xref: /dragonfly/sys/net/radix.c (revision a32bc35d)
1 /*
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)radix.c	8.4 (Berkeley) 11/2/94
34  * $FreeBSD: src/sys/net/radix.c,v 1.20.2.3 2002/04/28 05:40:25 suz Exp $
35  */
36 
37 /*
38  * Routines to build and maintain radix trees for routing lookups.
39  */
40 #include <sys/param.h>
41 #ifdef	_KERNEL
42 #include <sys/systm.h>
43 #include <sys/malloc.h>
44 #include <sys/domain.h>
45 #include <sys/globaldata.h>
46 #include <sys/thread.h>
47 #else
48 #include <stdlib.h>
49 #endif
50 #include <sys/syslog.h>
51 #include <net/radix.h>
52 
53 /*
54  * The arguments to the radix functions are really counted byte arrays with
55  * the length in the first byte.  struct sockaddr's fit this type structurally.
56  */
57 #define clen(c)	(*(u_char *)(c))
58 
59 static int rn_walktree_from(struct radix_node_head *h, char *a, char *m,
60 			    walktree_f_t *f, void *w);
61 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
62 
63 static struct radix_node
64     *rn_insert(char *, struct radix_node_head *, boolean_t *,
65 	       struct radix_node [2]),
66     *rn_newpair(char *, int, struct radix_node[2]),
67     *rn_search(const char *, struct radix_node *),
68     *rn_search_m(const char *, struct radix_node *, const char *);
69 
70 static struct radix_mask *rn_mkfreelist;
71 static struct radix_node_head *mask_rnheads[MAXCPU];
72 
73 static char rn_zeros[RN_MAXKEYLEN];
74 static char rn_ones[RN_MAXKEYLEN] = RN_MAXKEYONES;
75 
76 static int rn_lexobetter(char *m, char *n);
77 static struct radix_mask *
78     rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask);
79 static boolean_t
80     rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip);
81 
82 static __inline struct radix_mask *
83 MKGet(struct radix_mask **l)
84 {
85 	struct radix_mask *m;
86 
87 	if (*l != NULL) {
88 		m = *l;
89 		*l = m->rm_next;
90 	} else {
91 		R_Malloc(m, struct radix_mask *, sizeof *m);
92 	}
93 	return m;
94 }
95 
96 static __inline void
97 MKFree(struct radix_mask **l, struct radix_mask *m)
98 {
99 	m->rm_next = *l;
100 	*l = m;
101 }
102 
103 /*
104  * The data structure for the keys is a radix tree with one way
105  * branching removed.  The index rn_bit at an internal node n represents a bit
106  * position to be tested.  The tree is arranged so that all descendants
107  * of a node n have keys whose bits all agree up to position rn_bit - 1.
108  * (We say the index of n is rn_bit.)
109  *
110  * There is at least one descendant which has a one bit at position rn_bit,
111  * and at least one with a zero there.
112  *
113  * A route is determined by a pair of key and mask.  We require that the
114  * bit-wise logical and of the key and mask to be the key.
115  * We define the index of a route to associated with the mask to be
116  * the first bit number in the mask where 0 occurs (with bit number 0
117  * representing the highest order bit).
118  *
119  * We say a mask is normal if every bit is 0, past the index of the mask.
120  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
121  * and m is a normal mask, then the route applies to every descendant of n.
122  * If the index(m) < rn_bit, this implies the trailing last few bits of k
123  * before bit b are all 0, (and hence consequently true of every descendant
124  * of n), so the route applies to all descendants of the node as well.
125  *
126  * Similar logic shows that a non-normal mask m such that
127  * index(m) <= index(n) could potentially apply to many children of n.
128  * Thus, for each non-host route, we attach its mask to a list at an internal
129  * node as high in the tree as we can go.
130  *
131  * The present version of the code makes use of normal routes in short-
132  * circuiting an explict mask and compare operation when testing whether
133  * a key satisfies a normal route, and also in remembering the unique leaf
134  * that governs a subtree.
