xref: /dragonfly/sys/net/rtsock.c (revision 5868d2b9)
1 /*
2  * Copyright (c) 2004, 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey M. Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of The DragonFly Project nor the names of its
16  *    contributors may be used to endorse or promote products derived
17  *    from this software without specific, prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
22  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
23  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
27  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
29  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1988, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Berkeley and its contributors.
49  * 4. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
66  * $FreeBSD: src/sys/net/rtsock.c,v 1.44.2.11 2002/12/04 14:05:41 ru Exp $
67  */
68 
69 #include "opt_sctp.h"
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/proc.h>
76 #include <sys/priv.h>
77 #include <sys/malloc.h>
78 #include <sys/mbuf.h>
79 #include <sys/protosw.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/domain.h>
83 
84 #include <sys/thread2.h>
85 #include <sys/socketvar2.h>
86 
87 #include <net/if.h>
88 #include <net/route.h>
89 #include <net/raw_cb.h>
90 #include <net/netmsg2.h>
91 
92 #ifdef SCTP
93 extern void sctp_add_ip_address(struct ifaddr *ifa);
94 extern void sctp_delete_ip_address(struct ifaddr *ifa);
95 #endif /* SCTP */
96 
97 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
98 
99 static struct route_cb {
100 	int	ip_count;
101 	int	ip6_count;
102 	int	ipx_count;
103 	int	ns_count;
104 	int	any_count;
105 } route_cb;
106 
107 static const struct sockaddr route_src = { 2, PF_ROUTE, };
108 
109 struct walkarg {
110 	int	w_tmemsize;
111 	int	w_op, w_arg;
112 	void	*w_tmem;
113 	struct sysctl_req *w_req;
114 };
115 
116 static struct mbuf *
117 		rt_msg_mbuf (int, struct rt_addrinfo *);
118 static void	rt_msg_buffer (int, struct rt_addrinfo *, void *buf, int len);
119 static int	rt_msgsize (int type, struct rt_addrinfo *rtinfo);
120 static int	rt_xaddrs (char *, char *, struct rt_addrinfo *);
121 static int	sysctl_dumpentry (struct radix_node *rn, void *vw);
122 static int	sysctl_iflist (int af, struct walkarg *w);
123 static int	route_output(struct mbuf *, struct socket *, ...);
124 static void	rt_setmetrics (u_long, struct rt_metrics *,
125 			       struct rt_metrics *);
126 
127 /*
128  * It really doesn't make any sense at all for this code to share much
129  * with raw_usrreq.c, since its functionality is so restricted.  XXX
130  */
131 static void
132 rts_abort(netmsg_t msg)
133 {
134 	crit_enter();
135 	raw_usrreqs.pru_abort(msg);
136 	/* msg invalid now */
137 	crit_exit();
138 }
139 
140 /* pru_accept is EOPNOTSUPP */
141 
142 static void
143 rts_attach(netmsg_t msg)
144 {
145 	struct socket *so = msg->base.nm_so;
146 	struct pru_attach_info *ai = msg->attach.nm_ai;
147 	struct rawcb *rp;
148 	int proto = msg->attach.nm_proto;
149 	int error;
150 
151 	crit_enter();
152 	if (sotorawcb(so) != NULL) {
153 		error = EISCONN;
154 		goto done;
155 	}
156 
157 	rp = kmalloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
158 
159 	/*
160 	 * The critical section is necessary to block protocols from sending
161 	 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
162 	 * this PCB is extant but incompletely initialized.
163 	 * Probably we should try to do more of this work beforehand and
164 	 * eliminate the critical section.
165 	 */
166 	so->so_pcb = rp;
167 	soreference(so);	/* so_pcb assignment */
168 	error = raw_attach(so, proto, ai->sb_rlimit);
169 	rp = sotorawcb(so);
170 	if (error) {
171 		kfree(rp, M_PCB);
172 		goto done;
173 	}
174 	switch(rp->rcb_proto.sp_protocol) {
175 	case AF_INET:
176 		route_cb.ip_count++;
177 		break;
178 	case AF_INET6:
179 		route_cb.ip6_count++;
180 		break;
181 	case AF_IPX:
182 		route_cb.ipx_count++;
183 		break;
184 	case AF_NS:
185 		route_cb.ns_count++;
186 		break;
187 	}
188 	rp->rcb_faddr = &route_src;
189 	route_cb.any_count++;
190 	soisconnected(so);
191 	so->so_options |= SO_USELOOPBACK;
192 	error = 0;
193 done:
194 	crit_exit();
195 	lwkt_replymsg(&msg->lmsg, error);
196 }
197 
198 static void
199 rts_bind(netmsg_t msg)
200 {
201 	crit_enter();
202 	raw_usrreqs.pru_bind(msg); /* xxx just EINVAL */
203 	/* msg invalid now */
204 	crit_exit();
205 }
206 
207 static void
208 rts_connect(netmsg_t msg)
209 {
210 	crit_enter();
211 	raw_usrreqs.pru_connect(msg); /* XXX just EINVAL */
212 	/* msg invalid now */
213 	crit_exit();
214 }
215 
216 /* pru_connect2 is EOPNOTSUPP */
217 /* pru_control is EOPNOTSUPP */
218 
219 static void
220 rts_detach(netmsg_t msg)
221 {
222 	struct socket *so = msg->base.nm_so;
223 	struct rawcb *rp = sotorawcb(so);
224 
225 	crit_enter();
226 	if (rp != NULL) {
227 		switch(rp->rcb_proto.sp_protocol) {
228 		case AF_INET:
229 			route_cb.ip_count--;
230 			break;
231 		case AF_INET6:
232 			route_cb.ip6_count--;
233 			break;
234 		case AF_IPX:
235 			route_cb.ipx_count--;
236 			break;
237 		case AF_NS:
238 			route_cb.ns_count--;
239 			break;
240 		}
241 		route_cb.any_count--;
242 	}
243 	raw_usrreqs.pru_detach(msg);
244 	/* msg invalid now */
245 	crit_exit();
246 }
247 
248 static void
249 rts_disconnect(netmsg_t msg)
250 {
251 	crit_enter();
252 	raw_usrreqs.pru_disconnect(msg);
253 	/* msg invalid now */
254 	crit_exit();
255 }
256 
257 /* pru_listen is EOPNOTSUPP */
258 
259 static void
260 rts_peeraddr(netmsg_t msg)
