xref: /dragonfly/sys/net/rtsock.c (revision a8ca8ac6)
1 /*
2  * Copyright (c) 2004, 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey M. Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of The DragonFly Project nor the names of its
16  *    contributors may be used to endorse or promote products derived
17  *    from this software without specific, prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
22  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
23  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
27  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
29  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1988, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Berkeley and its contributors.
49  * 4. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
66  * $FreeBSD: src/sys/net/rtsock.c,v 1.44.2.11 2002/12/04 14:05:41 ru Exp $
67  * $DragonFly: src/sys/net/rtsock.c,v 1.45 2008/10/27 02:56:30 sephe Exp $
68  */
69 
70 #include "opt_sctp.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/sysctl.h>
76 #include <sys/proc.h>
77 #include <sys/priv.h>
78 #include <sys/malloc.h>
79 #include <sys/mbuf.h>
80 #include <sys/protosw.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/domain.h>
84 #include <sys/thread2.h>
85 
86 #include <net/if.h>
87 #include <net/route.h>
88 #include <net/raw_cb.h>
89 #include <net/netmsg2.h>
90 
91 #ifdef SCTP
92 extern void sctp_add_ip_address(struct ifaddr *ifa);
93 extern void sctp_delete_ip_address(struct ifaddr *ifa);
94 #endif /* SCTP */
95 
96 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
97 
98 static struct route_cb {
99 	int	ip_count;
100 	int	ip6_count;
101 	int	ipx_count;
102 	int	ns_count;
103 	int	any_count;
104 } route_cb;
105 
106 static const struct sockaddr route_src = { 2, PF_ROUTE, };
107 
108 struct walkarg {
109 	int	w_tmemsize;
110 	int	w_op, w_arg;
111 	void	*w_tmem;
112 	struct sysctl_req *w_req;
113 };
114 
115 static struct mbuf *
116 		rt_msg_mbuf (int, struct rt_addrinfo *);
117 static void	rt_msg_buffer (int, struct rt_addrinfo *, void *buf, int len);
118 static int	rt_msgsize (int type, struct rt_addrinfo *rtinfo);
119 static int	rt_xaddrs (char *, char *, struct rt_addrinfo *);
120 static int	sysctl_dumpentry (struct radix_node *rn, void *vw);
121 static int	sysctl_iflist (int af, struct walkarg *w);
122 static int	route_output(struct mbuf *, struct socket *, ...);
123 static void	rt_setmetrics (u_long, struct rt_metrics *,
124 			       struct rt_metrics *);
125 
126 /*
127  * It really doesn't make any sense at all for this code to share much
128  * with raw_usrreq.c, since its functionality is so restricted.  XXX
129  */
130 static int
131 rts_abort(struct socket *so)
132 {
133 	int error;
134 
135 	crit_enter();
136 	error = raw_usrreqs.pru_abort(so);
137 	crit_exit();
138 	return error;
139 }
140 
141 /* pru_accept is EOPNOTSUPP */
142 
143 static int
144 rts_attach(struct socket *so, int proto, struct pru_attach_info *ai)
145 {
146 	struct rawcb *rp;
147 	int error;
148 
149 	if (sotorawcb(so) != NULL)
150 		return EISCONN;	/* XXX panic? */
151 
152 	rp = kmalloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
153 
154 	/*
155 	 * The critical section is necessary to block protocols from sending
156 	 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
157 	 * this PCB is extant but incompletely initialized.
158 	 * Probably we should try to do more of this work beforehand and
159 	 * eliminate the critical section.
160 	 */
161 	crit_enter();
162 	so->so_pcb = rp;
163 	error = raw_attach(so, proto, ai->sb_rlimit);
164 	rp = sotorawcb(so);
165 	if (error) {
166 		crit_exit();
167 		kfree(rp, M_PCB);
168 		return error;
169 	}
170 	switch(rp->rcb_proto.sp_protocol) {
171 	case AF_INET:
172 		route_cb.ip_count++;
173 		break;
174 	case AF_INET6:
175 		route_cb.ip6_count++;
176 		break;
177 	case AF_IPX:
178 		route_cb.ipx_count++;
179 		break;
180 	case AF_NS:
181 		route_cb.ns_count++;
182 		break;
183 	}
184 	rp->rcb_faddr = &route_src;
185 	route_cb.any_count++;
186 	soisconnected(so);
187 	so->so_options |= SO_USELOOPBACK;
188 	crit_exit();
189 	return 0;
190 }
191 
192 static int
193 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
194 {
195 	int error;
196 
197 	crit_enter();
198 	error = raw_usrreqs.pru_bind(so, nam, td); /* xxx just EINVAL */
199 	crit_exit();
200 	return error;
201 }
202 
203 static int
204 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
205 {
206 	int error;
207 
208 	crit_enter();
209 	error = raw_usrreqs.pru_connect(so, nam, td); /* XXX just EINVAL */
210 	crit_exit();
211 	return error;
212 }
213 
214 /* pru_connect2 is EOPNOTSUPP */
215 /* pru_control is EOPNOTSUPP */
216 
217 static int
218 rts_detach(struct socket *so)
219 {
220 	struct rawcb *rp = sotorawcb(so);
221 	int error;
222 
223 	crit_enter();
224 	if (rp != NULL) {
225 		switch(rp->rcb_proto.sp_protocol) {
226 		case AF_INET:
227 			route_cb.ip_count--;
228 			break;
229 		case AF_INET6:
230 			route_cb.ip6_count--;
231 			break;
232 		case AF_IPX:
233 			route_cb.ipx_count--;
234 			break;
235 		case AF_NS:
236 			route_cb.ns_count--;
237 			break;
238 		}
239 		route_cb.any_count--;
240 	}
241 	error = raw_usrreqs.pru_detach(so);
242 	crit_exit();
243 	return error;
244 }
245 
246 static int
247 rts_disconnect(struct socket *so)
248 {
249 	int error;
250 
251 	crit_enter();
252 	error = raw_usrreqs.pru_disconnect(so);
253 	crit_exit();
254 	return error;
255 }
256 
257 /* pru_listen is EOPNOTSUPP */
258 
259 static int
260 rts_peeraddr(struct socket *so, struct sockaddr **nam)
261 {
262 	int error;
263 
264 	crit_enter();
265 	error = raw_usrreqs.pru_peeraddr(so, nam);
266 	crit_exit();