135  */
136 
137 static struct radix_node *
138 rn_search(const char *v, struct radix_node *head)
139 {
140 	struct radix_node *x;
141 
142 	x = head;
143 	while (x->rn_bit >= 0) {
144 		if (x->rn_bmask & v[x->rn_offset])
145 			x = x->rn_right;
146 		else
147 			x = x->rn_left;
148 	}
149 	return (x);
150 }
151 
152 static struct radix_node *
153 rn_search_m(const char *v, struct radix_node *head, const char *m)
154 {
155 	struct radix_node *x;
156 
157 	for (x = head; x->rn_bit >= 0;) {
158 		if ((x->rn_bmask & m[x->rn_offset]) &&
159 		    (x->rn_bmask & v[x->rn_offset]))
160 			x = x->rn_right;
161 		else
162 			x = x->rn_left;
163 	}
164 	return x;
165 }
166 
167 boolean_t
168 rn_refines(char *m, char *n)
169 {
170 	char *lim, *lim2;
171 	int longer = clen(n++) - clen(m++);
172 	boolean_t masks_are_equal = TRUE;
173 
174 	lim2 = lim = n + clen(n);
175 	if (longer > 0)
176 		lim -= longer;
177 	while (n < lim) {
178 		if (*n & ~(*m))
179 			return FALSE;
180 		if (*n++ != *m++)
181 			masks_are_equal = FALSE;
182 	}
183 	while (n < lim2)
184 		if (*n++)
185 			return FALSE;
186 	if (masks_are_equal && (longer < 0))
187 		for (lim2 = m - longer; m < lim2; )
188 			if (*m++)
189 				return TRUE;
190 	return (!masks_are_equal);
191 }
192 
193 struct radix_node *
194 rn_lookup(char *key, char *mask, struct radix_node_head *head)
195 {
196 	struct radix_node *x;
197 	char *netmask = NULL;
198 
199 	if (mask != NULL) {
200 		x = rn_addmask(mask, TRUE, head->rnh_treetop->rn_offset,
201 			       head->rnh_maskhead);
202 		if (x == NULL)
203 			return (NULL);
204 		netmask = x->rn_key;
205 	}
206 	x = rn_match(key, head);
207 	if (x != NULL && netmask != NULL) {
208 		while (x != NULL && x->rn_mask != netmask)
209 			x = x->rn_dupedkey;
210 	}
211 	return x;
212 }
213 
214 static boolean_t
215 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
216 {
217 	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
218 	char *cplim;
219 	int length = min(clen(cp), clen(cp2));
220 
221 	if (cp3 == NULL)
222 		cp3 = rn_ones;
223 	else
224 		length = min(length, clen(cp3));
225 	cplim = cp + length;
226 	cp3 += skip;
227 	cp2 += skip;
228 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
229 		if ((*cp ^ *cp2) & *cp3)
230 			return FALSE;
231 	return TRUE;
232 }
233 
234 struct radix_node *
235 rn_match(char *key, struct radix_node_head *head)
236 {
237 	struct radix_node *t, *x;
238 	char *cp = key, *cp2;
239 	char *cplim;
240 	struct radix_node *saved_t, *top = head->rnh_treetop;
241 	int off = top->rn_offset, klen, matched_off;
242 	int test, b, rn_bit;
243 
244 	t = rn_search(key, top);
245 	/*
246 	 * See if we match exactly as a host destination
247 	 * or at least learn how many bits match, for normal mask finesse.
248 	 *
249 	 * It doesn't hurt us to limit how many bytes to check
250 	 * to the length of the mask, since if it matches we had a genuine
251 	 * match and the leaf we have is the most specific one anyway;
252 	 * if it didn't match with a shorter length it would fail
253 	 * with a long one.  This wins big for class B&C netmasks which
254 	 * are probably the most common case...
255 	 */
256 	if (t->rn_mask != NULL)
257 		klen = clen(t->rn_mask);
258 	else
259 		klen = clen(key);
260 	cp += off; cp2 = t->rn_key + off; cplim = key + klen;
261 	for (; cp < cplim; cp++, cp2++)
262 		if (*cp != *cp2)
263 			goto on1;
264 	/*
265 	 * This extra grot is in case we are explicitly asked
266 	 * to look up the default.  Ugh!
267 	 *
268 	 * Never return the root node itself, it seems to cause a
269 	 * lot of confusion.
270 	 */
271 	if (t->rn_flags & RNF_ROOT)
272 		t = t->rn_dupedkey;
273 	return t;
274 on1:
275 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
276 	for (b = 7; (test >>= 1) > 0;)
277 		b--;
278 	matched_off = cp - key;
279 	b += matched_off << 3;
280 	rn_bit = -1 - b;
281 	/*
282 	 * If there is a host route in a duped-key chain, it will be first.
283 	 */
284 	if ((saved_t = t)->rn_mask == NULL)
285 		t = t->rn_dupedkey;
286 	for (; t; t = t->rn_dupedkey) {
287 		/*
288 		 * Even if we don't match exactly as a host,
289 		 * we may match if the leaf we wound up at is
290 		 * a route to a net.
