xref: /dragonfly/sys/net/rtsock.c (revision 7485684f)
1 /*
2  * Copyright (c) 2004, 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey M. Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of The DragonFly Project nor the names of its
16  *    contributors may be used to endorse or promote products derived
17  *    from this software without specific, prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
22  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
23  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
27  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
29  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1988, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
62  * $FreeBSD: src/sys/net/rtsock.c,v 1.44.2.11 2002/12/04 14:05:41 ru Exp $
63  */
64 
65 #include "opt_inet6.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 #include <sys/proc.h>
72 #include <sys/caps.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/domain.h>
79 #include <sys/jail.h>
80 
81 #include <sys/thread2.h>
82 #include <sys/socketvar2.h>
83 
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/route.h>
87 #include <net/raw_cb.h>
88 #include <net/netmsg2.h>
89 #include <net/netisr2.h>
90 
91 #ifdef INET6
92 #include <netinet/in_var.h>
93 #endif
94 
95 /* sa_family is after sa_len, rest is data */
96 #define	_SA_MINSIZE	(offsetof(struct sockaddr, sa_family) + \
97 			 sizeof(((struct sockaddr *)0)->sa_family))
98 
99 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
100 
101 static struct route_cb {
102 	int	ip_count;
103 	int	ip6_count;
104 	int	any_count;
105 } route_cb;
106 
107 static const struct sockaddr route_src = { 2, PF_ROUTE, };
108 
109 struct walkarg {
110 	int	w_tmemsize;
111 	int	w_op, w_arg;
112 	void	*w_tmem;
113 	struct sysctl_req *w_req;
114 };
115 
116 #ifndef RTTABLE_DUMP_MSGCNT_MAX
117 /* Should be large enough for dupkeys */
118 #define RTTABLE_DUMP_MSGCNT_MAX		64
119 #endif
120 
121 struct rttable_walkarg {
122 	int	w_op;
123 	int	w_arg;
124 	int	w_bufsz;
125 	void	*w_buf;
126 
127 	int	w_buflen;
128 
129 	const char *w_key;
130 	const char *w_mask;
131 
132 	struct sockaddr_storage w_key0;
133 	struct sockaddr_storage w_mask0;
134 };
135 
136 struct netmsg_rttable_walk {
137 	struct netmsg_base	base;
138 	int			af;
139 	struct rttable_walkarg	*w;
140 };
141 
142 struct routecb {
143 	struct rawcb	rocb_rcb;
144 	unsigned int	rocb_msgfilter;
145 	char		*rocb_missfilter;
146 	size_t		rocb_missfilterlen;
147 };
148 #define	sotoroutecb(so)	((struct routecb *)(so)->so_pcb)
149 
150 static struct mbuf *
151 		rt_msg_mbuf (int, struct rt_addrinfo *);
152 static void	rt_msg_buffer (int, struct rt_addrinfo *, void *buf, int len);
153 static int	rt_msgsize(int type, const struct rt_addrinfo *rtinfo);
154 static int	rt_xaddrs (char *, char *, struct rt_addrinfo *);
155 static int	sysctl_rttable(int af, struct sysctl_req *req, int op, int arg);
156 static int	if_addrflags(const struct ifaddr *ifa);
157 static int	sysctl_iflist (int af, struct walkarg *w);
158 static int	route_output(struct mbuf *, struct socket *, ...);
159 static void	rt_setmetrics (u_long, struct rt_metrics *,
160 			       struct rt_metrics *);
161 
162 /*
163  * It really doesn't make any sense at all for this code to share much
164  * with raw_usrreq.c, since its functionality is so restricted.  XXX
165  */
166 static void
rts_abort(netmsg_t msg)167 rts_abort(netmsg_t msg)
168 {
169 	crit_enter();
170 	raw_usrreqs.pru_abort(msg);
171 	/* msg invalid now */
172 	crit_exit();
173 }
174 
175 static int
rts_filter(struct mbuf * m,const struct sockproto * proto,const struct rawcb * rp)176 rts_filter(struct mbuf *m, const struct sockproto *proto,
177 	const struct rawcb *rp)
178 {
179 	const struct routecb *rop = (const struct routecb *)rp;
180 	const struct rt_msghdr *rtm;
181 
182 	KKASSERT(m != NULL);
183 	KKASSERT(proto != NULL);
184 	KKASSERT(rp != NULL);
185 
186 	/* Wrong family for this socket. */
187 	if (proto->sp_family != PF_ROUTE)
188 		return ENOPROTOOPT;
189 
190 	/* If no filter set, just return. */
191 	if (rop->rocb_msgfilter == 0 && rop->rocb_missfilterlen == 0)
192 		return 0;
193 
194 	/* Ensure we can access rtm_type */
195 	if (m->m_len <
196 	    offsetof(struct rt_msghdr, rtm_type) + sizeof(rtm->rtm_type))
197 		return EINVAL;
198 
199 	rtm = mtod(m, const struct rt_msghdr *);
200 	/* If the rtm type is filtered out, return a positive. */
201 	if (rop->rocb_msgfilter != 0 &&
202 	    !(rop->rocb_msgfilter & ROUTE_FILTER(rtm->rtm_type)))
203 		return EEXIST;
204 
205 	if (rop->rocb_missfilterlen != 0 && rtm->rtm_type == RTM_MISS) {
206 		CTASSERT(RTAX_DST == 0);
207 		struct sockaddr *sa;
208 		struct sockaddr_storage ss;
209 		struct sockaddr *dst = (struct sockaddr *)&ss;
210 		char *cp = rop->rocb_missfilter;
211 		char *ep = cp + rop->rocb_missfilterlen;
212 
213 		/* Ensure we can access sa_len */
214 		if (m->m_pkthdr.len < sizeof(*rtm) + _SA_MINSIZE)
215 			return EINVAL;
216 		m_copydata(m, sizeof(*rtm) + offsetof(struct sockaddr, sa_len),
217 		    sizeof(ss.ss_len), &ss);
218 		if (ss.ss_len < _SA_MINSIZE ||
219 		    ss.ss_len > sizeof(ss) ||
220 		    m->m_pkthdr.len < sizeof(*rtm) + ss.ss_len)
221 			return EINVAL;
222 		/* Copy out the destination sockaddr */
223 		m_copydata(m, sizeof(*rtm), ss.ss_len, &ss);
224 
225 		/* Find a matching sockaddr in the filter */
226 		while (cp < ep) {
227 			sa = (struct sockaddr *)cp;
228 			if (sa->sa_len == dst->sa_len &&
229 			    memcmp(sa, dst, sa->sa_len) == 0)
230 				break;
231 			cp += RT_ROUNDUP(sa->sa_len);
232 		}
233 		if (cp == ep)
234 			return EEXIST;
235 	}
236 
237 	/* Passed the filter. */
238 	return 0;
239 }
240 
241 
242 /* pru_accept is EOPNOTSUPP */
243 
244 static void
rts_attach(netmsg_t msg)245 rts_attach(netmsg_t msg)
246 {
247 	struct socket *so = msg->base.nm_so;
248 	struct pru_attach_info *ai = msg->attach.nm_ai;
249 	struct rawcb *rp;
250 	struct routecb *rop;
251 	int proto = msg->attach.nm_proto;
252 	int error;
253 
254 	crit_enter();
255 	if (sotorawcb(so) != NULL) {
256 		error = EISCONN;
257 		goto done;
258 	}
259 
260 	rop = kmalloc(sizeof *rop, M_PCB, M_WAITOK | M_ZERO);
261 	rp = &rop->rocb_rcb;
262 
263 	/*
264 	 * The critical section is necessary to block protocols from sending
265 	 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
266 	 * this PCB is extant but incompletely initialized.
267 	 * Probably we should try to do more of this work beforehand and
268 	 * eliminate the critical section.
