xref: /dragonfly/sys/net/rtsock.c (revision b29f78b5)
1 /*
2  * Copyright (c) 2004, 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey M. Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of The DragonFly Project nor the names of its
16  *    contributors may be used to endorse or promote products derived
17  *    from this software without specific, prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
22  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
23  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
27  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
29  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1988, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
62  * $FreeBSD: src/sys/net/rtsock.c,v 1.44.2.11 2002/12/04 14:05:41 ru Exp $
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
69 #include <sys/proc.h>
70 #include <sys/priv.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/protosw.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/domain.h>
77 
78 #include <sys/thread2.h>
79 #include <sys/socketvar2.h>
80 
81 #include <net/if.h>
82 #include <net/route.h>
83 #include <net/raw_cb.h>
84 #include <net/netmsg2.h>
85 #include <net/netisr2.h>
86 
87 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
88 
89 static struct route_cb {
90 	int	ip_count;
91 	int	ip6_count;
92 	int	ns_count;
93 	int	any_count;
94 } route_cb;
95 
96 static const struct sockaddr route_src = { 2, PF_ROUTE, };
97 
98 struct walkarg {
99 	int	w_tmemsize;
100 	int	w_op, w_arg;
101 	void	*w_tmem;
102 	struct sysctl_req *w_req;
103 };
104 
105 static struct mbuf *
106 		rt_msg_mbuf (int, struct rt_addrinfo *);
107 static void	rt_msg_buffer (int, struct rt_addrinfo *, void *buf, int len);
108 static int	rt_msgsize(int type, const struct rt_addrinfo *rtinfo);
109 static int	rt_xaddrs (char *, char *, struct rt_addrinfo *);
110 static int	sysctl_dumpentry (struct radix_node *rn, void *vw);
111 static int	sysctl_rttable(int af, struct sysctl_req *req, int op, int arg);
112 static int	sysctl_iflist (int af, struct walkarg *w);
113 static int	route_output(struct mbuf *, struct socket *, ...);
114 static void	rt_setmetrics (u_long, struct rt_metrics *,
115 			       struct rt_metrics *);
116 
117 /*
118  * It really doesn't make any sense at all for this code to share much
119  * with raw_usrreq.c, since its functionality is so restricted.  XXX
120  */
121 static void
122 rts_abort(netmsg_t msg)
123 {
124 	crit_enter();
125 	raw_usrreqs.pru_abort(msg);
126 	/* msg invalid now */
127 	crit_exit();
128 }
129 
130 /* pru_accept is EOPNOTSUPP */
131 
132 static void
133 rts_attach(netmsg_t msg)
134 {
135 	struct socket *so = msg->base.nm_so;
136 	struct pru_attach_info *ai = msg->attach.nm_ai;
137 	struct rawcb *rp;
138 	int proto = msg->attach.nm_proto;
139 	int error;
140 
141 	crit_enter();
142 	if (sotorawcb(so) != NULL) {
143 		error = EISCONN;
144 		goto done;
145 	}
146 
147 	rp = kmalloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
148 
149 	/*
150 	 * The critical section is necessary to block protocols from sending
151 	 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
152 	 * this PCB is extant but incompletely initialized.
153 	 * Probably we should try to do more of this work beforehand and
154 	 * eliminate the critical section.
