xref: /dragonfly/sys/net/rtsock.c (revision 6a3cbbc2)
1 /*
2  * Copyright (c) 2004, 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey M. Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of The DragonFly Project nor the names of its
16  *    contributors may be used to endorse or promote products derived
17  *    from this software without specific, prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
22  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
23  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
27  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
29  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1988, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
62  * $FreeBSD: src/sys/net/rtsock.c,v 1.44.2.11 2002/12/04 14:05:41 ru Exp $
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
69 #include <sys/proc.h>
70 #include <sys/priv.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/protosw.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/domain.h>
77 #include <sys/jail.h>
78 
79 #include <sys/thread2.h>
80 #include <sys/socketvar2.h>
81 
82 #include <net/if.h>
83 #include <net/if_var.h>
84 #include <net/route.h>
85 #include <net/raw_cb.h>
86 #include <net/netmsg2.h>
87 #include <net/netisr2.h>
88 
89 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
90 
91 static struct route_cb {
92 	int	ip_count;
93 	int	ip6_count;
94 	int	ns_count;
95 	int	any_count;
96 } route_cb;
97 
98 static const struct sockaddr route_src = { 2, PF_ROUTE, };
99 
100 struct walkarg {
101 	int	w_tmemsize;
102 	int	w_op, w_arg;
103 	void	*w_tmem;
104 	struct sysctl_req *w_req;
105 };
106 
107 #ifndef RTTABLE_DUMP_MSGCNT_MAX
108 /* Should be large enough for dupkeys */
109 #define RTTABLE_DUMP_MSGCNT_MAX		64
110 #endif
111 
112 struct rttable_walkarg {
113 	int	w_op;
114 	int	w_arg;
115 	int	w_bufsz;
116 	void	*w_buf;
117 
118 	int	w_buflen;
119 
120 	const char *w_key;
121 	const char *w_mask;
122 
123 	struct sockaddr_storage w_key0;
124 	struct sockaddr_storage w_mask0;
125 };
126 
127 struct netmsg_rttable_walk {
128 	struct netmsg_base	base;
129 	int			af;
130 	struct rttable_walkarg	*w;
131 };
132 
133 struct routecb {
134 	struct rawcb	rocb_rcb;
135 	unsigned int	rocb_msgfilter;
136 	char		*rocb_missfilter;
137 	size_t		rocb_missfilterlen;
138 };
139 #define	sotoroutecb(so)	((struct routecb *)(so)->so_pcb)
140 
141 static struct mbuf *
142 		rt_msg_mbuf (int, struct rt_addrinfo *);
143 static void	rt_msg_buffer (int, struct rt_addrinfo *, void *buf, int len);
144 static int	rt_msgsize(int type, const struct rt_addrinfo *rtinfo);
145 static int	rt_xaddrs (char *, char *, struct rt_addrinfo *);
146 static int	sysctl_rttable(int af, struct sysctl_req *req, int op, int arg);
147 static int	if_addrflags(const struct ifaddr *ifa);
148 static int	sysctl_iflist (int af, struct walkarg *w);
149 static int	route_output(struct mbuf *, struct socket *, ...);
150 static void	rt_setmetrics (u_long, struct rt_metrics *,
151 			       struct rt_metrics *);
152 
153 /*
154  * It really doesn't make any sense at all for this code to share much
155  * with raw_usrreq.c, since its functionality is so restricted.  XXX
156  */
157 static void
158 rts_abort(netmsg_t msg)
159 {
160 	crit_enter();
161 	raw_usrreqs.pru_abort(msg);
162 	/* msg invalid now */
163 	crit_exit();
164 }
165 
166 static int
167 rts_filter(struct mbuf *m, const struct sockproto *proto,
168 	const struct rawcb *rp)
169 {
170 	const struct routecb *rop = (const struct routecb *)rp;
171 	const struct rt_msghdr *rtm;
172 
173 	KKASSERT(m != NULL);
174 	KKASSERT(proto != NULL);
175 	KKASSERT(rp != NULL);
176 
177 	/* Wrong family for this socket. */
178 	if (proto->sp_family != PF_ROUTE)
179 		return ENOPROTOOPT;
180 
181 	/* If no filter set, just return. */
182 	if (rop->rocb_msgfilter == 0 && rop->rocb_missfilterlen == 0)
183 		return 0;
184 
185 	/* Ensure we can access rtm_type */
186 	if (m->m_len <
187 	    offsetof(struct rt_msghdr, rtm_type) + sizeof(rtm->rtm_type))
188 		return EINVAL;
189 
190 	rtm = mtod(m, const struct rt_msghdr *);
191 	/* If the rtm type is filtered out, return a positive. */
192 	if (rop->rocb_msgfilter != 0 &&
193 	    !(rop->rocb_msgfilter & ROUTE_FILTER(rtm->rtm_type)))
194 		return EEXIST;
195 
196 	if (rop->rocb_missfilterlen != 0 && rtm->rtm_type == RTM_MISS) {
197 		CTASSERT(RTAX_DST == 0);
198 		struct sockaddr *sa;
199 		struct sockaddr_storage ss;
200 		struct sockaddr *dst = (struct sockaddr *)&ss;
201 		char *cp = rop->rocb_missfilter;
202 		char *ep = cp + rop->rocb_missfilterlen;
203 
204 		/* Ensure we can access sa_len */
205 		if (m->m_pkthdr.len < sizeof(*rtm) +
206 		    offsetof(struct sockaddr, sa_len) + sizeof(dst->sa_len))
207 			return EINVAL;
208 		m_copydata(m, sizeof(*rtm) + offsetof(struct sockaddr, sa_len),
209 		    sizeof(ss.ss_len), (caddr_t)&ss);
210 		if (m->m_pkthdr.len < sizeof(*rtm) + ss.ss_len)
211 			return EINVAL;
212 		/* Copy out the destination sockaddr */
213 		m_copydata(m, sizeof(*rtm), ss.ss_len, (caddr_t)&ss);
214 
215 		/* Find a matching sockaddr in the filter */
216 		while (cp < ep) {
217 			sa = (struct sockaddr *)cp;
218 			if (sa->sa_len == dst->sa_len &&
219 			    memcmp(sa, dst, sa->sa_len) == 0)
220 				break;
221 			cp += RT_ROUNDUP(sa->sa_len);
222 		}
223 		if (cp == ep)
224 			return EEXIST;
225 	}
226 
227 	/* Passed the filter. */
228 	return 0;
229 }
230 
231 
232 /* pru_accept is EOPNOTSUPP */
233 
234 static void
235 rts_attach(netmsg_t msg)
236 {
237 	struct socket *so = msg->base.nm_so;
238 	struct pru_attach_info *ai = msg->attach.nm_ai;
239 	struct rawcb *rp;
240 	struct routecb *rop;
241 	int proto = msg->attach.nm_proto;
242 	int error;
243 
244 	crit_enter();
245 	if (sotorawcb(so) != NULL) {
246 		error = EISCONN;
247 		goto done;
248 	}
249 
250 	rop = kmalloc(sizeof *rop, M_PCB, M_WAITOK | M_ZERO);
251 	rp = &rop->rocb_rcb;
252 
253 	/*
254 	 * The critical section is necessary to block protocols from sending
255 	 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
256 	 * this PCB is extant but incompletely initialized.
257 	 * Probably we should try to do more of this work beforehand and
258 	 * eliminate the critical section.