261 {
262 	crit_enter();
263 	raw_usrreqs.pru_peeraddr(msg);
264 	/* msg invalid now */
265 	crit_exit();
266 }
267 
268 /* pru_rcvd is EOPNOTSUPP */
269 /* pru_rcvoob is EOPNOTSUPP */
270 
271 static void
272 rts_send(netmsg_t msg)
273 {
274 	crit_enter();
275 	raw_usrreqs.pru_send(msg);
276 	/* msg invalid now */
277 	crit_exit();
278 }
279 
280 /* pru_sense is null */
281 
282 static void
283 rts_shutdown(netmsg_t msg)
284 {
285 	crit_enter();
286 	raw_usrreqs.pru_shutdown(msg);
287 	/* msg invalid now */
288 	crit_exit();
289 }
290 
291 static void
292 rts_sockaddr(netmsg_t msg)
293 {
294 	crit_enter();
295 	raw_usrreqs.pru_sockaddr(msg);
296 	/* msg invalid now */
297 	crit_exit();
298 }
299 
300 static struct pr_usrreqs route_usrreqs = {
301 	.pru_abort = rts_abort,
302 	.pru_accept = pr_generic_notsupp,
303 	.pru_attach = rts_attach,
304 	.pru_bind = rts_bind,
305 	.pru_connect = rts_connect,
306 	.pru_connect2 = pr_generic_notsupp,
307 	.pru_control = pr_generic_notsupp,
308 	.pru_detach = rts_detach,
309 	.pru_disconnect = rts_disconnect,
310 	.pru_listen = pr_generic_notsupp,
311 	.pru_peeraddr = rts_peeraddr,
312 	.pru_rcvd = pr_generic_notsupp,
313 	.pru_rcvoob = pr_generic_notsupp,
314 	.pru_send = rts_send,
315 	.pru_sense = pru_sense_null,
316 	.pru_shutdown = rts_shutdown,
317 	.pru_sockaddr = rts_sockaddr,
318 	.pru_sosend = sosend,
319 	.pru_soreceive = soreceive
320 };
321 
322 static __inline sa_family_t
323 familyof(struct sockaddr *sa)
324 {
325 	return (sa != NULL ? sa->sa_family : 0);
326 }
327 
328 /*
329  * Routing socket input function.  The packet must be serialized onto cpu 0.
330  * We use the cpu0_soport() netisr processing loop to handle it.
331  *
332  * This looks messy but it means that anyone, including interrupt code,
333  * can send a message to the routing socket.
334  */
335 static void
336 rts_input_handler(netmsg_t msg)
337 {
338 	static const struct sockaddr route_dst = { 2, PF_ROUTE, };
339 	struct sockproto route_proto;
340 	struct netmsg_packet *pmsg = &msg->packet;
341 	struct mbuf *m;
342 	sa_family_t family;
343 	struct rawcb *skip;
344 
345 	family = pmsg->base.lmsg.u.ms_result;
346 	route_proto.sp_family = PF_ROUTE;
347 	route_proto.sp_protocol = family;
348 
349 	m = pmsg->nm_packet;
350 	M_ASSERTPKTHDR(m);
351 
352 	skip = m->m_pkthdr.header;
353 	m->m_pkthdr.header = NULL;
354 
355 	raw_input(m, &route_proto, &route_src, &route_dst, skip);
356 }
357 
358 static void
359 rts_input_skip(struct mbuf *m, sa_family_t family, struct rawcb *skip)
360 {
361 	struct netmsg_packet *pmsg;
362 	lwkt_port_t port;
363 
364 	M_ASSERTPKTHDR(m);
365 
366 	port = cpu_portfn(0);	/* XXX same as for routing socket */
367 	pmsg = &m->m_hdr.mh_netmsg;
368 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
369 		    0, rts_input_handler);
370 	pmsg->nm_packet = m;
371 	pmsg->base.lmsg.u.ms_result = family;
372 	m->m_pkthdr.header = skip; /* XXX steal field in pkthdr */
373 	lwkt_sendmsg(port, &pmsg->base.lmsg);
374 }
375 
376 static __inline void
377 rts_input(struct mbuf *m, sa_family_t family)
378 {
379 	rts_input_skip(m, family, NULL);
380 }
381 
382 static void *
383 reallocbuf_nofree(void *ptr, size_t len, size_t olen)
384 {
385 	void *newptr;
386 
387 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
388 	if (newptr == NULL)
389 		return NULL;
390 	bcopy(ptr, newptr, olen);
391 	return (newptr);
392 }
393 
394 /*
395  * Internal helper routine for route_output().
396  */
397 static int
398 _fillrtmsg(struct rt_msghdr **prtm, struct rtentry *rt,
399 	   struct rt_addrinfo *rtinfo)
400 {
401 	int msglen;
402 	struct rt_msghdr *rtm = *prtm;
403 
404 	/* Fill in rt_addrinfo for call to rt_msg_buffer(). */
405 	rtinfo->rti_dst = rt_key(rt);
406 	rtinfo->rti_gateway = rt->rt_gateway;
407 	rtinfo->rti_netmask = rt_mask(rt);		/* might be NULL */
408 	rtinfo->rti_genmask = rt->rt_genmask;		/* might be NULL */
409 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
410 		if (rt->rt_ifp != NULL) {
411 			rtinfo->rti_ifpaddr =
412 			    TAILQ_FIRST(&rt->rt_ifp->if_addrheads[mycpuid])
413 			    ->ifa->ifa_addr;
414 			rtinfo->rti_ifaaddr = rt->rt_ifa->ifa_addr;
415 			if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
416 				rtinfo->rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
417 			rtm->rtm_index = rt->rt_ifp->if_index;
418 		} else {
419 			rtinfo->rti_ifpaddr = NULL;
420 			rtinfo->rti_ifaaddr = NULL;
421 		}
422 	} else if (rt->rt_ifp != NULL) {
423 		rtm->rtm_index = rt->rt_ifp->if_index;
424 	}
425 
426 	msglen = rt_msgsize(rtm->rtm_type, rtinfo);
427 	if (rtm->rtm_msglen < msglen) {
428 		/* NOTE: Caller will free the old rtm accordingly */
429 		rtm = reallocbuf_nofree(rtm, msglen, rtm->rtm_msglen);
430 		if (rtm == NULL)
431 			return (ENOBUFS);
432 		*prtm = rtm;
433 	}
434 	rt_msg_buffer(rtm->rtm_type, rtinfo, rtm, msglen);
435 
436 	rtm->rtm_flags = rt->rt_flags;
437 	rtm->rtm_rmx = rt->rt_rmx;
438 	rtm->rtm_addrs = rtinfo->rti_addrs;
439 
440 	return (0);
441 }
442 
443 struct rtm_arg {
444 	struct rt_msghdr	*bak_rtm;
445 	struct rt_msghdr	*new_rtm;
446 };
447 
448 static int
449 fillrtmsg(struct rtm_arg *arg, struct rtentry *rt,
450 	  struct rt_addrinfo *rtinfo)
451 {
452 	struct rt_msghdr *rtm = arg->new_rtm;
453 	int error;
454 
455 	error = _fillrtmsg(&rtm, rt, rtinfo);
456 	if (!error) {
457 		if (arg->new_rtm != rtm) {
458 			/*
459 			 * _fillrtmsg() just allocated a new rtm;
460 			 * if the previously allocated rtm is not
461 			 * the backing rtm, it should be freed.
