xref: /dragonfly/sys/net/rtsock.c (revision 9ddb8543)
1 /*
2  * Copyright (c) 2004, 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey M. Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of The DragonFly Project nor the names of its
16  *    contributors may be used to endorse or promote products derived
17  *    from this software without specific, prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
22  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
23  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
27  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
29  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1988, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Berkeley and its contributors.
49  * 4. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
66  * $FreeBSD: src/sys/net/rtsock.c,v 1.44.2.11 2002/12/04 14:05:41 ru Exp $
67  * $DragonFly: src/sys/net/rtsock.c,v 1.45 2008/10/27 02:56:30 sephe Exp $
68  */
69 
70 #include "opt_sctp.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/sysctl.h>
76 #include <sys/proc.h>
77 #include <sys/priv.h>
78 #include <sys/malloc.h>
79 #include <sys/mbuf.h>
80 #include <sys/protosw.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/domain.h>
84 #include <sys/thread2.h>
85 
86 #include <net/if.h>
87 #include <net/route.h>
88 #include <net/raw_cb.h>
89 #include <net/netmsg2.h>
90 
91 #ifdef SCTP
92 extern void sctp_add_ip_address(struct ifaddr *ifa);
93 extern void sctp_delete_ip_address(struct ifaddr *ifa);
94 #endif /* SCTP */
95 
96 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
97 
98 static struct route_cb {
99 	int	ip_count;
100 	int	ip6_count;
101 	int	ipx_count;
102 	int	ns_count;
103 	int	any_count;
104 } route_cb;
105 
106 static const struct sockaddr route_src = { 2, PF_ROUTE, };
107 
108 struct walkarg {
109 	int	w_tmemsize;
110 	int	w_op, w_arg;
111 	void	*w_tmem;
112 	struct sysctl_req *w_req;
113 };
114 
115 static struct mbuf *
116 		rt_msg_mbuf (int, struct rt_addrinfo *);
117 static void	rt_msg_buffer (int, struct rt_addrinfo *, void *buf, int len);
118 static int	rt_msgsize (int type, struct rt_addrinfo *rtinfo);
119 static int	rt_xaddrs (char *, char *, struct rt_addrinfo *);
120 static int	sysctl_dumpentry (struct radix_node *rn, void *vw);
121 static int	sysctl_iflist (int af, struct walkarg *w);
122 static int	route_output(struct mbuf *, struct socket *, ...);
123 static void	rt_setmetrics (u_long, struct rt_metrics *,
124 			       struct rt_metrics *);
125 
126 /*
127  * It really doesn't make any sense at all for this code to share much
128  * with raw_usrreq.c, since its functionality is so restricted.  XXX
129  */
130 static int
131 rts_abort(struct socket *so)
132 {
133 	int error;
134 
135 	crit_enter();
136 	error = raw_usrreqs.pru_abort(so);
137 	crit_exit();
138 	return error;
139 }
140 
141 /* pru_accept is EOPNOTSUPP */
142 
143 static int
144 rts_attach(struct socket *so, int proto, struct pru_attach_info *ai)
145 {
146 	struct rawcb *rp;
147 	int error;
148 
149 	if (sotorawcb(so) != NULL)
150 		return EISCONN;	/* XXX panic? */
151 
152 	rp = kmalloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
153 
154 	/*
155 	 * The critical section is necessary to block protocols from sending
156 	 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
157 	 * this PCB is extant but incompletely initialized.
158 	 * Probably we should try to do more of this work beforehand and
159 	 * eliminate the critical section.
160 	 */
161 	crit_enter();
162 	so->so_pcb = rp;
163 	error = raw_attach(so, proto, ai->sb_rlimit);
164 	rp = sotorawcb(so);
165 	if (error) {
166 		crit_exit();
167 		kfree(rp, M_PCB);
168 		return error;
169 	}
170 	switch(rp->rcb_proto.sp_protocol) {
171 	case AF_INET:
172 		route_cb.ip_count++;
173 		break;
174 	case AF_INET6:
175 		route_cb.ip6_count++;
176 		break;
177 	case AF_IPX:
178 		route_cb.ipx_count++;
179 		break;
180 	case AF_NS:
181 		route_cb.ns_count++;
182 		break;
183 	}
184 	rp->rcb_faddr = &route_src;
185 	route_cb.any_count++;
186 	soisconnected(so);
187 	so->so_options |= SO_USELOOPBACK;
188 	crit_exit();
189 	return 0;
190 }
191 
192 static int
193 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
194 {
195 	int error;
196 
197 	crit_enter();
198 	error = raw_usrreqs.pru_bind(so, nam, td); /* xxx just EINVAL */
199 	crit_exit();
200 	return error;
201 }
202 
203 static int
204 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
205 {
206 	int error;
207 
208 	crit_enter();
209 	error = raw_usrreqs.pru_connect(so, nam, td); /* XXX just EINVAL */
210 	crit_exit();
211 	return error;
212 }
213 
214 /* pru_connect2 is EOPNOTSUPP */
215 /* pru_control is EOPNOTSUPP */
216 
217 static int
218 rts_detach(struct socket *so)
219 {
220 	struct rawcb *rp = sotorawcb(so);
221 	int error;
222 
223 	crit_enter();
224 	if (rp != NULL) {
225 		switch(rp->rcb_proto.sp_protocol) {
226 		case AF_INET:
227 			route_cb.ip_count--;
228 			break;
229 		case AF_INET6:
230 			route_cb.ip6_count--;
231 			break;
232 		case AF_IPX:
233 			route_cb.ipx_count--;
234 			break;
235 		case AF_NS:
236 			route_cb.ns_count--;
237 			break;
238 		}
239 		route_cb.any_count--;
240 	}
241 	error = raw_usrreqs.pru_detach(so);
242 	crit_exit();
243 	return error;
244 }
245 
246 static int
247 rts_disconnect(struct socket *so)
248 {
249 	int error;
250 
251 	crit_enter();
252 	error = raw_usrreqs.pru_disconnect(so);
253 	crit_exit();
254 	return error;
255 }
256 
257 /* pru_listen is EOPNOTSUPP */
258 
259 static int
260 rts_peeraddr(struct socket *so, struct sockaddr **nam)
261 {
262 	int error;
263 
264 	crit_enter();
265 	error = raw_usrreqs.pru_peeraddr(so, nam);
266 	crit_exit();