259 	 */
260 	so->so_pcb = rp;
261 	soreference(so);	/* so_pcb assignment */
262 	error = raw_attach(so, proto, ai->sb_rlimit);
263 	rp = sotorawcb(so);
264 	if (error) {
265 		kfree(rop, M_PCB);
266 		goto done;
267 	}
268 	switch(rp->rcb_proto.sp_protocol) {
269 	case AF_INET:
270 		route_cb.ip_count++;
271 		break;
272 	case AF_INET6:
273 		route_cb.ip6_count++;
274 		break;
275 	}
276 	rp->rcb_faddr = &route_src;
277 	rp->rcb_filter = rts_filter;
278 	route_cb.any_count++;
279 	soisconnected(so);
280 	so->so_options |= SO_USELOOPBACK;
281 	error = 0;
282 done:
283 	crit_exit();
284 	lwkt_replymsg(&msg->lmsg, error);
285 }
286 
287 static void
288 rts_bind(netmsg_t msg)
289 {
290 	crit_enter();
291 	raw_usrreqs.pru_bind(msg); /* xxx just EINVAL */
292 	/* msg invalid now */
293 	crit_exit();
294 }
295 
296 static void
297 rts_connect(netmsg_t msg)
298 {
299 	crit_enter();
300 	raw_usrreqs.pru_connect(msg); /* XXX just EINVAL */
301 	/* msg invalid now */
302 	crit_exit();
303 }
304 
305 /* pru_connect2 is EOPNOTSUPP */
306 /* pru_control is EOPNOTSUPP */
307 
308 static void
309 rts_detach(netmsg_t msg)
310 {
311 	struct socket *so = msg->base.nm_so;
312 	struct rawcb *rp = sotorawcb(so);
313 	struct routecb *rop = (struct routecb *)rp;
314 
315 	crit_enter();
316 	if (rop->rocb_missfilterlen != 0)
317 		kfree(rop->rocb_missfilter, M_PCB);
318 	if (rp != NULL) {
319 		switch(rp->rcb_proto.sp_protocol) {
320 		case AF_INET:
321 			route_cb.ip_count--;
322 			break;
323 		case AF_INET6:
324 			route_cb.ip6_count--;
325 			break;
326 		}
327 		route_cb.any_count--;
328 	}
329 	raw_usrreqs.pru_detach(msg);
330 	/* msg invalid now */
331 	crit_exit();
332 }
333 
334 static void
335 rts_disconnect(netmsg_t msg)
336 {
337 	crit_enter();
338 	raw_usrreqs.pru_disconnect(msg);
339 	/* msg invalid now */
340 	crit_exit();
341 }
342 
343 /* pru_listen is EOPNOTSUPP */
344 
345 static void
346 rts_peeraddr(netmsg_t msg)
347 {
348 	crit_enter();
349 	raw_usrreqs.pru_peeraddr(msg);
350 	/* msg invalid now */
351 	crit_exit();
352 }
353 
354 /* pru_rcvd is EOPNOTSUPP */
355 /* pru_rcvoob is EOPNOTSUPP */
356 
357 static void
358 rts_send(netmsg_t msg)
359 {
360 	crit_enter();
361 	raw_usrreqs.pru_send(msg);
362 	/* msg invalid now */
363 	crit_exit();
364 }
365 
366 /* pru_sense is null */
367 
368 static void
369 rts_shutdown(netmsg_t msg)
370 {
371 	crit_enter();
372 	raw_usrreqs.pru_shutdown(msg);
373 	/* msg invalid now */
374 	crit_exit();
375 }
376 
377 static void
378 rts_sockaddr(netmsg_t msg)
379 {
380 	crit_enter();
381 	raw_usrreqs.pru_sockaddr(msg);
382 	/* msg invalid now */
383 	crit_exit();
384 }
385 
386 static struct pr_usrreqs route_usrreqs = {
387 	.pru_abort = rts_abort,
388 	.pru_accept = pr_generic_notsupp,
389 	.pru_attach = rts_attach,
390 	.pru_bind = rts_bind,
391 	.pru_connect = rts_connect,
392 	.pru_connect2 = pr_generic_notsupp,
393 	.pru_control = pr_generic_notsupp,
394 	.pru_detach = rts_detach,
395 	.pru_disconnect = rts_disconnect,
396 	.pru_listen = pr_generic_notsupp,
397 	.pru_peeraddr = rts_peeraddr,
398 	.pru_rcvd = pr_generic_notsupp,
399 	.pru_rcvoob = pr_generic_notsupp,
400 	.pru_send = rts_send,
401 	.pru_sense = pru_sense_null,
402 	.pru_shutdown = rts_shutdown,
403 	.pru_sockaddr = rts_sockaddr,
404 	.pru_sosend = sosend,
405 	.pru_soreceive = soreceive
406 };
407 
408 static __inline sa_family_t
409 familyof(struct sockaddr *sa)
410 {
411 	return (sa != NULL ? sa->sa_family : 0);
412 }
413 
414 /*
415  * Routing socket input function.  The packet must be serialized onto cpu 0.
416  * We use the cpu0_soport() netisr processing loop to handle it.
417  *
418  * This looks messy but it means that anyone, including interrupt code,
419  * can send a message to the routing socket.
420  */
421 static void
422 rts_input_handler(netmsg_t msg)
423 {
424 	static const struct sockaddr route_dst = { 2, PF_ROUTE, };
425 	struct sockproto route_proto;
426 	struct netmsg_packet *pmsg = &msg->packet;
427 	struct mbuf *m;
428 	sa_family_t family;
429 	struct rawcb *skip;
430 
431 	family = pmsg->base.lmsg.u.ms_result;
432 	route_proto.sp_family = PF_ROUTE;
433 	route_proto.sp_protocol = family;
434 
435 	m = pmsg->nm_packet;
436 	M_ASSERTPKTHDR(m);
437 
438 	skip = m->m_pkthdr.header;
439 	m->m_pkthdr.header = NULL;
440 
441 	raw_input(m, &route_proto, &route_src, &route_dst, skip);
442 }
443 
444 static void
445 rts_input_skip(struct mbuf *m, sa_family_t family, struct rawcb *skip)
446 {
447 	struct netmsg_packet *pmsg;
448 	lwkt_port_t port;
449 
450 	M_ASSERTPKTHDR(m);
451 
452 	port = netisr_cpuport(0);	/* XXX same as for routing socket */
453 	pmsg = &m->m_hdr.mh_netmsg;
454 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
455 		    0, rts_input_handler);
456 	pmsg->nm_packet = m;
457 	pmsg->base.lmsg.u.ms_result = family;
458 	m->m_pkthdr.header = skip; /* XXX steal field in pkthdr */
459 	lwkt_sendmsg(port, &pmsg->base.lmsg);
460 }
461 
462 static __inline void
463 rts_input(struct mbuf *m, sa_family_t family)
464 {
465 	rts_input_skip(m, family, NULL);
466 }
467 
468 static void
469 route_ctloutput(netmsg_t msg)
470 {
471 	struct socket *so = msg->ctloutput.base.nm_so;
472 	struct sockopt *sopt = msg->ctloutput.nm_sopt;
473 	struct routecb *rop = sotoroutecb(so);
474 	int error;
475 	unsigned int msgfilter;
476 	unsigned char *cp, *ep;
477 	size_t len;
478 	struct sockaddr *sa;
479 
480 	if (sopt->sopt_level != AF_ROUTE) {
481 		error = EINVAL;
482 		goto out;
483 	}
484 
485 	error = 0;
486 
487 	switch (sopt->sopt_dir) {
488 	case SOPT_SET:
489 		switch (sopt->sopt_name) {
490 		case ROUTE_MSGFILTER:
491 			error = soopt_to_kbuf(sopt, &msgfilter,
492 			    sizeof(msgfilter), sizeof(msgfilter));
493 			if (error == 0)
494 				rop->rocb_msgfilter = msgfilter;
495 			break;
496 		case RO_MISSFILTER:
497 			/* Validate the data */
498 			len = 0;
499 			cp = sopt->sopt_val;
500 			ep = cp + sopt->sopt_valsize;
501 			while (cp < ep) {
502 				if (ep - cp <
503 				    offsetof(struct sockaddr, sa_len) +
504 				    sizeof(sa->sa_len))
505 					break;
506 				if (++len > RO_FILTSA_MAX) {
507 					error = ENOBUFS;
508 					break;
509 				}
510 				sa = (struct sockaddr *)cp;
511 				cp += RT_ROUNDUP(sa->sa_len);
512 			}
513 			if (cp != ep) {
514 				if (error == 0)
515 					error = EINVAL;
516 				break;
517 			}
518 			if (rop->rocb_missfilterlen != 0)
519 				kfree(rop->rocb_missfilter, M_PCB);
520 			if (sopt->sopt_valsize != 0) {
521 				rop->rocb_missfilter =
522 				    kmalloc(sopt->sopt_valsize,
523 				            M_PCB, M_WAITOK | M_NULLOK);
524 				if (rop->rocb_missfilter == NULL) {
525 					rop->rocb_missfilterlen = 0;
526 					error = ENOBUFS;
527 					break;
528 				}
529 			} else
530 				rop->rocb_missfilter = NULL;
531 			rop->rocb_missfilterlen = sopt->sopt_valsize;
532 			if (rop->rocb_missfilterlen != 0)
533 				memcpy(rop->rocb_missfilter, sopt->sopt_val,
534 				    rop->rocb_missfilterlen);
535 			break;
536 		default:
537 			error = ENOPROTOOPT;
538 			break;
539 		}
540 		break;
541 	case SOPT_GET:
542 		switch (sopt->sopt_name) {
543 		case ROUTE_MSGFILTER:
544 			msgfilter = rop->rocb_msgfilter;
545 			soopt_from_kbuf(sopt, &msgfilter, sizeof(msgfilter));
546 			break;
547 		case RO_MISSFILTER:
548 			soopt_from_kbuf(sopt, rop->rocb_missfilter,
549 			    rop->rocb_missfilterlen);
550 			break;
551 		default:
552 			error = ENOPROTOOPT;
553 			break;
554 		}
555 	}
556 out:
557 	lwkt_replymsg(&msg->ctloutput.base.lmsg, error);
558 }
559 
560 
561 
562 static void *
563 reallocbuf_nofree(void *ptr, size_t len, size_t olen)
564 {
565 	void *newptr;
566 
567 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
568 	if (newptr == NULL)
569 		return NULL;
570 	bcopy(ptr, newptr, olen);
571 	if (olen < len)
572 		bzero((char *)newptr + olen, len - olen);
573 
574 	return (newptr);
575 }
576 
577 /*
578  * Internal helper routine for route_output().