155 	 */
156 	so->so_pcb = rp;
157 	soreference(so);	/* so_pcb assignment */
158 	error = raw_attach(so, proto, ai->sb_rlimit);
159 	rp = sotorawcb(so);
160 	if (error) {
161 		kfree(rp, M_PCB);
162 		goto done;
163 	}
164 	switch(rp->rcb_proto.sp_protocol) {
165 	case AF_INET:
166 		route_cb.ip_count++;
167 		break;
168 	case AF_INET6:
169 		route_cb.ip6_count++;
170 		break;
171 	}
172 	rp->rcb_faddr = &route_src;
173 	route_cb.any_count++;
174 	soisconnected(so);
175 	so->so_options |= SO_USELOOPBACK;
176 	error = 0;
177 done:
178 	crit_exit();
179 	lwkt_replymsg(&msg->lmsg, error);
180 }
181 
182 static void
183 rts_bind(netmsg_t msg)
184 {
185 	crit_enter();
186 	raw_usrreqs.pru_bind(msg); /* xxx just EINVAL */
187 	/* msg invalid now */
188 	crit_exit();
189 }
190 
191 static void
192 rts_connect(netmsg_t msg)
193 {
194 	crit_enter();
195 	raw_usrreqs.pru_connect(msg); /* XXX just EINVAL */
196 	/* msg invalid now */
197 	crit_exit();
198 }
199 
200 /* pru_connect2 is EOPNOTSUPP */
201 /* pru_control is EOPNOTSUPP */
202 
203 static void
204 rts_detach(netmsg_t msg)
205 {
206 	struct socket *so = msg->base.nm_so;
207 	struct rawcb *rp = sotorawcb(so);
208 
209 	crit_enter();
210 	if (rp != NULL) {
211 		switch(rp->rcb_proto.sp_protocol) {
212 		case AF_INET:
213 			route_cb.ip_count--;
214 			break;
215 		case AF_INET6:
216 			route_cb.ip6_count--;
217 			break;
218 		}
219 		route_cb.any_count--;
220 	}
221 	raw_usrreqs.pru_detach(msg);
222 	/* msg invalid now */
223 	crit_exit();
224 }
225 
226 static void
227 rts_disconnect(netmsg_t msg)
228 {
229 	crit_enter();
230 	raw_usrreqs.pru_disconnect(msg);
231 	/* msg invalid now */
232 	crit_exit();
233 }
234 
235 /* pru_listen is EOPNOTSUPP */
236 
237 static void
238 rts_peeraddr(netmsg_t msg)
239 {
240 	crit_enter();
241 	raw_usrreqs.pru_peeraddr(msg);
242 	/* msg invalid now */
243 	crit_exit();
244 }
245 
246 /* pru_rcvd is EOPNOTSUPP */
247 /* pru_rcvoob is EOPNOTSUPP */
248 
249 static void
250 rts_send(netmsg_t msg)
251 {
252 	crit_enter();
253 	raw_usrreqs.pru_send(msg);
254 	/* msg invalid now */
255 	crit_exit();
256 }
257 
258 /* pru_sense is null */
259 
260 static void
261 rts_shutdown(netmsg_t msg)
262 {
263 	crit_enter();
264 	raw_usrreqs.pru_shutdown(msg);
265 	/* msg invalid now */
266 	crit_exit();
267 }
268 
269 static void
270 rts_sockaddr(netmsg_t msg)
271 {
272 	crit_enter();
273 	raw_usrreqs.pru_sockaddr(msg);
274 	/* msg invalid now */
275 	crit_exit();
276 }
277 
278 static struct pr_usrreqs route_usrreqs = {
279 	.pru_abort = rts_abort,
280 	.pru_accept = pr_generic_notsupp,
281 	.pru_attach = rts_attach,
282 	.pru_bind = rts_bind,
283 	.pru_connect = rts_connect,
284 	.pru_connect2 = pr_generic_notsupp,
285 	.pru_control = pr_generic_notsupp,
286 	.pru_detach = rts_detach,
287 	.pru_disconnect = rts_disconnect,
288 	.pru_listen = pr_generic_notsupp,
289 	.pru_peeraddr = rts_peeraddr,
290 	.pru_rcvd = pr_generic_notsupp,
291 	.pru_rcvoob = pr_generic_notsupp,
292 	.pru_send = rts_send,
293 	.pru_sense = pru_sense_null,
294 	.pru_shutdown = rts_shutdown,
295 	.pru_sockaddr = rts_sockaddr,
296 	.pru_sosend = sosend,
297 	.pru_soreceive = soreceive
298 };
299 
300 static __inline sa_family_t
301 familyof(struct sockaddr *sa)
302 {
303 	return (sa != NULL ? sa->sa_family : 0);
304 }
305 
306 /*
307  * Routing socket input function.  The packet must be serialized onto cpu 0.
308  * We use the cpu0_soport() netisr processing loop to handle it.
309  *
310  * This looks messy but it means that anyone, including interrupt code,
311  * can send a message to the routing socket.