462 			 */
463 			if (arg->new_rtm != arg->bak_rtm)
464 				kfree(arg->new_rtm, M_RTABLE);
465 			arg->new_rtm = rtm;
466 		}
467 	}
468 	return error;
469 }
470 
471 static void route_output_add_callback(int, int, struct rt_addrinfo *,
472 					struct rtentry *, void *);
473 static void route_output_delete_callback(int, int, struct rt_addrinfo *,
474 					struct rtentry *, void *);
475 static int route_output_get_callback(int, struct rt_addrinfo *,
476 				     struct rtentry *, void *, int);
477 static int route_output_change_callback(int, struct rt_addrinfo *,
478 					struct rtentry *, void *, int);
479 static int route_output_lock_callback(int, struct rt_addrinfo *,
480 				      struct rtentry *, void *, int);
481 
482 /*ARGSUSED*/
483 static int
484 route_output(struct mbuf *m, struct socket *so, ...)
485 {
486 	struct rtm_arg arg;
487 	struct rt_msghdr *rtm = NULL;
488 	struct rawcb *rp = NULL;
489 	struct pr_output_info *oi;
490 	struct rt_addrinfo rtinfo;
491 	sa_family_t family;
492 	int len, error = 0;
493 	__va_list ap;
494 
495 	M_ASSERTPKTHDR(m);
496 
497 	__va_start(ap, so);
498 	oi = __va_arg(ap, struct pr_output_info *);
499 	__va_end(ap);
500 
501 	family = familyof(NULL);
502 
503 #define gotoerr(e) { error = e; goto flush;}
504 
505 	if (m == NULL ||
506 	    (m->m_len < sizeof(long) &&
507 	     (m = m_pullup(m, sizeof(long))) == NULL))
508 		return (ENOBUFS);
509 	len = m->m_pkthdr.len;
510 	if (len < sizeof(struct rt_msghdr) ||
511 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
512 		gotoerr(EINVAL);
513 
514 	rtm = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
515 	if (rtm == NULL)
516 		gotoerr(ENOBUFS);
517 
518 	m_copydata(m, 0, len, (caddr_t)rtm);
519 	if (rtm->rtm_version != RTM_VERSION)
520 		gotoerr(EPROTONOSUPPORT);
521 
522 	rtm->rtm_pid = oi->p_pid;
523 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
524 	rtinfo.rti_addrs = rtm->rtm_addrs;
525 	if (rt_xaddrs((char *)(rtm + 1), (char *)rtm + len, &rtinfo) != 0)
526 		gotoerr(EINVAL);
527 
528 	rtinfo.rti_flags = rtm->rtm_flags;
529 	if (rtinfo.rti_dst == NULL || rtinfo.rti_dst->sa_family >= AF_MAX ||
530 	    (rtinfo.rti_gateway && rtinfo.rti_gateway->sa_family >= AF_MAX))
531 		gotoerr(EINVAL);
532 
533 	family = familyof(rtinfo.rti_dst);
534 
535 	if (rtinfo.rti_genmask != NULL) {
536 		error = rtmask_add_global(rtinfo.rti_genmask);
537 		if (error)
538 			goto flush;
539 	}
540 
541 	/*
542 	 * Verify that the caller has the appropriate privilege; RTM_GET
543 	 * is the only operation the non-superuser is allowed.
544 	 */
545 	if (rtm->rtm_type != RTM_GET &&
546 	    priv_check_cred(so->so_cred, PRIV_ROOT, 0) != 0)
547 		gotoerr(EPERM);
548 
549 	switch (rtm->rtm_type) {
550 	case RTM_ADD:
551 		if (rtinfo.rti_gateway == NULL) {
552 			error = EINVAL;
553 		} else {
554 			error = rtrequest1_global(RTM_ADD, &rtinfo,
555 					  route_output_add_callback, rtm);
556 		}
557 		break;
558 	case RTM_DELETE:
559 		/*
560 		 * Backing rtm (bak_rtm) could _not_ be freed during
561 		 * rtrequest1_global or rtsearch_global, even if the
562 		 * callback reallocates the rtm due to its size changes,
563 		 * since rtinfo points to the backing rtm's memory area.
564 		 * After rtrequest1_global or rtsearch_global returns,
565 		 * it is safe to free the backing rtm, since rtinfo will
566 		 * not be used anymore.
567 		 *
568 		 * new_rtm will be used to save the new rtm allocated
569 		 * by rtrequest1_global or rtsearch_global.
570 		 */
571 		arg.bak_rtm = rtm;
572 		arg.new_rtm = rtm;
573 		error = rtrequest1_global(RTM_DELETE, &rtinfo,
574 					  route_output_delete_callback, &arg);
575 		rtm = arg.new_rtm;
576 		if (rtm != arg.bak_rtm)
577 			kfree(arg.bak_rtm, M_RTABLE);
578 		break;
579 	case RTM_GET:
580 		/* See the comment in RTM_DELETE */
581 		arg.bak_rtm = rtm;
582 		arg.new_rtm = rtm;
583 		error = rtsearch_global(RTM_GET, &rtinfo,
584 					route_output_get_callback, &arg,
585 					RTS_NOEXACTMATCH);
586 		rtm = arg.new_rtm;
587 		if (rtm != arg.bak_rtm)
588 			kfree(arg.bak_rtm, M_RTABLE);
589 		break;
590 	case RTM_CHANGE:
591 		error = rtsearch_global(RTM_CHANGE, &rtinfo,
592 					route_output_change_callback, rtm,
593 					RTS_EXACTMATCH);
594 		break;
595 	case RTM_LOCK:
596 		error = rtsearch_global(RTM_LOCK, &rtinfo,
597 					route_output_lock_callback, rtm,
598 					RTS_EXACTMATCH);
599 		break;
600 	default:
601 		error = EOPNOTSUPP;
602 		break;
603 	}
604 flush:
605 	if (rtm != NULL) {
606 		if (error != 0)
607 			rtm->rtm_errno = error;
608 		else
609 			rtm->rtm_flags |= RTF_DONE;
610 	}
611 
612 	/*
613 	 * Check to see if we don't want our own messages.