267 	return error;
268 }
269 
270 /* pru_rcvd is EOPNOTSUPP */
271 /* pru_rcvoob is EOPNOTSUPP */
272 
273 static int
274 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
275 	 struct mbuf *control, struct thread *td)
276 {
277 	int error;
278 
279 	crit_enter();
280 	error = raw_usrreqs.pru_send(so, flags, m, nam, control, td);
281 	crit_exit();
282 	return error;
283 }
284 
285 /* pru_sense is null */
286 
287 static int
288 rts_shutdown(struct socket *so)
289 {
290 	int error;
291 
292 	crit_enter();
293 	error = raw_usrreqs.pru_shutdown(so);
294 	crit_exit();
295 	return error;
296 }
297 
298 static int
299 rts_sockaddr(struct socket *so, struct sockaddr **nam)
300 {
301 	int error;
302 
303 	crit_enter();
304 	error = raw_usrreqs.pru_sockaddr(so, nam);
305 	crit_exit();
306 	return error;
307 }
308 
309 static struct pr_usrreqs route_usrreqs = {
310 	.pru_abort = rts_abort,
311 	.pru_accept = pru_accept_notsupp,
312 	.pru_attach = rts_attach,
313 	.pru_bind = rts_bind,
314 	.pru_connect = rts_connect,
315 	.pru_connect2 = pru_connect2_notsupp,
316 	.pru_control = pru_control_notsupp,
317 	.pru_detach = rts_detach,
318 	.pru_disconnect = rts_disconnect,
319 	.pru_listen = pru_listen_notsupp,
320 	.pru_peeraddr = rts_peeraddr,
321 	.pru_rcvd = pru_rcvd_notsupp,
322 	.pru_rcvoob = pru_rcvoob_notsupp,
323 	.pru_send = rts_send,
324 	.pru_sense = pru_sense_null,
325 	.pru_shutdown = rts_shutdown,
326 	.pru_sockaddr = rts_sockaddr,
327 	.pru_sosend = sosend,
328 	.pru_soreceive = soreceive
329 };
330 
331 static __inline sa_family_t
332 familyof(struct sockaddr *sa)
333 {
334 	return (sa != NULL ? sa->sa_family : 0);
335 }
336 
337 /*
338  * Routing socket input function.  The packet must be serialized onto cpu 0.
339  * We use the cpu0_soport() netisr processing loop to handle it.
340  *
341  * This looks messy but it means that anyone, including interrupt code,
342  * can send a message to the routing socket.
343  */
344 static void
345 rts_input_handler(struct netmsg *msg)
346 {
347 	static const struct sockaddr route_dst = { 2, PF_ROUTE, };
348 	struct sockproto route_proto;
349 	struct netmsg_packet *pmsg;
350 	struct mbuf *m;
351 	sa_family_t family;
352 	struct rawcb *skip;
353 
354 	pmsg = (void *)msg;
355 	family = pmsg->nm_netmsg.nm_lmsg.u.ms_result;
356 	route_proto.sp_family = PF_ROUTE;
357 	route_proto.sp_protocol = family;
358 
359 	m = pmsg->nm_packet;
360 	M_ASSERTPKTHDR(m);
361 
362 	skip = m->m_pkthdr.header;
363 	m->m_pkthdr.header = NULL;
364 
365 	raw_input(m, &route_proto, &route_src, &route_dst, skip);
366 }
367 
368 static void
369 rts_input_skip(struct mbuf *m, sa_family_t family, struct rawcb *skip)
370 {
371 	struct netmsg_packet *pmsg;
372 	lwkt_port_t port;
373 
374 	M_ASSERTPKTHDR(m);
375 
376 	port = cpu0_soport(NULL, NULL, NULL); /* same as for routing socket */
377 	pmsg = &m->m_hdr.mh_netmsg;
378 	netmsg_init(&pmsg->nm_netmsg, NULL, &netisr_apanic_rport,
379 		    0, rts_input_handler);
380 	pmsg->nm_packet = m;
381 	pmsg->nm_netmsg.nm_lmsg.u.ms_result = family;
382 	m->m_pkthdr.header = skip; /* XXX steal field in pkthdr */
383 	lwkt_sendmsg(port, &pmsg->nm_netmsg.nm_lmsg);
384 }
385 
386 static __inline void
387 rts_input(struct mbuf *m, sa_family_t family)
388 {
389 	rts_input_skip(m, family, NULL);
390 }
391 
392 static void *
393 reallocbuf_nofree(void *ptr, size_t len, size_t olen)
394 {
395 	void *newptr;
396 
397 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
398 	if (newptr == NULL)
399 		return NULL;
400 	bcopy(ptr, newptr, olen);
401 	return (newptr);
402 }
403 
404 /*
405  * Internal helper routine for route_output().
406  */
407 static int
408 _fillrtmsg(struct rt_msghdr **prtm, struct rtentry *rt,
409 	   struct rt_addrinfo *rtinfo)
410 {
411 	int msglen;
412 	struct rt_msghdr *rtm = *prtm;
413 
414 	/* Fill in rt_addrinfo for call to rt_msg_buffer(). */
415 	rtinfo->rti_dst = rt_key(rt);
416 	rtinfo->rti_gateway = rt->rt_gateway;
417 	rtinfo->rti_netmask = rt_mask(rt);		/* might be NULL */
418 	rtinfo->rti_genmask = rt->rt_genmask;		/* might be NULL */
419 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
420 		if (rt->rt_ifp != NULL) {
421 			rtinfo->rti_ifpaddr =
422 			    TAILQ_FIRST(&rt->rt_ifp->if_addrheads[mycpuid])
423 			    ->ifa->ifa_addr;
424 			rtinfo->rti_ifaaddr = rt->rt_ifa->ifa_addr;
425 			if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
426 				rtinfo->rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
427 			rtm->rtm_index = rt->rt_ifp->if_index;
428 		} else {
429 			rtinfo->rti_ifpaddr = NULL;
430 			rtinfo->rti_ifaaddr = NULL;
431 		}
432 	} else if (rt->rt_ifp != NULL) {
433 		rtm->rtm_index = rt->rt_ifp->if_index;
434 	}
435 
436 	msglen = rt_msgsize(rtm->rtm_type, rtinfo);
437 	if (rtm->rtm_msglen < msglen) {
438 		/* NOTE: Caller will free the old rtm accordingly */
439 		rtm = reallocbuf_nofree(rtm, msglen, rtm->rtm_msglen);
440 		if (rtm == NULL)
441 			return (ENOBUFS);
442 		*prtm = rtm;
443 	}
444 	rt_msg_buffer(rtm->rtm_type, rtinfo, rtm, msglen);
445 
446 	rtm->rtm_flags = rt->rt_flags;
447 	rtm->rtm_rmx = rt->rt_rmx;
448 	rtm->rtm_addrs = rtinfo->rti_addrs;
449 
450 	return (0);
451 }
452 
453 struct rtm_arg {
454 	struct rt_msghdr	*bak_rtm;
455 	struct rt_msghdr	*new_rtm;
456 };
457 
458 static int
459 fillrtmsg(struct rtm_arg *arg, struct rtentry *rt,
460 	  struct rt_addrinfo *rtinfo)
461 {
462 	struct rt_msghdr *rtm = arg->new_rtm;
463 	int error;
464 
465 	error = _fillrtmsg(&rtm, rt, rtinfo);
466 	if (!error) {
467 		if (arg->new_rtm != rtm) {
468 			/*
469 			 * _fillrtmsg() just allocated a new rtm;
470 			 * if the previously allocated rtm is not
471 			 * the backing rtm, it should be freed.