312  */
313 static void
314 rts_input_handler(netmsg_t msg)
315 {
316 	static const struct sockaddr route_dst = { 2, PF_ROUTE, };
317 	struct sockproto route_proto;
318 	struct netmsg_packet *pmsg = &msg->packet;
319 	struct mbuf *m;
320 	sa_family_t family;
321 	struct rawcb *skip;
322 
323 	family = pmsg->base.lmsg.u.ms_result;
324 	route_proto.sp_family = PF_ROUTE;
325 	route_proto.sp_protocol = family;
326 
327 	m = pmsg->nm_packet;
328 	M_ASSERTPKTHDR(m);
329 
330 	skip = m->m_pkthdr.header;
331 	m->m_pkthdr.header = NULL;
332 
333 	raw_input(m, &route_proto, &route_src, &route_dst, skip);
334 }
335 
336 static void
337 rts_input_skip(struct mbuf *m, sa_family_t family, struct rawcb *skip)
338 {
339 	struct netmsg_packet *pmsg;
340 	lwkt_port_t port;
341 
342 	M_ASSERTPKTHDR(m);
343 
344 	port = netisr_cpuport(0);	/* XXX same as for routing socket */
345 	pmsg = &m->m_hdr.mh_netmsg;
346 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
347 		    0, rts_input_handler);
348 	pmsg->nm_packet = m;
349 	pmsg->base.lmsg.u.ms_result = family;
350 	m->m_pkthdr.header = skip; /* XXX steal field in pkthdr */
351 	lwkt_sendmsg(port, &pmsg->base.lmsg);
352 }
353 
354 static __inline void
355 rts_input(struct mbuf *m, sa_family_t family)
356 {
357 	rts_input_skip(m, family, NULL);
358 }
359 
360 static void *
361 reallocbuf_nofree(void *ptr, size_t len, size_t olen)
362 {
363 	void *newptr;
364 
365 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
366 	if (newptr == NULL)
367 		return NULL;
368 	bcopy(ptr, newptr, olen);
369 	return (newptr);
370 }
371 
372 /*
373  * Internal helper routine for route_output().
374  */
375 static int
376 _fillrtmsg(struct rt_msghdr **prtm, struct rtentry *rt,
377 	   struct rt_addrinfo *rtinfo)
378 {
379 	int msglen;
380 	struct rt_msghdr *rtm = *prtm;
381 
382 	/* Fill in rt_addrinfo for call to rt_msg_buffer(). */
383 	rtinfo->rti_dst = rt_key(rt);
384 	rtinfo->rti_gateway = rt->rt_gateway;
385 	rtinfo->rti_netmask = rt_mask(rt);		/* might be NULL */
386 	rtinfo->rti_genmask = rt->rt_genmask;		/* might be NULL */
387 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
388 		if (rt->rt_ifp != NULL) {
389 			rtinfo->rti_ifpaddr =
390 			    TAILQ_FIRST(&rt->rt_ifp->if_addrheads[mycpuid])
391 			    ->ifa->ifa_addr;
392 			rtinfo->rti_ifaaddr = rt->rt_ifa->ifa_addr;
393 			if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
394 				rtinfo->rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
395 			rtm->rtm_index = rt->rt_ifp->if_index;
396 		} else {
397 			rtinfo->rti_ifpaddr = NULL;
398 			rtinfo->rti_ifaaddr = NULL;
399 		}
400 	} else if (rt->rt_ifp != NULL) {
401 		rtm->rtm_index = rt->rt_ifp->if_index;
402 	}
403 
404 	msglen = rt_msgsize(rtm->rtm_type, rtinfo);
405 	if (rtm->rtm_msglen < msglen) {
406 		/* NOTE: Caller will free the old rtm accordingly */
407 		rtm = reallocbuf_nofree(rtm, msglen, rtm->rtm_msglen);
408 		if (rtm == NULL)
409 			return (ENOBUFS);
410 		*prtm = rtm;
411 	}
412 	rt_msg_buffer(rtm->rtm_type, rtinfo, rtm, msglen);
413 
414 	rtm->rtm_flags = rt->rt_flags;
415 	rtm->rtm_rmx = rt->rt_rmx;
416 	rtm->rtm_addrs = rtinfo->rti_addrs;
417 
418 	return (0);
419 }
420 
421 struct rtm_arg {
422 	struct rt_msghdr	*bak_rtm;
423 	struct rt_msghdr	*new_rtm;
424 };
425 
426 static int
427 fillrtmsg(struct rtm_arg *arg, struct rtentry *rt,
428 	  struct rt_addrinfo *rtinfo)
429 {
430 	struct rt_msghdr *rtm = arg->new_rtm;
431 	int error;
432 
433 	error = _fillrtmsg(&rtm, rt, rtinfo);
434 	if (!error) {
435 		if (arg->new_rtm != rtm) {
436 			/*
437 			 * _fillrtmsg() just allocated a new rtm;
438 			 * if the previously allocated rtm is not
439 			 * the backing rtm, it should be freed.