291 		 */
292 		if (t->rn_flags & RNF_NORMAL) {
293 			if (rn_bit <= t->rn_bit)
294 				return t;
295 		} else if (rn_satisfies_leaf(key, t, matched_off))
296 				return t;
297 	}
298 	t = saved_t;
299 	/* start searching up the tree */
300 	do {
301 		struct radix_mask *m;
302 
303 		t = t->rn_parent;
304 		/*
305 		 * If non-contiguous masks ever become important
306 		 * we can restore the masking and open coding of
307 		 * the search and satisfaction test and put the
308 		 * calculation of "off" back before the "do".
309 		 */
310 		m = t->rn_mklist;
311 		while (m != NULL) {
312 			if (m->rm_flags & RNF_NORMAL) {
313 				if (rn_bit <= m->rm_bit)
314 					return (m->rm_leaf);
315 			} else {
316 				off = min(t->rn_offset, matched_off);
317 				x = rn_search_m(key, t, m->rm_mask);
318 				while (x != NULL && x->rn_mask != m->rm_mask)
319 					x = x->rn_dupedkey;
320 				if (x && rn_satisfies_leaf(key, x, off))
321 					return x;
322 			}
323 			m = m->rm_next;
324 		}
325 	} while (t != top);
326 	return NULL;
327 }
328 
329 #ifdef RN_DEBUG
330 int rn_nodenum;
331 struct radix_node *rn_clist;
332 int rn_saveinfo;
333 boolean_t rn_debug =  TRUE;
334 #endif
335 
336 static struct radix_node *
337 rn_newpair(char *key, int indexbit, struct radix_node nodes[2])
338 {
339 	struct radix_node *leaf = &nodes[0], *interior = &nodes[1];
340 
341 	interior->rn_bit = indexbit;
342 	interior->rn_bmask = 0x80 >> (indexbit & 0x7);
343 	interior->rn_offset = indexbit >> 3;
344 	interior->rn_left = leaf;
345 	interior->rn_mklist = NULL;
346 
347 	leaf->rn_bit = -1;
348 	leaf->rn_key = key;
349 	leaf->rn_parent = interior;
350 	leaf->rn_flags = interior->rn_flags = RNF_ACTIVE;
351 	leaf->rn_mklist = NULL;
352 
353 #ifdef RN_DEBUG
354 	leaf->rn_info = rn_nodenum++;
355 	interior->rn_info = rn_nodenum++;
356 	leaf->rn_twin = interior;
357 	leaf->rn_ybro = rn_clist;
358 	rn_clist = leaf;
359 #endif
360 	return interior;
361 }
362 
363 static struct radix_node *
364 rn_insert(char *key, struct radix_node_head *head, boolean_t *dupentry,
365 	  struct radix_node nodes[2])
366 {
367 	struct radix_node *top = head->rnh_treetop;
368 	int head_off = top->rn_offset, klen = clen(key);
369 	struct radix_node *t = rn_search(key, top);
370 	char *cp = key + head_off;
371 	int b;
372 	struct radix_node *tt;
373 
374 	/*
375 	 * Find first bit at which the key and t->rn_key differ
376 	 */
377     {
378 	char *cp2 = t->rn_key + head_off;
379 	int cmp_res;
380 	char *cplim = key + klen;
381 
382 	while (cp < cplim)
383 		if (*cp2++ != *cp++)
384 			goto on1;
385 	*dupentry = TRUE;
386 	return t;
387 on1:
388 	*dupentry = FALSE;
389 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
390 	for (b = (cp - key) << 3; cmp_res; b--)
391 		cmp_res >>= 1;
392     }
393     {
394 	struct radix_node *p, *x = top;
395 
396 	cp = key;
397 	do {
398 		p = x;
399 		if (cp[x->rn_offset] & x->rn_bmask)
400 			x = x->rn_right;
401 		else
402 			x = x->rn_left;
403 	} while (b > (unsigned) x->rn_bit);
404 				/* x->rn_bit < b && x->rn_bit >= 0 */
405 #ifdef RN_DEBUG
406 	if (rn_debug)
407 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
408 #endif
409 	t = rn_newpair(key, b, nodes);
410 	tt = t->rn_left;
411 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
412 		p->rn_left = t;
413 	else
414 		p->rn_right = t;
415 	x->rn_parent = t;
416 	t->rn_parent = p; /* frees x, p as temp vars below */
417 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
418 		t->rn_right = x;
419 	} else {
420 		t->rn_right = tt;
421 		t->rn_left = x;
422 	}
423 #ifdef RN_DEBUG
424 	if (rn_debug)
425 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
426 #endif
427     }
428 	return (tt);
429 }
430 
431 struct radix_node *
432 rn_addmask(char *netmask, boolean_t search, int skip,
433 	   struct radix_node_head *mask_rnh)
434 {
435 	struct radix_node *x, *saved_x;
436 	char *cp, *cplim;
437 	int b = 0, mlen, m0, j;
438 	boolean_t maskduplicated, isnormal;
439 	static int last_zeroed = 0;
440 	char *addmask_key;
441 
442 	if ((mlen = clen(netmask)) > RN_MAXKEYLEN)
443 		mlen = RN_MAXKEYLEN;
444 	if (skip == 0)
445 		skip = 1;
446 	if (mlen <= skip)
447 		return (mask_rnh->rnh_nodes);
448 	R_Malloc(addmask_key, char *, RN_MAXKEYLEN);
449 	if (addmask_key == NULL)
450 		return NULL;
451 	if (skip > 1)
452 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
453 	if ((m0 = mlen) > skip)
454 		bcopy(netmask + skip, addmask_key + skip, mlen - skip);
455 	/*
456 	 * Trim trailing zeroes.