614 	 */
615 	if (!(so->so_options & SO_USELOOPBACK)) {
616 		if (route_cb.any_count <= 1) {
617 			if (rtm != NULL)
618 				kfree(rtm, M_RTABLE);
619 			m_freem(m);
620 			return (error);
621 		}
622 		/* There is another listener, so construct message */
623 		rp = sotorawcb(so);
624 	}
625 	if (rtm != NULL) {
626 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
627 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
628 			m_freem(m);
629 			m = NULL;
630 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
631 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
632 		kfree(rtm, M_RTABLE);
633 	}
634 	if (m != NULL)
635 		rts_input_skip(m, family, rp);
636 	return (error);
637 }
638 
639 static void
640 route_output_add_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
641 			  struct rtentry *rt, void *arg)
642 {
643 	struct rt_msghdr *rtm = arg;
644 
645 	if (error == 0 && rt != NULL) {
646 		rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
647 		    &rt->rt_rmx);
648 		rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
649 		rt->rt_rmx.rmx_locks |=
650 		    (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
651 		if (rtinfo->rti_genmask != NULL) {
652 			rt->rt_genmask = rtmask_purelookup(rtinfo->rti_genmask);
653 			if (rt->rt_genmask == NULL) {
654 				/*
655 				 * This should not happen, since we
656 				 * have already installed genmask
657 				 * on each CPU before we reach here.
658 				 */
659 				panic("genmask is gone!?");
660 			}
661 		} else {
662 			rt->rt_genmask = NULL;
663 		}
664 		rtm->rtm_index = rt->rt_ifp->if_index;
665 	}
666 }
667 
668 static void
669 route_output_delete_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
670 			  struct rtentry *rt, void *arg)
671 {
672 	if (error == 0 && rt) {
673 		++rt->rt_refcnt;
674 		if (fillrtmsg(arg, rt, rtinfo) != 0) {
675 			error = ENOBUFS;
676 			/* XXX no way to return the error */
677 		}
678 		--rt->rt_refcnt;
679 	}
680 	if (rt && rt->rt_refcnt == 0) {
681 		++rt->rt_refcnt;
682 		rtfree(rt);
683 	}
684 }
685 
686 static int
687 route_output_get_callback(int cmd, struct rt_addrinfo *rtinfo,
688 			  struct rtentry *rt, void *arg, int found_cnt)
689 {
690 	int error, found = 0;
691 
692 	if (((rtinfo->rti_flags ^ rt->rt_flags) & RTF_HOST) == 0)
693 		found = 1;
694 
695 	error = fillrtmsg(arg, rt, rtinfo);
696 	if (!error && found) {
697 		/* Got the exact match, we could return now! */
698 		error = EJUSTRETURN;
699 	}
700 	return error;
701 }
702 
703 static int
704 route_output_change_callback(int cmd, struct rt_addrinfo *rtinfo,
705 			     struct rtentry *rt, void *arg, int found_cnt)
706 {
707 	struct rt_msghdr *rtm = arg;
708 	struct ifaddr *ifa;
709 	int error = 0;
710 
711 	/*
712 	 * new gateway could require new ifaddr, ifp;
713 	 * flags may also be different; ifp may be specified
714 	 * by ll sockaddr when protocol address is ambiguous
715 	 */
716 	if (((rt->rt_flags & RTF_GATEWAY) && rtinfo->rti_gateway != NULL) ||
717 	    rtinfo->rti_ifpaddr != NULL ||
718 	    (rtinfo->rti_ifaaddr != NULL &&
719 	     !sa_equal(rtinfo->rti_ifaaddr, rt->rt_ifa->ifa_addr))) {
720 		error = rt_getifa(rtinfo);
721 		if (error != 0)
722 			goto done;
723 	}
724 	if (rtinfo->rti_gateway != NULL) {
725 		/*
726 		 * We only need to generate rtmsg upon the
727 		 * first route to be changed.
728 		 */
729 		error = rt_setgate(rt, rt_key(rt), rtinfo->rti_gateway,
730 			found_cnt == 1 ? RTL_REPORTMSG : RTL_DONTREPORT);
731 		if (error != 0)
732 			goto done;
733 	}
734 	if ((ifa = rtinfo->rti_ifa) != NULL) {
735 		struct ifaddr *oifa = rt->rt_ifa;
736 
737 		if (oifa != ifa) {
738 			if (oifa && oifa->ifa_rtrequest)
739 				oifa->ifa_rtrequest(RTM_DELETE, rt, rtinfo);
740 			IFAFREE(rt->rt_ifa);
741 			IFAREF(ifa);
742 			rt->rt_ifa = ifa;
743 			rt->rt_ifp = rtinfo->rti_ifp;
744 		}
745 	}
746 	rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx);
747 	if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
748 		rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, rtinfo);
749 	if (rtinfo->rti_genmask != NULL) {
750 		rt->rt_genmask = rtmask_purelookup(rtinfo->rti_genmask);
751 		if (rt->rt_genmask == NULL) {
752 			/*
753 			 * This should not happen, since we
754 			 * have already installed genmask
755 			 * on each CPU before we reach here.
756 			 */
757 			panic("genmask is gone!?");
758 		}
759 	}
760 	rtm->rtm_index = rt->rt_ifp->if_index;
761 done:
762 	return error;
763 }
764 
765 static int
766 route_output_lock_callback(int cmd, struct rt_addrinfo *rtinfo,
767 			   struct rtentry *rt, void *arg,
768 			   int found_cnt __unused)
769 {
770 	struct rt_msghdr *rtm = arg;
771 
772 	rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
773 	rt->rt_rmx.rmx_locks |=
774 		(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
775 	return 0;
776 }
777 
778 static void
779 rt_setmetrics(u_long which, struct rt_metrics *in, struct rt_metrics *out)
780 {
781 #define setmetric(flag, elt) if (which & (flag)) out->elt = in->elt;
782 	setmetric(RTV_RPIPE, rmx_recvpipe);
783 	setmetric(RTV_SPIPE, rmx_sendpipe);
784 	setmetric(RTV_SSTHRESH, rmx_ssthresh);
785 	setmetric(RTV_RTT, rmx_rtt);
786 	setmetric(RTV_RTTVAR, rmx_rttvar);
787 	setmetric(RTV_HOPCOUNT, rmx_hopcount);
788 	setmetric(RTV_MTU, rmx_mtu);
789 	setmetric(RTV_EXPIRE, rmx_expire);
790 	setmetric(RTV_MSL, rmx_msl);
791 	setmetric(RTV_IWMAXSEGS, rmx_iwmaxsegs);
792 	setmetric(RTV_IWCAPSEGS, rmx_iwcapsegs);
793 #undef setmetric
794 }
795 
796 #define ROUNDUP(a) \
797 	((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
798 
799 /*
800  * Extract the addresses of the passed sockaddrs.