440 			 */
441 			if (arg->new_rtm != arg->bak_rtm)
442 				kfree(arg->new_rtm, M_RTABLE);
443 			arg->new_rtm = rtm;
444 		}
445 	}
446 	return error;
447 }
448 
449 static void route_output_add_callback(int, int, struct rt_addrinfo *,
450 					struct rtentry *, void *);
451 static void route_output_delete_callback(int, int, struct rt_addrinfo *,
452 					struct rtentry *, void *);
453 static int route_output_get_callback(int, struct rt_addrinfo *,
454 				     struct rtentry *, void *, int);
455 static int route_output_change_callback(int, struct rt_addrinfo *,
456 					struct rtentry *, void *, int);
457 static int route_output_lock_callback(int, struct rt_addrinfo *,
458 				      struct rtentry *, void *, int);
459 
460 /*ARGSUSED*/
461 static int
462 route_output(struct mbuf *m, struct socket *so, ...)
463 {
464 	struct rtm_arg arg;
465 	struct rt_msghdr *rtm = NULL;
466 	struct rawcb *rp = NULL;
467 	struct pr_output_info *oi;
468 	struct rt_addrinfo rtinfo;
469 	sa_family_t family;
470 	int len, error = 0;
471 	__va_list ap;
472 
473 	M_ASSERTPKTHDR(m);
474 
475 	__va_start(ap, so);
476 	oi = __va_arg(ap, struct pr_output_info *);
477 	__va_end(ap);
478 
479 	family = familyof(NULL);
480 
481 #define gotoerr(e) { error = e; goto flush;}
482 
483 	if (m == NULL ||
484 	    (m->m_len < sizeof(long) &&
485 	     (m = m_pullup(m, sizeof(long))) == NULL))
486 		return (ENOBUFS);
487 	len = m->m_pkthdr.len;
488 	if (len < sizeof(struct rt_msghdr) ||
489 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
490 		gotoerr(EINVAL);
491 
492 	rtm = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
493 	if (rtm == NULL)
494 		gotoerr(ENOBUFS);
495 
496 	m_copydata(m, 0, len, (caddr_t)rtm);
497 	if (rtm->rtm_version != RTM_VERSION)
498 		gotoerr(EPROTONOSUPPORT);
499 
500 	rtm->rtm_pid = oi->p_pid;
501 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
502 	rtinfo.rti_addrs = rtm->rtm_addrs;
503 	if (rt_xaddrs((char *)(rtm + 1), (char *)rtm + len, &rtinfo) != 0)
504 		gotoerr(EINVAL);
505 
506 	rtinfo.rti_flags = rtm->rtm_flags;
507 	if (rtinfo.rti_dst == NULL || rtinfo.rti_dst->sa_family >= AF_MAX ||
508 	    (rtinfo.rti_gateway && rtinfo.rti_gateway->sa_family >= AF_MAX))
509 		gotoerr(EINVAL);
510 
511 	family = familyof(rtinfo.rti_dst);
512 
513 	/*
514 	 * Verify that the caller has the appropriate privilege; RTM_GET
515 	 * is the only operation the non-superuser is allowed.
516 	 */
517 	if (rtm->rtm_type != RTM_GET &&
518 	    priv_check_cred(so->so_cred, PRIV_ROOT, 0) != 0)
519 		gotoerr(EPERM);
520 
521 	if (rtinfo.rti_genmask != NULL) {
522 		error = rtmask_add_global(rtinfo.rti_genmask,
523 		    rtm->rtm_type != RTM_GET ?