579  */
580 static int
581 _fillrtmsg(struct rt_msghdr **prtm, struct rtentry *rt,
582 	   struct rt_addrinfo *rtinfo)
583 {
584 	int msglen;
585 	struct rt_msghdr *rtm = *prtm;
586 
587 	/* Fill in rt_addrinfo for call to rt_msg_buffer(). */
588 	rtinfo->rti_dst = rt_key(rt);
589 	rtinfo->rti_gateway = rt->rt_gateway;
590 	rtinfo->rti_netmask = rt_mask(rt);		/* might be NULL */
591 	rtinfo->rti_genmask = rt->rt_genmask;		/* might be NULL */
592 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
593 		if (rt->rt_ifp != NULL) {
594 			rtinfo->rti_ifpaddr =
595 			    TAILQ_FIRST(&rt->rt_ifp->if_addrheads[mycpuid])
596 			    ->ifa->ifa_addr;
597 			rtinfo->rti_ifaaddr = rt->rt_ifa->ifa_addr;
598 			if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
599 				rtinfo->rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
600 			rtm->rtm_index = rt->rt_ifp->if_index;
601 		} else {
602 			rtinfo->rti_ifpaddr = NULL;
603 			rtinfo->rti_ifaaddr = NULL;
604 		}
605 	} else if (rt->rt_ifp != NULL) {
606 		rtm->rtm_index = rt->rt_ifp->if_index;
607 	}
608 
609 	msglen = rt_msgsize(rtm->rtm_type, rtinfo);
610 	if (rtm->rtm_msglen < msglen) {
611 		/* NOTE: Caller will free the old rtm accordingly */
612 		rtm = reallocbuf_nofree(rtm, msglen, rtm->rtm_msglen);
613 		if (rtm == NULL)
614 			return (ENOBUFS);
615 		*prtm = rtm;
616 	}
617 	rt_msg_buffer(rtm->rtm_type, rtinfo, rtm, msglen);
618 
619 	rtm->rtm_flags = rt->rt_flags;
620 	rtm->rtm_rmx = rt->rt_rmx;
621 	rtm->rtm_addrs = rtinfo->rti_addrs;
622 
623 	return (0);
624 }
625 
626 struct rtm_arg {
627 	struct rt_msghdr	*bak_rtm;
628 	struct rt_msghdr	*new_rtm;
629 };
630 
631 static int
632 fillrtmsg(struct rtm_arg *arg, struct rtentry *rt,
633 	  struct rt_addrinfo *rtinfo)
634 {
635 	struct rt_msghdr *rtm = arg->new_rtm;
636 	int error;
637 
638 	error = _fillrtmsg(&rtm, rt, rtinfo);
639 	if (!error) {
640 		if (arg->new_rtm != rtm) {
641 			/*
642 			 * _fillrtmsg() just allocated a new rtm;
643 			 * if the previously allocated rtm is not
644 			 * the backing rtm, it should be freed.
645 			 */
646 			if (arg->new_rtm != arg->bak_rtm)
647 				kfree(arg->new_rtm, M_RTABLE);
648 			arg->new_rtm = rtm;
649 		}
650 	}
651 	return error;
652 }
653 
654 static void route_output_add_callback(int, int, struct rt_addrinfo *,
655 					struct rtentry *, void *);
656 static void route_output_delete_callback(int, int, struct rt_addrinfo *,
657 					struct rtentry *, void *);
658 static int route_output_get_callback(int, struct rt_addrinfo *,
659 				     struct rtentry *, void *, int);
660 static int route_output_change_callback(int, struct rt_addrinfo *,
661 					struct rtentry *, void *, int);
662 static int route_output_lock_callback(int, struct rt_addrinfo *,
663 				      struct rtentry *, void *, int);
664 
665 /*ARGSUSED*/
666 static int
667 route_output(struct mbuf *m, struct socket *so, ...)
668 {
669 	struct rtm_arg arg;
670 	struct rt_msghdr *rtm = NULL;
671 	struct rawcb *rp = NULL;
672 	struct pr_output_info *oi;
673 	struct rt_addrinfo rtinfo;
674 	sa_family_t family;
675 	int len, error = 0;
676 	__va_list ap;
677 
678 	M_ASSERTPKTHDR(m);
679 
680 	__va_start(ap, so);
681 	oi = __va_arg(ap, struct pr_output_info *);
682 	__va_end(ap);
683 
684 	family = familyof(NULL);
685 
686 #define gotoerr(e) { error = e; goto flush;}
687 
688 	if (m == NULL ||
689 	    (m->m_len < sizeof(long) &&
690 	     (m = m_pullup(m, sizeof(long))) == NULL))
691 		return (ENOBUFS);
692 	len = m->m_pkthdr.len;
693 	if (len < sizeof(struct rt_msghdr) ||
694 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
695 		gotoerr(EINVAL);
696 
697 	rtm = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
698 	if (rtm == NULL)
699 		gotoerr(ENOBUFS);
700 
701 	m_copydata(m, 0, len, (caddr_t)rtm);
702 	if (rtm->rtm_version != RTM_VERSION)
703 		gotoerr(EPROTONOSUPPORT);
704 
705 	rtm->rtm_pid = oi->p_pid;
706 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
707 	rtinfo.rti_addrs = rtm->rtm_addrs;
708 	if (rt_xaddrs((char *)(rtm + 1), (char *)rtm + len, &rtinfo) != 0)
709 		gotoerr(EINVAL);
710 
711 	rtinfo.rti_flags = rtm->rtm_flags;
712 	if (rtinfo.rti_dst == NULL || rtinfo.rti_dst->sa_family >= AF_MAX ||
713 	    (rtinfo.rti_gateway && rtinfo.rti_gateway->sa_family >= AF_MAX))
714 		gotoerr(EINVAL);
715 
716 	family = familyof(rtinfo.rti_dst);
717 
718 	/*
719 	 * Verify that the caller has the appropriate privilege; RTM_GET
720 	 * is the only operation the non-superuser is allowed.
721 	 */
722 	if (rtm->rtm_type != RTM_GET &&
723 	    priv_check_cred(so->so_cred, PRIV_ROOT, 0) != 0)
724 		gotoerr(EPERM);
725 
726 	if (rtinfo.rti_genmask != NULL) {
727 		error = rtmask_add_global(rtinfo.rti_genmask,
728 		    rtm->rtm_type != RTM_GET ?
729 		    RTREQ_PRIO_HIGH : RTREQ_PRIO_NORM);
730 		if (error)
731 			goto flush;
732 	}
733 
734 	switch (rtm->rtm_type) {
735 	case RTM_ADD:
736 		if (rtinfo.rti_gateway == NULL) {
737 			error = EINVAL;
738 		} else {
739 			error = rtrequest1_global(RTM_ADD, &rtinfo,
740 			    route_output_add_callback, rtm, RTREQ_PRIO_HIGH);
741 		}
742 		break;
743 	case RTM_DELETE:
744 		/*
745 		 * Backing rtm (bak_rtm) could _not_ be freed during
746 		 * rtrequest1_global or rtsearch_global, even if the
747 		 * callback reallocates the rtm due to its size changes,
748 		 * since rtinfo points to the backing rtm's memory area.
749 		 * After rtrequest1_global or rtsearch_global returns,
750 		 * it is safe to free the backing rtm, since rtinfo will
751 		 * not be used anymore.
752 		 *
753 		 * new_rtm will be used to save the new rtm allocated
754 		 * by rtrequest1_global or rtsearch_global.