472 			 */
473 			if (arg->new_rtm != arg->bak_rtm)
474 				kfree(arg->new_rtm, M_RTABLE);
475 			arg->new_rtm = rtm;
476 		}
477 	}
478 	return error;
479 }
480 
481 static void route_output_add_callback(int, int, struct rt_addrinfo *,
482 					struct rtentry *, void *);
483 static void route_output_delete_callback(int, int, struct rt_addrinfo *,
484 					struct rtentry *, void *);
485 static int route_output_get_callback(int, struct rt_addrinfo *,
486 				     struct rtentry *, void *, int);
487 static int route_output_change_callback(int, struct rt_addrinfo *,
488 					struct rtentry *, void *, int);
489 static int route_output_lock_callback(int, struct rt_addrinfo *,
490 				      struct rtentry *, void *, int);
491 
492 /*ARGSUSED*/
493 static int
494 route_output(struct mbuf *m, struct socket *so, ...)
495 {
496 	struct rtm_arg arg;
497 	struct rt_msghdr *rtm = NULL;
498 	struct rawcb *rp = NULL;
499 	struct pr_output_info *oi;
500 	struct rt_addrinfo rtinfo;
501 	sa_family_t family;
502 	int len, error = 0;
503 	__va_list ap;
504 
505 	M_ASSERTPKTHDR(m);
506 
507 	__va_start(ap, so);
508 	oi = __va_arg(ap, struct pr_output_info *);
509 	__va_end(ap);
510 
511 	family = familyof(NULL);
512 
513 #define gotoerr(e) { error = e; goto flush;}
514 
515 	if (m == NULL ||
516 	    (m->m_len < sizeof(long) &&
517 	     (m = m_pullup(m, sizeof(long))) == NULL))
518 		return (ENOBUFS);
519 	len = m->m_pkthdr.len;
520 	if (len < sizeof(struct rt_msghdr) ||
521 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
522 		gotoerr(EINVAL);
523 
524 	rtm = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
525 	if (rtm == NULL)
526 		gotoerr(ENOBUFS);
527 
528 	m_copydata(m, 0, len, (caddr_t)rtm);
529 	if (rtm->rtm_version != RTM_VERSION)
530 		gotoerr(EPROTONOSUPPORT);
531 
532 	rtm->rtm_pid = oi->p_pid;
533 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
534 	rtinfo.rti_addrs = rtm->rtm_addrs;
535 	if (rt_xaddrs((char *)(rtm + 1), (char *)rtm + len, &rtinfo) != 0)
536 		gotoerr(EINVAL);
537 
538 	rtinfo.rti_flags = rtm->rtm_flags;
539 	if (rtinfo.rti_dst == NULL || rtinfo.rti_dst->sa_family >= AF_MAX ||
540 	    (rtinfo.rti_gateway && rtinfo.rti_gateway->sa_family >= AF_MAX))
541 		gotoerr(EINVAL);
542 
543 	family = familyof(rtinfo.rti_dst);
544 
545 	if (rtinfo.rti_genmask != NULL) {
546 		error = rtmask_add_global(rtinfo.rti_genmask);
547 		if (error)
548 			goto flush;
549 	}
550 
551 	/*
552 	 * Verify that the caller has the appropriate privilege; RTM_GET
553 	 * is the only operation the non-superuser is allowed.
554 	 */
555 	if (rtm->rtm_type != RTM_GET &&
556 	    priv_check_cred(so->so_cred, PRIV_ROOT, 0) != 0)
557 		gotoerr(EPERM);
558 
559 	switch (rtm->rtm_type) {
560 	case RTM_ADD:
561 		if (rtinfo.rti_gateway == NULL) {
562 			error = EINVAL;
563 		} else {
564 			error = rtrequest1_global(RTM_ADD, &rtinfo,
565 					  route_output_add_callback, rtm);
566 		}
567 		break;
568 	case RTM_DELETE:
569 		/*
570 		 * Backing rtm (bak_rtm) could _not_ be freed during
571 		 * rtrequest1_global or rtsearch_global, even if the
572 		 * callback reallocates the rtm due to its size changes,
573 		 * since rtinfo points to the backing rtm's memory area.
574 		 * After rtrequest1_global or rtsearch_global returns,
575 		 * it is safe to free the backing rtm, since rtinfo will
576 		 * not be used anymore.
577 		 *
578 		 * new_rtm will be used to save the new rtm allocated
579 		 * by rtrequest1_global or rtsearch_global.
580 		 */
581 		arg.bak_rtm = rtm;
582 		arg.new_rtm = rtm;
583 		error = rtrequest1_global(RTM_DELETE, &rtinfo,
584 					  route_output_delete_callback, &arg);
585 		rtm = arg.new_rtm;
586 		if (rtm != arg.bak_rtm)
587 			kfree(arg.bak_rtm, M_RTABLE);
588 		break;
589 	case RTM_GET:
590 		/* See the comment in RTM_DELETE */
591 		arg.bak_rtm = rtm;
592 		arg.new_rtm = rtm;
593 		error = rtsearch_global(RTM_GET, &rtinfo,
594 					route_output_get_callback, &arg,
595 					RTS_NOEXACTMATCH);
596 		rtm = arg.new_rtm;
597 		if (rtm != arg.bak_rtm)
598 			kfree(arg.bak_rtm, M_RTABLE);
599 		break;
600 	case RTM_CHANGE:
601 		error = rtsearch_global(RTM_CHANGE, &rtinfo,
602 					route_output_change_callback, rtm,
603 					RTS_EXACTMATCH);
604 		break;
605 	case RTM_LOCK:
606 		error = rtsearch_global(RTM_LOCK, &rtinfo,
607 					route_output_lock_callback, rtm,
608 					RTS_EXACTMATCH);
609 		break;
610 	default:
611 		error = EOPNOTSUPP;
612 		break;
613 	}
614 flush:
615 	if (rtm != NULL) {
616 		if (error != 0)
617 			rtm->rtm_errno = error;
618 		else
619 			rtm->rtm_flags |= RTF_DONE;
620 	}
621 
622 	/*
623 	 * Check to see if we don't want our own messages.