457 	 */
458 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
459 		cp--;
460 	mlen = cp - addmask_key;
461 	if (mlen <= skip) {
462 		if (m0 >= last_zeroed)
463 			last_zeroed = mlen;
464 		Free(addmask_key);
465 		return (mask_rnh->rnh_nodes);
466 	}
467 	if (m0 < last_zeroed)
468 		bzero(addmask_key + m0, last_zeroed - m0);
469 	*addmask_key = last_zeroed = mlen;
470 	x = rn_search(addmask_key, mask_rnh->rnh_treetop);
471 	if (x->rn_key == NULL) {
472 		kprintf("WARNING: radix_node->rn_key is NULL rn=%p\n", x);
473 		print_backtrace(-1);
474 		x = NULL;
475 	} else if (bcmp(addmask_key, x->rn_key, mlen) != 0) {
476 		x = NULL;
477 	}
478 	if (x != NULL || search)
479 		goto out;
480 	R_Malloc(x, struct radix_node *, RN_MAXKEYLEN + 2 * (sizeof *x));
481 	if ((saved_x = x) == NULL)
482 		goto out;
483 	bzero(x, RN_MAXKEYLEN + 2 * (sizeof *x));
484 	netmask = cp = (char *)(x + 2);
485 	bcopy(addmask_key, cp, mlen);
486 	x = rn_insert(cp, mask_rnh, &maskduplicated, x);
487 	if (maskduplicated) {
488 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
489 		Free(saved_x);
490 		goto out;
491 	}
492 	/*
493 	 * Calculate index of mask, and check for normalcy.
494 	 */
495 	isnormal = TRUE;
496 	cplim = netmask + mlen;
497 	for (cp = netmask + skip; cp < cplim && clen(cp) == 0xff;)
498 		cp++;
499 	if (cp != cplim) {
500 		static const char normal_chars[] = {
501 			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
502 		};
503 
504 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
505 			b++;
506 		if (*cp != normal_chars[b] || cp != (cplim - 1))
507 			isnormal = FALSE;
508 	}
509 	b += (cp - netmask) << 3;
510 	x->rn_bit = -1 - b;
511 	if (isnormal)
512 		x->rn_flags |= RNF_NORMAL;
513 out:
514 	Free(addmask_key);
515 	return (x);
516 }
517 
518 /* XXX: arbitrary ordering for non-contiguous masks */
519 static boolean_t
520 rn_lexobetter(char *mp, char *np)
521 {
522 	char *lim;
523 
524 	if ((unsigned) *mp > (unsigned) *np)
525 		return TRUE;/* not really, but need to check longer one first */
526 	if (*mp == *np)
527 		for (lim = mp + clen(mp); mp < lim;)
528 			if (*mp++ > *np++)
529 				return TRUE;
530 	return FALSE;
531 }
532 
533 static struct radix_mask *
534 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask)
535 {
536 	struct radix_mask *m;
537 
538 	m = MKGet(&rn_mkfreelist);
539 	if (m == NULL) {
540 		log(LOG_ERR, "Mask for route not entered\n");
541 		return (NULL);
542 	}
543 	bzero(m, sizeof *m);
544 	m->rm_bit = tt->rn_bit;
545 	m->rm_flags = tt->rn_flags;
546 	if (tt->rn_flags & RNF_NORMAL)
547 		m->rm_leaf = tt;
548 	else
549 		m->rm_mask = tt->rn_mask;
550 	m->rm_next = nextmask;
551 	tt->rn_mklist = m;
552 	return m;
553 }
554 
555 struct radix_node *
556 rn_addroute(char *key, char *netmask, struct radix_node_head *head,
557 	    struct radix_node treenodes[2])
558 {
559 	struct radix_node *t, *x = NULL, *tt;
560 	struct radix_node *saved_tt, *top = head->rnh_treetop;
561 	short b = 0, b_leaf = 0;
562 	boolean_t keyduplicated;
563 	char *mmask;
564 	struct radix_mask *m, **mp;
565 
566 	/*
567 	 * In dealing with non-contiguous masks, there may be
568 	 * many different routes which have the same mask.