269 	 */
270 	so->so_pcb = rp;
271 	soreference(so);	/* so_pcb assignment */
272 	error = raw_attach(so, proto, ai->sb_rlimit);
273 	rp = sotorawcb(so);
274 	if (error) {
275 		kfree(rop, M_PCB);
276 		goto done;
277 	}
278 	switch(rp->rcb_proto.sp_protocol) {
279 	case AF_INET:
280 		route_cb.ip_count++;
281 		break;
282 	case AF_INET6:
283 		route_cb.ip6_count++;
284 		break;
285 	}
286 	rp->rcb_faddr = &route_src;
287 	rp->rcb_filter = rts_filter;
288 	route_cb.any_count++;
289 	soisconnected(so);
290 	so->so_options |= SO_USELOOPBACK;
291 	error = 0;
292 done:
293 	crit_exit();
294 	lwkt_replymsg(&msg->lmsg, error);
295 }
296 
297 static void
rts_bind(netmsg_t msg)298 rts_bind(netmsg_t msg)
299 {
300 	crit_enter();
301 	raw_usrreqs.pru_bind(msg); /* xxx just EINVAL */
302 	/* msg invalid now */
303 	crit_exit();
304 }
305 
306 static void
rts_connect(netmsg_t msg)307 rts_connect(netmsg_t msg)
308 {
309 	crit_enter();
310 	raw_usrreqs.pru_connect(msg); /* XXX just EINVAL */
311 	/* msg invalid now */
312 	crit_exit();
313 }
314 
315 /* pru_connect2 is EOPNOTSUPP */
316 /* pru_control is EOPNOTSUPP */
317 
318 static void
rts_detach(netmsg_t msg)319 rts_detach(netmsg_t msg)
320 {
321 	struct socket *so = msg->base.nm_so;
322 	struct rawcb *rp = sotorawcb(so);
323 	struct routecb *rop = (struct routecb *)rp;
324 
325 	crit_enter();
326 	if (rop->rocb_missfilterlen != 0)
327 		kfree(rop->rocb_missfilter, M_PCB);
328 	if (rp != NULL) {
329 		switch(rp->rcb_proto.sp_protocol) {
330 		case AF_INET:
331 			route_cb.ip_count--;
332 			break;
333 		case AF_INET6:
334 			route_cb.ip6_count--;
335 			break;
336 		}
337 		route_cb.any_count--;
338 	}
339 	raw_usrreqs.pru_detach(msg);
340 	/* msg invalid now */
341 	crit_exit();
342 }
343 
344 static void
rts_disconnect(netmsg_t msg)345 rts_disconnect(netmsg_t msg)
346 {
347 	crit_enter();
348 	raw_usrreqs.pru_disconnect(msg);
349 	/* msg invalid now */
350 	crit_exit();
351 }
352 
353 /* pru_listen is EOPNOTSUPP */
354 
355 static void
rts_peeraddr(netmsg_t msg)356 rts_peeraddr(netmsg_t msg)
357 {
358 	crit_enter();
359 	raw_usrreqs.pru_peeraddr(msg);
360 	/* msg invalid now */
361 	crit_exit();
362 }
363 
364 /* pru_rcvd is EOPNOTSUPP */
365 /* pru_rcvoob is EOPNOTSUPP */
366 
367 static void
rts_send(netmsg_t msg)368 rts_send(netmsg_t msg)
369 {
370 	crit_enter();
371 	raw_usrreqs.pru_send(msg);
372 	/* msg invalid now */
373 	crit_exit();
374 }
375 
376 /* pru_sense is null */
377 
378 static void
rts_shutdown(netmsg_t msg)379 rts_shutdown(netmsg_t msg)
380 {
381 	crit_enter();
382 	raw_usrreqs.pru_shutdown(msg);
383 	/* msg invalid now */
384 	crit_exit();
385 }
386 
387 static void
rts_sockaddr(netmsg_t msg)388 rts_sockaddr(netmsg_t msg)
389 {
390 	crit_enter();
391 	raw_usrreqs.pru_sockaddr(msg);
392 	/* msg invalid now */
393 	crit_exit();
394 }
395 
396 static struct pr_usrreqs route_usrreqs = {
397 	.pru_abort = rts_abort,
398 	.pru_accept = pr_generic_notsupp,
399 	.pru_attach = rts_attach,
400 	.pru_bind = rts_bind,
401 	.pru_connect = rts_connect,
402 	.pru_connect2 = pr_generic_notsupp,
403 	.pru_control = pr_generic_notsupp,
404 	.pru_detach = rts_detach,
405 	.pru_disconnect = rts_disconnect,
406 	.pru_listen = pr_generic_notsupp,
407 	.pru_peeraddr = rts_peeraddr,
408 	.pru_rcvd = pr_generic_notsupp,
409 	.pru_rcvoob = pr_generic_notsupp,
410 	.pru_send = rts_send,
411 	.pru_sense = pru_sense_null,
412 	.pru_shutdown = rts_shutdown,
413 	.pru_sockaddr = rts_sockaddr,
414 	.pru_sosend = sosend,
415 	.pru_soreceive = soreceive
416 };
417 
418 static __inline sa_family_t
familyof(struct sockaddr * sa)419 familyof(struct sockaddr *sa)
420 {
421 	return (sa != NULL ? sa->sa_family : 0);
422 }
423 
424 /*
425  * Routing socket input function.  The packet must be serialized onto cpu 0.
426  * We use the cpu0_soport() netisr processing loop to handle it.
427  *
428  * This looks messy but it means that anyone, including interrupt code,
429  * can send a message to the routing socket.
430  */
431 static void
rts_input_handler(netmsg_t msg)432 rts_input_handler(netmsg_t msg)
433 {
434 	static const struct sockaddr route_dst = { 2, PF_ROUTE, };
435 	struct sockproto route_proto;
436 	struct netmsg_packet *pmsg = &msg->packet;
437 	struct mbuf *m;
438 	sa_family_t family;
439 	struct rawcb *skip;
440 
441 	family = pmsg->base.lmsg.u.ms_result;
442 	route_proto.sp_family = PF_ROUTE;
443 	route_proto.sp_protocol = family;
444 
445 	m = pmsg->nm_packet;
446 	M_ASSERTPKTHDR(m);
447 
448 	skip = m->m_pkthdr.header;
449 	m->m_pkthdr.header = NULL;
450 
451 	raw_input(m, &route_proto, &route_src, &route_dst, skip);
452 }
453 
454 static void
rts_input_skip(struct mbuf * m,sa_family_t family,struct rawcb * skip)455 rts_input_skip(struct mbuf *m, sa_family_t family, struct rawcb *skip)
456 {
457 	struct netmsg_packet *pmsg;
458 	lwkt_port_t port;
459 
460 	M_ASSERTPKTHDR(m);
461 
462 	port = netisr_cpuport(0);	/* XXX same as for routing socket */
463 	pmsg = &m->m_hdr.mh_netmsg;
464 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
465 		    0, rts_input_handler);
466 	pmsg->nm_packet = m;
467 	pmsg->base.lmsg.u.ms_result = family;
468 	m->m_pkthdr.header = skip; /* XXX steal field in pkthdr */
469 	lwkt_sendmsg(port, &pmsg->base.lmsg);
470 }
471 
472 static __inline void
rts_input(struct mbuf * m,sa_family_t family)473 rts_input(struct mbuf *m, sa_family_t family)
474 {
475 	rts_input_skip(m, family, NULL);
476 }
477 
478 static void
route_ctloutput(netmsg_t msg)479 route_ctloutput(netmsg_t msg)
480 {
481 	struct socket *so = msg->ctloutput.base.nm_so;
482 	struct sockopt *sopt = msg->ctloutput.nm_sopt;
483 	struct routecb *rop = sotoroutecb(so);
484 	int error;
485 	unsigned int msgfilter;
486 	unsigned char *cp, *ep;
487 	size_t len;
488 	struct sockaddr *sa;
489 
490 	if (sopt->sopt_level != AF_ROUTE) {
491 		error = EINVAL;
492 		goto out;
493 	}
494 
495 	error = 0;
496 
497 	switch (sopt->sopt_dir) {
498 	case SOPT_SET:
499 		switch (sopt->sopt_name) {
500 		case ROUTE_MSGFILTER:
501 			error = soopt_to_kbuf(sopt, &msgfilter,
502 			    sizeof(msgfilter), sizeof(msgfilter));
503 			if (error == 0)
504 				rop->rocb_msgfilter = msgfilter;
505 			break;
506 		case RO_MISSFILTER:
507 			/* Validate the data */
508 			len = 0;
509 			cp = sopt->sopt_val;
510 			ep = cp + sopt->sopt_valsize;
511 			while (cp < ep) {
512 				if (ep - cp <
513 				    offsetof(struct sockaddr, sa_len) +
514 				    sizeof(sa->sa_len))
515 					break;
516 				if (++len > RO_FILTSA_MAX) {
517 					error = ENOBUFS;
518 					break;
519 				}
520 				sa = (struct sockaddr *)cp;
521 				if (sa->sa_len < _SA_MINSIZE ||
522 				    sa->sa_len > sizeof(struct sockaddr_storage))
523 					break;
524 				cp += RT_ROUNDUP(sa->sa_len);
525 			}
526 			if (cp != ep) {
527 				if (error == 0)
528 					error = EINVAL;
529 				break;
530 			}
531 			if (rop->rocb_missfilterlen != 0)
532 				kfree(rop->rocb_missfilter, M_PCB);
533 			if (sopt->sopt_valsize != 0) {
534 				rop->rocb_missfilter =
535 				    kmalloc(sopt->sopt_valsize,
536 				            M_PCB, M_WAITOK | M_NULLOK);
537 				if (rop->rocb_missfilter == NULL) {
538 					rop->rocb_missfilterlen = 0;
539 					error = ENOBUFS;
540 					break;
541 				}
542 			} else
543 				rop->rocb_missfilter = NULL;
544 			rop->rocb_missfilterlen = sopt->sopt_valsize;
545 			if (rop->rocb_missfilterlen != 0)
546 				memcpy(rop->rocb_missfilter, sopt->sopt_val,
547 				    rop->rocb_missfilterlen);
548 			break;
549 		default:
550 			error = ENOPROTOOPT;
551 			break;
552 		}
553 		break;
554 	case SOPT_GET:
555 		switch (sopt->sopt_name) {
556 		case ROUTE_MSGFILTER:
557 			msgfilter = rop->rocb_msgfilter;
558 			soopt_from_kbuf(sopt, &msgfilter, sizeof(msgfilter));
559 			break;
560 		case RO_MISSFILTER:
561 			soopt_from_kbuf(sopt, rop->rocb_missfilter,
562 			    rop->rocb_missfilterlen);
563 			break;
564 		default:
565 			error = ENOPROTOOPT;
566 			break;
567 		}
568 	}
569 out:
570 	lwkt_replymsg(&msg->ctloutput.base.lmsg, error);
571 }
572 
573 
574 
575 static void *
reallocbuf_nofree(void * ptr,size_t len,size_t olen)576 reallocbuf_nofree(void *ptr, size_t len, size_t olen)
577 {
578 	void *newptr;
579 
580 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
581 	if (newptr == NULL)
582 		return NULL;
583 	bcopy(ptr, newptr, olen);
584 	if (olen < len)
585 		bzero((char *)newptr + olen, len - olen);
586 
587 	return (newptr);
588 }
589 
590 /*
591  * Internal helper routine for route_output().
