1053 	root->rn_flags = RNF_ROOT | RNF_ACTIVE;
1054 	root->rn_right = right;
1055 
1056 	left = root->rn_left;
1057 	left->rn_bit = -1 - off;
1058 	left->rn_flags = RNF_ROOT | RNF_ACTIVE;
1059 
1060 	*right = *left;
1061 	right->rn_key = rn_ones;
1062 
1063 	rnh->rnh_treetop = root;
1064 	rnh->rnh_maskhead = maskhead;
1065 
1066 	rnh->rnh_addaddr = rn_addroute;
1067 	rnh->rnh_deladdr = rn_delete;
1068 	rnh->rnh_matchaddr = rn_match;
1069 	rnh->rnh_lookup = rn_lookup;
1070 	rnh->rnh_walktree = rn_walktree;
1071 	rnh->rnh_walktree_from = rn_walktree_from;
1072 	rnh->rnh_walktree_at = rn_walktree_at;
1073 
1074 	return (1);
1075 }
1076 
1077 void
1078 rn_init(void)
1079 {
1080 	int cpu;
1081 #ifdef _KERNEL
1082 	struct domain *dom;
1083 
1084 	SLIST_FOREACH(dom, &domains, dom_next) {
1085 		if (dom->dom_maxrtkey > RN_MAXKEYLEN) {
1086 			panic("domain %s maxkey too big %d/%d",
1087 			      dom->dom_name, dom->dom_maxrtkey, RN_MAXKEYLEN);
1088 		}
1089 	}
1090 #endif
1091 	for (cpu = 0; cpu < ncpus; ++cpu) {
1092 		if (rn_inithead((void **)&mask_rnheads[cpu], NULL, 0) == 0)
1093 			panic("rn_init 2");
1094 	}
1095 }
1096 
1097 struct radix_node_head *
1098 rn_cpumaskhead(int cpu)
1099 {
1100 	KKASSERT(mask_rnheads[cpu] != NULL);
1101 	return mask_rnheads[cpu];
1102 }
1103