569 	 * We will find it useful to have a unique pointer to
570 	 * the mask to speed avoiding duplicate references at
571 	 * nodes and possibly save time in calculating indices.
572 	 */
573 	if (netmask != NULL)  {
574 		if ((x = rn_addmask(netmask, FALSE, top->rn_offset,
575 				    head->rnh_maskhead)) == NULL)
576 			return (NULL);
577 		b_leaf = x->rn_bit;
578 		b = -1 - x->rn_bit;
579 		netmask = x->rn_key;
580 	}
581 	/*
582 	 * Deal with duplicated keys: attach node to previous instance
583 	 */
584 	saved_tt = tt = rn_insert(key, head, &keyduplicated, treenodes);
585 	if (keyduplicated) {
586 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
587 			if (tt->rn_mask == netmask)
588 				return (NULL);
589 			if (netmask == NULL ||
590 			    (tt->rn_mask &&
591 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
592 			      || rn_refines(netmask, tt->rn_mask)
593 			      || rn_lexobetter(netmask, tt->rn_mask))))
594 				break;
595 		}
596 		/*
597 		 * If the mask is not duplicated, we wouldn't
598 		 * find it among possible duplicate key entries
599 		 * anyway, so the above test doesn't hurt.
600 		 *
601 		 * We sort the masks for a duplicated key the same way as
602 		 * in a masklist -- most specific to least specific.
603 		 * This may require the unfortunate nuisance of relocating
604 		 * the head of the list.
605 		 */
606 		if (tt == saved_tt) {
607 			struct	radix_node *xx = x;
608 			/* link in at head of list */
609 			(tt = treenodes)->rn_dupedkey = t;
610 			tt->rn_flags = t->rn_flags;
611 			tt->rn_parent = x = t->rn_parent;
612 			t->rn_parent = tt;			/* parent */
613 			if (x->rn_left == t)
614 				x->rn_left = tt;
615 			else
616 				x->rn_right = tt;
617 			saved_tt = tt; x = xx;
618 		} else {
619 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
620 			t->rn_dupedkey = tt;
621 			tt->rn_parent = t;			/* parent */
622 			if (tt->rn_dupedkey != NULL)		/* parent */
623 				tt->rn_dupedkey->rn_parent = tt; /* parent */
624 		}
625 #ifdef RN_DEBUG
626 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
627 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
628 #endif
629 		tt->rn_key = key;
630 		tt->rn_bit = -1;
631 		tt->rn_flags = RNF_ACTIVE;
632 	}
633 	/*
634 	 * Put mask in tree.
635 	 */
636 	if (netmask != NULL) {
637 		tt->rn_mask = netmask;
638 		tt->rn_bit = x->rn_bit;
639 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
640 	}
641 	t = saved_tt->rn_parent;
642 	if (keyduplicated)
643 		goto on2;
644 	b_leaf = -1 - t->rn_bit;
645 	if (t->rn_right == saved_tt)
646 		x = t->rn_left;
647 	else
648 		x = t->rn_right;
649 	/* Promote general routes from below */
650 	if (x->rn_bit < 0) {
651 		mp = &t->rn_mklist;
652 		while (x != NULL) {
653 			if (x->rn_mask != NULL &&
654 			    x->rn_bit >= b_leaf &&
655 			    x->rn_mklist == NULL) {
656 				*mp = m = rn_new_radix_mask(x, NULL);
657 				if (m != NULL)
658 					mp = &m->rm_next;
659 			}
660 			x = x->rn_dupedkey;
661 		}
662 	} else if (x->rn_mklist != NULL) {
663 		/*
664 		 * Skip over masks whose index is > that of new node
665 		 */
666 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
667 			if (m->rm_bit >= b_leaf)
668 				break;
669 		t->rn_mklist = m;
670 		*mp = NULL;
671 	}
672 on2:
673 	/* Add new route to highest possible ancestor's list */
674 	if ((netmask == NULL) || (b > t->rn_bit ))
675 		return tt; /* can't lift at all */
676 	b_leaf = tt->rn_bit;
677 	do {
678 		x = t;
679 		t = t->rn_parent;
680 	} while (b <= t->rn_bit && x != top);
681 	/*
682 	 * Search through routes associated with node to
683 	 * insert new route according to index.