592  */
593 static int
_fillrtmsg(struct rt_msghdr ** prtm,struct rtentry * rt,struct rt_addrinfo * rtinfo)594 _fillrtmsg(struct rt_msghdr **prtm, struct rtentry *rt,
595 	   struct rt_addrinfo *rtinfo)
596 {
597 	int msglen;
598 	struct rt_msghdr *rtm = *prtm;
599 
600 	/* Fill in rt_addrinfo for call to rt_msg_buffer(). */
601 	rtinfo->rti_dst = rt_key(rt);
602 	rtinfo->rti_gateway = rt->rt_gateway;
603 	rtinfo->rti_netmask = rt_mask(rt);		/* might be NULL */
604 	rtinfo->rti_genmask = rt->rt_genmask;		/* might be NULL */
605 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
606 		if (rt->rt_ifp != NULL) {
607 			rtinfo->rti_ifpaddr =
608 			    TAILQ_FIRST(&rt->rt_ifp->if_addrheads[mycpuid])
609 			    ->ifa->ifa_addr;
610 			rtinfo->rti_ifaaddr = rt->rt_ifa->ifa_addr;
611 			if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
612 				rtinfo->rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
613 			rtm->rtm_index = rt->rt_ifp->if_index;
614 		} else {
615 			rtinfo->rti_ifpaddr = NULL;
616 			rtinfo->rti_ifaaddr = NULL;
617 		}
618 	} else if (rt->rt_ifp != NULL) {
619 		rtm->rtm_index = rt->rt_ifp->if_index;
620 	}
621 
622 	msglen = rt_msgsize(rtm->rtm_type, rtinfo);
623 	if (rtm->rtm_msglen < msglen) {
624 		/* NOTE: Caller will free the old rtm accordingly */
625 		rtm = reallocbuf_nofree(rtm, msglen, rtm->rtm_msglen);
626 		if (rtm == NULL)
627 			return (ENOBUFS);
628 		*prtm = rtm;
629 	}
630 	rt_msg_buffer(rtm->rtm_type, rtinfo, rtm, msglen);
631 
632 	rtm->rtm_flags = rt->rt_flags;
633 	rtm->rtm_rmx = rt->rt_rmx;
634 	rtm->rtm_addrs = rtinfo->rti_addrs;
635 
636 	return (0);
637 }
638 
639 struct rtm_arg {
640 	struct rt_msghdr	*bak_rtm;
641 	struct rt_msghdr	*new_rtm;
642 };
643 
644 static int
fillrtmsg(struct rtm_arg * arg,struct rtentry * rt,struct rt_addrinfo * rtinfo)645 fillrtmsg(struct rtm_arg *arg, struct rtentry *rt,
646 	  struct rt_addrinfo *rtinfo)
647 {
648 	struct rt_msghdr *rtm = arg->new_rtm;
649 	int error;
650 
651 	error = _fillrtmsg(&rtm, rt, rtinfo);
652 	if (!error) {
653 		if (arg->new_rtm != rtm) {
654 			/*
655 			 * _fillrtmsg() just allocated a new rtm;
656 			 * if the previously allocated rtm is not
657 			 * the backing rtm, it should be freed.
658 			 */
659 			if (arg->new_rtm != arg->bak_rtm)
660 				kfree(arg->new_rtm, M_RTABLE);
661 			arg->new_rtm = rtm;
662 		}
663 	}
664 	return error;
665 }
666 
667 static void route_output_add_callback(int, int, struct rt_addrinfo *,
668 					struct rtentry *, void *);
669 static void route_output_delete_callback(int, int, struct rt_addrinfo *,
670 					struct rtentry *, void *);
671 static int route_output_get_callback(int, struct rt_addrinfo *,
672 				     struct rtentry *, void *, int);
673 static int route_output_change_callback(int, struct rt_addrinfo *,
674 					struct rtentry *, void *, int);
675 static int route_output_lock_callback(int, struct rt_addrinfo *,
676 				      struct rtentry *, void *, int);
677 
678 /*ARGSUSED*/
679 static int
route_output(struct mbuf * m,struct socket * so,...)680 route_output(struct mbuf *m, struct socket *so, ...)
681 {
682 	struct rtm_arg arg;
683 	struct rt_msghdr *rtm = NULL;
684 	struct rawcb *rp = NULL;
685 	struct pr_output_info *oi;
686 	struct rt_addrinfo rtinfo;
687 	sa_family_t family;
688 	int len, error = 0;
689 	__va_list ap;
690 
691 	M_ASSERTPKTHDR(m);
692 
693 	__va_start(ap, so);
694 	oi = __va_arg(ap, struct pr_output_info *);
695 	__va_end(ap);
696 
697 	family = familyof(NULL);
698 
699 	if (m == NULL ||
700 	    (m->m_len < sizeof(long) &&
701 	     (m = m_pullup(m, sizeof(long))) == NULL))
702 		return (ENOBUFS);
703 
704 #define gotoerr(e) { error = e; goto flush; }
705 
706 	len = m->m_pkthdr.len;
707 	if (len < sizeof(struct rt_msghdr) ||
708 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
709 		gotoerr(EINVAL);
710 
711 	rtm = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
712 	if (rtm == NULL)
713 		gotoerr(ENOBUFS);
714 
715 	m_copydata(m, 0, len, rtm);
716 	if (rtm->rtm_version != RTM_VERSION)
717 		gotoerr(EPROTONOSUPPORT);
718 
719 	rtm->rtm_pid = oi->p_pid;
720 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
721 	rtinfo.rti_addrs = rtm->rtm_addrs;
722 	if (rt_xaddrs((char *)(rtm + 1), (char *)rtm + len, &rtinfo) != 0)
723 		gotoerr(EINVAL);
724 
725 	rtinfo.rti_flags = rtm->rtm_flags;
726 	if (rtinfo.rti_dst == NULL || rtinfo.rti_dst->sa_family >= AF_MAX ||
727 	    (rtinfo.rti_gateway && rtinfo.rti_gateway->sa_family >= AF_MAX))
728 		gotoerr(EINVAL);
729 
730 	family = familyof(rtinfo.rti_dst);
731 
732 	/*
733 	 * Verify that the caller has the appropriate privilege; RTM_GET
734 	 * is the only operation the non-superuser is allowed.
735 	 */
736 	if (rtm->rtm_type != RTM_GET &&
737 	    caps_priv_check(so->so_cred, SYSCAP_RESTRICTEDROOT) != 0)
738 		gotoerr(EPERM);
739 
740 	if (rtinfo.rti_genmask != NULL) {
741 		error = rtmask_add_global(rtinfo.rti_genmask,
742 		    rtm->rtm_type != RTM_GET ?
743 		    RTREQ_PRIO_HIGH : RTREQ_PRIO_NORM);
744 		if (error)
745 			goto flush;
746 	}
747 
748 	switch (rtm->rtm_type) {
749 	case RTM_ADD:
750 		if (rtinfo.rti_gateway == NULL) {
751 			error = EINVAL;
752 		} else {
753 			error = rtrequest1_global(RTM_ADD, &rtinfo,
754 			    route_output_add_callback, rtm, RTREQ_PRIO_HIGH);
755 		}
756 		break;
757 	case RTM_DELETE:
758 		/*
759 		 * Backing rtm (bak_rtm) could _not_ be freed during
760 		 * rtrequest1_global or rtsearch_global, even if the
761 		 * callback reallocates the rtm due to its size changes,
762 		 * since rtinfo points to the backing rtm's memory area.
763 		 * After rtrequest1_global or rtsearch_global returns,
764 		 * it is safe to free the backing rtm, since rtinfo will
765 		 * not be used anymore.
766 		 *
767 		 * new_rtm will be used to save the new rtm allocated
768 		 * by rtrequest1_global or rtsearch_global.