624 	 */
625 	if (!(so->so_options & SO_USELOOPBACK)) {
626 		if (route_cb.any_count <= 1) {
627 			if (rtm != NULL)
628 				kfree(rtm, M_RTABLE);
629 			m_freem(m);
630 			return (error);
631 		}
632 		/* There is another listener, so construct message */
633 		rp = sotorawcb(so);
634 	}
635 	if (rtm != NULL) {
636 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
637 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
638 			m_freem(m);
639 			m = NULL;
640 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
641 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
642 		kfree(rtm, M_RTABLE);
643 	}
644 	if (m != NULL)
645 		rts_input_skip(m, family, rp);
646 	return (error);
647 }
648 
649 static void
650 route_output_add_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
651 			  struct rtentry *rt, void *arg)
652 {
653 	struct rt_msghdr *rtm = arg;
654 
655 	if (error == 0 && rt != NULL) {
656 		rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
657 		    &rt->rt_rmx);
658 		rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
659 		rt->rt_rmx.rmx_locks |=
660 		    (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
661 		if (rtinfo->rti_genmask != NULL) {
662 			rt->rt_genmask = rtmask_purelookup(rtinfo->rti_genmask);
663 			if (rt->rt_genmask == NULL) {
664 				/*
665 				 * This should not happen, since we
666 				 * have already installed genmask
667 				 * on each CPU before we reach here.
668 				 */
669 				panic("genmask is gone!?");
670 			}
671 		} else {
672 			rt->rt_genmask = NULL;
673 		}
674 		rtm->rtm_index = rt->rt_ifp->if_index;
675 	}
676 }
677 
678 static void
679 route_output_delete_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
680 			  struct rtentry *rt, void *arg)
681 {
682 	if (error == 0 && rt) {
683 		++rt->rt_refcnt;
684 		if (fillrtmsg(arg, rt, rtinfo) != 0) {
685 			error = ENOBUFS;
686 			/* XXX no way to return the error */
687 		}
688 		--rt->rt_refcnt;
689 	}
690 	if (rt && rt->rt_refcnt == 0) {
691 		++rt->rt_refcnt;
692 		rtfree(rt);
693 	}
694 }
695 
696 static int
697 route_output_get_callback(int cmd, struct rt_addrinfo *rtinfo,
698 			  struct rtentry *rt, void *arg, int found_cnt)
699 {
700 	int error, found = 0;
701 
702 	if (((rtinfo->rti_flags ^ rt->rt_flags) & RTF_HOST) == 0)
703 		found = 1;
704 
705 	error = fillrtmsg(arg, rt, rtinfo);
706 	if (!error && found) {
707 		/* Got the exact match, we could return now! */
708 		error = EJUSTRETURN;
709 	}
710 	return error;
711 }
712 
713 static int
714 route_output_change_callback(int cmd, struct rt_addrinfo *rtinfo,
715 			     struct rtentry *rt, void *arg, int found_cnt)
716 {
717 	struct rt_msghdr *rtm = arg;
718 	struct ifaddr *ifa;
719 	int error = 0;
720 
721 	/*
722 	 * new gateway could require new ifaddr, ifp;
723 	 * flags may also be different; ifp may be specified
724 	 * by ll sockaddr when protocol address is ambiguous
725 	 */
726 	if (((rt->rt_flags & RTF_GATEWAY) && rtinfo->rti_gateway != NULL) ||
727 	    rtinfo->rti_ifpaddr != NULL ||
728 	    (rtinfo->rti_ifaaddr != NULL &&
729 	     !sa_equal(rtinfo->rti_ifaaddr, rt->rt_ifa->ifa_addr))) {
730 		error = rt_getifa(rtinfo);
731 		if (error != 0)
732 			goto done;
733 	}
734 	if (rtinfo->rti_gateway != NULL) {
735 		/*
736 		 * We only need to generate rtmsg upon the
737 		 * first route to be changed.
738 		 */
739 		error = rt_setgate(rt, rt_key(rt), rtinfo->rti_gateway,
740 			found_cnt == 1 ? RTL_REPORTMSG : RTL_DONTREPORT);
741 		if (error != 0)
742 			goto done;
743 	}
744 	if ((ifa = rtinfo->rti_ifa) != NULL) {
745 		struct ifaddr *oifa = rt->rt_ifa;
746 
747 		if (oifa != ifa) {
748 			if (oifa && oifa->ifa_rtrequest)
749 				oifa->ifa_rtrequest(RTM_DELETE, rt, rtinfo);
750 			IFAFREE(rt->rt_ifa);
751 			IFAREF(ifa);
752 			rt->rt_ifa = ifa;
753 			rt->rt_ifp = rtinfo->rti_ifp;
754 		}
755 	}
756 	rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx);
757 	if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
758 		rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, rtinfo);
759 	if (rtinfo->rti_genmask != NULL) {
760 		rt->rt_genmask = rtmask_purelookup(rtinfo->rti_genmask);
761 		if (rt->rt_genmask == NULL) {
762 			/*
763 			 * This should not happen, since we
764 			 * have already installed genmask
765 			 * on each CPU before we reach here.