684 	 * Need same criteria as when sorting dupedkeys to avoid
685 	 * double loop on deletion.
686 	 */
687 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next) {
688 		if (m->rm_bit < b_leaf)
689 			continue;
690 		if (m->rm_bit > b_leaf)
691 			break;
692 		if (m->rm_flags & RNF_NORMAL) {
693 			mmask = m->rm_leaf->rn_mask;
694 			if (tt->rn_flags & RNF_NORMAL) {
695 			    log(LOG_ERR,
696 			        "Non-unique normal route, mask not entered\n");
697 				return tt;
698 			}
699 		} else
700 			mmask = m->rm_mask;
701 		if (mmask == netmask) {
702 			m->rm_refs++;
703 			tt->rn_mklist = m;
704 			return tt;
705 		}
706 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
707 			break;
708 	}
709 	*mp = rn_new_radix_mask(tt, *mp);
710 	return tt;
711 }
712 
713 struct radix_node *
714 rn_delete(char *key, char *netmask, struct radix_node_head *head)
715 {
716 	struct radix_node *t, *p, *x, *tt;
717 	struct radix_mask *m, *saved_m, **mp;
718 	struct radix_node *dupedkey, *saved_tt, *top;
719 	int b, head_off, klen;
720 
721 	x = head->rnh_treetop;
722 	tt = rn_search(key, x);
723 	head_off = x->rn_offset;
724 	klen =  clen(key);
725 	saved_tt = tt;
726 	top = x;
727 	if (tt == NULL ||
728 	    bcmp(key + head_off, tt->rn_key + head_off, klen - head_off))
729 		return (NULL);
730 	/*
731 	 * Delete our route from mask lists.
732 	 */
733 	if (netmask != NULL) {
734 		if ((x = rn_addmask(netmask, TRUE, head_off,
735 				    head->rnh_maskhead)) == NULL)
736 			return (NULL);
737 		netmask = x->rn_key;
738 		while (tt->rn_mask != netmask)
739 			if ((tt = tt->rn_dupedkey) == NULL)
740 				return (NULL);
741 	}
742 	if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
743 		goto on1;
744 	if (tt->rn_flags & RNF_NORMAL) {
745 		if (m->rm_leaf != tt || m->rm_refs > 0) {
746 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
747 			return (NULL);  /* dangling ref could cause disaster */
748 		}
749 	} else {
750 		if (m->rm_mask != tt->rn_mask) {
751 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
752 			goto on1;
753 		}
754 		if (--m->rm_refs >= 0)
755 			goto on1;
756 	}
757 	b = -1 - tt->rn_bit;
758 	t = saved_tt->rn_parent;
759 	if (b > t->rn_bit)
760 		goto on1; /* Wasn't lifted at all */
761 	do {
762 		x = t;
763 		t = t->rn_parent;
764 	} while (b <= t->rn_bit && x != top);
765 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
766 		if (m == saved_m) {
767 			*mp = m->rm_next;
768 			MKFree(&rn_mkfreelist, m);
769 			break;
770 		}
771 	if (m == NULL) {
772 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
773 		if (tt->rn_flags & RNF_NORMAL)
774 			return (NULL); /* Dangling ref to us */
775 	}
776 on1:
777 	/*
778 	 * Eliminate us from tree
779 	 */
780 	if (tt->rn_flags & RNF_ROOT)
781 		return (NULL);
782 #ifdef RN_DEBUG
783 	/* Get us out of the creation list */
784 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
785 	if (t) t->rn_ybro = tt->rn_ybro;
786 #endif
787 	t = tt->rn_parent;
788 	dupedkey = saved_tt->rn_dupedkey;
789 	if (dupedkey != NULL) {
790 		/*
791 		 * at this point, tt is the deletion target and saved_tt
792 		 * is the head of the dupekey chain
793 		 */
794 		if (tt == saved_tt) {
795 			/* remove from head of chain */
796 			x = dupedkey; x->rn_parent = t;
797 			if (t->rn_left == tt)
798 				t->rn_left = x;
799 			else
800 				t->rn_right = x;
801 		} else {
802 			/* find node in front of tt on the chain */
803 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
804 				p = p->rn_dupedkey;
805 			if (p) {
806 				p->rn_dupedkey = tt->rn_dupedkey;
807 				if (tt->rn_dupedkey)		/* parent */
808 					tt->rn_dupedkey->rn_parent = p;
809 								/* parent */
810 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
811 		}
812 		t = tt + 1;
813 		if  (t->rn_flags & RNF_ACTIVE) {
814 #ifndef RN_DEBUG
815 			*++x = *t;
816 			p = t->rn_parent;
817 #else
818 			b = t->rn_info;
819 			*++x = *t;
820 			t->rn_info = b;
821 			p = t->rn_parent;
822 #endif
823 			if (p->rn_left == t)
824 				p->rn_left = x;
825 			else
826 				p->rn_right = x;
827 			x->rn_left->rn_parent = x;
828 			x->rn_right->rn_parent = x;
829 		}
830 		goto out;
831 	}
832 	if (t->rn_left == tt)
833 		x = t->rn_right;
834 	else
835 		x = t->rn_left;
836 	p = t->rn_parent;
837 	if (p->rn_right == t)
838 		p->rn_right = x;
839 	else
840 		p->rn_left = x;
841 	x->rn_parent = p;
842 	/*
843 	 * Demote routes attached to us.