755 		 */
756 		arg.bak_rtm = rtm;
757 		arg.new_rtm = rtm;
758 		error = rtrequest1_global(RTM_DELETE, &rtinfo,
759 		    route_output_delete_callback, &arg, RTREQ_PRIO_HIGH);
760 		rtm = arg.new_rtm;
761 		if (rtm != arg.bak_rtm)
762 			kfree(arg.bak_rtm, M_RTABLE);
763 		break;
764 	case RTM_GET:
765 		/* See the comment in RTM_DELETE */
766 		arg.bak_rtm = rtm;
767 		arg.new_rtm = rtm;
768 		error = rtsearch_global(RTM_GET, &rtinfo,
769 		    route_output_get_callback, &arg, RTS_NOEXACTMATCH,
770 		    RTREQ_PRIO_NORM);
771 		rtm = arg.new_rtm;
772 		if (rtm != arg.bak_rtm)
773 			kfree(arg.bak_rtm, M_RTABLE);
774 		break;
775 	case RTM_CHANGE:
776 		error = rtsearch_global(RTM_CHANGE, &rtinfo,
777 		    route_output_change_callback, rtm, RTS_EXACTMATCH,
778 		    RTREQ_PRIO_HIGH);
779 		break;
780 	case RTM_LOCK:
781 		error = rtsearch_global(RTM_LOCK, &rtinfo,
782 		    route_output_lock_callback, rtm, RTS_EXACTMATCH,
783 		    RTREQ_PRIO_HIGH);
784 		break;
785 	default:
786 		error = EOPNOTSUPP;
787 		break;
788 	}
789 flush:
790 	if (rtm != NULL) {
791 		if (error != 0)
792 			rtm->rtm_errno = error;
793 		else
794 			rtm->rtm_flags |= RTF_DONE;
795 	}
796 
797 	/*
798 	 * Check to see if we don't want our own messages.
799 	 */
800 	if (!(so->so_options & SO_USELOOPBACK)) {
801 		if (route_cb.any_count <= 1) {
802 			if (rtm != NULL)
803 				kfree(rtm, M_RTABLE);
804 			m_freem(m);
805 			return (error);
806 		}
807 		/* There is another listener, so construct message */
808 		rp = sotorawcb(so);
809 	}
810 	if (rtm != NULL) {
811 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
812 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
813 			m_freem(m);
814 			m = NULL;
815 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
816 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
817 		kfree(rtm, M_RTABLE);
818 	}
819 	if (m != NULL)
820 		rts_input_skip(m, family, rp);
821 	return (error);
822 }
823 
824 static void
825 route_output_add_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
826 			  struct rtentry *rt, void *arg)
827 {
828 	struct rt_msghdr *rtm = arg;
829 
830 	if (error == 0 && rt != NULL) {
831 		rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
832 		    &rt->rt_rmx);
833 		rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
834 		rt->rt_rmx.rmx_locks |=
835 		    (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
836 		if (rtinfo->rti_genmask != NULL) {
837 			rt->rt_genmask = rtmask_purelookup(rtinfo->rti_genmask);
838 			if (rt->rt_genmask == NULL) {
839 				/*
840 				 * This should not happen, since we
841 				 * have already installed genmask
842 				 * on each CPU before we reach here.
843 				 */
844 				panic("genmask is gone!?");
845 			}
846 		} else {
847 			rt->rt_genmask = NULL;
848 		}
849 		rtm->rtm_index = rt->rt_ifp->if_index;
850 	}
851 }
852 
853 static void
854 route_output_delete_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
855 			  struct rtentry *rt, void *arg)
856 {
857 	if (error == 0 && rt) {
858 		++rt->rt_refcnt;
859 		if (fillrtmsg(arg, rt, rtinfo) != 0) {
860 			error = ENOBUFS;
861 			/* XXX no way to return the error */
862 		}
863 		--rt->rt_refcnt;
864 	}
865 	if (rt && rt->rt_refcnt == 0) {
866 		++rt->rt_refcnt;
867 		rtfree(rt);
868 	}
869 }
870 
871 static int
872 route_output_get_callback(int cmd, struct rt_addrinfo *rtinfo,
873 			  struct rtentry *rt, void *arg, int found_cnt)
874 {
875 	int error, found = 0;
876 
877 	if (((rtinfo->rti_flags ^ rt->rt_flags) & RTF_HOST) == 0)
878 		found = 1;
879 
880 	error = fillrtmsg(arg, rt, rtinfo);
881 	if (!error && found) {
882 		/* Got the exact match, we could return now! */
883 		error = EJUSTRETURN;
884 	}
885 	return error;
886 }
887 
888 static int
889 route_output_change_callback(int cmd, struct rt_addrinfo *rtinfo,
890 			     struct rtentry *rt, void *arg, int found_cnt)
891 {
892 	struct rt_msghdr *rtm = arg;
893 	struct ifaddr *ifa;
894 	int error = 0;
895 
896 	/*
897 	 * new gateway could require new ifaddr, ifp;
898 	 * flags may also be different; ifp may be specified
899 	 * by ll sockaddr when protocol address is ambiguous
900 	 */
901 	if (((rt->rt_flags & RTF_GATEWAY) && rtinfo->rti_gateway != NULL) ||
902 	    rtinfo->rti_ifpaddr != NULL ||
903 	    (rtinfo->rti_ifaaddr != NULL &&
904 	     !sa_equal(rtinfo->rti_ifaaddr, rt->rt_ifa->ifa_addr))) {
905 		error = rt_getifa(rtinfo);
906 		if (error != 0)
907 			goto done;
908 	}
909 	if (rtinfo->rti_gateway != NULL) {
910 		/*
911 		 * We only need to generate rtmsg upon the
912 		 * first route to be changed.
913 		 */
914 		error = rt_setgate(rt, rt_key(rt), rtinfo->rti_gateway);
915 		if (error != 0)
916 			goto done;
917 	}
918 	if ((ifa = rtinfo->rti_ifa) != NULL) {
919 		struct ifaddr *oifa = rt->rt_ifa;
920 
921 		if (oifa != ifa) {
922 			if (oifa && oifa->ifa_rtrequest)
923 				oifa->ifa_rtrequest(RTM_DELETE, rt);
924 			IFAFREE(rt->rt_ifa);
925 			IFAREF(ifa);
926 			rt->rt_ifa = ifa;
927 			rt->rt_ifp = rtinfo->rti_ifp;
928 		}
929 	}
930 	rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx);
931 	if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
932 		rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt);
933 	if (rtinfo->rti_genmask != NULL) {
934 		rt->rt_genmask = rtmask_purelookup(rtinfo->rti_genmask);
935 		if (rt->rt_genmask == NULL) {
936 			/*
937 			 * This should not happen, since we
938 			 * have already installed genmask
939 			 * on each CPU before we reach here.
940 			 */
941 			panic("genmask is gone!?");
942 		}
943 	}
944 	rtm->rtm_index = rt->rt_ifp->if_index;
945 	if (found_cnt == 1)
946 		rt_rtmsg(RTM_CHANGE, rt, rt->rt_ifp, 0);
947 done:
948 	return error;
949 }
950 
951 static int
952 route_output_lock_callback(int cmd, struct rt_addrinfo *rtinfo,
953 			   struct rtentry *rt, void *arg,
954 			   int found_cnt __unused)
955 {
956 	struct rt_msghdr *rtm = arg;
957 
958 	rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
959 	rt->rt_rmx.rmx_locks |=
960 		(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
961 	return 0;
962 }
963 
964 static void
965 rt_setmetrics(u_long which, struct rt_metrics *in, struct rt_metrics *out)
966 {
967 #define setmetric(flag, elt) if (which & (flag)) out->elt = in->elt;
968 	setmetric(RTV_RPIPE, rmx_recvpipe);
969 	setmetric(RTV_SPIPE, rmx_sendpipe);
970 	setmetric(RTV_SSTHRESH, rmx_ssthresh);
971 	setmetric(RTV_RTT, rmx_rtt);
972 	setmetric(RTV_RTTVAR, rmx_rttvar);
973 	setmetric(RTV_HOPCOUNT, rmx_hopcount);
974 	setmetric(RTV_MTU, rmx_mtu);
975 	setmetric(RTV_EXPIRE, rmx_expire);
976 	setmetric(RTV_MSL, rmx_msl);
977 	setmetric(RTV_IWMAXSEGS, rmx_iwmaxsegs);
978 	setmetric(RTV_IWCAPSEGS, rmx_iwcapsegs);
979 #undef setmetric
980 }
981 
982 /*
983  * Extract the addresses of the passed sockaddrs.
984  * Do a little sanity checking so as to avoid bad memory references.
985  * This data is derived straight from userland.
986  */
987 static int
988 rt_xaddrs(char *cp, char *cplim, struct rt_addrinfo *rtinfo)
989 {
990 	struct sockaddr *sa;
991 	int i;
992 
993 	for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
994 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
995 			continue;
996 		sa = (struct sockaddr *)cp;
997 		/*
998 		 * It won't fit.