769 		 */
770 		arg.bak_rtm = rtm;
771 		arg.new_rtm = rtm;
772 		error = rtrequest1_global(RTM_DELETE, &rtinfo,
773 		    route_output_delete_callback, &arg, RTREQ_PRIO_HIGH);
774 		rtm = arg.new_rtm;
775 		if (rtm != arg.bak_rtm)
776 			kfree(arg.bak_rtm, M_RTABLE);
777 		break;
778 	case RTM_GET:
779 		/* See the comment in RTM_DELETE */
780 		arg.bak_rtm = rtm;
781 		arg.new_rtm = rtm;
782 		error = rtsearch_global(RTM_GET, &rtinfo,
783 		    route_output_get_callback, &arg, RTS_NOEXACTMATCH,
784 		    RTREQ_PRIO_NORM);
785 		rtm = arg.new_rtm;
786 		if (rtm != arg.bak_rtm)
787 			kfree(arg.bak_rtm, M_RTABLE);
788 		break;
789 	case RTM_CHANGE:
790 		error = rtsearch_global(RTM_CHANGE, &rtinfo,
791 		    route_output_change_callback, rtm, RTS_EXACTMATCH,
792 		    RTREQ_PRIO_HIGH);
793 		break;
794 	case RTM_LOCK:
795 		error = rtsearch_global(RTM_LOCK, &rtinfo,
796 		    route_output_lock_callback, rtm, RTS_EXACTMATCH,
797 		    RTREQ_PRIO_HIGH);
798 		break;
799 	default:
800 		error = EOPNOTSUPP;
801 		break;
802 	}
803 
804 #undef gotoerr
805 
806 flush:
807 	if (rtm != NULL) {
808 		if (error != 0)
809 			rtm->rtm_errno = error;
810 		else
811 			rtm->rtm_flags |= RTF_DONE;
812 	}
813 
814 	/*
815 	 * Check to see if we don't want our own messages.
816 	 */
817 	if (!(so->so_options & SO_USELOOPBACK)) {
818 		if (route_cb.any_count <= 1) {
819 			if (rtm != NULL)
820 				kfree(rtm, M_RTABLE);
821 			m_freem(m);
822 			return (error);
823 		}
824 		/* There is another listener, so construct message */
825 		rp = sotorawcb(so);
826 	}
827 	if (rtm != NULL) {
828 		if (m_copyback2(m, 0, rtm->rtm_msglen, rtm, M_NOWAIT) != 0) {
829 			m_freem(m);
830 			m = NULL;
831 		} else if (m->m_pkthdr.len > rtm->rtm_msglen) {
832 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
833 		}
834 		kfree(rtm, M_RTABLE);
835 	}
836 	if (m != NULL)
837 		rts_input_skip(m, family, rp);
838 	return (error);
839 }
840 
841 static void
route_output_add_callback(int cmd,int error,struct rt_addrinfo * rtinfo,struct rtentry * rt,void * arg)842 route_output_add_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
843 			  struct rtentry *rt, void *arg)
844 {
845 	struct rt_msghdr *rtm = arg;
846 
847 	if (error == 0 && rt != NULL) {
848 		rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
849 		    &rt->rt_rmx);
850 		rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
851 		rt->rt_rmx.rmx_locks |=
852 		    (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
853 		if (rtinfo->rti_genmask != NULL) {
854 			rt->rt_genmask = rtmask_purelookup(rtinfo->rti_genmask);
855 			if (rt->rt_genmask == NULL) {
856 				/*
857 				 * This should not happen, since we
858 				 * have already installed genmask
859 				 * on each CPU before we reach here.
860 				 */
861 				panic("genmask is gone!?");
862 			}
863 		} else {
864 			rt->rt_genmask = NULL;
865 		}
866 		rtm->rtm_index = rt->rt_ifp->if_index;
867 	}
868 }
869 
870 static void
route_output_delete_callback(int cmd,int error,struct rt_addrinfo * rtinfo,struct rtentry * rt,void * arg)871 route_output_delete_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
872 			  struct rtentry *rt, void *arg)
873 {
874 	if (error == 0 && rt) {
875 		++rt->rt_refcnt;
876 		if (fillrtmsg(arg, rt, rtinfo) != 0) {
877 			error = ENOBUFS;
878 			/* XXX no way to return the error */
879 		}
880 		--rt->rt_refcnt;
881 	}
882 	if (rt && rt->rt_refcnt == 0) {
883 		++rt->rt_refcnt;
884 		rtfree(rt);
885 	}
886 }
887 
888 static int
route_output_get_callback(int cmd,struct rt_addrinfo * rtinfo,struct rtentry * rt,void * arg,int found_cnt)889 route_output_get_callback(int cmd, struct rt_addrinfo *rtinfo,
890 			  struct rtentry *rt, void *arg, int found_cnt)
891 {
892 	int error, found = 0;
893 
894 	if (((rtinfo->rti_flags ^ rt->rt_flags) & RTF_HOST) == 0)
895 		found = 1;
896 
897 	error = fillrtmsg(arg, rt, rtinfo);
898 	if (!error && found) {
899 		/* Got the exact match, we could return now! */
900 		error = EJUSTRETURN;
901 	}
902 	return error;
903 }
904 
905 static int
route_output_change_callback(int cmd,struct rt_addrinfo * rtinfo,struct rtentry * rt,void * arg,int found_cnt)906 route_output_change_callback(int cmd, struct rt_addrinfo *rtinfo,
907 			     struct rtentry *rt, void *arg, int found_cnt)
908 {
909 	struct rt_msghdr *rtm = arg;
910 	struct ifaddr *ifa;
911 	int error = 0;
912 
913 	/*
914 	 * new gateway could require new ifaddr, ifp;
915 	 * flags may also be different; ifp may be specified
916 	 * by ll sockaddr when protocol address is ambiguous
917 	 */
918 	if (((rt->rt_flags & RTF_GATEWAY) && rtinfo->rti_gateway != NULL) ||
919 	    rtinfo->rti_ifpaddr != NULL ||
920 	    (rtinfo->rti_ifaaddr != NULL &&
921 	     !sa_equal(rtinfo->rti_ifaaddr, rt->rt_ifa->ifa_addr))) {
922 		error = rt_getifa(rtinfo);
923 		if (error != 0)
924 			goto done;
925 	}
926 	if (rtinfo->rti_gateway != NULL) {
927 		/*
928 		 * We only need to generate rtmsg upon the
929 		 * first route to be changed.
930 		 */
931 		error = rt_setgate(rt, rt_key(rt), rtinfo->rti_gateway);
932 		if (error != 0)
933 			goto done;
934 	}
935 	if ((ifa = rtinfo->rti_ifa) != NULL) {
936 		struct ifaddr *oifa = rt->rt_ifa;
937 
938 		if (oifa != ifa) {
939 			if (oifa && oifa->ifa_rtrequest)
940 				oifa->ifa_rtrequest(RTM_DELETE, rt);
941 			IFAFREE(rt->rt_ifa);
942 			IFAREF(ifa);
943 			rt->rt_ifa = ifa;
944 			rt->rt_ifp = rtinfo->rti_ifp;
945 		}
946 	}
947 	rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx);
948 	if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
949 		rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt);
950 	if (rtinfo->rti_genmask != NULL) {
951 		rt->rt_genmask = rtmask_purelookup(rtinfo->rti_genmask);
952 		if (rt->rt_genmask == NULL) {
953 			/*
954 			 * This should not happen, since we
955 			 * have already installed genmask
956 			 * on each CPU before we reach here.
957 			 */
958 			panic("genmask is gone!?");
959 		}
960 	}
961 	rtm->rtm_index = rt->rt_ifp->if_index;
962 	if (found_cnt == 1)
963 		rt_rtmsg(RTM_CHANGE, rt, rt->rt_ifp, 0);
964 done:
965 	return error;
966 }
967 
968 static int
route_output_lock_callback(int cmd,struct rt_addrinfo * rtinfo,struct rtentry * rt,void * arg,int found_cnt __unused)969 route_output_lock_callback(int cmd, struct rt_addrinfo *rtinfo,
970 			   struct rtentry *rt, void *arg,
971 			   int found_cnt __unused)
972 {
973 	struct rt_msghdr *rtm = arg;
974 
975 	rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
976 	rt->rt_rmx.rmx_locks |=
977 		(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
978 	return 0;
979 }
980 
981 static void
rt_setmetrics(u_long which,struct rt_metrics * in,struct rt_metrics * out)982 rt_setmetrics(u_long which, struct rt_metrics *in, struct rt_metrics *out)
983 {
984 #define setmetric(flag, elt) if (which & (flag)) out->elt = in->elt;
985 	setmetric(RTV_RPIPE, rmx_recvpipe);
986 	setmetric(RTV_SPIPE, rmx_sendpipe);
987 	setmetric(RTV_SSTHRESH, rmx_ssthresh);
988 	setmetric(RTV_RTT, rmx_rtt);
989 	setmetric(RTV_RTTVAR, rmx_rttvar);
990 	setmetric(RTV_HOPCOUNT, rmx_hopcount);
991 	setmetric(RTV_MTU, rmx_mtu);
992 	setmetric(RTV_EXPIRE, rmx_expire);
993 	setmetric(RTV_MSL, rmx_msl);
994 	setmetric(RTV_IWMAXSEGS, rmx_iwmaxsegs);
995 	setmetric(RTV_IWCAPSEGS, rmx_iwcapsegs);
996 #undef setmetric
997 }
998 
999 /*
1000  * Extract the addresses of the passed sockaddrs.
1001  * Do a little sanity checking so as to avoid bad memory references.
1002  * This data is derived straight from userland.
1003  */
1004 static int
rt_xaddrs(char * cp,char * cplim,struct rt_addrinfo * rtinfo)1005 rt_xaddrs(char *cp, char *cplim, struct rt_addrinfo *rtinfo)
1006 {
1007 	struct sockaddr *sa;
1008 	int i;
1009 
1010 	for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
1011 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
1012 			continue;
1013 		sa = (struct sockaddr *)cp;
1014 		/*
1015 		 * It won't fit.