267 	return error;
268 }
269 
270 /* pru_rcvd is EOPNOTSUPP */
271 /* pru_rcvoob is EOPNOTSUPP */
272 
273 static int
274 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
275 	 struct mbuf *control, struct thread *td)
276 {
277 	int error;
278 
279 	crit_enter();
280 	error = raw_usrreqs.pru_send(so, flags, m, nam, control, td);
281 	crit_exit();
282 	return error;
283 }
284 
285 /* pru_sense is null */
286 
287 static int
288 rts_shutdown(struct socket *so)
289 {
290 	int error;
291 
292 	crit_enter();
293 	error = raw_usrreqs.pru_shutdown(so);
294 	crit_exit();
295 	return error;
296 }
297 
298 static int
299 rts_sockaddr(struct socket *so, struct sockaddr **nam)
300 {
301 	int error;
302 
303 	crit_enter();
304 	error = raw_usrreqs.pru_sockaddr(so, nam);
305 	crit_exit();
306 	return error;
307 }
308 
309 static struct pr_usrreqs route_usrreqs = {
310 	.pru_abort = rts_abort,
311 	.pru_accept = pru_accept_notsupp,
312 	.pru_attach = rts_attach,
313 	.pru_bind = rts_bind,
314 	.pru_connect = rts_connect,
315 	.pru_connect2 = pru_connect2_notsupp,
316 	.pru_control = pru_control_notsupp,
317 	.pru_detach = rts_detach,
318 	.pru_disconnect = rts_disconnect,
319 	.pru_listen = pru_listen_notsupp,
320 	.pru_peeraddr = rts_peeraddr,
321 	.pru_rcvd = pru_rcvd_notsupp,
322 	.pru_rcvoob = pru_rcvoob_notsupp,
323 	.pru_send = rts_send,
324 	.pru_sense = pru_sense_null,
325 	.pru_shutdown = rts_shutdown,
326 	.pru_sockaddr = rts_sockaddr,
327 	.pru_sosend = sosend,
328 	.pru_soreceive = soreceive,
329 	.pru_sopoll = sopoll
330 };
331 
332 static __inline sa_family_t
333 familyof(struct sockaddr *sa)
334 {
335 	return (sa != NULL ? sa->sa_family : 0);
336 }
337 
338 /*
339  * Routing socket input function.  The packet must be serialized onto cpu 0.
340  * We use the cpu0_soport() netisr processing loop to handle it.
341  *
342  * This looks messy but it means that anyone, including interrupt code,
343  * can send a message to the routing socket.
344  */
345 static void
346 rts_input_handler(struct netmsg *msg)
347 {
348 	static const struct sockaddr route_dst = { 2, PF_ROUTE, };
349 	struct sockproto route_proto;
350 	struct netmsg_packet *pmsg;
351 	struct mbuf *m;
352 	sa_family_t family;
353 	struct rawcb *skip;
354 
355 	pmsg = (void *)msg;
356 	family = pmsg->nm_netmsg.nm_lmsg.u.ms_result;
357 	route_proto.sp_family = PF_ROUTE;
358 	route_proto.sp_protocol = family;
359 
360 	m = pmsg->nm_packet;
361 	M_ASSERTPKTHDR(m);
362 
363 	skip = m->m_pkthdr.header;
364 	m->m_pkthdr.header = NULL;
365 
366 	raw_input(m, &route_proto, &route_src, &route_dst, skip);
367 }
368 
369 static void
370 rts_input_skip(struct mbuf *m, sa_family_t family, struct rawcb *skip)
371 {
372 	struct netmsg_packet *pmsg;
373 	lwkt_port_t port;
374 
375 	M_ASSERTPKTHDR(m);
376 
377 	port = cpu0_soport(NULL, NULL, NULL, 0);
378 	pmsg = &m->m_hdr.mh_netmsg;
379 	netmsg_init(&pmsg->nm_netmsg, &netisr_apanic_rport,
380 		    0, rts_input_handler);
381 	pmsg->nm_packet = m;
382 	pmsg->nm_netmsg.nm_lmsg.u.ms_result = family;
383 	m->m_pkthdr.header = skip; /* XXX steal field in pkthdr */
384 	lwkt_sendmsg(port, &pmsg->nm_netmsg.nm_lmsg);
385 }
386 
387 static __inline void
388 rts_input(struct mbuf *m, sa_family_t family)
389 {
390 	rts_input_skip(m, family, NULL);
391 }
392 
393 static void *
394 reallocbuf_nofree(void *ptr, size_t len, size_t olen)
395 {
396 	void *newptr;
397 
398 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
399 	if (newptr == NULL)
400 		return NULL;
401 	bcopy(ptr, newptr, olen);
402 	return (newptr);
403 }
404 
405 /*
406  * Internal helper routine for route_output().
407  */
408 static int
409 _fillrtmsg(struct rt_msghdr **prtm, struct rtentry *rt,
410 	   struct rt_addrinfo *rtinfo)
411 {
412 	int msglen;
413 	struct rt_msghdr *rtm = *prtm;
414 
415 	/* Fill in rt_addrinfo for call to rt_msg_buffer(). */
416 	rtinfo->rti_dst = rt_key(rt);
417 	rtinfo->rti_gateway = rt->rt_gateway;
418 	rtinfo->rti_netmask = rt_mask(rt);		/* might be NULL */
419 	rtinfo->rti_genmask = rt->rt_genmask;		/* might be NULL */
420 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
421 		if (rt->rt_ifp != NULL) {
422 			rtinfo->rti_ifpaddr =
423 			    TAILQ_FIRST(&rt->rt_ifp->if_addrheads[mycpuid])
424 			    ->ifa->ifa_addr;
425 			rtinfo->rti_ifaaddr = rt->rt_ifa->ifa_addr;
426 			if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
427 				rtinfo->rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
428 			rtm->rtm_index = rt->rt_ifp->if_index;
429 		} else {
430 			rtinfo->rti_ifpaddr = NULL;
431 			rtinfo->rti_ifaaddr = NULL;
432 		}
433 	} else if (rt->rt_ifp != NULL) {
434 		rtm->rtm_index = rt->rt_ifp->if_index;
435 	}
436 
437 	msglen = rt_msgsize(rtm->rtm_type, rtinfo);
438 	if (rtm->rtm_msglen < msglen) {
439 		/* NOTE: Caller will free the old rtm accordingly */
440 		rtm = reallocbuf_nofree(rtm, msglen, rtm->rtm_msglen);
441 		if (rtm == NULL)
442 			return (ENOBUFS);
443 		*prtm = rtm;
444 	}
445 	rt_msg_buffer(rtm->rtm_type, rtinfo, rtm, msglen);
446 
447 	rtm->rtm_flags = rt->rt_flags;
448 	rtm->rtm_rmx = rt->rt_rmx;
449 	rtm->rtm_addrs = rtinfo->rti_addrs;
450 
451 	return (0);
452 }
453 
454 struct rtm_arg {
455 	struct rt_msghdr	*bak_rtm;
456 	struct rt_msghdr	*new_rtm;
457 };
458 
459 static int
460 fillrtmsg(struct rtm_arg *arg, struct rtentry *rt,
461 	  struct rt_addrinfo *rtinfo)
462 {
463 	struct rt_msghdr *rtm = arg->new_rtm;
464 	int error;
465 
466 	error = _fillrtmsg(&rtm, rt, rtinfo);
467 	if (!error) {
468 		if (arg->new_rtm != rtm) {
469 			/*
470 			 * _fillrtmsg() just allocated a new rtm;
471 			 * if the previously allocated rtm is not
472 			 * the backing rtm, it should be freed.