999 		 */
1000 		if ((cp + sa->sa_len) > cplim) {
1001 			return (EINVAL);
1002 		}
1003 
1004 		/*
1005 		 * There are no more...  Quit now.
1006 		 * If there are more bits, they are in error.
1007 		 * I've seen this.  route(1) can evidently generate these.
1008 		 * This causes kernel to core dump.
1009 		 * For compatibility, if we see this, point to a safe address.
1010 		 */
1011 		if (sa->sa_len == 0) {
1012 			static struct sockaddr sa_zero = {
1013 				sizeof sa_zero, AF_INET,
1014 			};
1015 
1016 			rtinfo->rti_info[i] = &sa_zero;
1017 			kprintf("rtsock: received more addr bits than sockaddrs.\n");
1018 			return (0); /* should be EINVAL but for compat */
1019 		}
1020 
1021 		/* Accept the sockaddr. */
1022 		rtinfo->rti_info[i] = sa;
1023 		cp += RT_ROUNDUP(sa->sa_len);
1024 	}
1025 	return (0);
1026 }
1027 
1028 static int
1029 rt_msghdrsize(int type)
1030 {
1031 	switch (type) {
1032 	case RTM_DELADDR:
1033 	case RTM_NEWADDR:
1034 		return sizeof(struct ifa_msghdr);
1035 	case RTM_DELMADDR:
1036 	case RTM_NEWMADDR:
1037 		return sizeof(struct ifma_msghdr);
1038 	case RTM_IFINFO:
1039 		return sizeof(struct if_msghdr);
1040 	case RTM_IFANNOUNCE:
1041 	case RTM_IEEE80211:
1042 		return sizeof(struct if_announcemsghdr);
1043 	default:
1044 		return sizeof(struct rt_msghdr);
1045 	}
1046 }
1047 
1048 static int
1049 rt_msgsize(int type, const struct rt_addrinfo *rtinfo)
1050 {
1051 	int len, i;
1052 
1053 	len = rt_msghdrsize(type);
1054 	for (i = 0; i < RTAX_MAX; i++) {
1055 		if (rtinfo->rti_info[i] != NULL)
1056 			len += RT_ROUNDUP(rtinfo->rti_info[i]->sa_len);
1057 	}
1058 	len = ALIGN(len);
1059 	return len;
1060 }
1061 
1062 /*
1063  * Build a routing message in a buffer.
1064  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
1065  * to the end of the buffer after the message header.
1066  *
1067  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
1068  * This side-effect can be avoided if we reorder the addrs bitmask field in all
1069  * the route messages to line up so we can set it here instead of back in the
1070  * calling routine.
1071  *
1072  * NOTE! The buffer may already contain a partially filled-out rtm via
1073  *	 _fillrtmsg().
1074  */
1075 static void
1076 rt_msg_buffer(int type, struct rt_addrinfo *rtinfo, void *buf, int msglen)
1077 {
1078 	struct rt_msghdr *rtm;
1079 	char *cp;
1080 	int dlen, i;
1081 
1082 	rtm = (struct rt_msghdr *) buf;
1083 	rtm->rtm_version = RTM_VERSION;
1084 	rtm->rtm_type = type;
1085 	rtm->rtm_msglen = msglen;
1086 
1087 	cp = (char *)buf + rt_msghdrsize(type);
1088 	rtinfo->rti_addrs = 0;
1089 	for (i = 0; i < RTAX_MAX; i++) {
1090 		struct sockaddr *sa;
1091 
1092 		if ((sa = rtinfo->rti_info[i]) == NULL)
1093 			continue;
1094 		rtinfo->rti_addrs |= (1 << i);
1095 		dlen = RT_ROUNDUP(sa->sa_len);
1096 		bcopy(sa, cp, dlen);
1097 		cp += dlen;
1098 	}
1099 }
1100 
1101 /*
1102  * Build a routing message in a mbuf chain.
1103  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
1104  * to the end of the mbuf after the message header.
1105  *
1106  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
1107  * This side-effect can be avoided if we reorder the addrs bitmask field in all
1108  * the route messages to line up so we can set it here instead of back in the
1109  * calling routine.
1110  */
1111 static struct mbuf *
1112 rt_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1113 {
1114 	struct mbuf *m;
1115 	struct rt_msghdr *rtm;
1116 	int hlen, len;
1117 	int i;
1118 
1119 	hlen = rt_msghdrsize(type);
1120 	KASSERT(hlen <= MCLBYTES, ("rt_msg_mbuf: hlen %d doesn't fit", hlen));
1121 
1122 	m = m_getl(hlen, M_NOWAIT, MT_DATA, M_PKTHDR, NULL);
1123 	if (m == NULL)
1124 		return (NULL);
1125 	mbuftrackid(m, 32);
1126 	m->m_pkthdr.len = m->m_len = hlen;
1127 	m->m_pkthdr.rcvif = NULL;
1128 	rtinfo->rti_addrs = 0;
1129 	len = hlen;
1130 	for (i = 0; i < RTAX_MAX; i++) {
1131 		struct sockaddr *sa;
1132 		int dlen;
1133 
1134 		if ((sa = rtinfo->rti_info[i]) == NULL)
1135 			continue;
1136 		rtinfo->rti_addrs |= (1 << i);
1137 		dlen = RT_ROUNDUP(sa->sa_len);
1138 		m_copyback(m, len, dlen, (caddr_t)sa); /* can grow mbuf chain */
1139 		len += dlen;
1140 	}
1141 	if (m->m_pkthdr.len != len) { /* one of the m_copyback() calls failed */
1142 		m_freem(m);
1143 		return (NULL);
1144 	}
1145 	rtm = mtod(m, struct rt_msghdr *);
1146 	bzero(rtm, hlen);
1147 	rtm->rtm_msglen = len;
1148 	rtm->rtm_version = RTM_VERSION;
1149 	rtm->rtm_type = type;
1150 	return (m);
1151 }
1152 
1153 /*
1154  * This routine is called to generate a message from the routing
1155  * socket indicating that a redirect has occurred, a routing lookup
1156  * has failed, or that a protocol has detected timeouts to a particular
1157  * destination.
1158  */
1159 void
1160 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1161 {
1162 	struct sockaddr *dst = rtinfo->rti_info[RTAX_DST];
1163 	struct rt_msghdr *rtm;
1164 	struct mbuf *m;
1165 
1166 	if (route_cb.any_count == 0)
1167 		return;
1168 	m = rt_msg_mbuf(type, rtinfo);
1169 	if (m == NULL)
1170 		return;
1171 	rtm = mtod(m, struct rt_msghdr *);
1172 	rtm->rtm_flags = RTF_DONE | flags;
1173 	rtm->rtm_errno = error;
1174 	rtm->rtm_addrs = rtinfo->rti_addrs;
1175 	rts_input(m, familyof(dst));
1176 }
1177 
1178 void
1179 rt_dstmsg(int type, struct sockaddr *dst, int error)
1180 {
1181 	struct rt_msghdr *rtm;
1182 	struct rt_addrinfo addrs;
1183 	struct mbuf *m;
1184 
1185 	if (route_cb.any_count == 0)
1186 		return;
1187 	bzero(&addrs, sizeof(struct rt_addrinfo));
1188 	addrs.rti_info[RTAX_DST] = dst;
1189 	m = rt_msg_mbuf(type, &addrs);
1190 	if (m == NULL)
1191 		return;
1192 	rtm = mtod(m, struct rt_msghdr *);
1193 	rtm->rtm_flags = RTF_DONE;
1194 	rtm->rtm_errno = error;
1195 	rtm->rtm_addrs = addrs.rti_addrs;
1196 	rts_input(m, familyof(dst));
1197 }
1198 
1199 /*
1200  * This routine is called to generate a message from the routing
1201  * socket indicating that the status of a network interface has changed.