1016 		 */
1017 		if ((cp + sa->sa_len) > cplim) {
1018 			return (EINVAL);
1019 		}
1020 
1021 		/*
1022 		 * There are no more...  Quit now.
1023 		 * If there are more bits, they are in error.
1024 		 * I've seen this.  route(1) can evidently generate these.
1025 		 * This causes kernel to core dump.
1026 		 * For compatibility, if we see this, point to a safe address.
1027 		 */
1028 		if (sa->sa_len == 0) {
1029 			static struct sockaddr sa_zero = {
1030 				sizeof sa_zero, AF_INET,
1031 			};
1032 
1033 			rtinfo->rti_info[i] = &sa_zero;
1034 			kprintf("rtsock: received more addr bits than sockaddrs.\n");
1035 			return (0); /* should be EINVAL but for compat */
1036 		}
1037 
1038 		/* Accept the sockaddr. */
1039 		rtinfo->rti_info[i] = sa;
1040 		cp += RT_ROUNDUP(sa->sa_len);
1041 	}
1042 	return (0);
1043 }
1044 
1045 static int
rt_msghdrsize(int type)1046 rt_msghdrsize(int type)
1047 {
1048 	switch (type) {
1049 	case RTM_DELADDR:
1050 	case RTM_NEWADDR:
1051 		return sizeof(struct ifa_msghdr);
1052 	case RTM_DELMADDR:
1053 	case RTM_NEWMADDR:
1054 		return sizeof(struct ifma_msghdr);
1055 	case RTM_IFINFO:
1056 		return sizeof(struct if_msghdr);
1057 	case RTM_IFANNOUNCE:
1058 	case RTM_IEEE80211:
1059 		return sizeof(struct if_announcemsghdr);
1060 	default:
1061 		return sizeof(struct rt_msghdr);
1062 	}
1063 }
1064 
1065 static int
rt_msgsize(int type,const struct rt_addrinfo * rtinfo)1066 rt_msgsize(int type, const struct rt_addrinfo *rtinfo)
1067 {
1068 	int len, i;
1069 
1070 	len = rt_msghdrsize(type);
1071 	for (i = 0; i < RTAX_MAX; i++) {
1072 		if (rtinfo->rti_info[i] != NULL)
1073 			len += RT_ROUNDUP(rtinfo->rti_info[i]->sa_len);
1074 	}
1075 	len = ALIGN(len);
1076 	return len;
1077 }
1078 
1079 /*
1080  * Build a routing message in a buffer.
1081  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
1082  * to the end of the buffer after the message header.
1083  *
1084  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
1085  * This side-effect can be avoided if we reorder the addrs bitmask field in all
1086  * the route messages to line up so we can set it here instead of back in the
1087  * calling routine.
1088  *
1089  * NOTE! The buffer may already contain a partially filled-out rtm via
1090  *	 _fillrtmsg().
1091  */
1092 static void
rt_msg_buffer(int type,struct rt_addrinfo * rtinfo,void * buf,int msglen)1093 rt_msg_buffer(int type, struct rt_addrinfo *rtinfo, void *buf, int msglen)
1094 {
1095 	struct rt_msghdr *rtm;
1096 	char *cp;
1097 	int dlen, i;
1098 
1099 	rtm = (struct rt_msghdr *) buf;
1100 	rtm->rtm_version = RTM_VERSION;
1101 	rtm->rtm_type = type;
1102 	rtm->rtm_msglen = msglen;
1103 
1104 	cp = (char *)buf + rt_msghdrsize(type);
1105 	rtinfo->rti_addrs = 0;
1106 	for (i = 0; i < RTAX_MAX; i++) {
1107 		struct sockaddr *sa;
1108 
1109 		if ((sa = rtinfo->rti_info[i]) == NULL)
1110 			continue;
1111 		rtinfo->rti_addrs |= (1 << i);
1112 		dlen = RT_ROUNDUP(sa->sa_len);
1113 		bcopy(sa, cp, dlen);
1114 		cp += dlen;
1115 	}
1116 }
1117 
1118 /*
1119  * Build a routing message in a mbuf chain.
1120  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
1121  * to the end of the mbuf after the message header.
1122  *
1123  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
1124  * This side-effect can be avoided if we reorder the addrs bitmask field in all
1125  * the route messages to line up so we can set it here instead of back in the
1126  * calling routine.
1127  */
1128 static struct mbuf *
rt_msg_mbuf(int type,struct rt_addrinfo * rtinfo)1129 rt_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1130 {
1131 	struct mbuf *m, *n;
1132 	struct rt_msghdr *rtm;
1133 	struct sockaddr *sa;
1134 	int hlen, dlen, len, i;
1135 
1136 	hlen = rt_msghdrsize(type);
1137 	KASSERT(hlen <= MCLBYTES, ("rt_msg_mbuf: hlen %d doesn't fit", hlen));
1138 
1139 	/* Determine the required mbuf (chain) length. */
1140 	len = hlen;
1141 	for (i = 0; i < RTAX_MAX; i++) {
1142 		if ((sa = rtinfo->rti_info[i]) == NULL)
1143 			continue;
1144 		len += RT_ROUNDUP(sa->sa_len);
1145 	}
1146 
1147 	/* Allocate the mbuf header and possible chain. */
1148 	m = m_getl(len, M_NOWAIT, MT_DATA, M_PKTHDR, &dlen);
1149 	if (m == NULL)
1150 		return (NULL);
1151 	if (len > dlen) {
1152 		n = m_getc(len - dlen, M_NOWAIT, MT_DATA);
1153 		if (n == NULL) {
1154 			m_freem(m);
1155 			return (NULL);
1156 		}
1157 		m_cat(m, n);
1158 	}
1159 	mbuftrackid(m, 32);
1160 
1161 	m->m_pkthdr.len = m->m_len = hlen; /* rtinfo->rti_info[] can be empty */
1162 	m->m_pkthdr.rcvif = NULL;
1163 	rtinfo->rti_addrs = 0;
1164 	len = hlen;
1165 	for (i = 0; i < RTAX_MAX; i++) {
1166 		if ((sa = rtinfo->rti_info[i]) == NULL)
1167 			continue;
1168 		rtinfo->rti_addrs |= (1 << i);
1169 		dlen = RT_ROUNDUP(sa->sa_len);
1170 		m_copyback(m, len, dlen, sa);
1171 		len += dlen;
1172 	}
1173 	rtm = mtod(m, struct rt_msghdr *);
1174 	bzero(rtm, hlen);
1175 	rtm->rtm_msglen = len;
1176 	rtm->rtm_version = RTM_VERSION;
1177 	rtm->rtm_type = type;
1178 	return (m);
1179 }
1180 
1181 /*
1182  * This routine is called to generate a message from the routing
1183  * socket indicating that a redirect has occurred, a routing lookup
1184  * has failed, or that a protocol has detected timeouts to a particular
1185  * destination.
1186  */
1187 void
rt_missmsg(int type,struct rt_addrinfo * rtinfo,int flags,int error)1188 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1189 {
1190 	struct sockaddr *dst = rtinfo->rti_info[RTAX_DST];
1191 	struct rt_msghdr *rtm;
1192 	struct mbuf *m;
1193 
1194 	if (route_cb.any_count == 0)
1195 		return;
1196 	m = rt_msg_mbuf(type, rtinfo);
1197 	if (m == NULL)
1198 		return;
1199 	rtm = mtod(m, struct rt_msghdr *);
1200 	rtm->rtm_flags = RTF_DONE | flags;
1201 	rtm->rtm_errno = error;
1202 	rtm->rtm_addrs = rtinfo->rti_addrs;
1203 	rts_input(m, familyof(dst));
1204 }
1205 
1206 void
rt_dstmsg(int type,struct sockaddr * dst,int error)1207 rt_dstmsg(int type, struct sockaddr *dst, int error)
1208 {
1209 	struct rt_msghdr *rtm;
1210 	struct rt_addrinfo addrs;
1211 	struct mbuf *m;
1212 
1213 	if (route_cb.any_count == 0)
1214 		return;
1215 	bzero(&addrs, sizeof(struct rt_addrinfo));
1216 	addrs.rti_info[RTAX_DST] = dst;
1217 	m = rt_msg_mbuf(type, &addrs);
1218 	if (m == NULL)
1219 		return;
1220 	rtm = mtod(m, struct rt_msghdr *);
1221 	rtm->rtm_flags = RTF_DONE;
1222 	rtm->rtm_errno = error;
1223 	rtm->rtm_addrs = addrs.rti_addrs;
1224 	rts_input(m, familyof(dst));
1225 }
1226 
1227 /*
1228  * This routine is called to generate a message from the routing
1229  * socket indicating that the status of a network interface has changed.