801  * Do a little sanity checking so as to avoid bad memory references.
802  * This data is derived straight from userland.
803  */
804 static int
805 rt_xaddrs(char *cp, char *cplim, struct rt_addrinfo *rtinfo)
806 {
807 	struct sockaddr *sa;
808 	int i;
809 
810 	for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
811 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
812 			continue;
813 		sa = (struct sockaddr *)cp;
814 		/*
815 		 * It won't fit.
816 		 */
817 		if ((cp + sa->sa_len) > cplim) {
818 			return (EINVAL);
819 		}
820 
821 		/*
822 		 * There are no more...  Quit now.
823 		 * If there are more bits, they are in error.
824 		 * I've seen this.  route(1) can evidently generate these.
825 		 * This causes kernel to core dump.
826 		 * For compatibility, if we see this, point to a safe address.
827 		 */
828 		if (sa->sa_len == 0) {
829 			static struct sockaddr sa_zero = {
830 				sizeof sa_zero, AF_INET,
831 			};
832 
833 			rtinfo->rti_info[i] = &sa_zero;
834 			kprintf("rtsock: received more addr bits than sockaddrs.\n");
835 			return (0); /* should be EINVAL but for compat */
836 		}
837 
838 		/* Accept the sockaddr. */
839 		rtinfo->rti_info[i] = sa;
840 		cp += ROUNDUP(sa->sa_len);
841 	}
842 	return (0);
843 }
844 
845 static int
846 rt_msghdrsize(int type)
847 {
848 	switch (type) {
849 	case RTM_DELADDR:
850 	case RTM_NEWADDR:
851 		return sizeof(struct ifa_msghdr);
852 	case RTM_DELMADDR:
853 	case RTM_NEWMADDR:
854 		return sizeof(struct ifma_msghdr);
855 	case RTM_IFINFO:
856 		return sizeof(struct if_msghdr);
857 	case RTM_IFANNOUNCE:
858 	case RTM_IEEE80211:
859 		return sizeof(struct if_announcemsghdr);
860 	default:
861 		return sizeof(struct rt_msghdr);
862 	}
863 }
864 
865 static int
866 rt_msgsize(int type, struct rt_addrinfo *rtinfo)
867 {
868 	int len, i;
869 
870 	len = rt_msghdrsize(type);
871 	for (i = 0; i < RTAX_MAX; i++) {
872 		if (rtinfo->rti_info[i] != NULL)
873 			len += ROUNDUP(rtinfo->rti_info[i]->sa_len);
874 	}
875 	len = ALIGN(len);
876 	return len;
877 }
878 
879 /*
880  * Build a routing message in a buffer.
881  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
882  * to the end of the buffer after the message header.
883  *
884  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
885  * This side-effect can be avoided if we reorder the addrs bitmask field in all
886  * the route messages to line up so we can set it here instead of back in the
887  * calling routine.
888  */
889 static void
890 rt_msg_buffer(int type, struct rt_addrinfo *rtinfo, void *buf, int msglen)
891 {
892 	struct rt_msghdr *rtm;
893 	char *cp;
894 	int dlen, i;
895 
896 	rtm = (struct rt_msghdr *) buf;
897 	rtm->rtm_version = RTM_VERSION;
898 	rtm->rtm_type = type;
899 	rtm->rtm_msglen = msglen;
900 
901 	cp = (char *)buf + rt_msghdrsize(type);
902 	rtinfo->rti_addrs = 0;
903 	for (i = 0; i < RTAX_MAX; i++) {
904 		struct sockaddr *sa;
905 
906 		if ((sa = rtinfo->rti_info[i]) == NULL)
907 			continue;
908 		rtinfo->rti_addrs |= (1 << i);
909 		dlen = ROUNDUP(sa->sa_len);
910 		bcopy(sa, cp, dlen);
911 		cp += dlen;
912 	}
913 }
914 
915 /*
916  * Build a routing message in a mbuf chain.
917  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
918  * to the end of the mbuf after the message header.
919  *
920  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
921  * This side-effect can be avoided if we reorder the addrs bitmask field in all
922  * the route messages to line up so we can set it here instead of back in the
923  * calling routine.
924  */
925 static struct mbuf *
926 rt_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
927 {
928 	struct mbuf *m;
929 	struct rt_msghdr *rtm;
930 	int hlen, len;
931 	int i;
932 
933 	hlen = rt_msghdrsize(type);
934 	KASSERT(hlen <= MCLBYTES, ("rt_msg_mbuf: hlen %d doesn't fit", hlen));
935 
936 	m = m_getl(hlen, MB_DONTWAIT, MT_DATA, M_PKTHDR, NULL);
937 	if (m == NULL)
938 		return (NULL);
939 	mbuftrackid(m, 32);
940 	m->m_pkthdr.len = m->m_len = hlen;
941 	m->m_pkthdr.rcvif = NULL;
942 	rtinfo->rti_addrs = 0;
943 	len = hlen;
944 	for (i = 0; i < RTAX_MAX; i++) {
945 		struct sockaddr *sa;
946 		int dlen;
947 
948 		if ((sa = rtinfo->rti_info[i]) == NULL)
949 			continue;
950 		rtinfo->rti_addrs |= (1 << i);
951 		dlen = ROUNDUP(sa->sa_len);
952 		m_copyback(m, len, dlen, (caddr_t)sa); /* can grow mbuf chain */
953 		len += dlen;
954 	}
955 	if (m->m_pkthdr.len != len) { /* one of the m_copyback() calls failed */
956 		m_freem(m);
957 		return (NULL);
958 	}
959 	rtm = mtod(m, struct rt_msghdr *);
960 	bzero(rtm, hlen);
961 	rtm->rtm_msglen = len;
962 	rtm->rtm_version = RTM_VERSION;
963 	rtm->rtm_type = type;
964 	return (m);
965 }
966 
967 /*
968  * This routine is called to generate a message from the routing
969  * socket indicating that a redirect has occurred, a routing lookup
970  * has failed, or that a protocol has detected timeouts to a particular
971  * destination.