766 			 */
767 			panic("genmask is gone!?\n");
768 		}
769 	}
770 	rtm->rtm_index = rt->rt_ifp->if_index;
771 done:
772 	return error;
773 }
774 
775 static int
776 route_output_lock_callback(int cmd, struct rt_addrinfo *rtinfo,
777 			   struct rtentry *rt, void *arg,
778 			   int found_cnt __unused)
779 {
780 	struct rt_msghdr *rtm = arg;
781 
782 	rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
783 	rt->rt_rmx.rmx_locks |=
784 		(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
785 	return 0;
786 }
787 
788 static void
789 rt_setmetrics(u_long which, struct rt_metrics *in, struct rt_metrics *out)
790 {
791 #define setmetric(flag, elt) if (which & (flag)) out->elt = in->elt;
792 	setmetric(RTV_RPIPE, rmx_recvpipe);
793 	setmetric(RTV_SPIPE, rmx_sendpipe);
794 	setmetric(RTV_SSTHRESH, rmx_ssthresh);
795 	setmetric(RTV_RTT, rmx_rtt);
796 	setmetric(RTV_RTTVAR, rmx_rttvar);
797 	setmetric(RTV_HOPCOUNT, rmx_hopcount);
798 	setmetric(RTV_MTU, rmx_mtu);
799 	setmetric(RTV_EXPIRE, rmx_expire);
800 #undef setmetric
801 }
802 
803 #define ROUNDUP(a) \
804 	((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
805 
806 /*
807  * Extract the addresses of the passed sockaddrs.
808  * Do a little sanity checking so as to avoid bad memory references.
809  * This data is derived straight from userland.
810  */
811 static int
812 rt_xaddrs(char *cp, char *cplim, struct rt_addrinfo *rtinfo)
813 {
814 	struct sockaddr *sa;
815 	int i;
816 
817 	for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
818 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
819 			continue;
820 		sa = (struct sockaddr *)cp;
821 		/*
822 		 * It won't fit.
823 		 */
824 		if ((cp + sa->sa_len) > cplim) {
825 			return (EINVAL);
826 		}
827 
828 		/*
829 		 * There are no more...  Quit now.
830 		 * If there are more bits, they are in error.
831 		 * I've seen this.  route(1) can evidently generate these.
832 		 * This causes kernel to core dump.
833 		 * For compatibility, if we see this, point to a safe address.
834 		 */
835 		if (sa->sa_len == 0) {
836 			static struct sockaddr sa_zero = {
837 				sizeof sa_zero, AF_INET,
838 			};
839 
840 			rtinfo->rti_info[i] = &sa_zero;
841 			kprintf("rtsock: received more addr bits than sockaddrs.\n");
842 			return (0); /* should be EINVAL but for compat */
843 		}
844 
845 		/* Accept the sockaddr. */
846 		rtinfo->rti_info[i] = sa;
847 		cp += ROUNDUP(sa->sa_len);
848 	}
849 	return (0);
850 }
851 
852 static int
853 rt_msghdrsize(int type)
854 {
855 	switch (type) {
856 	case RTM_DELADDR:
857 	case RTM_NEWADDR:
858 		return sizeof(struct ifa_msghdr);
859 	case RTM_DELMADDR:
860 	case RTM_NEWMADDR:
861 		return sizeof(struct ifma_msghdr);
862 	case RTM_IFINFO:
863 		return sizeof(struct if_msghdr);
864 	case RTM_IFANNOUNCE:
865 	case RTM_IEEE80211:
866 		return sizeof(struct if_announcemsghdr);
867 	default:
868 		return sizeof(struct rt_msghdr);
869 	}
870 }
871 
872 static int
873 rt_msgsize(int type, struct rt_addrinfo *rtinfo)
874 {
875 	int len, i;
876 
877 	len = rt_msghdrsize(type);
878 	for (i = 0; i < RTAX_MAX; i++) {
879 		if (rtinfo->rti_info[i] != NULL)
880 			len += ROUNDUP(rtinfo->rti_info[i]->sa_len);
881 	}
882 	len = ALIGN(len);
883 	return len;
884 }
885 
886 /*
887  * Build a routing message in a buffer.
888  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
889  * to the end of the buffer after the message header.
890  *
891  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
892  * This side-effect can be avoided if we reorder the addrs bitmask field in all
893  * the route messages to line up so we can set it here instead of back in the
894  * calling routine.
895  */
896 static void
897 rt_msg_buffer(int type, struct rt_addrinfo *rtinfo, void *buf, int msglen)
898 {
899 	struct rt_msghdr *rtm;
900 	char *cp;
901 	int dlen, i;
902 
903 	rtm = (struct rt_msghdr *) buf;
904 	rtm->rtm_version = RTM_VERSION;
905 	rtm->rtm_type = type;
906 	rtm->rtm_msglen = msglen;
907 
908 	cp = (char *)buf + rt_msghdrsize(type);
909 	rtinfo->rti_addrs = 0;
910 	for (i = 0; i < RTAX_MAX; i++) {
911 		struct sockaddr *sa;
912 
913 		if ((sa = rtinfo->rti_info[i]) == NULL)
914 			continue;
915 		rtinfo->rti_addrs |= (1 << i);
916 		dlen = ROUNDUP(sa->sa_len);
917 		bcopy(sa, cp, dlen);
918 		cp += dlen;
919 	}
920 }
921 
922 /*
923  * Build a routing message in a mbuf chain.
924  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
925  * to the end of the mbuf after the message header.
926  *
927  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
928  * This side-effect can be avoided if we reorder the addrs bitmask field in all
929  * the route messages to line up so we can set it here instead of back in the
930  * calling routine.
931  */
932 static struct mbuf *
933 rt_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
934 {
935 	struct mbuf *m;
936 	struct rt_msghdr *rtm;
937 	int hlen, len;
938 	int i;
939 
940 	hlen = rt_msghdrsize(type);
941 	KASSERT(hlen <= MCLBYTES, ("rt_msg_mbuf: hlen %d doesn't fit", hlen));
942 
943 	m = m_getl(hlen, MB_DONTWAIT, MT_DATA, M_PKTHDR, NULL);
944 	if (m == NULL)
945 		return (NULL);
946 	mbuftrackid(m, 32);
947 	m->m_pkthdr.len = m->m_len = hlen;
948 	m->m_pkthdr.rcvif = NULL;
949 	rtinfo->rti_addrs = 0;
950 	len = hlen;
951 	for (i = 0; i < RTAX_MAX; i++) {
952 		struct sockaddr *sa;
953 		int dlen;
954 
955 		if ((sa = rtinfo->rti_info[i]) == NULL)
956 			continue;
957 		rtinfo->rti_addrs |= (1 << i);
958 		dlen = ROUNDUP(sa->sa_len);
959 		m_copyback(m, len, dlen, (caddr_t)sa); /* can grow mbuf chain */
960 		len += dlen;
961 	}
962 	if (m->m_pkthdr.len != len) { /* one of the m_copyback() calls failed */
963 		m_freem(m);
964 		return (NULL);
965 	}
966 	rtm = mtod(m, struct rt_msghdr *);
967 	bzero(rtm, hlen);
968 	rtm->rtm_msglen = len;
969 	rtm->rtm_version = RTM_VERSION;
970 	rtm->rtm_type = type;
971 	return (m);
972 }
973 
974 /*
975  * This routine is called to generate a message from the routing
976  * socket indicating that a redirect has occurred, a routing lookup
977  * has failed, or that a protocol has detected timeouts to a particular
978  * destination.