473 			 */
474 			if (arg->new_rtm != arg->bak_rtm)
475 				kfree(arg->new_rtm, M_RTABLE);
476 			arg->new_rtm = rtm;
477 		}
478 	}
479 	return error;
480 }
481 
482 static void route_output_add_callback(int, int, struct rt_addrinfo *,
483 					struct rtentry *, void *);
484 static void route_output_delete_callback(int, int, struct rt_addrinfo *,
485 					struct rtentry *, void *);
486 static int route_output_get_callback(int, struct rt_addrinfo *,
487 				     struct rtentry *, void *, int);
488 static int route_output_change_callback(int, struct rt_addrinfo *,
489 					struct rtentry *, void *, int);
490 static int route_output_lock_callback(int, struct rt_addrinfo *,
491 				      struct rtentry *, void *, int);
492 
493 /*ARGSUSED*/
494 static int
495 route_output(struct mbuf *m, struct socket *so, ...)
496 {
497 	struct rtm_arg arg;
498 	struct rt_msghdr *rtm = NULL;
499 	struct rawcb *rp = NULL;
500 	struct pr_output_info *oi;
501 	struct rt_addrinfo rtinfo;
502 	sa_family_t family;
503 	int len, error = 0;
504 	__va_list ap;
505 
506 	M_ASSERTPKTHDR(m);
507 
508 	__va_start(ap, so);
509 	oi = __va_arg(ap, struct pr_output_info *);
510 	__va_end(ap);
511 
512 	family = familyof(NULL);
513 
514 #define gotoerr(e) { error = e; goto flush;}
515 
516 	if (m == NULL ||
517 	    (m->m_len < sizeof(long) &&
518 	     (m = m_pullup(m, sizeof(long))) == NULL))
519 		return (ENOBUFS);
520 	len = m->m_pkthdr.len;
521 	if (len < sizeof(struct rt_msghdr) ||
522 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
523 		gotoerr(EINVAL);
524 
525 	rtm = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
526 	if (rtm == NULL)
527 		gotoerr(ENOBUFS);
528 
529 	m_copydata(m, 0, len, (caddr_t)rtm);
530 	if (rtm->rtm_version != RTM_VERSION)
531 		gotoerr(EPROTONOSUPPORT);
532 
533 	rtm->rtm_pid = oi->p_pid;
534 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
535 	rtinfo.rti_addrs = rtm->rtm_addrs;
536 	if (rt_xaddrs((char *)(rtm + 1), (char *)rtm + len, &rtinfo) != 0)
537 		gotoerr(EINVAL);
538 
539 	rtinfo.rti_flags = rtm->rtm_flags;
540 	if (rtinfo.rti_dst == NULL || rtinfo.rti_dst->sa_family >= AF_MAX ||
541 	    (rtinfo.rti_gateway && rtinfo.rti_gateway->sa_family >= AF_MAX))
542 		gotoerr(EINVAL);
543 
544 	family = familyof(rtinfo.rti_dst);
545 
546 	if (rtinfo.rti_genmask != NULL) {
547 		error = rtmask_add_global(rtinfo.rti_genmask);
548 		if (error)
549 			goto flush;
550 	}
551 
552 	/*
553 	 * Verify that the caller has the appropriate privilege; RTM_GET
554 	 * is the only operation the non-superuser is allowed.
555 	 */
556 	if (rtm->rtm_type != RTM_GET &&
557 	    priv_check_cred(so->so_cred, PRIV_ROOT, 0) != 0)
558 		gotoerr(EPERM);
559 
560 	switch (rtm->rtm_type) {
561 	case RTM_ADD:
562 		if (rtinfo.rti_gateway == NULL) {
563 			error = EINVAL;
564 		} else {
565 			error = rtrequest1_global(RTM_ADD, &rtinfo,
566 					  route_output_add_callback, rtm);
567 		}
568 		break;
569 	case RTM_DELETE:
570 		/*
571 		 * Backing rtm (bak_rtm) could _not_ be freed during
572 		 * rtrequest1_global or rtsearch_global, even if the
573 		 * callback reallocates the rtm due to its size changes,
574 		 * since rtinfo points to the backing rtm's memory area.
575 		 * After rtrequest1_global or rtsearch_global returns,
576 		 * it is safe to free the backing rtm, since rtinfo will
577 		 * not be used anymore.
578 		 *
579 		 * new_rtm will be used to save the new rtm allocated
580 		 * by rtrequest1_global or rtsearch_global.
581 		 */
582 		arg.bak_rtm = rtm;
583 		arg.new_rtm = rtm;
584 		error = rtrequest1_global(RTM_DELETE, &rtinfo,
585 					  route_output_delete_callback, &arg);
586 		rtm = arg.new_rtm;
587 		if (rtm != arg.bak_rtm)
588 			kfree(arg.bak_rtm, M_RTABLE);
589 		break;
590 	case RTM_GET:
591 		/* See the comment in RTM_DELETE */
592 		arg.bak_rtm = rtm;
593 		arg.new_rtm = rtm;
594 		error = rtsearch_global(RTM_GET, &rtinfo,
595 					route_output_get_callback, &arg,
596 					RTS_NOEXACTMATCH);
597 		rtm = arg.new_rtm;
598 		if (rtm != arg.bak_rtm)
599 			kfree(arg.bak_rtm, M_RTABLE);
600 		break;
601 	case RTM_CHANGE:
602 		error = rtsearch_global(RTM_CHANGE, &rtinfo,
603 					route_output_change_callback, rtm,
604 					RTS_EXACTMATCH);
605 		break;
606 	case RTM_LOCK:
607 		error = rtsearch_global(RTM_LOCK, &rtinfo,
608 					route_output_lock_callback, rtm,
609 					RTS_EXACTMATCH);
610 		break;
611 	default:
612 		error = EOPNOTSUPP;
613 		break;
614 	}
615 flush:
616 	if (rtm != NULL) {
617 		if (error != 0)
618 			rtm->rtm_errno = error;
619 		else
620 			rtm->rtm_flags |= RTF_DONE;
621 	}
622 
623 	/*
624 	 * Check to see if we don't want our own messages.