524 		    RTREQ_PRIO_HIGH : RTREQ_PRIO_NORM);
525 		if (error)
526 			goto flush;
527 	}
528 
529 	switch (rtm->rtm_type) {
530 	case RTM_ADD:
531 		if (rtinfo.rti_gateway == NULL) {
532 			error = EINVAL;
533 		} else {
534 			error = rtrequest1_global(RTM_ADD, &rtinfo,
535 			    route_output_add_callback, rtm, RTREQ_PRIO_HIGH);
536 		}
537 		break;
538 	case RTM_DELETE:
539 		/*
540 		 * Backing rtm (bak_rtm) could _not_ be freed during
541 		 * rtrequest1_global or rtsearch_global, even if the
542 		 * callback reallocates the rtm due to its size changes,
543 		 * since rtinfo points to the backing rtm's memory area.
544 		 * After rtrequest1_global or rtsearch_global returns,
545 		 * it is safe to free the backing rtm, since rtinfo will
546 		 * not be used anymore.
547 		 *
548 		 * new_rtm will be used to save the new rtm allocated
549 		 * by rtrequest1_global or rtsearch_global.
550 		 */
551 		arg.bak_rtm = rtm;
552 		arg.new_rtm = rtm;
553 		error = rtrequest1_global(RTM_DELETE, &rtinfo,
554 		    route_output_delete_callback, &arg, RTREQ_PRIO_HIGH);
555 		rtm = arg.new_rtm;
556 		if (rtm != arg.bak_rtm)
557 			kfree(arg.bak_rtm, M_RTABLE);
558 		break;
559 	case RTM_GET:
560 		/* See the comment in RTM_DELETE */
561 		arg.bak_rtm = rtm;
562 		arg.new_rtm = rtm;
563 		error = rtsearch_global(RTM_GET, &rtinfo,
564 		    route_output_get_callback, &arg, RTS_NOEXACTMATCH,
565 		    RTREQ_PRIO_NORM);
566 		rtm = arg.new_rtm;
567 		if (rtm != arg.bak_rtm)
568 			kfree(arg.bak_rtm, M_RTABLE);
569 		break;
570 	case RTM_CHANGE:
571 		error = rtsearch_global(RTM_CHANGE, &rtinfo,
572 		    route_output_change_callback, rtm, RTS_EXACTMATCH,
573 		    RTREQ_PRIO_HIGH);
574 		break;
575 	case RTM_LOCK:
576 		error = rtsearch_global(RTM_LOCK, &rtinfo,
577 		    route_output_lock_callback, rtm, RTS_EXACTMATCH,
578 		    RTREQ_PRIO_HIGH);
579 		break;
580 	default:
581 		error = EOPNOTSUPP;
582 		break;
583 	}
584 flush:
585 	if (rtm != NULL) {
586 		if (error != 0)
587 			rtm->rtm_errno = error;
588 		else
589 			rtm->rtm_flags |= RTF_DONE;
590 	}
591 
592 	/*
593 	 * Check to see if we don't want our own messages.
594 	 */
595 	if (!(so->so_options & SO_USELOOPBACK)) {
596 		if (route_cb.any_count <= 1) {
597 			if (rtm != NULL)
598 				kfree(rtm, M_RTABLE);
599 			m_freem(m);
600 			return (error);
601 		}
602 		/* There is another listener, so construct message */
603 		rp = sotorawcb(so);
604 	}
605 	if (rtm != NULL) {
606 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
607 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
608 			m_freem(m);
609 			m = NULL;
610 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
611 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
612 		kfree(rtm, M_RTABLE);
613 	}
614 	if (m != NULL)
615 		rts_input_skip(m, family, rp);
616 	return (error);
617 }
618 
619 static void
620 route_output_add_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
621 			  struct rtentry *rt, void *arg)
622 {
623 	struct rt_msghdr *rtm = arg;
624 
625 	if (error == 0 && rt != NULL) {
626 		rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
627 		    &rt->rt_rmx);
628 		rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
629 		rt->rt_rmx.rmx_locks |=
630 		    (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
631 		if (rtinfo->rti_genmask != NULL) {
632 			rt->rt_genmask = rtmask_purelookup(rtinfo->rti_genmask);
633 			if (rt->rt_genmask == NULL) {
634 				/*
635 				 * This should not happen, since we
636 				 * have already installed genmask
637 				 * on each CPU before we reach here.