1230  */
1231 void
rt_ifmsg(struct ifnet * ifp)1232 rt_ifmsg(struct ifnet *ifp)
1233 {
1234 	struct if_msghdr *ifm;
1235 	struct mbuf *m;
1236 	struct rt_addrinfo rtinfo;
1237 
1238 	if (route_cb.any_count == 0)
1239 		return;
1240 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1241 	m = rt_msg_mbuf(RTM_IFINFO, &rtinfo);
1242 	if (m == NULL)
1243 		return;
1244 	ifm = mtod(m, struct if_msghdr *);
1245 	ifm->ifm_index = ifp->if_index;
1246 	ifm->ifm_flags = ifp->if_flags;
1247 	ifm->ifm_data = ifp->if_data;
1248 	ifm->ifm_addrs = 0;
1249 	rts_input(m, 0);
1250 }
1251 
1252 static void
rt_ifamsg(int cmd,struct ifaddr * ifa)1253 rt_ifamsg(int cmd, struct ifaddr *ifa)
1254 {
1255 	struct ifa_msghdr *ifam;
1256 	struct rt_addrinfo rtinfo;
1257 	struct mbuf *m;
1258 	struct ifnet *ifp = ifa->ifa_ifp;
1259 
1260 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1261 	rtinfo.rti_ifaaddr = ifa->ifa_addr;
1262 	rtinfo.rti_ifpaddr =
1263 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1264 	rtinfo.rti_netmask = ifa->ifa_netmask;
1265 	rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
1266 
1267 	m = rt_msg_mbuf(cmd, &rtinfo);
1268 	if (m == NULL)
1269 		return;
1270 
1271 	ifam = mtod(m, struct ifa_msghdr *);
1272 	ifam->ifam_index = ifp->if_index;
1273 	ifam->ifam_flags = ifa->ifa_flags;
1274 	ifam->ifam_addrs = rtinfo.rti_addrs;
1275 	ifam->ifam_addrflags = if_addrflags(ifa);
1276 	ifam->ifam_metric = ifa->ifa_metric;
1277 
1278 	rts_input(m, familyof(ifa->ifa_addr));
1279 }
1280 
1281 void
rt_rtmsg(int cmd,struct rtentry * rt,struct ifnet * ifp,int error)1282 rt_rtmsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int error)
1283 {
1284 	struct rt_msghdr *rtm;
1285 	struct rt_addrinfo rtinfo;
1286 	struct mbuf *m;
1287 	struct sockaddr *dst;
1288 
1289 	if (rt == NULL)
1290 		return;
1291 
1292 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1293 	rtinfo.rti_dst = dst = rt_key(rt);
1294 	rtinfo.rti_gateway = rt->rt_gateway;
1295 	rtinfo.rti_netmask = rt_mask(rt);
1296 	if (ifp != NULL) {
1297 		rtinfo.rti_ifpaddr =
1298 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1299 	}
1300 	if (rt->rt_ifa != NULL)
1301 		rtinfo.rti_ifaaddr = rt->rt_ifa->ifa_addr;
1302 
1303 	m = rt_msg_mbuf(cmd, &rtinfo);
1304 	if (m == NULL)
1305 		return;
1306 
1307 	rtm = mtod(m, struct rt_msghdr *);
1308 	if (ifp != NULL)
1309 		rtm->rtm_index = ifp->if_index;
1310 	rtm->rtm_flags |= rt->rt_flags;
1311 	rtm->rtm_errno = error;
1312 	rtm->rtm_addrs = rtinfo.rti_addrs;
1313 
1314 	rts_input(m, familyof(dst));
1315 }
1316 
1317 /*
1318  * This is called to generate messages from the routing socket
1319  * indicating a network interface has had addresses associated with it.
1320  * if we ever reverse the logic and replace messages TO the routing
1321  * socket indicate a request to configure interfaces, then it will
1322  * be unnecessary as the routing socket will automatically generate
1323  * copies of it.
1324  */
1325 void
rt_newaddrmsg(int cmd,struct ifaddr * ifa,int error,struct rtentry * rt)1326 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
1327 {
1328 	if (route_cb.any_count == 0)
1329 		return;
1330 
1331 	if (cmd == RTM_ADD) {
1332 		rt_ifamsg(RTM_NEWADDR, ifa);
1333 		rt_rtmsg(RTM_ADD, rt, ifa->ifa_ifp, error);
1334 	} else {
1335 		KASSERT((cmd == RTM_DELETE), ("unknown cmd %d", cmd));
1336 		rt_rtmsg(RTM_DELETE, rt, ifa->ifa_ifp, error);
1337 		rt_ifamsg(RTM_DELADDR, ifa);
1338 	}
1339 }
1340 
1341 /*
1342  * This is the analogue to the rt_newaddrmsg which performs the same
1343  * function but for multicast group memberhips.  This is easier since
1344  * there is no route state to worry about.
1345  */
1346 void
rt_newmaddrmsg(int cmd,struct ifmultiaddr * ifma)1347 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1348 {
1349 	struct rt_addrinfo rtinfo;
1350 	struct mbuf *m = NULL;
1351 	struct ifnet *ifp = ifma->ifma_ifp;
1352 	struct ifma_msghdr *ifmam;
1353 
1354 	if (route_cb.any_count == 0)
1355 		return;
1356 
1357 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1358 	rtinfo.rti_ifaaddr = ifma->ifma_addr;
1359 	if (ifp != NULL && !TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
1360 		rtinfo.rti_ifpaddr =
1361 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1362 	}
1363 	/*
1364 	 * If a link-layer address is present, present it as a ``gateway''
1365 	 * (similarly to how ARP entries, e.g., are presented).
1366 	 */
1367 	rtinfo.rti_gateway = ifma->ifma_lladdr;
1368 
1369 	m = rt_msg_mbuf(cmd, &rtinfo);
1370 	if (m == NULL)
1371 		return;
1372 
1373 	ifmam = mtod(m, struct ifma_msghdr *);
1374 	ifmam->ifmam_index = ifp->if_index;
1375 	ifmam->ifmam_addrs = rtinfo.rti_addrs;
1376 
1377 	rts_input(m, familyof(ifma->ifma_addr));
1378 }
1379 
1380 static struct mbuf *
rt_makeifannouncemsg(struct ifnet * ifp,int type,int what,struct rt_addrinfo * info)1381 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1382 		     struct rt_addrinfo *info)
1383 {
1384 	struct if_announcemsghdr *ifan;
1385 	struct mbuf *m;
1386 
1387 	if (route_cb.any_count == 0)
1388 		return NULL;
1389 
1390 	bzero(info, sizeof(*info));
1391 	m = rt_msg_mbuf(type, info);
1392 	if (m == NULL)
1393 		return NULL;
1394 
1395 	ifan = mtod(m, struct if_announcemsghdr *);
1396 	ifan->ifan_index = ifp->if_index;
1397 	strlcpy(ifan->ifan_name, ifp->if_xname, sizeof ifan->ifan_name);
1398 	ifan->ifan_what = what;
1399 	return m;
1400 }
1401 
1402 /*
1403  * This is called to generate routing socket messages indicating
1404  * IEEE80211 wireless events.
1405  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1406  */
1407 void
rt_ieee80211msg(struct ifnet * ifp,int what,void * data,size_t data_len)1408 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1409 {
1410 	struct rt_addrinfo info;
1411 	struct mbuf *m;
1412 
1413 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1414 	if (m == NULL)
1415 		return;
1416 
1417 	/*
1418 	 * Append the ieee80211 data.  Try to stick it in the
1419 	 * mbuf containing the ifannounce msg; otherwise allocate
1420 	 * a new mbuf and append.
1421 	 *
1422 	 * NB: we assume m is a single mbuf.
1423 	 */
1424 	if (data_len > M_TRAILINGSPACE(m)) {
1425 		/* XXX use m_getb(data_len, M_NOWAIT, MT_DATA, 0); */
1426 		struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1427 		if (n == NULL) {
1428 			m_freem(m);
1429 			return;
1430 		}
1431 		KKASSERT(data_len <= M_TRAILINGSPACE(n));
1432 		bcopy(data, mtod(n, void *), data_len);
1433 		n->m_len = data_len;
1434 		m->m_next = n;
1435 	} else if (data_len > 0) {
1436 		bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1437 		m->m_len += data_len;
1438 	}
1439 	mbuftrackid(m, 33);
1440 	if (m->m_flags & M_PKTHDR)
1441 		m->m_pkthdr.len += data_len;
1442 	mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1443 	rts_input(m, 0);
1444 }
1445 
1446 /*
1447  * This is called to generate routing socket messages indicating
1448  * network interface arrival and departure.