625 	 */
626 	if (!(so->so_options & SO_USELOOPBACK)) {
627 		if (route_cb.any_count <= 1) {
628 			if (rtm != NULL)
629 				kfree(rtm, M_RTABLE);
630 			m_freem(m);
631 			return (error);
632 		}
633 		/* There is another listener, so construct message */
634 		rp = sotorawcb(so);
635 	}
636 	if (rtm != NULL) {
637 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
638 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
639 			m_freem(m);
640 			m = NULL;
641 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
642 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
643 		kfree(rtm, M_RTABLE);
644 	}
645 	if (m != NULL)
646 		rts_input_skip(m, family, rp);
647 	return (error);
648 }
649 
650 static void
651 route_output_add_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
652 			  struct rtentry *rt, void *arg)
653 {
654 	struct rt_msghdr *rtm = arg;
655 
656 	if (error == 0 && rt != NULL) {
657 		rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
658 		    &rt->rt_rmx);
659 		rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
660 		rt->rt_rmx.rmx_locks |=
661 		    (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
662 		if (rtinfo->rti_genmask != NULL) {
663 			rt->rt_genmask = rtmask_purelookup(rtinfo->rti_genmask);
664 			if (rt->rt_genmask == NULL) {
665 				/*
666 				 * This should not happen, since we
667 				 * have already installed genmask
668 				 * on each CPU before we reach here.
669 				 */
670 				panic("genmask is gone!?");
671 			}
672 		} else {
673 			rt->rt_genmask = NULL;
674 		}
675 		rtm->rtm_index = rt->rt_ifp->if_index;
676 	}
677 }
678 
679 static void
680 route_output_delete_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
681 			  struct rtentry *rt, void *arg)
682 {
683 	if (error == 0 && rt) {
684 		++rt->rt_refcnt;
685 		if (fillrtmsg(arg, rt, rtinfo) != 0) {
686 			error = ENOBUFS;
687 			/* XXX no way to return the error */
688 		}
689 		--rt->rt_refcnt;
690 	}
691 	if (rt && rt->rt_refcnt == 0) {
692 		++rt->rt_refcnt;
693 		rtfree(rt);
694 	}
695 }
696 
697 static int
698 route_output_get_callback(int cmd, struct rt_addrinfo *rtinfo,
699 			  struct rtentry *rt, void *arg, int found_cnt)
700 {
701 	int error, found = 0;
702 
703 	if (((rtinfo->rti_flags ^ rt->rt_flags) & RTF_HOST) == 0)
704 		found = 1;
705 
706 	error = fillrtmsg(arg, rt, rtinfo);
707 	if (!error && found) {
708 		/* Got the exact match, we could return now! */
709 		error = EJUSTRETURN;
710 	}
711 	return error;
712 }
713 
714 static int
715 route_output_change_callback(int cmd, struct rt_addrinfo *rtinfo,
716 			     struct rtentry *rt, void *arg, int found_cnt)
717 {
718 	struct rt_msghdr *rtm = arg;
719 	struct ifaddr *ifa;
720 	int error = 0;
721 
722 	/*
723 	 * new gateway could require new ifaddr, ifp;
724 	 * flags may also be different; ifp may be specified
725 	 * by ll sockaddr when protocol address is ambiguous
726 	 */
727 	if (((rt->rt_flags & RTF_GATEWAY) && rtinfo->rti_gateway != NULL) ||
728 	    rtinfo->rti_ifpaddr != NULL ||
729 	    (rtinfo->rti_ifaaddr != NULL &&
730 	     !sa_equal(rtinfo->rti_ifaaddr, rt->rt_ifa->ifa_addr))) {
731 		error = rt_getifa(rtinfo);
732 		if (error != 0)
733 			goto done;
734 	}
735 	if (rtinfo->rti_gateway != NULL) {
736 		/*
737 		 * We only need to generate rtmsg upon the
738 		 * first route to be changed.
739 		 */
740 		error = rt_setgate(rt, rt_key(rt), rtinfo->rti_gateway,
741 			found_cnt == 1 ? RTL_REPORTMSG : RTL_DONTREPORT);
742 		if (error != 0)
743 			goto done;
744 	}
745 	if ((ifa = rtinfo->rti_ifa) != NULL) {
746 		struct ifaddr *oifa = rt->rt_ifa;
747 
748 		if (oifa != ifa) {
749 			if (oifa && oifa->ifa_rtrequest)
750 				oifa->ifa_rtrequest(RTM_DELETE, rt, rtinfo);
751 			IFAFREE(rt->rt_ifa);
752 			IFAREF(ifa);
753 			rt->rt_ifa = ifa;
754 			rt->rt_ifp = rtinfo->rti_ifp;
755 		}
756 	}
757 	rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx);
758 	if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
759 		rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, rtinfo);
760 	if (rtinfo->rti_genmask != NULL) {
761 		rt->rt_genmask = rtmask_purelookup(rtinfo->rti_genmask);
762 		if (rt->rt_genmask == NULL) {
763 			/*
764 			 * This should not happen, since we
765 			 * have already installed genmask
766 			 * on each CPU before we reach here.