979  */
980 void
981 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
982 {
983 	struct sockaddr *dst = rtinfo->rti_info[RTAX_DST];
984 	struct rt_msghdr *rtm;
985 	struct mbuf *m;
986 
987 	if (route_cb.any_count == 0)
988 		return;
989 	m = rt_msg_mbuf(type, rtinfo);
990 	if (m == NULL)
991 		return;
992 	rtm = mtod(m, struct rt_msghdr *);
993 	rtm->rtm_flags = RTF_DONE | flags;
994 	rtm->rtm_errno = error;
995 	rtm->rtm_addrs = rtinfo->rti_addrs;
996 	rts_input(m, familyof(dst));
997 }
998 
999 void
1000 rt_dstmsg(int type, struct sockaddr *dst, int error)
1001 {
1002 	struct rt_msghdr *rtm;
1003 	struct rt_addrinfo addrs;
1004 	struct mbuf *m;
1005 
1006 	if (route_cb.any_count == 0)
1007 		return;
1008 	bzero(&addrs, sizeof(struct rt_addrinfo));
1009 	addrs.rti_info[RTAX_DST] = dst;
1010 	m = rt_msg_mbuf(type, &addrs);
1011 	if (m == NULL)
1012 		return;
1013 	rtm = mtod(m, struct rt_msghdr *);
1014 	rtm->rtm_flags = RTF_DONE;
1015 	rtm->rtm_errno = error;
1016 	rtm->rtm_addrs = addrs.rti_addrs;
1017 	rts_input(m, familyof(dst));
1018 }
1019 
1020 /*
1021  * This routine is called to generate a message from the routing
1022  * socket indicating that the status of a network interface has changed.
1023  */
1024 void
1025 rt_ifmsg(struct ifnet *ifp)
1026 {
1027 	struct if_msghdr *ifm;
1028 	struct mbuf *m;
1029 	struct rt_addrinfo rtinfo;
1030 
1031 	if (route_cb.any_count == 0)
1032 		return;
1033 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1034 	m = rt_msg_mbuf(RTM_IFINFO, &rtinfo);
1035 	if (m == NULL)
1036 		return;
1037 	ifm = mtod(m, struct if_msghdr *);
1038 	ifm->ifm_index = ifp->if_index;
1039 	ifm->ifm_flags = ifp->if_flags;
1040 	ifm->ifm_data = ifp->if_data;
1041 	ifm->ifm_addrs = 0;
1042 	rts_input(m, 0);
1043 }
1044 
1045 static void
1046 rt_ifamsg(int cmd, struct ifaddr *ifa)
1047 {
1048 	struct ifa_msghdr *ifam;
1049 	struct rt_addrinfo rtinfo;
1050 	struct mbuf *m;
1051 	struct ifnet *ifp = ifa->ifa_ifp;
1052 
1053 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1054 	rtinfo.rti_ifaaddr = ifa->ifa_addr;
1055 	rtinfo.rti_ifpaddr =
1056 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1057 	rtinfo.rti_netmask = ifa->ifa_netmask;
1058 	rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
1059 
1060 	m = rt_msg_mbuf(cmd, &rtinfo);
1061 	if (m == NULL)
1062 		return;
1063 
1064 	ifam = mtod(m, struct ifa_msghdr *);
1065 	ifam->ifam_index = ifp->if_index;
1066 	ifam->ifam_metric = ifa->ifa_metric;
1067 	ifam->ifam_flags = ifa->ifa_flags;
1068 	ifam->ifam_addrs = rtinfo.rti_addrs;
1069 
1070 	rts_input(m, familyof(ifa->ifa_addr));
1071 }
1072 
1073 void
1074 rt_rtmsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int error)
1075 {
1076 	struct rt_msghdr *rtm;
1077 	struct rt_addrinfo rtinfo;
1078 	struct mbuf *m;
1079 	struct sockaddr *dst;
1080 
1081 	if (rt == NULL)
1082 		return;
1083 
1084 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1085 	rtinfo.rti_dst = dst = rt_key(rt);
1086 	rtinfo.rti_gateway = rt->rt_gateway;
1087 	rtinfo.rti_netmask = rt_mask(rt);
1088 	if (ifp != NULL) {
1089 		rtinfo.rti_ifpaddr =
1090 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1091 	}
1092 	rtinfo.rti_ifaaddr = rt->rt_ifa->ifa_addr;
1093 
1094 	m = rt_msg_mbuf(cmd, &rtinfo);
1095 	if (m == NULL)
1096 		return;
1097 
1098 	rtm = mtod(m, struct rt_msghdr *);
1099 	if (ifp != NULL)
1100 		rtm->rtm_index = ifp->if_index;
1101 	rtm->rtm_flags |= rt->rt_flags;
1102 	rtm->rtm_errno = error;
1103 	rtm->rtm_addrs = rtinfo.rti_addrs;
1104 
1105 	rts_input(m, familyof(dst));
1106 }
1107 
1108 /*
1109  * This is called to generate messages from the routing socket
1110  * indicating a network interface has had addresses associated with it.
1111  * if we ever reverse the logic and replace messages TO the routing
1112  * socket indicate a request to configure interfaces, then it will
1113  * be unnecessary as the routing socket will automatically generate
1114  * copies of it.
1115  */
1116 void
1117 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
1118 {
1119 #ifdef SCTP
1120 	/*
1121 	 * notify the SCTP stack
1122 	 * this will only get called when an address is added/deleted
1123 	 * XXX pass the ifaddr struct instead if ifa->ifa_addr...
1124 	 */
1125 	if (cmd == RTM_ADD)
1126 		sctp_add_ip_address(ifa);
1127 	else if (cmd == RTM_DELETE)
1128 		sctp_delete_ip_address(ifa);
1129 #endif /* SCTP */
1130 
1131 	if (route_cb.any_count == 0)
1132 		return;
1133 
1134 	if (cmd == RTM_ADD) {
1135 		rt_ifamsg(RTM_NEWADDR, ifa);
1136 		rt_rtmsg(RTM_ADD, rt, ifa->ifa_ifp, error);
1137 	} else {
1138 		KASSERT((cmd == RTM_DELETE), ("unknown cmd %d", cmd));
1139 		rt_rtmsg(RTM_DELETE, rt, ifa->ifa_ifp, error);
1140 		rt_ifamsg(RTM_DELADDR, ifa);
1141 	}
1142 }
1143 
1144 /*
1145  * This is the analogue to the rt_newaddrmsg which performs the same
1146  * function but for multicast group memberhips.  This is easier since
1147  * there is no route state to worry about.