1202  */
1203 void
1204 rt_ifmsg(struct ifnet *ifp)
1205 {
1206 	struct if_msghdr *ifm;
1207 	struct mbuf *m;
1208 	struct rt_addrinfo rtinfo;
1209 
1210 	if (route_cb.any_count == 0)
1211 		return;
1212 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1213 	m = rt_msg_mbuf(RTM_IFINFO, &rtinfo);
1214 	if (m == NULL)
1215 		return;
1216 	ifm = mtod(m, struct if_msghdr *);
1217 	ifm->ifm_index = ifp->if_index;
1218 	ifm->ifm_flags = ifp->if_flags;
1219 	ifm->ifm_data = ifp->if_data;
1220 	ifm->ifm_addrs = 0;
1221 	rts_input(m, 0);
1222 }
1223 
1224 static void
1225 rt_ifamsg(int cmd, struct ifaddr *ifa)
1226 {
1227 	struct ifa_msghdr *ifam;
1228 	struct rt_addrinfo rtinfo;
1229 	struct mbuf *m;
1230 	struct ifnet *ifp = ifa->ifa_ifp;
1231 
1232 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1233 	rtinfo.rti_ifaaddr = ifa->ifa_addr;
1234 	rtinfo.rti_ifpaddr =
1235 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1236 	rtinfo.rti_netmask = ifa->ifa_netmask;
1237 	rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
1238 
1239 	m = rt_msg_mbuf(cmd, &rtinfo);
1240 	if (m == NULL)
1241 		return;
1242 
1243 	ifam = mtod(m, struct ifa_msghdr *);
1244 	ifam->ifam_index = ifp->if_index;
1245 	ifam->ifam_flags = ifa->ifa_flags;
1246 	ifam->ifam_addrs = rtinfo.rti_addrs;
1247 	ifam->ifam_addrflags = if_addrflags(ifa);
1248 	ifam->ifam_metric = ifa->ifa_metric;
1249 
1250 	rts_input(m, familyof(ifa->ifa_addr));
1251 }
1252 
1253 void
1254 rt_rtmsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int error)
1255 {
1256 	struct rt_msghdr *rtm;
1257 	struct rt_addrinfo rtinfo;
1258 	struct mbuf *m;
1259 	struct sockaddr *dst;
1260 
1261 	if (rt == NULL)
1262 		return;
1263 
1264 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1265 	rtinfo.rti_dst = dst = rt_key(rt);
1266 	rtinfo.rti_gateway = rt->rt_gateway;
1267 	rtinfo.rti_netmask = rt_mask(rt);
1268 	if (ifp != NULL) {
1269 		rtinfo.rti_ifpaddr =
1270 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1271 	}
1272 	if (rt->rt_ifa != NULL)
1273 		rtinfo.rti_ifaaddr = rt->rt_ifa->ifa_addr;
1274 
1275 	m = rt_msg_mbuf(cmd, &rtinfo);
1276 	if (m == NULL)
1277 		return;
1278 
1279 	rtm = mtod(m, struct rt_msghdr *);
1280 	if (ifp != NULL)
1281 		rtm->rtm_index = ifp->if_index;
1282 	rtm->rtm_flags |= rt->rt_flags;
1283 	rtm->rtm_errno = error;
1284 	rtm->rtm_addrs = rtinfo.rti_addrs;
1285 
1286 	rts_input(m, familyof(dst));
1287 }
1288 
1289 /*
1290  * This is called to generate messages from the routing socket
1291  * indicating a network interface has had addresses associated with it.
1292  * if we ever reverse the logic and replace messages TO the routing
1293  * socket indicate a request to configure interfaces, then it will
1294  * be unnecessary as the routing socket will automatically generate
1295  * copies of it.
1296  */
1297 void
1298 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
1299 {
1300 	if (route_cb.any_count == 0)
1301 		return;
1302 
1303 	if (cmd == RTM_ADD) {
1304 		rt_ifamsg(RTM_NEWADDR, ifa);
1305 		rt_rtmsg(RTM_ADD, rt, ifa->ifa_ifp, error);
1306 	} else {
1307 		KASSERT((cmd == RTM_DELETE), ("unknown cmd %d", cmd));
1308 		rt_rtmsg(RTM_DELETE, rt, ifa->ifa_ifp, error);
1309 		rt_ifamsg(RTM_DELADDR, ifa);
1310 	}
1311 }
1312 
1313 /*
1314  * This is the analogue to the rt_newaddrmsg which performs the same
1315  * function but for multicast group memberhips.  This is easier since
1316  * there is no route state to worry about.
1317  */
1318 void
1319 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1320 {
1321 	struct rt_addrinfo rtinfo;
1322 	struct mbuf *m = NULL;
1323 	struct ifnet *ifp = ifma->ifma_ifp;
1324 	struct ifma_msghdr *ifmam;
1325 
1326 	if (route_cb.any_count == 0)
1327 		return;
1328 
1329 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1330 	rtinfo.rti_ifaaddr = ifma->ifma_addr;
1331 	if (ifp != NULL && !TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
1332 		rtinfo.rti_ifpaddr =
1333 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1334 	}
1335 	/*
1336 	 * If a link-layer address is present, present it as a ``gateway''
1337 	 * (similarly to how ARP entries, e.g., are presented).
1338 	 */
1339 	rtinfo.rti_gateway = ifma->ifma_lladdr;
1340 
1341 	m = rt_msg_mbuf(cmd, &rtinfo);
1342 	if (m == NULL)
1343 		return;
1344 
1345 	ifmam = mtod(m, struct ifma_msghdr *);
1346 	ifmam->ifmam_index = ifp->if_index;
1347 	ifmam->ifmam_addrs = rtinfo.rti_addrs;
1348 
1349 	rts_input(m, familyof(ifma->ifma_addr));
1350 }
1351 
1352 static struct mbuf *
1353 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1354 		     struct rt_addrinfo *info)
1355 {
1356 	struct if_announcemsghdr *ifan;
1357 	struct mbuf *m;
1358 
1359 	if (route_cb.any_count == 0)
1360 		return NULL;
1361 
1362 	bzero(info, sizeof(*info));
1363 	m = rt_msg_mbuf(type, info);
1364 	if (m == NULL)
1365 		return NULL;
1366 
1367 	ifan = mtod(m, struct if_announcemsghdr *);
1368 	ifan->ifan_index = ifp->if_index;
1369 	strlcpy(ifan->ifan_name, ifp->if_xname, sizeof ifan->ifan_name);
1370 	ifan->ifan_what = what;
1371 	return m;
1372 }
1373 
1374 /*
1375  * This is called to generate routing socket messages indicating
1376  * IEEE80211 wireless events.
1377  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1378  */
1379 void
1380 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1381 {
1382 	struct rt_addrinfo info;
1383 	struct mbuf *m;
1384 
1385 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1386 	if (m == NULL)
1387 		return;
1388 
1389 	/*
1390 	 * Append the ieee80211 data.  Try to stick it in the
1391 	 * mbuf containing the ifannounce msg; otherwise allocate
1392 	 * a new mbuf and append.
1393 	 *
1394 	 * NB: we assume m is a single mbuf.
1395 	 */
1396 	if (data_len > M_TRAILINGSPACE(m)) {
1397 		/* XXX use m_getb(data_len, M_NOWAIT, MT_DATA, 0); */
1398 		struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1399 		if (n == NULL) {
1400 			m_freem(m);
1401 			return;
1402 		}
1403 		KKASSERT(data_len <= M_TRAILINGSPACE(n));
1404 		bcopy(data, mtod(n, void *), data_len);
1405 		n->m_len = data_len;
1406 		m->m_next = n;
1407 	} else if (data_len > 0) {
1408 		bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1409 		m->m_len += data_len;
1410 	}
1411 	mbuftrackid(m, 33);
1412 	if (m->m_flags & M_PKTHDR)
1413 		m->m_pkthdr.len += data_len;
1414 	mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1415 	rts_input(m, 0);
1416 }
1417 
1418 /*
1419  * This is called to generate routing socket messages indicating
1420  * network interface arrival and departure.
1421  */
1422 void
1423 rt_ifannouncemsg(struct ifnet *ifp, int what)
1424 {
1425 	struct rt_addrinfo addrinfo;
1426 	struct mbuf *m;
1427 
1428 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &addrinfo);
1429 	if (m != NULL)
1430 		rts_input(m, 0);
1431 }
1432 
1433 static int
1434 resizewalkarg(struct walkarg *w, int len)
1435 {
1436 	void *newptr;
1437 
1438 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
1439 	if (newptr == NULL)
1440 		return (ENOMEM);
1441 	if (w->w_tmem != NULL)
1442 		kfree(w->w_tmem, M_RTABLE);
1443 	w->w_tmem = newptr;
1444 	w->w_tmemsize = len;
1445 	bzero(newptr, len);
1446 
1447 	return (0);
1448 }
1449 
1450 static void
1451 ifnet_compute_stats(struct ifnet *ifp)
1452 {
1453 	IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1454 	IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1455 	IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1456 	IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1457 	IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1458 	IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1459 	IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1460 	IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1461 	IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1462 	IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1463 	IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops);
1464 }
1465 
1466 static int
1467 if_addrflags(const struct ifaddr *ifa)
1468 {
1469 	switch (ifa->ifa_addr->sa_family) {
1470 #ifdef INET6
1471 	case AF_INET6:
1472 		return ((const struct in6_ifaddr *)ifa)->ia6_flags;
1473 #endif
1474 	default:
1475 		return 0;
1476 	}
1477 }
1478 
1479 static int
1480 sysctl_iflist(int af, struct walkarg *w)
1481 {
1482 	struct ifnet *ifp;
1483 	struct rt_addrinfo rtinfo;
1484 	int msglen, error;
1485 
1486 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1487 
1488 	ifnet_lock();
1489 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1490 		struct ifaddr_container *ifac, *ifac_mark;
1491 		struct ifaddr_marker mark;
1492 		struct ifaddrhead *head;
1493 		struct ifaddr *ifa;
1494 
1495 		if (w->w_arg && w->w_arg != ifp->if_index)
1496 			continue;
1497 		head = &ifp->if_addrheads[mycpuid];
1498 		/*
1499 		 * There is no need to reference the first ifaddr
1500 		 * even if the following resizewalkarg() blocks,
1501 		 * since the first ifaddr will not be destroyed
1502 		 * when the ifnet lock is held.