844 	 */
845 	if (t->rn_mklist != NULL) {
846 		if (x->rn_bit >= 0) {
847 			for (mp = &x->rn_mklist; (m = *mp);)
848 				mp = &m->rm_next;
849 			*mp = t->rn_mklist;
850 		} else {
851 			/*
852 			 * If there are any (key, mask) pairs in a sibling
853 			 * duped-key chain, some subset will appear sorted
854 			 * in the same order attached to our mklist.
855 			 */
856 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
857 				if (m == x->rn_mklist) {
858 					struct radix_mask *mm = m->rm_next;
859 
860 					x->rn_mklist = NULL;
861 					if (--(m->rm_refs) < 0)
862 						MKFree(&rn_mkfreelist, m);
863 					m = mm;
864 				}
865 			if (m)
866 				log(LOG_ERR,
867 				    "rn_delete: Orphaned Mask %p at %p\n",
868 				    (void *)m, (void *)x);
869 		}
870 	}
871 	/*
872 	 * We may be holding an active internal node in the tree.
873 	 */
874 	x = tt + 1;
875 	if (t != x) {
876 #ifndef RN_DEBUG
877 		*t = *x;
878 #else
879 		b = t->rn_info;
880 		*t = *x;
881 		t->rn_info = b;
882 #endif
883 		t->rn_left->rn_parent = t;
884 		t->rn_right->rn_parent = t;
885 		p = x->rn_parent;
886 		if (p->rn_left == x)
887 			p->rn_left = t;
888 		else
889 			p->rn_right = t;
890 	}
891 out:
892 	tt->rn_flags &= ~RNF_ACTIVE;
893 	tt[1].rn_flags &= ~RNF_ACTIVE;
894 	return (tt);
895 }
896 
897 /*
898  * This is the same as rn_walktree() except for the parameters and the
899  * exit.
900  */
901 static int
902 rn_walktree_from(struct radix_node_head *h, char *xa, char *xm,
903 		 walktree_f_t *f, void *w)
904 {
905 	struct radix_node *base, *next;
906 	struct radix_node *rn, *last = NULL /* shut up gcc */;
907 	boolean_t stopping = FALSE;
908 	int lastb, error;
909 
910 	/*
911 	 * rn_search_m is sort-of-open-coded here.
912 	 */
913 	/* kprintf("about to search\n"); */
914 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
915 		last = rn;
916 		/* kprintf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
917 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
918 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
919 			break;
920 		}
921 		if (rn->rn_bmask & xa[rn->rn_offset]) {
922 			rn = rn->rn_right;
923 		} else {
924 			rn = rn->rn_left;
925 		}
926 	}
927 	/* kprintf("done searching\n"); */
928 
929 	/*
930 	 * Two cases: either we stepped off the end of our mask,
931 	 * in which case last == rn, or we reached a leaf, in which
932 	 * case we want to start from the last node we looked at.
933 	 * Either way, last is the node we want to start from.
934 	 */
935 	rn = last;
936 	lastb = rn->rn_bit;
937 
938 	/* kprintf("rn %p, lastb %d\n", rn, lastb);*/
939 
940 	/*
941 	 * This gets complicated because we may delete the node
942 	 * while applying the function f to it, so we need to calculate
943 	 * the successor node in advance.