1449  */
1450 void
rt_ifannouncemsg(struct ifnet * ifp,int what)1451 rt_ifannouncemsg(struct ifnet *ifp, int what)
1452 {
1453 	struct rt_addrinfo addrinfo;
1454 	struct mbuf *m;
1455 
1456 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &addrinfo);
1457 	if (m != NULL)
1458 		rts_input(m, 0);
1459 }
1460 
1461 static int
resizewalkarg(struct walkarg * w,int len)1462 resizewalkarg(struct walkarg *w, int len)
1463 {
1464 	void *newptr;
1465 
1466 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
1467 	if (newptr == NULL)
1468 		return (ENOMEM);
1469 	if (w->w_tmem != NULL)
1470 		kfree(w->w_tmem, M_RTABLE);
1471 	w->w_tmem = newptr;
1472 	w->w_tmemsize = len;
1473 	bzero(newptr, len);
1474 
1475 	return (0);
1476 }
1477 
1478 static void
ifnet_compute_stats(struct ifnet * ifp)1479 ifnet_compute_stats(struct ifnet *ifp)
1480 {
1481 	IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1482 	IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1483 	IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1484 	IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1485 	IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1486 	IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1487 	IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1488 	IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1489 	IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1490 	IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1491 	IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops);
1492 }
1493 
1494 static int
if_addrflags(const struct ifaddr * ifa)1495 if_addrflags(const struct ifaddr *ifa)
1496 {
1497 	switch (ifa->ifa_addr->sa_family) {
1498 #ifdef INET6
1499 	case AF_INET6:
1500 		return ((const struct in6_ifaddr *)ifa)->ia6_flags;
1501 #endif
1502 	default:
1503 		return 0;
1504 	}
1505 }
1506 
1507 static int
sysctl_iflist(int af,struct walkarg * w)1508 sysctl_iflist(int af, struct walkarg *w)
1509 {
1510 	struct ifnet *ifp;
1511 	struct rt_addrinfo rtinfo;
1512 	int msglen, error;
1513 
1514 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1515 
1516 	ifnet_lock();
1517 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1518 		struct ifaddr_container *ifac, *ifac_mark;
1519 		struct ifaddr_marker mark;
1520 		struct ifaddrhead *head;
1521 		struct ifaddr *ifa;
1522 
1523 		if (w->w_arg && w->w_arg != ifp->if_index)
1524 			continue;
1525 		head = &ifp->if_addrheads[mycpuid];
1526 		/*
1527 		 * There is no need to reference the first ifaddr
1528 		 * even if the following resizewalkarg() blocks,
1529 		 * since the first ifaddr will not be destroyed
1530 		 * when the ifnet lock is held.
1531 		 */
1532 		ifac = TAILQ_FIRST(head);
1533 		ifa = ifac->ifa;
1534 		rtinfo.rti_ifpaddr = ifa->ifa_addr;
1535 		msglen = rt_msgsize(RTM_IFINFO, &rtinfo);
1536 		if (w->w_tmemsize < msglen && resizewalkarg(w, msglen) != 0) {
1537 			ifnet_unlock();
1538 			return (ENOMEM);
1539 		}
1540 		rt_msg_buffer(RTM_IFINFO, &rtinfo, w->w_tmem, msglen);
1541 		rtinfo.rti_ifpaddr = NULL;
1542 		if (w->w_req != NULL && w->w_tmem != NULL) {
1543 			struct if_msghdr *ifm = w->w_tmem;
1544 
1545 			ifm->ifm_index = ifp->if_index;
1546 			ifm->ifm_flags = ifp->if_flags;
1547 			ifnet_compute_stats(ifp);
1548 			ifm->ifm_data = ifp->if_data;
1549 			ifm->ifm_addrs = rtinfo.rti_addrs;
1550 			error = SYSCTL_OUT(w->w_req, ifm, msglen);
1551 			if (error) {
1552 				ifnet_unlock();
1553 				return (error);
1554 			}
1555 		}
1556 		/*
1557 		 * Add a marker, since SYSCTL_OUT() could block and during
1558 		 * that period the list could be changed.
1559 		 */
1560 		ifa_marker_init(&mark, ifp);
1561 		ifac_mark = &mark.ifac;
1562 		TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
1563 		while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
1564 			TAILQ_REMOVE(head, ifac_mark, ifa_link);
1565 			TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
1566 
1567 			ifa = ifac->ifa;
1568 
1569 			/* Ignore marker */
1570 			if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1571 				continue;
1572 
1573 			if (af && af != ifa->ifa_addr->sa_family)
1574 				continue;
1575 			if (curproc->p_ucred->cr_prison &&
1576 			    prison_if(curproc->p_ucred, ifa->ifa_addr))
1577 				continue;
1578 			rtinfo.rti_ifaaddr = ifa->ifa_addr;
1579 			rtinfo.rti_netmask = ifa->ifa_netmask;
1580 			rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
1581 			msglen = rt_msgsize(RTM_NEWADDR, &rtinfo);
1582 			/*
1583 			 * Keep a reference on this ifaddr, so that it will
1584 			 * not be destroyed if the following resizewalkarg()
1585 			 * blocks.
1586 			 */
1587 			IFAREF(ifa);
1588 			if (w->w_tmemsize < msglen &&
1589 			    resizewalkarg(w, msglen) != 0) {
1590 				IFAFREE(ifa);
1591 				TAILQ_REMOVE(head, ifac_mark, ifa_link);
1592 				ifnet_unlock();
1593 				return (ENOMEM);
1594 			}
1595 			rt_msg_buffer(RTM_NEWADDR, &rtinfo, w->w_tmem, msglen);
1596 			if (w->w_req != NULL) {
1597 				struct ifa_msghdr *ifam = w->w_tmem;
1598 
1599 				ifam->ifam_index = ifa->ifa_ifp->if_index;
1600 				ifam->ifam_flags = ifa->ifa_flags;
1601 				ifam->ifam_addrs = rtinfo.rti_addrs;
1602 				ifam->ifam_addrflags = if_addrflags(ifa);
1603 				ifam->ifam_metric = ifa->ifa_metric;
1604 				error = SYSCTL_OUT(w->w_req, w->w_tmem, msglen);
1605 				if (error) {
1606 					IFAFREE(ifa);
1607 					TAILQ_REMOVE(head, ifac_mark, ifa_link);
1608 					ifnet_unlock();
1609 					return (error);
1610 				}
1611 			}
1612 			IFAFREE(ifa);
1613 		}
1614 		TAILQ_REMOVE(head, ifac_mark, ifa_link);
1615 		rtinfo.rti_netmask = NULL;
1616 		rtinfo.rti_ifaaddr = NULL;
1617 		rtinfo.rti_bcastaddr = NULL;
1618 	}
1619 	ifnet_unlock();
1620 	return (0);
1621 }
1622 
1623 static int
rttable_walkarg_create(struct rttable_walkarg * w,int op,int arg)1624 rttable_walkarg_create(struct rttable_walkarg *w, int op, int arg)
1625 {
1626 	struct rt_addrinfo rtinfo;
1627 	struct sockaddr_storage ss;
1628 	int i, msglen;
1629 
1630 	memset(w, 0, sizeof(*w));
1631 	w->w_op = op;
1632 	w->w_arg = arg;
1633 
1634 	memset(&ss, 0, sizeof(ss));
1635 	ss.ss_len = sizeof(ss);
1636 
1637 	memset(&rtinfo, 0, sizeof(rtinfo));
1638 	for (i = 0; i < RTAX_MAX; ++i)
1639 		rtinfo.rti_info[i] = (struct sockaddr *)&ss;
1640 	msglen = rt_msgsize(RTM_GET, &rtinfo);
1641 
1642 	w->w_bufsz = msglen * RTTABLE_DUMP_MSGCNT_MAX;
1643 	w->w_buf = kmalloc(w->w_bufsz, M_TEMP, M_WAITOK | M_NULLOK);
1644 	if (w->w_buf == NULL)
1645 		return ENOMEM;
1646 	return 0;
1647 }
1648 
1649 static void
rttable_walkarg_destroy(struct rttable_walkarg * w)1650 rttable_walkarg_destroy(struct rttable_walkarg *w)
1651 {
1652 	kfree(w->w_buf, M_TEMP);
1653 }
1654 
1655 static void
rttable_entry_rtinfo(struct rt_addrinfo * rtinfo,struct radix_node * rn)1656 rttable_entry_rtinfo(struct rt_addrinfo *rtinfo, struct radix_node *rn)
1657 {
1658 	struct rtentry *rt = (struct rtentry *)rn;
1659 
1660 	bzero(rtinfo, sizeof(*rtinfo));
1661 	rtinfo->rti_dst = rt_key(rt);
1662 	rtinfo->rti_gateway = rt->rt_gateway;
1663 	rtinfo->rti_netmask = rt_mask(rt);
1664 	rtinfo->rti_genmask = rt->rt_genmask;
1665 	if (rt->rt_ifp != NULL) {
1666 		rtinfo->rti_ifpaddr =
1667 		TAILQ_FIRST(&rt->rt_ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1668 		rtinfo->rti_ifaaddr = rt->rt_ifa->ifa_addr;
1669 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1670 			rtinfo->rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
1671 	}
1672 }
1673 
1674 static int
rttable_walk_entry(struct radix_node * rn,void * xw)1675 rttable_walk_entry(struct radix_node *rn, void *xw)
1676 {
1677 	struct rttable_walkarg *w = xw;
1678 	struct rtentry *rt = (struct rtentry *)rn;
1679 	struct rt_addrinfo rtinfo;
1680 	struct rt_msghdr *rtm;
1681 	boolean_t save = FALSE;
1682 	int msglen, w_bufleft;
1683 	void *ptr;
1684 
1685 	rttable_entry_rtinfo(&rtinfo, rn);
1686 	msglen = rt_msgsize(RTM_GET, &rtinfo);
1687 
1688 	w_bufleft = w->w_bufsz - w->w_buflen;
1689 
1690 	if (rn->rn_dupedkey != NULL) {
1691 		struct radix_node *rn1 = rn;
1692 		int total_msglen = msglen;
1693 
1694 		/*
1695 		 * Make sure that we have enough space left for all
1696 		 * dupedkeys, since rn_walktree_at always starts
1697 		 * from the first dupedkey.