1503 		 */
1504 		ifac = TAILQ_FIRST(head);
1505 		ifa = ifac->ifa;
1506 		rtinfo.rti_ifpaddr = ifa->ifa_addr;
1507 		msglen = rt_msgsize(RTM_IFINFO, &rtinfo);
1508 		if (w->w_tmemsize < msglen && resizewalkarg(w, msglen) != 0) {
1509 			ifnet_unlock();
1510 			return (ENOMEM);
1511 		}
1512 		rt_msg_buffer(RTM_IFINFO, &rtinfo, w->w_tmem, msglen);
1513 		rtinfo.rti_ifpaddr = NULL;
1514 		if (w->w_req != NULL && w->w_tmem != NULL) {
1515 			struct if_msghdr *ifm = w->w_tmem;
1516 
1517 			ifm->ifm_index = ifp->if_index;
1518 			ifm->ifm_flags = ifp->if_flags;
1519 			ifnet_compute_stats(ifp);
1520 			ifm->ifm_data = ifp->if_data;
1521 			ifm->ifm_addrs = rtinfo.rti_addrs;
1522 			error = SYSCTL_OUT(w->w_req, ifm, msglen);
1523 			if (error) {
1524 				ifnet_unlock();
1525 				return (error);
1526 			}
1527 		}
1528 		/*
1529 		 * Add a marker, since SYSCTL_OUT() could block and during
1530 		 * that period the list could be changed.
1531 		 */
1532 		ifa_marker_init(&mark, ifp);
1533 		ifac_mark = &mark.ifac;
1534 		TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
1535 		while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
1536 			TAILQ_REMOVE(head, ifac_mark, ifa_link);
1537 			TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
1538 
1539 			ifa = ifac->ifa;
1540 
1541 			/* Ignore marker */
1542 			if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1543 				continue;
1544 
1545 			if (af && af != ifa->ifa_addr->sa_family)
1546 				continue;
1547 			if (curproc->p_ucred->cr_prison &&
1548 			    prison_if(curproc->p_ucred, ifa->ifa_addr))
1549 				continue;
1550 			rtinfo.rti_ifaaddr = ifa->ifa_addr;
1551 			rtinfo.rti_netmask = ifa->ifa_netmask;
1552 			rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
1553 			msglen = rt_msgsize(RTM_NEWADDR, &rtinfo);
1554 			/*
1555 			 * Keep a reference on this ifaddr, so that it will
1556 			 * not be destroyed if the following resizewalkarg()
1557 			 * blocks.
1558 			 */
1559 			IFAREF(ifa);
1560 			if (w->w_tmemsize < msglen &&
1561 			    resizewalkarg(w, msglen) != 0) {
1562 				IFAFREE(ifa);
1563 				TAILQ_REMOVE(head, ifac_mark, ifa_link);
1564 				ifnet_unlock();
1565 				return (ENOMEM);
1566 			}
1567 			rt_msg_buffer(RTM_NEWADDR, &rtinfo, w->w_tmem, msglen);
1568 			if (w->w_req != NULL) {
1569 				struct ifa_msghdr *ifam = w->w_tmem;
1570 
1571 				ifam->ifam_index = ifa->ifa_ifp->if_index;
1572 				ifam->ifam_flags = ifa->ifa_flags;
1573 				ifam->ifam_addrs = rtinfo.rti_addrs;
1574 				ifam->ifam_addrflags = if_addrflags(ifa);
1575 				ifam->ifam_metric = ifa->ifa_metric;
1576 				error = SYSCTL_OUT(w->w_req, w->w_tmem, msglen);
1577 				if (error) {
1578 					IFAFREE(ifa);
1579 					TAILQ_REMOVE(head, ifac_mark, ifa_link);
1580 					ifnet_unlock();
1581 					return (error);
1582 				}
1583 			}
1584 			IFAFREE(ifa);
1585 		}
1586 		TAILQ_REMOVE(head, ifac_mark, ifa_link);
1587 		rtinfo.rti_netmask = NULL;
1588 		rtinfo.rti_ifaaddr = NULL;
1589 		rtinfo.rti_bcastaddr = NULL;
1590 	}
1591 	ifnet_unlock();
1592 	return (0);
1593 }
1594 
1595 static int
1596 rttable_walkarg_create(struct rttable_walkarg *w, int op, int arg)
1597 {
1598 	struct rt_addrinfo rtinfo;
1599 	struct sockaddr_storage ss;
1600 	int i, msglen;
1601 
1602 	memset(w, 0, sizeof(*w));
1603 	w->w_op = op;
1604 	w->w_arg = arg;
1605 
1606 	memset(&ss, 0, sizeof(ss));
1607 	ss.ss_len = sizeof(ss);
1608 
1609 	memset(&rtinfo, 0, sizeof(rtinfo));
1610 	for (i = 0; i < RTAX_MAX; ++i)
1611 		rtinfo.rti_info[i] = (struct sockaddr *)&ss;
1612 	msglen = rt_msgsize(RTM_GET, &rtinfo);
1613 
1614 	w->w_bufsz = msglen * RTTABLE_DUMP_MSGCNT_MAX;
1615 	w->w_buf = kmalloc(w->w_bufsz, M_TEMP, M_WAITOK | M_NULLOK);
1616 	if (w->w_buf == NULL)
1617 		return ENOMEM;
1618 	return 0;
1619 }
1620 
1621 static void
1622 rttable_walkarg_destroy(struct rttable_walkarg *w)
1623 {
1624 	kfree(w->w_buf, M_TEMP);
1625 }
1626 
1627 static void
1628 rttable_entry_rtinfo(struct rt_addrinfo *rtinfo, struct radix_node *rn)
1629 {
1630 	struct rtentry *rt = (struct rtentry *)rn;
1631 
1632 	bzero(rtinfo, sizeof(*rtinfo));
1633 	rtinfo->rti_dst = rt_key(rt);
1634 	rtinfo->rti_gateway = rt->rt_gateway;
1635 	rtinfo->rti_netmask = rt_mask(rt);
1636 	rtinfo->rti_genmask = rt->rt_genmask;
1637 	if (rt->rt_ifp != NULL) {
1638 		rtinfo->rti_ifpaddr =
1639 		TAILQ_FIRST(&rt->rt_ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1640 		rtinfo->rti_ifaaddr = rt->rt_ifa->ifa_addr;
1641 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1642 			rtinfo->rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
1643 	}
1644 }
1645 
1646 static int
1647 rttable_walk_entry(struct radix_node *rn, void *xw)
1648 {
1649 	struct rttable_walkarg *w = xw;
1650 	struct rtentry *rt = (struct rtentry *)rn;
1651 	struct rt_addrinfo rtinfo;
1652 	struct rt_msghdr *rtm;
1653 	boolean_t save = FALSE;
1654 	int msglen, w_bufleft;
1655 	void *ptr;
1656 
1657 	rttable_entry_rtinfo(&rtinfo, rn);
1658 	msglen = rt_msgsize(RTM_GET, &rtinfo);
1659 
1660 	w_bufleft = w->w_bufsz - w->w_buflen;
1661 
1662 	if (rn->rn_dupedkey != NULL) {
1663 		struct radix_node *rn1 = rn;
1664 		int total_msglen = msglen;
1665 
1666 		/*
1667 		 * Make sure that we have enough space left for all
1668 		 * dupedkeys, since rn_walktree_at always starts
1669 		 * from the first dupedkey.