638 				 */
639 				panic("genmask is gone!?");
640 			}
641 		} else {
642 			rt->rt_genmask = NULL;
643 		}
644 		rtm->rtm_index = rt->rt_ifp->if_index;
645 	}
646 }
647 
648 static void
649 route_output_delete_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
650 			  struct rtentry *rt, void *arg)
651 {
652 	if (error == 0 && rt) {
653 		++rt->rt_refcnt;
654 		if (fillrtmsg(arg, rt, rtinfo) != 0) {
655 			error = ENOBUFS;
656 			/* XXX no way to return the error */
657 		}
658 		--rt->rt_refcnt;
659 	}
660 	if (rt && rt->rt_refcnt == 0) {
661 		++rt->rt_refcnt;
662 		rtfree(rt);
663 	}
664 }
665 
666 static int
667 route_output_get_callback(int cmd, struct rt_addrinfo *rtinfo,
668 			  struct rtentry *rt, void *arg, int found_cnt)
669 {
670 	int error, found = 0;
671 
672 	if (((rtinfo->rti_flags ^ rt->rt_flags) & RTF_HOST) == 0)
673 		found = 1;
674 
675 	error = fillrtmsg(arg, rt, rtinfo);
676 	if (!error && found) {
677 		/* Got the exact match, we could return now! */
678 		error = EJUSTRETURN;
679 	}
680 	return error;
681 }
682 
683 static int
684 route_output_change_callback(int cmd, struct rt_addrinfo *rtinfo,
685 			     struct rtentry *rt, void *arg, int found_cnt)
686 {
687 	struct rt_msghdr *rtm = arg;
688 	struct ifaddr *ifa;
689 	int error = 0;
690 
691 	/*
692 	 * new gateway could require new ifaddr, ifp;
693 	 * flags may also be different; ifp may be specified
694 	 * by ll sockaddr when protocol address is ambiguous
695 	 */
696 	if (((rt->rt_flags & RTF_GATEWAY) && rtinfo->rti_gateway != NULL) ||
697 	    rtinfo->rti_ifpaddr != NULL ||
698 	    (rtinfo->rti_ifaaddr != NULL &&
699 	     !sa_equal(rtinfo->rti_ifaaddr, rt->rt_ifa->ifa_addr))) {
700 		error = rt_getifa(rtinfo);
701 		if (error != 0)
702 			goto done;
703 	}
704 	if (rtinfo->rti_gateway != NULL) {
705 		/*
706 		 * We only need to generate rtmsg upon the
707 		 * first route to be changed.
708 		 */
709 		error = rt_setgate(rt, rt_key(rt), rtinfo->rti_gateway,
710 			found_cnt == 1 ? RTL_REPORTMSG : RTL_DONTREPORT);
711 		if (error != 0)
712 			goto done;
713 	}
714 	if ((ifa = rtinfo->rti_ifa) != NULL) {
715 		struct ifaddr *oifa = rt->rt_ifa;
716 
717 		if (oifa != ifa) {
718 			if (oifa && oifa->ifa_rtrequest)
719 				oifa->ifa_rtrequest(RTM_DELETE, rt);
720 			IFAFREE(rt->rt_ifa);
721 			IFAREF(ifa);
722 			rt->rt_ifa = ifa;
723 			rt->rt_ifp = rtinfo->rti_ifp;
724 		}
725 	}
726 	rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx);
727 	if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
728 		rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt);
729 	if (rtinfo->rti_genmask != NULL) {
730 		rt->rt_genmask = rtmask_purelookup(rtinfo->rti_genmask);
731 		if (rt->rt_genmask == NULL) {
732 			/*
733 			 * This should not happen, since we
734 			 * have already installed genmask
735 			 * on each CPU before we reach here.