1148  */
1149 void
1150 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1151 {
1152 	struct rt_addrinfo rtinfo;
1153 	struct mbuf *m = NULL;
1154 	struct ifnet *ifp = ifma->ifma_ifp;
1155 	struct ifma_msghdr *ifmam;
1156 
1157 	if (route_cb.any_count == 0)
1158 		return;
1159 
1160 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1161 	rtinfo.rti_ifaaddr = ifma->ifma_addr;
1162 	if (ifp != NULL && !TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
1163 		rtinfo.rti_ifpaddr =
1164 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1165 	}
1166 	/*
1167 	 * If a link-layer address is present, present it as a ``gateway''
1168 	 * (similarly to how ARP entries, e.g., are presented).
1169 	 */
1170 	rtinfo.rti_gateway = ifma->ifma_lladdr;
1171 
1172 	m = rt_msg_mbuf(cmd, &rtinfo);
1173 	if (m == NULL)
1174 		return;
1175 
1176 	ifmam = mtod(m, struct ifma_msghdr *);
1177 	ifmam->ifmam_index = ifp->if_index;
1178 	ifmam->ifmam_addrs = rtinfo.rti_addrs;
1179 
1180 	rts_input(m, familyof(ifma->ifma_addr));
1181 }
1182 
1183 static struct mbuf *
1184 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1185 		     struct rt_addrinfo *info)
1186 {
1187 	struct if_announcemsghdr *ifan;
1188 	struct mbuf *m;
1189 
1190 	if (route_cb.any_count == 0)
1191 		return NULL;
1192 
1193 	bzero(info, sizeof(*info));
1194 	m = rt_msg_mbuf(type, info);
1195 	if (m == NULL)
1196 		return NULL;
1197 
1198 	ifan = mtod(m, struct if_announcemsghdr *);
1199 	ifan->ifan_index = ifp->if_index;
1200 	strlcpy(ifan->ifan_name, ifp->if_xname, sizeof ifan->ifan_name);
1201 	ifan->ifan_what = what;
1202 	return m;
1203 }
1204 
1205 /*
1206  * This is called to generate routing socket messages indicating
1207  * IEEE80211 wireless events.
1208  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1209  */
1210 void
1211 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1212 {
1213 	struct rt_addrinfo info;
1214 	struct mbuf *m;
1215 
1216 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1217 	if (m == NULL)
1218 		return;
1219 
1220 	/*
1221 	 * Append the ieee80211 data.  Try to stick it in the
1222 	 * mbuf containing the ifannounce msg; otherwise allocate
1223 	 * a new mbuf and append.
1224 	 *
1225 	 * NB: we assume m is a single mbuf.
1226 	 */
1227 	if (data_len > M_TRAILINGSPACE(m)) {
1228 		struct mbuf *n = m_get(MB_DONTWAIT, MT_DATA);
1229 		if (n == NULL) {
1230 			m_freem(m);
1231 			return;
1232 		}
1233 		bcopy(data, mtod(n, void *), data_len);
1234 		n->m_len = data_len;
1235 		m->m_next = n;
1236 	} else if (data_len > 0) {
1237 		bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1238 		m->m_len += data_len;
1239 	}
1240 	mbuftrackid(m, 33);
1241 	if (m->m_flags & M_PKTHDR)
1242 		m->m_pkthdr.len += data_len;
1243 	mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1244 	rts_input(m, 0);
1245 }
1246 
1247 /*
1248  * This is called to generate routing socket messages indicating
1249  * network interface arrival and departure.
1250  */
1251 void
1252 rt_ifannouncemsg(struct ifnet *ifp, int what)
1253 {
1254 	struct rt_addrinfo addrinfo;
1255 	struct mbuf *m;
1256 
1257 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &addrinfo);
1258 	if (m != NULL)
1259 		rts_input(m, 0);
1260 }
1261 
1262 static int
1263 resizewalkarg(struct walkarg *w, int len)
1264 {
1265 	void *newptr;
1266 
1267 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
1268 	if (newptr == NULL)
1269 		return (ENOMEM);
1270 	if (w->w_tmem != NULL)
1271 		kfree(w->w_tmem, M_RTABLE);
1272 	w->w_tmem = newptr;
1273 	w->w_tmemsize = len;
1274 	return (0);
1275 }
1276 
1277 /*
1278  * This is used in dumping the kernel table via sysctl().