1670 		 */
1671 		while ((rn1 = rn1->rn_dupedkey) != NULL) {
1672 			struct rt_addrinfo rtinfo1;
1673 			int msglen1;
1674 
1675 			if (rn1->rn_flags & RNF_ROOT)
1676 				continue;
1677 
1678 			rttable_entry_rtinfo(&rtinfo1, rn1);
1679 			msglen1 = rt_msgsize(RTM_GET, &rtinfo1);
1680 			total_msglen += msglen1;
1681 		}
1682 
1683 		if (total_msglen > w_bufleft) {
1684 			if (total_msglen > w->w_bufsz) {
1685 				static int logged = 0;
1686 
1687 				if (!logged) {
1688 					kprintf("buffer is too small for "
1689 					    "all dupedkeys, increase "
1690 					    "RTTABLE_DUMP_MSGCNT_MAX\n");
1691 					logged = 1;
1692 				}
1693 				return ENOMEM;
1694 			}
1695 			save = TRUE;
1696 		}
1697 	} else if (msglen > w_bufleft) {
1698 		save = TRUE;
1699 	}
1700 
1701 	if (save) {
1702 		/*
1703 		 * Not enough buffer left; remember the position
1704 		 * to start from upon next round.
1705 		 */
1706 		KASSERT(msglen <= w->w_bufsz, ("msg too long %d", msglen));
1707 
1708 		KASSERT(rtinfo.rti_dst->sa_len <= sizeof(w->w_key0),
1709 		    ("key too long %d", rtinfo.rti_dst->sa_len));
1710 		memset(&w->w_key0, 0, sizeof(w->w_key0));
1711 		memcpy(&w->w_key0, rtinfo.rti_dst, rtinfo.rti_dst->sa_len);
1712 		w->w_key = (const char *)&w->w_key0;
1713 
1714 		if (rtinfo.rti_netmask != NULL) {
1715 			KASSERT(
1716 			    rtinfo.rti_netmask->sa_len <= sizeof(w->w_mask0),
1717 			    ("mask too long %d", rtinfo.rti_netmask->sa_len));
1718 			memset(&w->w_mask0, 0, sizeof(w->w_mask0));
1719 			memcpy(&w->w_mask0, rtinfo.rti_netmask,
1720 			    rtinfo.rti_netmask->sa_len);
1721 			w->w_mask = (const char *)&w->w_mask0;
1722 		} else {
1723 			w->w_mask = NULL;
1724 		}
1725 		return EJUSTRETURN;
1726 	}
1727 
1728 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1729 		return 0;
1730 
1731 	ptr = ((uint8_t *)w->w_buf) + w->w_buflen;
1732 	rt_msg_buffer(RTM_GET, &rtinfo, ptr, msglen);
1733 
1734 	rtm = (struct rt_msghdr *)ptr;
1735 	rtm->rtm_flags = rt->rt_flags;
1736 	rtm->rtm_use = rt->rt_use;
1737 	rtm->rtm_rmx = rt->rt_rmx;
1738 	rtm->rtm_index = rt->rt_ifp->if_index;
1739 	rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1740 	rtm->rtm_addrs = rtinfo.rti_addrs;
1741 
1742 	w->w_buflen += msglen;
1743 
1744 	return 0;
1745 }
1746 
1747 static void
1748 rttable_walk_dispatch(netmsg_t msg)
1749 {
1750 	struct netmsg_rttable_walk *nmsg = (struct netmsg_rttable_walk *)msg;
1751 	struct radix_node_head *rnh = rt_tables[mycpuid][nmsg->af];
1752 	struct rttable_walkarg *w = nmsg->w;
1753 	int error;
1754 
1755 	error = rnh->rnh_walktree_at(rnh, w->w_key, w->w_mask,
1756 	    rttable_walk_entry, w);
1757 	lwkt_replymsg(&nmsg->base.lmsg, error);
1758 }
1759 
1760 static int
1761 sysctl_rttable(int af, struct sysctl_req *req, int op, int arg)
1762 {
1763 	struct rttable_walkarg w;
1764 	int error, i;
1765 
1766 	error = rttable_walkarg_create(&w, op, arg);
1767 	if (error)
1768 		return error;
1769 
1770 	error = EINVAL;
1771 	for (i = 1; i <= AF_MAX; i++) {
1772 		if (rt_tables[mycpuid][i] != NULL && (af == 0 || af == i)) {
1773 			w.w_key = NULL;
1774 			w.w_mask = NULL;
1775 			for (;;) {
1776 				struct netmsg_rttable_walk nmsg;
1777 
1778 				netmsg_init(&nmsg.base, NULL,
1779 				    &curthread->td_msgport, 0,
1780 				    rttable_walk_dispatch);
1781 				nmsg.af = i;
1782 				nmsg.w = &w;
1783 
1784 				w.w_buflen = 0;
1785 
1786 				error = lwkt_domsg(netisr_cpuport(mycpuid),
1787 				    &nmsg.base.lmsg, 0);
1788 				if (error && error != EJUSTRETURN)
1789 					goto done;
1790 
1791 				if (req != NULL && w.w_buflen > 0) {
1792 					int error1;
1793 
1794 					error1 = SYSCTL_OUT(req, w.w_buf,
1795 					    w.w_buflen);
1796 					if (error1) {
1797 						error = error1;
1798 						goto done;
1799 					}
1800 				}
1801 				if (error == 0) /* done */
1802 					break;
1803 			}
1804 		}
1805 	}
1806 done:
1807 	rttable_walkarg_destroy(&w);
1808 	return error;
1809 }
1810 
1811 static int
1812 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1813 {
1814 	int	*name = (int *)arg1;
1815 	u_int	namelen = arg2;
1816 	int	error = EINVAL;
1817 	int	origcpu, cpu;
1818 	u_char  af;
1819 	struct	walkarg w;
1820 
1821 	name ++;
1822 	namelen--;
1823 	if (req->newptr)
1824 		return (EPERM);
1825 	if (namelen != 3 && namelen != 4)
1826 		return (EINVAL);
1827 	af = name[0];
1828 	bzero(&w, sizeof w);
1829 	w.w_op = name[1];
1830 	w.w_arg = name[2];
1831 	w.w_req = req;
1832 
1833 	/*
1834 	 * Optional third argument specifies cpu, used primarily for
1835 	 * debugging the route table.
1836 	 */
1837 	if (namelen == 4) {
1838 		if (name[3] < 0 || name[3] >= netisr_ncpus)
1839 			return (EINVAL);
1840 		cpu = name[3];
1841 	} else {
1842 		/*
1843 		 * Target cpu is not specified, use cpu0 then, so that
1844 		 * the result set will be relatively stable.
1845 		 */
1846 		cpu = 0;
1847 	}
1848 	origcpu = mycpuid;
1849 	lwkt_migratecpu(cpu);
1850 
1851 	switch (w.w_op) {
1852 	case NET_RT_DUMP:
1853 	case NET_RT_FLAGS:
1854 		error = sysctl_rttable(af, w.w_req, w.w_op, w.w_arg);
1855 		break;
1856 
1857 	case NET_RT_IFLIST:
1858 		error = sysctl_iflist(af, &w);
1859 		break;
1860 	}
1861 	if (w.w_tmem != NULL)
1862 		kfree(w.w_tmem, M_RTABLE);
1863 
1864 	lwkt_migratecpu(origcpu);
1865 	return (error);
1866 }
1867 
1868 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1869 
1870 /*
1871  * Definitions of protocols supported in the ROUTE domain.
1872  */
1873 
1874 static struct domain routedomain;		/* or at least forward */
1875 
1876 static struct protosw routesw[] = {
1877     {
1878 	.pr_type = SOCK_RAW,
1879 	.pr_domain = &routedomain,
1880 	.pr_protocol = 0,
1881 	.pr_flags = PR_ATOMIC|PR_ADDR,
1882 	.pr_input = NULL,
1883 	.pr_output = route_output,
1884 	.pr_ctlinput = raw_ctlinput,
1885 	.pr_ctloutput = route_ctloutput,
1886 	.pr_ctlport = cpu0_ctlport,
1887 
1888 	.pr_init = raw_init,
1889 	.pr_usrreqs = &route_usrreqs
1890     }
1891 };
1892 
1893 static struct domain routedomain = {
1894 	.dom_family		= AF_ROUTE,
1895 	.dom_name		= "route",
1896 	.dom_init		= NULL,
1897 	.dom_externalize	= NULL,
1898 	.dom_dispose		= NULL,
1899 	.dom_protosw		= routesw,
1900 	.dom_protoswNPROTOSW	= &routesw[(sizeof routesw)/(sizeof routesw[0])],
1901 	.dom_next		= SLIST_ENTRY_INITIALIZER,
1902 	.dom_rtattach		= NULL,
1903 	.dom_rtoffset		= 0,
1904 	.dom_maxrtkey		= 0,
1905 	.dom_ifattach		= NULL,
1906 	.dom_ifdetach		= NULL
1907 };
1908 
1909 DOMAIN_SET(route);
1910 
1911