736 			 */
737 			panic("genmask is gone!?");
738 		}
739 	}
740 	rtm->rtm_index = rt->rt_ifp->if_index;
741 done:
742 	return error;
743 }
744 
745 static int
746 route_output_lock_callback(int cmd, struct rt_addrinfo *rtinfo,
747 			   struct rtentry *rt, void *arg,
748 			   int found_cnt __unused)
749 {
750 	struct rt_msghdr *rtm = arg;
751 
752 	rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
753 	rt->rt_rmx.rmx_locks |=
754 		(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
755 	return 0;
756 }
757 
758 static void
759 rt_setmetrics(u_long which, struct rt_metrics *in, struct rt_metrics *out)
760 {
761 #define setmetric(flag, elt) if (which & (flag)) out->elt = in->elt;
762 	setmetric(RTV_RPIPE, rmx_recvpipe);
763 	setmetric(RTV_SPIPE, rmx_sendpipe);
764 	setmetric(RTV_SSTHRESH, rmx_ssthresh);
765 	setmetric(RTV_RTT, rmx_rtt);
766 	setmetric(RTV_RTTVAR, rmx_rttvar);
767 	setmetric(RTV_HOPCOUNT, rmx_hopcount);
768 	setmetric(RTV_MTU, rmx_mtu);
769 	setmetric(RTV_EXPIRE, rmx_expire);
770 	setmetric(RTV_MSL, rmx_msl);
771 	setmetric(RTV_IWMAXSEGS, rmx_iwmaxsegs);
772 	setmetric(RTV_IWCAPSEGS, rmx_iwcapsegs);
773 #undef setmetric
774 }
775 
776 /*
777  * Extract the addresses of the passed sockaddrs.
778  * Do a little sanity checking so as to avoid bad memory references.
779  * This data is derived straight from userland.
780  */
781 static int
782 rt_xaddrs(char *cp, char *cplim, struct rt_addrinfo *rtinfo)
783 {
784 	struct sockaddr *sa;
785 	int i;
786 
787 	for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
788 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
789 			continue;
790 		sa = (struct sockaddr *)cp;
791 		/*
792 		 * It won't fit.
793 		 */
794 		if ((cp + sa->sa_len) > cplim) {
795 			return (EINVAL);
796 		}
797 
798 		/*
799 		 * There are no more...  Quit now.
800 		 * If there are more bits, they are in error.
801 		 * I've seen this.  route(1) can evidently generate these.
802 		 * This causes kernel to core dump.
803 		 * For compatibility, if we see this, point to a safe address.
804 		 */
805 		if (sa->sa_len == 0) {
806 			static struct sockaddr sa_zero = {
807 				sizeof sa_zero, AF_INET,
808 			};
809 
810 			rtinfo->rti_info[i] = &sa_zero;
811 			kprintf("rtsock: received more addr bits than sockaddrs.\n");
812 			return (0); /* should be EINVAL but for compat */
813 		}
814 
815 		/* Accept the sockaddr. */
816 		rtinfo->rti_info[i] = sa;
817 		cp += RT_ROUNDUP(sa->sa_len);
818 	}
819 	return (0);
820 }
821 
822 static int
823 rt_msghdrsize(int type)
824 {
825 	switch (type) {
826 	case RTM_DELADDR:
827 	case RTM_NEWADDR:
828 		return sizeof(struct ifa_msghdr);
829 	case RTM_DELMADDR:
830 	case RTM_NEWMADDR:
831 		return sizeof(struct ifma_msghdr);
832 	case RTM_IFINFO:
833 		return sizeof(struct if_msghdr);
834 	case RTM_IFANNOUNCE:
835 	case RTM_IEEE80211:
836 		return sizeof(struct if_announcemsghdr);
837 	default:
838 		return sizeof(struct rt_msghdr);
839 	}
840 }
841 
842 static int
843 rt_msgsize(int type, const struct rt_addrinfo *rtinfo)
844 {
845 	int len, i;
846 
847 	len = rt_msghdrsize(type);
848 	for (i = 0; i < RTAX_MAX; i++) {
849 		if (rtinfo->rti_info[i] != NULL)
850 			len += RT_ROUNDUP(rtinfo->rti_info[i]->sa_len);
851 	}
852 	len = ALIGN(len);
853 	return len;
854 }
855 
856 /*
857  * Build a routing message in a buffer.
858  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
859  * to the end of the buffer after the message header.