972  */
973 void
974 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
975 {
976 	struct sockaddr *dst = rtinfo->rti_info[RTAX_DST];
977 	struct rt_msghdr *rtm;
978 	struct mbuf *m;
979 
980 	if (route_cb.any_count == 0)
981 		return;
982 	m = rt_msg_mbuf(type, rtinfo);
983 	if (m == NULL)
984 		return;
985 	rtm = mtod(m, struct rt_msghdr *);
986 	rtm->rtm_flags = RTF_DONE | flags;
987 	rtm->rtm_errno = error;
988 	rtm->rtm_addrs = rtinfo->rti_addrs;
989 	rts_input(m, familyof(dst));
990 }
991 
992 void
993 rt_dstmsg(int type, struct sockaddr *dst, int error)
994 {
995 	struct rt_msghdr *rtm;
996 	struct rt_addrinfo addrs;
997 	struct mbuf *m;
998 
999 	if (route_cb.any_count == 0)
1000 		return;
1001 	bzero(&addrs, sizeof(struct rt_addrinfo));
1002 	addrs.rti_info[RTAX_DST] = dst;
1003 	m = rt_msg_mbuf(type, &addrs);
1004 	if (m == NULL)
1005 		return;
1006 	rtm = mtod(m, struct rt_msghdr *);
1007 	rtm->rtm_flags = RTF_DONE;
1008 	rtm->rtm_errno = error;
1009 	rtm->rtm_addrs = addrs.rti_addrs;
1010 	rts_input(m, familyof(dst));
1011 }
1012 
1013 /*
1014  * This routine is called to generate a message from the routing
1015  * socket indicating that the status of a network interface has changed.
1016  */
1017 void
1018 rt_ifmsg(struct ifnet *ifp)
1019 {
1020 	struct if_msghdr *ifm;
1021 	struct mbuf *m;
1022 	struct rt_addrinfo rtinfo;
1023 
1024 	if (route_cb.any_count == 0)
1025 		return;
1026 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1027 	m = rt_msg_mbuf(RTM_IFINFO, &rtinfo);
1028 	if (m == NULL)
1029 		return;
1030 	ifm = mtod(m, struct if_msghdr *);
1031 	ifm->ifm_index = ifp->if_index;
1032 	ifm->ifm_flags = ifp->if_flags;
1033 	ifm->ifm_data = ifp->if_data;
1034 	ifm->ifm_addrs = 0;
1035 	rts_input(m, 0);
1036 }
1037 
1038 static void
1039 rt_ifamsg(int cmd, struct ifaddr *ifa)
1040 {
1041 	struct ifa_msghdr *ifam;
1042 	struct rt_addrinfo rtinfo;
1043 	struct mbuf *m;
1044 	struct ifnet *ifp = ifa->ifa_ifp;
1045 
1046 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1047 	rtinfo.rti_ifaaddr = ifa->ifa_addr;
1048 	rtinfo.rti_ifpaddr =
1049 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1050 	rtinfo.rti_netmask = ifa->ifa_netmask;
1051 	rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
1052 
1053 	m = rt_msg_mbuf(cmd, &rtinfo);
1054 	if (m == NULL)
1055 		return;
1056 
1057 	ifam = mtod(m, struct ifa_msghdr *);
1058 	ifam->ifam_index = ifp->if_index;
1059 	ifam->ifam_metric = ifa->ifa_metric;
1060 	ifam->ifam_flags = ifa->ifa_flags;
1061 	ifam->ifam_addrs = rtinfo.rti_addrs;
1062 
1063 	rts_input(m, familyof(ifa->ifa_addr));
1064 }
1065 
1066 void
1067 rt_rtmsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int error)
1068 {
1069 	struct rt_msghdr *rtm;
1070 	struct rt_addrinfo rtinfo;
1071 	struct mbuf *m;
1072 	struct sockaddr *dst;
1073 
1074 	if (rt == NULL)
1075 		return;
1076 
1077 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1078 	rtinfo.rti_dst = dst = rt_key(rt);
1079 	rtinfo.rti_gateway = rt->rt_gateway;
1080 	rtinfo.rti_netmask = rt_mask(rt);
1081 	if (ifp != NULL) {
1082 		rtinfo.rti_ifpaddr =
1083 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1084 	}
1085 	rtinfo.rti_ifaaddr = rt->rt_ifa->ifa_addr;
1086 
1087 	m = rt_msg_mbuf(cmd, &rtinfo);
1088 	if (m == NULL)
1089 		return;
1090 
1091 	rtm = mtod(m, struct rt_msghdr *);
1092 	if (ifp != NULL)
1093 		rtm->rtm_index = ifp->if_index;
1094 	rtm->rtm_flags |= rt->rt_flags;
1095 	rtm->rtm_errno = error;
1096 	rtm->rtm_addrs = rtinfo.rti_addrs;
1097 
1098 	rts_input(m, familyof(dst));
1099 }
1100 
1101 /*
1102  * This is called to generate messages from the routing socket
1103  * indicating a network interface has had addresses associated with it.
1104  * if we ever reverse the logic and replace messages TO the routing
1105  * socket indicate a request to configure interfaces, then it will
1106  * be unnecessary as the routing socket will automatically generate
1107  * copies of it.
1108  */
1109 void
1110 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
1111 {
1112 #ifdef SCTP
1113 	/*
1114 	 * notify the SCTP stack
1115 	 * this will only get called when an address is added/deleted
1116 	 * XXX pass the ifaddr struct instead if ifa->ifa_addr...
1117 	 */
1118 	if (cmd == RTM_ADD)
1119 		sctp_add_ip_address(ifa);
1120 	else if (cmd == RTM_DELETE)
1121 		sctp_delete_ip_address(ifa);
1122 #endif /* SCTP */
1123 
1124 	if (route_cb.any_count == 0)
1125 		return;
1126 
1127 	if (cmd == RTM_ADD) {
1128 		rt_ifamsg(RTM_NEWADDR, ifa);
1129 		rt_rtmsg(RTM_ADD, rt, ifa->ifa_ifp, error);
1130 	} else {
1131 		KASSERT((cmd == RTM_DELETE), ("unknown cmd %d", cmd));
1132 		rt_rtmsg(RTM_DELETE, rt, ifa->ifa_ifp, error);
1133 		rt_ifamsg(RTM_DELADDR, ifa);
1134 	}
1135 }
1136 
1137 /*
1138  * This is the analogue to the rt_newaddrmsg which performs the same
1139  * function but for multicast group memberhips.  This is easier since
1140  * there is no route state to worry about.