1279  */
1280 int
1281 sysctl_dumpentry(struct radix_node *rn, void *vw)
1282 {
1283 	struct walkarg *w = vw;
1284 	struct rtentry *rt = (struct rtentry *)rn;
1285 	struct rt_addrinfo rtinfo;
1286 	int error, msglen;
1287 
1288 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1289 		return 0;
1290 
1291 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1292 	rtinfo.rti_dst = rt_key(rt);
1293 	rtinfo.rti_gateway = rt->rt_gateway;
1294 	rtinfo.rti_netmask = rt_mask(rt);
1295 	rtinfo.rti_genmask = rt->rt_genmask;
1296 	if (rt->rt_ifp != NULL) {
1297 		rtinfo.rti_ifpaddr =
1298 		TAILQ_FIRST(&rt->rt_ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1299 		rtinfo.rti_ifaaddr = rt->rt_ifa->ifa_addr;
1300 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1301 			rtinfo.rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
1302 	}
1303 	msglen = rt_msgsize(RTM_GET, &rtinfo);
1304 	if (w->w_tmemsize < msglen && resizewalkarg(w, msglen) != 0)
1305 		return (ENOMEM);
1306 	rt_msg_buffer(RTM_GET, &rtinfo, w->w_tmem, msglen);
1307 	if (w->w_req != NULL) {
1308 		struct rt_msghdr *rtm = w->w_tmem;
1309 
1310 		rtm->rtm_flags = rt->rt_flags;
1311 		rtm->rtm_use = rt->rt_use;
1312 		rtm->rtm_rmx = rt->rt_rmx;
1313 		rtm->rtm_index = rt->rt_ifp->if_index;
1314 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1315 		rtm->rtm_addrs = rtinfo.rti_addrs;
1316 		error = SYSCTL_OUT(w->w_req, rtm, msglen);
1317 		return (error);
1318 	}
1319 	return (0);
1320 }
1321 
1322 static int
1323 sysctl_iflist(int af, struct walkarg *w)
1324 {
1325 	struct ifnet *ifp;
1326 	struct rt_addrinfo rtinfo;
1327 	int msglen, error;
1328 
1329 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1330 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1331 		struct ifaddr_container *ifac;
1332 		struct ifaddr *ifa;
1333 
1334 		if (w->w_arg && w->w_arg != ifp->if_index)
1335 			continue;
1336 		ifac = TAILQ_FIRST(&ifp->if_addrheads[mycpuid]);
1337 		ifa = ifac->ifa;
1338 		rtinfo.rti_ifpaddr = ifa->ifa_addr;
1339 		msglen = rt_msgsize(RTM_IFINFO, &rtinfo);
1340 		if (w->w_tmemsize < msglen && resizewalkarg(w, msglen) != 0)
1341 			return (ENOMEM);
1342 		rt_msg_buffer(RTM_IFINFO, &rtinfo, w->w_tmem, msglen);
1343 		rtinfo.rti_ifpaddr = NULL;
1344 		if (w->w_req != NULL && w->w_tmem != NULL) {
1345 			struct if_msghdr *ifm = w->w_tmem;
1346 
1347 			ifm->ifm_index = ifp->if_index;
1348 			ifm->ifm_flags = ifp->if_flags;
1349 			ifm->ifm_data = ifp->if_data;
1350 			ifm->ifm_addrs = rtinfo.rti_addrs;
1351 			error = SYSCTL_OUT(w->w_req, ifm, msglen);
1352 			if (error)
1353 				return (error);
1354 		}
1355 		while ((ifac = TAILQ_NEXT(ifac, ifa_link)) != NULL) {
1356 			ifa = ifac->ifa;
1357 
1358 			if (af && af != ifa->ifa_addr->sa_family)
1359 				continue;
1360 			if (curproc->p_ucred->cr_prison &&
1361 			    prison_if(curproc->p_ucred, ifa->ifa_addr))
1362 				continue;
1363 			rtinfo.rti_ifaaddr = ifa->ifa_addr;
1364 			rtinfo.rti_netmask = ifa->ifa_netmask;
1365 			rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
1366 			msglen = rt_msgsize(RTM_NEWADDR, &rtinfo);
1367 			if (w->w_tmemsize < msglen &&
1368 			    resizewalkarg(w, msglen) != 0)
1369 				return (ENOMEM);
1370 			rt_msg_buffer(RTM_NEWADDR, &rtinfo, w->w_tmem, msglen);
1371 			if (w->w_req != NULL) {
1372 				struct ifa_msghdr *ifam = w->w_tmem;
1373 
1374 				ifam->ifam_index = ifa->ifa_ifp->if_index;
1375 				ifam->ifam_flags = ifa->ifa_flags;
1376 				ifam->ifam_metric = ifa->ifa_metric;
1377 				ifam->ifam_addrs = rtinfo.rti_addrs;
1378 				error = SYSCTL_OUT(w->w_req, w->w_tmem, msglen);
1379 				if (error)
1380 					return (error);
1381 			}
1382 		}
1383 		rtinfo.rti_netmask = NULL;
1384 		rtinfo.rti_ifaaddr = NULL;
1385 		rtinfo.rti_bcastaddr = NULL;
1386 	}
1387 	return (0);
1388 }
1389 
1390 static int
1391 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1392 {
1393 	int	*name = (int *)arg1;
1394 	u_int	namelen = arg2;
1395 	struct radix_node_head *rnh;
1396 	int	i, error = EINVAL;
1397 	int	origcpu;
1398 	u_char  af;
1399 	struct	walkarg w;
1400 
1401 	name ++;
1402 	namelen--;
1403 	if (req->newptr)
1404 		return (EPERM);
1405 	if (namelen != 3 && namelen != 4)
1406 		return (EINVAL);
1407 	af = name[0];
1408 	bzero(&w, sizeof w);
1409 	w.w_op = name[1];
1410 	w.w_arg = name[2];
1411 	w.w_req = req;
1412 
1413 	/*
1414 	 * Optional third argument specifies cpu, used primarily for
1415 	 * debugging the route table.
1416 	 */
1417 	if (namelen == 4) {
1418 		if (name[3] < 0 || name[3] >= ncpus)
1419 			return (EINVAL);
1420 		origcpu = mycpuid;
1421 		lwkt_migratecpu(name[3]);
1422 	} else {
1423 		origcpu = -1;
1424 	}
1425 	crit_enter();
1426 	switch (w.w_op) {
1427 	case NET_RT_DUMP:
1428 	case NET_RT_FLAGS:
1429 		for (i = 1; i <= AF_MAX; i++)
1430 			if ((rnh = rt_tables[mycpuid][i]) &&
1431 			    (af == 0 || af == i) &&
1432 			    (error = rnh->rnh_walktree(rnh,
1433 						       sysctl_dumpentry, &w)))
1434 				break;
1435 		break;
1436 
1437 	case NET_RT_IFLIST:
1438 		error = sysctl_iflist(af, &w);
1439 	}
1440 	crit_exit();
1441 	if (w.w_tmem != NULL)
1442 		kfree(w.w_tmem, M_RTABLE);
1443 	if (origcpu >= 0)
1444 		lwkt_migratecpu(origcpu);
1445 	return (error);
1446 }
1447 
1448 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1449 
1450 /*
1451  * Definitions of protocols supported in the ROUTE domain.
1452  */
1453 
1454 static struct domain routedomain;		/* or at least forward */
1455 
1456 static struct protosw routesw[] = {
1457 { SOCK_RAW,	&routedomain,	0,		PR_ATOMIC|PR_ADDR,
1458   0,		route_output,	raw_ctlinput,	0,
1459   cpu0_soport,	cpu0_ctlport,
1460   raw_init,	0,		0,		0,
1461   &route_usrreqs
1462 }
1463 };
1464 
1465 static struct domain routedomain = {
1466 	PF_ROUTE, "route", NULL, NULL, NULL,
1467 	routesw, &routesw[(sizeof routesw)/(sizeof routesw[0])],
1468 };
1469 
1470 DOMAIN_SET(route);
1471 
1472