1698 		 */
1699 		while ((rn1 = rn1->rn_dupedkey) != NULL) {
1700 			struct rt_addrinfo rtinfo1;
1701 			int msglen1;
1702 
1703 			if (rn1->rn_flags & RNF_ROOT)
1704 				continue;
1705 
1706 			rttable_entry_rtinfo(&rtinfo1, rn1);
1707 			msglen1 = rt_msgsize(RTM_GET, &rtinfo1);
1708 			total_msglen += msglen1;
1709 		}
1710 
1711 		if (total_msglen > w_bufleft) {
1712 			if (total_msglen > w->w_bufsz) {
1713 				static int logged = 0;
1714 
1715 				if (!logged) {
1716 					kprintf("buffer is too small for "
1717 					    "all dupedkeys, increase "
1718 					    "RTTABLE_DUMP_MSGCNT_MAX\n");
1719 					logged = 1;
1720 				}
1721 				return ENOMEM;
1722 			}
1723 			save = TRUE;
1724 		}
1725 	} else if (msglen > w_bufleft) {
1726 		save = TRUE;
1727 	}
1728 
1729 	if (save) {
1730 		/*
1731 		 * Not enough buffer left; remember the position
1732 		 * to start from upon next round.
1733 		 */
1734 		KASSERT(msglen <= w->w_bufsz, ("msg too long %d", msglen));
1735 
1736 		KASSERT(rtinfo.rti_dst->sa_len <= sizeof(w->w_key0),
1737 		    ("key too long %d", rtinfo.rti_dst->sa_len));
1738 		memset(&w->w_key0, 0, sizeof(w->w_key0));
1739 		memcpy(&w->w_key0, rtinfo.rti_dst, rtinfo.rti_dst->sa_len);
1740 		w->w_key = (const char *)&w->w_key0;
1741 
1742 		if (rtinfo.rti_netmask != NULL) {
1743 			KASSERT(
1744 			    rtinfo.rti_netmask->sa_len <= sizeof(w->w_mask0),
1745 			    ("mask too long %d", rtinfo.rti_netmask->sa_len));
1746 			memset(&w->w_mask0, 0, sizeof(w->w_mask0));
1747 			memcpy(&w->w_mask0, rtinfo.rti_netmask,
1748 			    rtinfo.rti_netmask->sa_len);
1749 			w->w_mask = (const char *)&w->w_mask0;
1750 		} else {
1751 			w->w_mask = NULL;
1752 		}
1753 		return EJUSTRETURN;
1754 	}
1755 
1756 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1757 		return 0;
1758 
1759 	ptr = ((uint8_t *)w->w_buf) + w->w_buflen;
1760 	rt_msg_buffer(RTM_GET, &rtinfo, ptr, msglen);
1761 
1762 	rtm = (struct rt_msghdr *)ptr;
1763 	rtm->rtm_flags = rt->rt_flags;
1764 	rtm->rtm_use = rt->rt_use;
1765 	rtm->rtm_rmx = rt->rt_rmx;
1766 	rtm->rtm_index = rt->rt_ifp->if_index;
1767 	rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1768 	rtm->rtm_addrs = rtinfo.rti_addrs;
1769 
1770 	w->w_buflen += msglen;
1771 
1772 	return 0;
1773 }
1774 
1775 static void
rttable_walk_dispatch(netmsg_t msg)1776 rttable_walk_dispatch(netmsg_t msg)
1777 {
1778 	struct netmsg_rttable_walk *nmsg = (struct netmsg_rttable_walk *)msg;
1779 	struct radix_node_head *rnh = rt_tables[mycpuid][nmsg->af];
1780 	struct rttable_walkarg *w = nmsg->w;
1781 	int error;
1782 
1783 	error = rnh->rnh_walktree_at(rnh, w->w_key, w->w_mask,
1784 	    rttable_walk_entry, w);
1785 	lwkt_replymsg(&nmsg->base.lmsg, error);
1786 }
1787 
1788 static int
sysctl_rttable(int af,struct sysctl_req * req,int op,int arg)1789 sysctl_rttable(int af, struct sysctl_req *req, int op, int arg)
1790 {
1791 	struct rttable_walkarg w;
1792 	int error, i;
1793 
1794 	error = rttable_walkarg_create(&w, op, arg);
1795 	if (error)
1796 		return error;
1797 
1798 	error = EINVAL;
1799 	for (i = 1; i <= AF_MAX; i++) {
1800 		if (rt_tables[mycpuid][i] != NULL && (af == 0 || af == i)) {
1801 			w.w_key = NULL;
1802 			w.w_mask = NULL;
1803 			for (;;) {
1804 				struct netmsg_rttable_walk nmsg;
1805 
1806 				netmsg_init(&nmsg.base, NULL,
1807 				    &curthread->td_msgport, 0,
1808 				    rttable_walk_dispatch);
1809 				nmsg.af = i;
1810 				nmsg.w = &w;
1811 
1812 				w.w_buflen = 0;
1813 
1814 				error = lwkt_domsg(netisr_cpuport(mycpuid),
1815 				    &nmsg.base.lmsg, 0);
1816 				if (error && error != EJUSTRETURN)
1817 					goto done;
1818 
1819 				if (req != NULL && w.w_buflen > 0) {
1820 					int error1;
1821 
1822 					error1 = SYSCTL_OUT(req, w.w_buf,
1823 					    w.w_buflen);
1824 					if (error1) {
1825 						error = error1;
1826 						goto done;
1827 					}
1828 				}
1829 				if (error == 0) /* done */
1830 					break;
1831 			}
1832 		}
1833 	}
1834 done:
1835 	rttable_walkarg_destroy(&w);
1836 	return error;
1837 }
1838 
1839 static int
sysctl_rtsock(SYSCTL_HANDLER_ARGS)1840 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1841 {
1842 	int	*name = (int *)arg1;
1843 	u_int	namelen = arg2;
1844 	int	error = EINVAL;
1845 	int	origcpu, cpu;
1846 	u_char  af;
1847 	struct	walkarg w;
1848 
1849 	name ++;
1850 	namelen--;
1851 	if (req->newptr)
1852 		return (EPERM);
1853 	if (namelen != 3 && namelen != 4)
1854 		return (EINVAL);
1855 	af = name[0];
1856 	bzero(&w, sizeof w);
1857 	w.w_op = name[1];
1858 	w.w_arg = name[2];
1859 	w.w_req = req;
1860 
1861 	/*
1862 	 * Optional third argument specifies cpu, used primarily for
1863 	 * debugging the route table.
1864 	 */
1865 	if (namelen == 4) {
1866 		if (name[3] < 0 || name[3] >= netisr_ncpus)
1867 			return (EINVAL);
1868 		cpu = name[3];
1869 	} else {
1870 		/*
1871 		 * Target cpu is not specified, use cpu0 then, so that
1872 		 * the result set will be relatively stable.
1873 		 */
1874 		cpu = 0;
1875 	}
1876 	origcpu = mycpuid;
1877 	lwkt_migratecpu(cpu);
1878 
1879 	switch (w.w_op) {
1880 	case NET_RT_DUMP:
1881 	case NET_RT_FLAGS:
1882 		error = sysctl_rttable(af, w.w_req, w.w_op, w.w_arg);
1883 		break;
1884 	case NET_RT_IFLIST:
1885 		error = sysctl_iflist(af, &w);
1886 		break;
1887 	}
1888 	if (w.w_tmem != NULL)
1889 		kfree(w.w_tmem, M_RTABLE);
1890 
1891 	lwkt_migratecpu(origcpu);
1892 	return (error);
1893 }
1894 
1895 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1896 
1897 /*
1898  * Definitions of protocols supported in the ROUTE domain.
1899  */
1900 
1901 static struct domain routedomain;		/* or at least forward */
1902 
1903 static struct protosw routesw[] = {
1904     {
1905 	.pr_type = SOCK_RAW,
1906 	.pr_domain = &routedomain,
1907 	.pr_protocol = 0,
1908 	.pr_flags = PR_ATOMIC|PR_ADDR,
1909 	.pr_input = NULL,
1910 	.pr_output = route_output,
1911 	.pr_ctlinput = raw_ctlinput,
1912 	.pr_ctloutput = route_ctloutput,
1913 	.pr_ctlport = cpu0_ctlport,
1914 
1915 	.pr_init = raw_init,
1916 	.pr_usrreqs = &route_usrreqs
1917     }
1918 };
1919 
1920 static struct domain routedomain = {
1921 	.dom_family		= AF_ROUTE,
1922 	.dom_name		= "route",
1923 	.dom_init		= NULL,
1924 	.dom_externalize	= NULL,
1925 	.dom_dispose		= NULL,
1926 	.dom_protosw		= routesw,
1927 	.dom_protoswNPROTOSW	= &routesw[NELEM(routesw)],
1928 	.dom_next		= SLIST_ENTRY_INITIALIZER,
1929 	.dom_rtattach		= NULL,
1930 	.dom_rtoffset		= 0,
1931 	.dom_maxrtkey		= 0,
1932 	.dom_ifattach		= NULL,
1933 	.dom_ifdetach		= NULL
1934 };
1935 
1936 DOMAIN_SET(route);
1937 
1938