944 	 */
945 	while (rn->rn_bit >= 0)
946 		rn = rn->rn_left;
947 
948 	while (!stopping) {
949 		/* kprintf("node %p (%d)\n", rn, rn->rn_bit); */
950 		base = rn;
951 		/* If at right child go back up, otherwise, go right */
952 		while (rn->rn_parent->rn_right == rn &&
953 		    !(rn->rn_flags & RNF_ROOT)) {
954 			rn = rn->rn_parent;
955 
956 			/* if went up beyond last, stop */
957 			if (rn->rn_bit < lastb) {
958 				stopping = TRUE;
959 				/* kprintf("up too far\n"); */
960 			}
961 		}
962 
963 		/* Find the next *leaf* since next node might vanish, too */
964 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
965 			rn = rn->rn_left;
966 		next = rn;
967 		/* Process leaves */
968 		while ((rn = base) != NULL) {
969 			base = rn->rn_dupedkey;
970 			/* kprintf("leaf %p\n", rn); */
971 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
972 				return (error);
973 		}
974 		rn = next;
975 
976 		if (rn->rn_flags & RNF_ROOT) {
977 			/* kprintf("root, stopping"); */
978 			stopping = TRUE;
979 		}
980 
981 	}
982 	return 0;
983 }
984 
985 static int
986 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
987 {
988 	struct radix_node *base, *next;
989 	struct radix_node *rn = h->rnh_treetop;
990 	int error;
991 
992 	/*
993 	 * This gets complicated because we may delete the node
994 	 * while applying the function f to it, so we need to calculate
995 	 * the successor node in advance.
996 	 */
997 	/* First time through node, go left */
998 	while (rn->rn_bit >= 0)
999 		rn = rn->rn_left;
1000 	for (;;) {
1001 		base = rn;
1002 		/* If at right child go back up, otherwise, go right */
1003 		while (rn->rn_parent->rn_right == rn &&
1004 		    !(rn->rn_flags & RNF_ROOT))
1005 			rn = rn->rn_parent;
1006 		/* Find the next *leaf* since next node might vanish, too */
1007 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1008 			rn = rn->rn_left;
1009 		next = rn;
1010 		/* Process leaves */
1011 		while ((rn = base)) {
1012 			base = rn->rn_dupedkey;
1013 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
1014 				return (error);
1015 		}
1016 		rn = next;
1017 		if (rn->rn_flags & RNF_ROOT)
1018 			return (0);
1019 	}
1020 	/* NOTREACHED */
1021 }
1022 
1023 int
1024 rn_inithead(void **head, struct radix_node_head *maskhead, int off)
1025 {
1026 	struct radix_node_head *rnh;
1027 	struct radix_node *root, *left, *right;
1028 
1029 	if (*head != NULL)	/* already initialized */
1030 		return (1);
1031 
1032 	R_Malloc(rnh, struct radix_node_head *, sizeof *rnh);
1033 	if (rnh == NULL)
1034 		return (0);
1035 	bzero(rnh, sizeof *rnh);
1036 	*head = rnh;
1037 
1038 	root = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1039 	right = &rnh->rnh_nodes[2];
1040 	root->rn_parent = root;
1041 	root->rn_flags = RNF_ROOT | RNF_ACTIVE;
1042 	root->rn_right = right;
1043 
1044 	left = root->rn_left;
1045 	left->rn_bit = -1 - off;
1046 	left->rn_flags = RNF_ROOT | RNF_ACTIVE;
1047 
1048 	*right = *left;
1049 	right->rn_key = rn_ones;
1050 
1051 	rnh->rnh_treetop = root;
1052 	rnh->rnh_maskhead = maskhead;
1053 
1054 	rnh->rnh_addaddr = rn_addroute;
1055 	rnh->rnh_deladdr = rn_delete;
1056 	rnh->rnh_matchaddr = rn_match;
1057 	rnh->rnh_lookup = rn_lookup;
1058 	rnh->rnh_walktree = rn_walktree;
1059 	rnh->rnh_walktree_from = rn_walktree_from;
1060 
1061 	return (1);
1062 }
1063 
1064 void
1065 rn_init(void)
1066 {
1067 	int cpu;
1068 #ifdef _KERNEL
1069 	struct domain *dom;
1070 
1071 	SLIST_FOREACH(dom, &domains, dom_next) {
1072 		if (dom->dom_maxrtkey > RN_MAXKEYLEN) {
1073 			panic("domain %s maxkey too big %d/%d",
1074 			      dom->dom_name, dom->dom_maxrtkey, RN_MAXKEYLEN);
1075 		}
1076 	}
1077 #endif
1078 	for (cpu = 0; cpu < ncpus; ++cpu) {
1079 		if (rn_inithead((void **)&mask_rnheads[cpu], NULL, 0) == 0)
1080 			panic("rn_init 2");
1081 	}
1082 }
1083 
1084 struct radix_node_head *
1085 rn_cpumaskhead(int cpu)
1086 {
1087 	KKASSERT(mask_rnheads[cpu] != NULL);
1088 	return mask_rnheads[cpu];
1089 }
1090