1141  */
1142 void
1143 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1144 {
1145 	struct rt_addrinfo rtinfo;
1146 	struct mbuf *m = NULL;
1147 	struct ifnet *ifp = ifma->ifma_ifp;
1148 	struct ifma_msghdr *ifmam;
1149 
1150 	if (route_cb.any_count == 0)
1151 		return;
1152 
1153 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1154 	rtinfo.rti_ifaaddr = ifma->ifma_addr;
1155 	if (ifp != NULL && !TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
1156 		rtinfo.rti_ifpaddr =
1157 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1158 	}
1159 	/*
1160 	 * If a link-layer address is present, present it as a ``gateway''
1161 	 * (similarly to how ARP entries, e.g., are presented).
1162 	 */
1163 	rtinfo.rti_gateway = ifma->ifma_lladdr;
1164 
1165 	m = rt_msg_mbuf(cmd, &rtinfo);
1166 	if (m == NULL)
1167 		return;
1168 
1169 	ifmam = mtod(m, struct ifma_msghdr *);
1170 	ifmam->ifmam_index = ifp->if_index;
1171 	ifmam->ifmam_addrs = rtinfo.rti_addrs;
1172 
1173 	rts_input(m, familyof(ifma->ifma_addr));
1174 }
1175 
1176 static struct mbuf *
1177 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1178 		     struct rt_addrinfo *info)
1179 {
1180 	struct if_announcemsghdr *ifan;
1181 	struct mbuf *m;
1182 
1183 	if (route_cb.any_count == 0)
1184 		return NULL;
1185 
1186 	bzero(info, sizeof(*info));
1187 	m = rt_msg_mbuf(type, info);
1188 	if (m == NULL)
1189 		return NULL;
1190 
1191 	ifan = mtod(m, struct if_announcemsghdr *);
1192 	ifan->ifan_index = ifp->if_index;
1193 	strlcpy(ifan->ifan_name, ifp->if_xname, sizeof ifan->ifan_name);
1194 	ifan->ifan_what = what;
1195 	return m;
1196 }
1197 
1198 /*
1199  * This is called to generate routing socket messages indicating
1200  * IEEE80211 wireless events.
1201  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1202  */
1203 void
1204 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1205 {
1206 	struct rt_addrinfo info;
1207 	struct mbuf *m;
1208 
1209 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1210 	if (m == NULL)
1211 		return;
1212 
1213 	/*
1214 	 * Append the ieee80211 data.  Try to stick it in the
1215 	 * mbuf containing the ifannounce msg; otherwise allocate
1216 	 * a new mbuf and append.
1217 	 *
1218 	 * NB: we assume m is a single mbuf.
1219 	 */
1220 	if (data_len > M_TRAILINGSPACE(m)) {
1221 		/* XXX use m_getb(data_len, MB_DONTWAIT, MT_DATA, 0); */
1222 		struct mbuf *n = m_get(MB_DONTWAIT, MT_DATA);
1223 		if (n == NULL) {
1224 			m_freem(m);
1225 			return;
1226 		}
1227 		KKASSERT(data_len <= M_TRAILINGSPACE(n));
1228 		bcopy(data, mtod(n, void *), data_len);
1229 		n->m_len = data_len;
1230 		m->m_next = n;
1231 	} else if (data_len > 0) {
1232 		bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1233 		m->m_len += data_len;
1234 	}
1235 	mbuftrackid(m, 33);
1236 	if (m->m_flags & M_PKTHDR)
1237 		m->m_pkthdr.len += data_len;
1238 	mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1239 	rts_input(m, 0);
1240 }
1241 
1242 /*
1243  * This is called to generate routing socket messages indicating
1244  * network interface arrival and departure.
1245  */
1246 void
1247 rt_ifannouncemsg(struct ifnet *ifp, int what)
1248 {
1249 	struct rt_addrinfo addrinfo;
1250 	struct mbuf *m;
1251 
1252 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &addrinfo);
1253 	if (m != NULL)
1254 		rts_input(m, 0);
1255 }
1256 
1257 static int
1258 resizewalkarg(struct walkarg *w, int len)
1259 {
1260 	void *newptr;
1261 
1262 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
1263 	if (newptr == NULL)
1264 		return (ENOMEM);
1265 	if (w->w_tmem != NULL)
1266 		kfree(w->w_tmem, M_RTABLE);
1267 	w->w_tmem = newptr;
1268 	w->w_tmemsize = len;
1269 	return (0);
1270 }
1271 
1272 /*
1273  * This is used in dumping the kernel table via sysctl().