767 			 */
768 			panic("genmask is gone!?\n");
769 		}
770 	}
771 	rtm->rtm_index = rt->rt_ifp->if_index;
772 done:
773 	return error;
774 }
775 
776 static int
777 route_output_lock_callback(int cmd, struct rt_addrinfo *rtinfo,
778 			   struct rtentry *rt, void *arg,
779 			   int found_cnt __unused)
780 {
781 	struct rt_msghdr *rtm = arg;
782 
783 	rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
784 	rt->rt_rmx.rmx_locks |=
785 		(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
786 	return 0;
787 }
788 
789 static void
790 rt_setmetrics(u_long which, struct rt_metrics *in, struct rt_metrics *out)
791 {
792 #define setmetric(flag, elt) if (which & (flag)) out->elt = in->elt;
793 	setmetric(RTV_RPIPE, rmx_recvpipe);
794 	setmetric(RTV_SPIPE, rmx_sendpipe);
795 	setmetric(RTV_SSTHRESH, rmx_ssthresh);
796 	setmetric(RTV_RTT, rmx_rtt);
797 	setmetric(RTV_RTTVAR, rmx_rttvar);
798 	setmetric(RTV_HOPCOUNT, rmx_hopcount);
799 	setmetric(RTV_MTU, rmx_mtu);
800 	setmetric(RTV_EXPIRE, rmx_expire);
801 #undef setmetric
802 }
803 
804 #define ROUNDUP(a) \
805 	((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
806 
807 /*
808  * Extract the addresses of the passed sockaddrs.
809  * Do a little sanity checking so as to avoid bad memory references.
810  * This data is derived straight from userland.
811  */
812 static int
813 rt_xaddrs(char *cp, char *cplim, struct rt_addrinfo *rtinfo)
814 {
815 	struct sockaddr *sa;
816 	int i;
817 
818 	for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
819 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
820 			continue;
821 		sa = (struct sockaddr *)cp;
822 		/*
823 		 * It won't fit.
824 		 */
825 		if ((cp + sa->sa_len) > cplim) {
826 			return (EINVAL);
827 		}
828 
829 		/*
830 		 * There are no more...  Quit now.
831 		 * If there are more bits, they are in error.
832 		 * I've seen this.  route(1) can evidently generate these.
833 		 * This causes kernel to core dump.
834 		 * For compatibility, if we see this, point to a safe address.
835 		 */
836 		if (sa->sa_len == 0) {
837 			static struct sockaddr sa_zero = {
838 				sizeof sa_zero, AF_INET,
839 			};
840 
841 			rtinfo->rti_info[i] = &sa_zero;
842 			kprintf("rtsock: received more addr bits than sockaddrs.\n");
843 			return (0); /* should be EINVAL but for compat */
844 		}
845 
846 		/* Accept the sockaddr. */
847 		rtinfo->rti_info[i] = sa;
848 		cp += ROUNDUP(sa->sa_len);
849 	}
850 	return (0);
851 }
852 
853 static int
854 rt_msghdrsize(int type)
855 {
856 	switch (type) {
857 	case RTM_DELADDR:
858 	case RTM_NEWADDR:
859 		return sizeof(struct ifa_msghdr);
860 	case RTM_DELMADDR:
861 	case RTM_NEWMADDR:
862 		return sizeof(struct ifma_msghdr);
863 	case RTM_IFINFO:
864 		return sizeof(struct if_msghdr);
865 	case RTM_IFANNOUNCE:
866 	case RTM_IEEE80211:
867 		return sizeof(struct if_announcemsghdr);
868 	default:
869 		return sizeof(struct rt_msghdr);
870 	}
871 }
872 
873 static int
874 rt_msgsize(int type, struct rt_addrinfo *rtinfo)
875 {
876 	int len, i;
877 
878 	len = rt_msghdrsize(type);
879 	for (i = 0; i < RTAX_MAX; i++) {
880 		if (rtinfo->rti_info[i] != NULL)
881 			len += ROUNDUP(rtinfo->rti_info[i]->sa_len);
882 	}
883 	len = ALIGN(len);
884 	return len;
885 }
886 
887 /*
888  * Build a routing message in a buffer.
889  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
890  * to the end of the buffer after the message header.
891  *
892  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
893  * This side-effect can be avoided if we reorder the addrs bitmask field in all
894  * the route messages to line up so we can set it here instead of back in the
895  * calling routine.
896  */
897 static void
898 rt_msg_buffer(int type, struct rt_addrinfo *rtinfo, void *buf, int msglen)
899 {
900 	struct rt_msghdr *rtm;
901 	char *cp;
902 	int dlen, i;
903 
904 	rtm = (struct rt_msghdr *) buf;
905 	rtm->rtm_version = RTM_VERSION;
906 	rtm->rtm_type = type;
907 	rtm->rtm_msglen = msglen;
908 
909 	cp = (char *)buf + rt_msghdrsize(type);
910 	rtinfo->rti_addrs = 0;
911 	for (i = 0; i < RTAX_MAX; i++) {
912 		struct sockaddr *sa;
913 
914 		if ((sa = rtinfo->rti_info[i]) == NULL)
915 			continue;
916 		rtinfo->rti_addrs |= (1 << i);
917 		dlen = ROUNDUP(sa->sa_len);
918 		bcopy(sa, cp, dlen);
919 		cp += dlen;
920 	}
921 }
922 
923 /*
924  * Build a routing message in a mbuf chain.
925  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
926  * to the end of the mbuf after the message header.
927  *
928  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
929  * This side-effect can be avoided if we reorder the addrs bitmask field in all
930  * the route messages to line up so we can set it here instead of back in the
931  * calling routine.
932  */
933 static struct mbuf *
934 rt_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
935 {
936 	struct mbuf *m;
937 	struct rt_msghdr *rtm;
938 	int hlen, len;
939 	int i;
940 
941 	hlen = rt_msghdrsize(type);
942 	KASSERT(hlen <= MCLBYTES, ("rt_msg_mbuf: hlen %d doesn't fit", hlen));
943 
944 	m = m_getl(hlen, MB_DONTWAIT, MT_DATA, M_PKTHDR, NULL);
945 	if (m == NULL)
946 		return (NULL);
947 	mbuftrackid(m, 32);
948 	m->m_pkthdr.len = m->m_len = hlen;
949 	m->m_pkthdr.rcvif = NULL;
950 	rtinfo->rti_addrs = 0;
951 	len = hlen;
952 	for (i = 0; i < RTAX_MAX; i++) {
953 		struct sockaddr *sa;
954 		int dlen;
955 
956 		if ((sa = rtinfo->rti_info[i]) == NULL)
957 			continue;
958 		rtinfo->rti_addrs |= (1 << i);
959 		dlen = ROUNDUP(sa->sa_len);
960 		m_copyback(m, len, dlen, (caddr_t)sa); /* can grow mbuf chain */
961 		len += dlen;
962 	}
963 	if (m->m_pkthdr.len != len) { /* one of the m_copyback() calls failed */
964 		m_freem(m);
965 		return (NULL);
966 	}
967 	rtm = mtod(m, struct rt_msghdr *);
968 	bzero(rtm, hlen);
969 	rtm->rtm_msglen = len;
970 	rtm->rtm_version = RTM_VERSION;
971 	rtm->rtm_type = type;
972 	return (m);
973 }
974 
975 /*
976  * This routine is called to generate a message from the routing
977  * socket indicating that a redirect has occurred, a routing lookup
978  * has failed, or that a protocol has detected timeouts to a particular
979  * destination.
980  */
981 void
982 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
983 {
984 	struct sockaddr *dst = rtinfo->rti_info[RTAX_DST];
985 	struct rt_msghdr *rtm;
986 	struct mbuf *m;
987 
988 	if (route_cb.any_count == 0)
989 		return;
990 	m = rt_msg_mbuf(type, rtinfo);
991 	if (m == NULL)
992 		return;
993 	rtm = mtod(m, struct rt_msghdr *);
994 	rtm->rtm_flags = RTF_DONE | flags;
995 	rtm->rtm_errno = error;
996 	rtm->rtm_addrs = rtinfo->rti_addrs;
997 	rts_input(m, familyof(dst));
998 }
999 
1000 void
1001 rt_dstmsg(int type, struct sockaddr *dst, int error)
1002 {
1003 	struct rt_msghdr *rtm;
1004 	struct rt_addrinfo addrs;
1005 	struct mbuf *m;
1006 
1007 	if (route_cb.any_count == 0)
1008 		return;
1009 	bzero(&addrs, sizeof(struct rt_addrinfo));
1010 	addrs.rti_info[RTAX_DST] = dst;
1011 	m = rt_msg_mbuf(type, &addrs);
1012 	if (m == NULL)
1013 		return;
1014 	rtm = mtod(m, struct rt_msghdr *);
1015 	rtm->rtm_flags = RTF_DONE;
1016 	rtm->rtm_errno = error;
1017 	rtm->rtm_addrs = addrs.rti_addrs;
1018 	rts_input(m, familyof(dst));
1019 }
1020 
1021 /*
1022  * This routine is called to generate a message from the routing
1023  * socket indicating that the status of a network interface has changed.
1024  */
1025 void
1026 rt_ifmsg(struct ifnet *ifp)
1027 {
1028 	struct if_msghdr *ifm;
1029 	struct mbuf *m;
1030 	struct rt_addrinfo rtinfo;
1031 
1032 	if (route_cb.any_count == 0)
1033 		return;
1034 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1035 	m = rt_msg_mbuf(RTM_IFINFO, &rtinfo);
1036 	if (m == NULL)
1037 		return;
1038 	ifm = mtod(m, struct if_msghdr *);
1039 	ifm->ifm_index = ifp->if_index;
1040 	ifm->ifm_flags = ifp->if_flags;
1041 	ifm->ifm_data = ifp->if_data;
1042 	ifm->ifm_addrs = 0;
1043 	rts_input(m, 0);
1044 }
1045 
1046 static void
1047 rt_ifamsg(int cmd, struct ifaddr *ifa)
1048 {
1049 	struct ifa_msghdr *ifam;
1050 	struct rt_addrinfo rtinfo;
1051 	struct mbuf *m;
1052 	struct ifnet *ifp = ifa->ifa_ifp;
1053 
1054 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1055 	rtinfo.rti_ifaaddr = ifa->ifa_addr;
1056 	rtinfo.rti_ifpaddr =
1057 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1058 	rtinfo.rti_netmask = ifa->ifa_netmask;
1059 	rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
1060 
1061 	m = rt_msg_mbuf(cmd, &rtinfo);
1062 	if (m == NULL)
1063 		return;
1064 
1065 	ifam = mtod(m, struct ifa_msghdr *);
1066 	ifam->ifam_index = ifp->if_index;
1067 	ifam->ifam_metric = ifa->ifa_metric;
1068 	ifam->ifam_flags = ifa->ifa_flags;
1069 	ifam->ifam_addrs = rtinfo.rti_addrs;
1070 
1071 	rts_input(m, familyof(ifa->ifa_addr));
1072 }
1073 
1074 void
1075 rt_rtmsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int error)
1076 {
1077 	struct rt_msghdr *rtm;
1078 	struct rt_addrinfo rtinfo;
1079 	struct mbuf *m;
1080 	struct sockaddr *dst;
1081 
1082 	if (rt == NULL)
1083 		return;
1084 
1085 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1086 	rtinfo.rti_dst = dst = rt_key(rt);
1087 	rtinfo.rti_gateway = rt->rt_gateway;
1088 	rtinfo.rti_netmask = rt_mask(rt);
1089 	if (ifp != NULL) {
1090 		rtinfo.rti_ifpaddr =
1091 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1092 	}
1093 	rtinfo.rti_ifaaddr = rt->rt_ifa->ifa_addr;
1094 
1095 	m = rt_msg_mbuf(cmd, &rtinfo);
1096 	if (m == NULL)
1097 		return;
1098 
1099 	rtm = mtod(m, struct rt_msghdr *);
1100 	if (ifp != NULL)
1101 		rtm->rtm_index = ifp->if_index;
1102 	rtm->rtm_flags |= rt->rt_flags;
1103 	rtm->rtm_errno = error;
1104 	rtm->rtm_addrs = rtinfo.rti_addrs;
1105 
1106 	rts_input(m, familyof(dst));
1107 }
1108 
1109 /*
1110  * This is called to generate messages from the routing socket
1111  * indicating a network interface has had addresses associated with it.
1112  * if we ever reverse the logic and replace messages TO the routing
1113  * socket indicate a request to configure interfaces, then it will
1114  * be unnecessary as the routing socket will automatically generate
1115  * copies of it.
1116  */
1117 void
1118 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
1119 {
1120 #ifdef SCTP
1121 	/*
1122 	 * notify the SCTP stack
1123 	 * this will only get called when an address is added/deleted
1124 	 * XXX pass the ifaddr struct instead if ifa->ifa_addr...