1274  */
1275 int
1276 sysctl_dumpentry(struct radix_node *rn, void *vw)
1277 {
1278 	struct walkarg *w = vw;
1279 	struct rtentry *rt = (struct rtentry *)rn;
1280 	struct rt_addrinfo rtinfo;
1281 	int error, msglen;
1282 
1283 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1284 		return 0;
1285 
1286 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1287 	rtinfo.rti_dst = rt_key(rt);
1288 	rtinfo.rti_gateway = rt->rt_gateway;
1289 	rtinfo.rti_netmask = rt_mask(rt);
1290 	rtinfo.rti_genmask = rt->rt_genmask;
1291 	if (rt->rt_ifp != NULL) {
1292 		rtinfo.rti_ifpaddr =
1293 		TAILQ_FIRST(&rt->rt_ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1294 		rtinfo.rti_ifaaddr = rt->rt_ifa->ifa_addr;
1295 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1296 			rtinfo.rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
1297 	}
1298 	msglen = rt_msgsize(RTM_GET, &rtinfo);
1299 	if (w->w_tmemsize < msglen && resizewalkarg(w, msglen) != 0)
1300 		return (ENOMEM);
1301 	rt_msg_buffer(RTM_GET, &rtinfo, w->w_tmem, msglen);
1302 	if (w->w_req != NULL) {
1303 		struct rt_msghdr *rtm = w->w_tmem;
1304 
1305 		rtm->rtm_flags = rt->rt_flags;
1306 		rtm->rtm_use = rt->rt_use;
1307 		rtm->rtm_rmx = rt->rt_rmx;
1308 		rtm->rtm_index = rt->rt_ifp->if_index;
1309 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1310 		rtm->rtm_addrs = rtinfo.rti_addrs;
1311 		error = SYSCTL_OUT(w->w_req, rtm, msglen);
1312 		return (error);
1313 	}
1314 	return (0);
1315 }
1316 
1317 static int
1318 sysctl_iflist(int af, struct walkarg *w)
1319 {
1320 	struct ifnet *ifp;
1321 	struct rt_addrinfo rtinfo;
1322 	int msglen, error;
1323 
1324 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1325 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1326 		struct ifaddr_container *ifac;
1327 		struct ifaddr *ifa;
1328 
1329 		if (w->w_arg && w->w_arg != ifp->if_index)
1330 			continue;
1331 		ifac = TAILQ_FIRST(&ifp->if_addrheads[mycpuid]);
1332 		ifa = ifac->ifa;
1333 		rtinfo.rti_ifpaddr = ifa->ifa_addr;
1334 		msglen = rt_msgsize(RTM_IFINFO, &rtinfo);
1335 		if (w->w_tmemsize < msglen && resizewalkarg(w, msglen) != 0)
1336 			return (ENOMEM);
1337 		rt_msg_buffer(RTM_IFINFO, &rtinfo, w->w_tmem, msglen);
1338 		rtinfo.rti_ifpaddr = NULL;
1339 		if (w->w_req != NULL && w->w_tmem != NULL) {
1340 			struct if_msghdr *ifm = w->w_tmem;
1341 
1342 			ifm->ifm_index = ifp->if_index;
1343 			ifm->ifm_flags = ifp->if_flags;
1344 			ifm->ifm_data = ifp->if_data;
1345 			ifm->ifm_addrs = rtinfo.rti_addrs;
1346 			error = SYSCTL_OUT(w->w_req, ifm, msglen);
1347 			if (error)
1348 				return (error);
1349 		}
1350 		while ((ifac = TAILQ_NEXT(ifac, ifa_link)) != NULL) {
1351 			ifa = ifac->ifa;
1352 
1353 			if (af && af != ifa->ifa_addr->sa_family)
1354 				continue;
1355 			if (curproc->p_ucred->cr_prison &&
1356 			    prison_if(curproc->p_ucred, ifa->ifa_addr))
1357 				continue;
1358 			rtinfo.rti_ifaaddr = ifa->ifa_addr;
1359 			rtinfo.rti_netmask = ifa->ifa_netmask;
1360 			rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
1361 			msglen = rt_msgsize(RTM_NEWADDR, &rtinfo);
1362 			if (w->w_tmemsize < msglen &&
1363 			    resizewalkarg(w, msglen) != 0)
1364 				return (ENOMEM);
1365 			rt_msg_buffer(RTM_NEWADDR, &rtinfo, w->w_tmem, msglen);
1366 			if (w->w_req != NULL) {
1367 				struct ifa_msghdr *ifam = w->w_tmem;
1368 
1369 				ifam->ifam_index = ifa->ifa_ifp->if_index;
1370 				ifam->ifam_flags = ifa->ifa_flags;
1371 				ifam->ifam_metric = ifa->ifa_metric;
1372 				ifam->ifam_addrs = rtinfo.rti_addrs;
1373 				error = SYSCTL_OUT(w->w_req, w->w_tmem, msglen);
1374 				if (error)
1375 					return (error);
1376 			}
1377 		}
1378 		rtinfo.rti_netmask = NULL;
1379 		rtinfo.rti_ifaaddr = NULL;
1380 		rtinfo.rti_bcastaddr = NULL;
1381 	}
1382 	return (0);
1383 }
1384 
1385 static int
1386 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1387 {
1388 	int	*name = (int *)arg1;
1389 	u_int	namelen = arg2;
1390 	struct radix_node_head *rnh;
1391 	int	i, error = EINVAL;
1392 	int	origcpu;
1393 	u_char  af;
1394 	struct	walkarg w;
1395 
1396 	name ++;
1397 	namelen--;
1398 	if (req->newptr)
1399 		return (EPERM);
1400 	if (namelen != 3 && namelen != 4)
1401 		return (EINVAL);
1402 	af = name[0];
1403 	bzero(&w, sizeof w);
1404 	w.w_op = name[1];
1405 	w.w_arg = name[2];
1406 	w.w_req = req;
1407 
1408 	/*
1409 	 * Optional third argument specifies cpu, used primarily for
1410 	 * debugging the route table.
1411 	 */
1412 	if (namelen == 4) {
1413 		if (name[3] < 0 || name[3] >= ncpus)
1414 			return (EINVAL);
1415 		origcpu = mycpuid;
1416 		lwkt_migratecpu(name[3]);
1417 	} else {
1418 		origcpu = -1;
1419 	}
1420 	crit_enter();
1421 	switch (w.w_op) {
1422 	case NET_RT_DUMP:
1423 	case NET_RT_FLAGS:
1424 		for (i = 1; i <= AF_MAX; i++)
1425 			if ((rnh = rt_tables[mycpuid][i]) &&
1426 			    (af == 0 || af == i) &&
1427 			    (error = rnh->rnh_walktree(rnh,
1428 						       sysctl_dumpentry, &w)))
1429 				break;
1430 		break;
1431 
1432 	case NET_RT_IFLIST:
1433 		error = sysctl_iflist(af, &w);
1434 	}
1435 	crit_exit();
1436 	if (w.w_tmem != NULL)
1437 		kfree(w.w_tmem, M_RTABLE);
1438 	if (origcpu >= 0)
1439 		lwkt_migratecpu(origcpu);
1440 	return (error);
1441 }
1442 
1443 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1444 
1445 /*
1446  * Definitions of protocols supported in the ROUTE domain.
1447  */
1448 
1449 static struct domain routedomain;		/* or at least forward */
1450 
1451 static struct protosw routesw[] = {
1452     {
1453 	.pr_type = SOCK_RAW,
1454 	.pr_domain = &routedomain,
1455 	.pr_protocol = 0,
1456 	.pr_flags = PR_ATOMIC|PR_ADDR,
1457 	.pr_input = NULL,
1458 	.pr_output = route_output,
1459 	.pr_ctlinput = raw_ctlinput,
1460 	.pr_ctloutput = NULL,
1461 	.pr_ctlport = cpu0_ctlport,
1462 
1463 	.pr_init = raw_init,
1464 	.pr_usrreqs = &route_usrreqs
1465     }
1466 };
1467 
1468 static struct domain routedomain = {
1469 	PF_ROUTE, "route", NULL, NULL, NULL,
1470 	routesw, &routesw[(sizeof routesw)/(sizeof routesw[0])],
1471 };
1472 
1473 DOMAIN_SET(route);
1474 
1475