1125 	 */
1126 	if (cmd == RTM_ADD)
1127 		sctp_add_ip_address(ifa);
1128 	else if (cmd == RTM_DELETE)
1129 		sctp_delete_ip_address(ifa);
1130 #endif /* SCTP */
1131 
1132 	if (route_cb.any_count == 0)
1133 		return;
1134 
1135 	if (cmd == RTM_ADD) {
1136 		rt_ifamsg(RTM_NEWADDR, ifa);
1137 		rt_rtmsg(RTM_ADD, rt, ifa->ifa_ifp, error);
1138 	} else {
1139 		KASSERT((cmd == RTM_DELETE), ("unknown cmd %d", cmd));
1140 		rt_rtmsg(RTM_DELETE, rt, ifa->ifa_ifp, error);
1141 		rt_ifamsg(RTM_DELADDR, ifa);
1142 	}
1143 }
1144 
1145 /*
1146  * This is the analogue to the rt_newaddrmsg which performs the same
1147  * function but for multicast group memberhips.  This is easier since
1148  * there is no route state to worry about.
1149  */
1150 void
1151 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1152 {
1153 	struct rt_addrinfo rtinfo;
1154 	struct mbuf *m = NULL;
1155 	struct ifnet *ifp = ifma->ifma_ifp;
1156 	struct ifma_msghdr *ifmam;
1157 
1158 	if (route_cb.any_count == 0)
1159 		return;
1160 
1161 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1162 	rtinfo.rti_ifaaddr = ifma->ifma_addr;
1163 	if (ifp != NULL && !TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
1164 		rtinfo.rti_ifpaddr =
1165 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1166 	}
1167 	/*
1168 	 * If a link-layer address is present, present it as a ``gateway''
1169 	 * (similarly to how ARP entries, e.g., are presented).
1170 	 */
1171 	rtinfo.rti_gateway = ifma->ifma_lladdr;
1172 
1173 	m = rt_msg_mbuf(cmd, &rtinfo);
1174 	if (m == NULL)
1175 		return;
1176 
1177 	ifmam = mtod(m, struct ifma_msghdr *);
1178 	ifmam->ifmam_index = ifp->if_index;
1179 	ifmam->ifmam_addrs = rtinfo.rti_addrs;
1180 
1181 	rts_input(m, familyof(ifma->ifma_addr));
1182 }
1183 
1184 static struct mbuf *
1185 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1186 		     struct rt_addrinfo *info)
1187 {
1188 	struct if_announcemsghdr *ifan;
1189 	struct mbuf *m;
1190 
1191 	if (route_cb.any_count == 0)
1192 		return NULL;
1193 
1194 	bzero(info, sizeof(*info));
1195 	m = rt_msg_mbuf(type, info);
1196 	if (m == NULL)
1197 		return NULL;
1198 
1199 	ifan = mtod(m, struct if_announcemsghdr *);
1200 	ifan->ifan_index = ifp->if_index;
1201 	strlcpy(ifan->ifan_name, ifp->if_xname, sizeof ifan->ifan_name);
1202 	ifan->ifan_what = what;
1203 	return m;
1204 }
1205 
1206 /*
1207  * This is called to generate routing socket messages indicating
1208  * IEEE80211 wireless events.
1209  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1210  */
1211 void
1212 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1213 {
1214 	struct rt_addrinfo info;
1215 	struct mbuf *m;
1216 
1217 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1218 	if (m == NULL)
1219 		return;
1220 
1221 	/*
1222 	 * Append the ieee80211 data.  Try to stick it in the
1223 	 * mbuf containing the ifannounce msg; otherwise allocate
1224 	 * a new mbuf and append.
1225 	 *
1226 	 * NB: we assume m is a single mbuf.
1227 	 */
1228 	if (data_len > M_TRAILINGSPACE(m)) {
1229 		struct mbuf *n = m_get(MB_DONTWAIT, MT_DATA);
1230 		if (n == NULL) {
1231 			m_freem(m);
1232 			return;
1233 		}
1234 		bcopy(data, mtod(n, void *), data_len);
1235 		n->m_len = data_len;
1236 		m->m_next = n;
1237 	} else if (data_len > 0) {
1238 		bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1239 		m->m_len += data_len;
1240 	}
1241 	mbuftrackid(m, 33);
1242 	if (m->m_flags & M_PKTHDR)
1243 		m->m_pkthdr.len += data_len;
1244 	mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1245 	rts_input(m, 0);
1246 }
1247 
1248 /*
1249  * This is called to generate routing socket messages indicating
1250  * network interface arrival and departure.
1251  */
1252 void
1253 rt_ifannouncemsg(struct ifnet *ifp, int what)
1254 {
1255 	struct rt_addrinfo addrinfo;
1256 	struct mbuf *m;
1257 
1258 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &addrinfo);
1259 	if (m != NULL)
1260 		rts_input(m, 0);
1261 }
1262 
1263 static int
1264 resizewalkarg(struct walkarg *w, int len)
1265 {
1266 	void *newptr;
1267 
1268 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
1269 	if (newptr == NULL)
1270 		return (ENOMEM);
1271 	if (w->w_tmem != NULL)
1272 		kfree(w->w_tmem, M_RTABLE);
1273 	w->w_tmem = newptr;
1274 	w->w_tmemsize = len;
1275 	return (0);
1276 }
1277 
1278 /*
1279  * This is used in dumping the kernel table via sysctl().
1280  */
1281 int
1282 sysctl_dumpentry(struct radix_node *rn, void *vw)
1283 {
1284 	struct walkarg *w = vw;
1285 	struct rtentry *rt = (struct rtentry *)rn;
1286 	struct rt_addrinfo rtinfo;
1287 	int error, msglen;
1288 
1289 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1290 		return 0;
1291 
1292 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1293 	rtinfo.rti_dst = rt_key(rt);
1294 	rtinfo.rti_gateway = rt->rt_gateway;
1295 	rtinfo.rti_netmask = rt_mask(rt);
1296 	rtinfo.rti_genmask = rt->rt_genmask;
1297 	if (rt->rt_ifp != NULL) {
1298 		rtinfo.rti_ifpaddr =
1299 		TAILQ_FIRST(&rt->rt_ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1300 		rtinfo.rti_ifaaddr = rt->rt_ifa->ifa_addr;
1301 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1302 			rtinfo.rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
1303 	}
1304 	msglen = rt_msgsize(RTM_GET, &rtinfo);
1305 	if (w->w_tmemsize < msglen && resizewalkarg(w, msglen) != 0)
1306 		return (ENOMEM);
1307 	rt_msg_buffer(RTM_GET, &rtinfo, w->w_tmem, msglen);
1308 	if (w->w_req != NULL) {
1309 		struct rt_msghdr *rtm = w->w_tmem;
1310 
1311 		rtm->rtm_flags = rt->rt_flags;
1312 		rtm->rtm_use = rt->rt_use;
1313 		rtm->rtm_rmx = rt->rt_rmx;
1314 		rtm->rtm_index = rt->rt_ifp->if_index;
1315 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1316 		rtm->rtm_addrs = rtinfo.rti_addrs;
1317 		error = SYSCTL_OUT(w->w_req, rtm, msglen);
1318 		return (error);
1319 	}
1320 	return (0);
1321 }
1322 
1323 static int
1324 sysctl_iflist(int af, struct walkarg *w)
1325 {
1326 	struct ifnet *ifp;
1327 	struct rt_addrinfo rtinfo;
1328 	int msglen, error;
1329 
1330 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1331 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1332 		struct ifaddr_container *ifac;
1333 		struct ifaddr *ifa;
1334 
1335 		if (w->w_arg && w->w_arg != ifp->if_index)
1336 			continue;
1337 		ifac = TAILQ_FIRST(&ifp->if_addrheads[mycpuid]);
1338 		ifa = ifac->ifa;
1339 		rtinfo.rti_ifpaddr = ifa->ifa_addr;
1340 		msglen = rt_msgsize(RTM_IFINFO, &rtinfo);
1341 		if (w->w_tmemsize < msglen && resizewalkarg(w, msglen) != 0)
1342 			return (ENOMEM);
1343 		rt_msg_buffer(RTM_IFINFO, &rtinfo, w->w_tmem, msglen);
1344 		rtinfo.rti_ifpaddr = NULL;
1345 		if (w->w_req != NULL && w->w_tmem != NULL) {
1346 			struct if_msghdr *ifm = w->w_tmem;
1347 
1348 			ifm->ifm_index = ifp->if_index;
1349 			ifm->ifm_flags = ifp->if_flags;
1350 			ifm->ifm_data = ifp->if_data;
1351 			ifm->ifm_addrs = rtinfo.rti_addrs;
1352 			error = SYSCTL_OUT(w->w_req, ifm, msglen);
1353 			if (error)
1354 				return (error);
1355 		}
1356 		while ((ifac = TAILQ_NEXT(ifac, ifa_link)) != NULL) {
1357 			ifa = ifac->ifa;
1358 
1359 			if (af && af != ifa->ifa_addr->sa_family)
1360 				continue;
1361 			if (curproc->p_ucred->cr_prison &&
1362 			    prison_if(curproc->p_ucred, ifa->ifa_addr))
1363 				continue;
1364 			rtinfo.rti_ifaaddr = ifa->ifa_addr;
1365 			rtinfo.rti_netmask = ifa->ifa_netmask;
1366 			rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
1367 			msglen = rt_msgsize(RTM_NEWADDR, &rtinfo);
1368 			if (w->w_tmemsize < msglen &&
1369 			    resizewalkarg(w, msglen) != 0)
1370 				return (ENOMEM);
1371 			rt_msg_buffer(RTM_NEWADDR, &rtinfo, w->w_tmem, msglen);
1372 			if (w->w_req != NULL) {
1373 				struct ifa_msghdr *ifam = w->w_tmem;
1374 
1375 				ifam->ifam_index = ifa->ifa_ifp->if_index;
1376 				ifam->ifam_flags = ifa->ifa_flags;
1377 				ifam->ifam_metric = ifa->ifa_metric;
1378 				ifam->ifam_addrs = rtinfo.rti_addrs;
1379 				error = SYSCTL_OUT(w->w_req, w->w_tmem, msglen);
1380 				if (error)
1381 					return (error);
1382 			}
1383 		}
1384 		rtinfo.rti_netmask = NULL;
1385 		rtinfo.rti_ifaaddr = NULL;
1386 		rtinfo.rti_bcastaddr = NULL;
1387 	}
1388 	return (0);
1389 }
1390 
1391 static int
1392 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1393 {
1394 	int	*name = (int *)arg1;
1395 	u_int	namelen = arg2;
1396 	struct radix_node_head *rnh;
1397 	int	i, error = EINVAL;
1398 	int	origcpu;
1399 	u_char  af;
1400 	struct	walkarg w;
1401 
1402 	name ++;
1403 	namelen--;
1404 	if (req->newptr)
1405 		return (EPERM);
1406 	if (namelen != 3 && namelen != 4)
1407 		return (EINVAL);
1408 	af = name[0];
1409 	bzero(&w, sizeof w);
1410 	w.w_op = name[1];
1411 	w.w_arg = name[2];
1412 	w.w_req = req;
1413 
1414 	/*
1415 	 * Optional third argument specifies cpu, used primarily for
1416 	 * debugging the route table.
1417 	 */
1418 	if (namelen == 4) {
1419 		if (name[3] < 0 || name[3] >= ncpus)
1420 			return (EINVAL);
1421 		origcpu = mycpuid;
1422 		lwkt_migratecpu(name[3]);
1423 	} else {
1424 		origcpu = -1;
1425 	}
1426 	crit_enter();
1427 	switch (w.w_op) {
1428 	case NET_RT_DUMP:
1429 	case NET_RT_FLAGS:
1430 		for (i = 1; i <= AF_MAX; i++)
1431 			if ((rnh = rt_tables[mycpuid][i]) &&
1432 			    (af == 0 || af == i) &&
1433 			    (error = rnh->rnh_walktree(rnh,
1434 						       sysctl_dumpentry, &w)))
1435 				break;
1436 		break;
1437 
1438 	case NET_RT_IFLIST:
1439 		error = sysctl_iflist(af, &w);
1440 	}
1441 	crit_exit();
1442 	if (w.w_tmem != NULL)
1443 		kfree(w.w_tmem, M_RTABLE);
1444 	if (origcpu >= 0)
1445 		lwkt_migratecpu(origcpu);
1446 	return (error);
1447 }
1448 
1449 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1450 
1451 /*
1452  * Definitions of protocols supported in the ROUTE domain.
1453  */
1454 
1455 static struct domain routedomain;		/* or at least forward */
1456 
1457 static struct protosw routesw[] = {
1458 { SOCK_RAW,	&routedomain,	0,		PR_ATOMIC|PR_ADDR,
1459   0,		route_output,	raw_ctlinput,	0,
1460   cpu0_soport,	cpu0_ctlport,
1461   raw_init,	0,		0,		0,
1462   &route_usrreqs
1463 }
1464 };
1465 
1466 static struct domain routedomain = {
1467 	PF_ROUTE, "route", NULL, NULL, NULL,
1468 	routesw, &routesw[(sizeof routesw)/(sizeof routesw[0])],
1469 };
1470 
1471 DOMAIN_SET(route);
1472 
1473