860  *
861  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
862  * This side-effect can be avoided if we reorder the addrs bitmask field in all
863  * the route messages to line up so we can set it here instead of back in the
864  * calling routine.
865  */
866 static void
867 rt_msg_buffer(int type, struct rt_addrinfo *rtinfo, void *buf, int msglen)
868 {
869 	struct rt_msghdr *rtm;
870 	char *cp;
871 	int dlen, i;
872 
873 	rtm = (struct rt_msghdr *) buf;
874 	rtm->rtm_version = RTM_VERSION;
875 	rtm->rtm_type = type;
876 	rtm->rtm_msglen = msglen;
877 
878 	cp = (char *)buf + rt_msghdrsize(type);
879 	rtinfo->rti_addrs = 0;
880 	for (i = 0; i < RTAX_MAX; i++) {
881 		struct sockaddr *sa;
882 
883 		if ((sa = rtinfo->rti_info[i]) == NULL)
884 			continue;
885 		rtinfo->rti_addrs |= (1 << i);
886 		dlen = RT_ROUNDUP(sa->sa_len);
887 		bcopy(sa, cp, dlen);
888 		cp += dlen;
889 	}
890 }
891 
892 /*
893  * Build a routing message in a mbuf chain.
894  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
895  * to the end of the mbuf after the message header.
896  *
897  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
898  * This side-effect can be avoided if we reorder the addrs bitmask field in all
899  * the route messages to line up so we can set it here instead of back in the
900  * calling routine.
901  */
902 static struct mbuf *
903 rt_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
904 {
905 	struct mbuf *m;
906 	struct rt_msghdr *rtm;
907 	int hlen, len;
908 	int i;
909 
910 	hlen = rt_msghdrsize(type);
911 	KASSERT(hlen <= MCLBYTES, ("rt_msg_mbuf: hlen %d doesn't fit", hlen));
912 
913 	m = m_getl(hlen, M_NOWAIT, MT_DATA, M_PKTHDR, NULL);
914 	if (m == NULL)
915 		return (NULL);
916 	mbuftrackid(m, 32);
917 	m->m_pkthdr.len = m->m_len = hlen;
918 	m->m_pkthdr.rcvif = NULL;
919 	rtinfo->rti_addrs = 0;
920 	len = hlen;
921 	for (i = 0; i < RTAX_MAX; i++) {
922 		struct sockaddr *sa;
923 		int dlen;
924 
925 		if ((sa = rtinfo->rti_info[i]) == NULL)
926 			continue;
927 		rtinfo->rti_addrs |= (1 << i);
928 		dlen = RT_ROUNDUP(sa->sa_len);
929 		m_copyback(m, len, dlen, (caddr_t)sa); /* can grow mbuf chain */
930 		len += dlen;
931 	}
932 	if (m->m_pkthdr.len != len) { /* one of the m_copyback() calls failed */
933 		m_freem(m);
934 		return (NULL);
935 	}
936 	rtm = mtod(m, struct rt_msghdr *);
937 	bzero(rtm, hlen);
938 	rtm->rtm_msglen = len;
939 	rtm->rtm_version = RTM_VERSION;
940 	rtm->rtm_type = type;
941 	return (m);
942 }
943 
944 /*
945  * This routine is called to generate a message from the routing
946  * socket indicating that a redirect has occurred, a routing lookup
947  * has failed, or that a protocol has detected timeouts to a particular
948  * destination.
949  */
950 void
951 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
952 {
953 	struct sockaddr *dst = rtinfo->rti_info[RTAX_DST];
954 	struct rt_msghdr *rtm;
955 	struct mbuf *m;
956 
957 	if (route_cb.any_count == 0)
958 		return;
959 	m = rt_msg_mbuf(type, rtinfo);
960 	if (m == NULL)
961 		return;
962 	rtm = mtod(m, struct rt_msghdr *);
963 	rtm->rtm_flags = RTF_DONE | flags;
964 	rtm->rtm_errno = error;
965 	rtm->rtm_addrs = rtinfo->rti_addrs;
966 	rts_input(m, familyof(dst));
967 }
968 
969 void
970 rt_dstmsg(int type, struct sockaddr *dst, int error)
971 {
972 	struct rt_msghdr *rtm;
973 	struct rt_addrinfo addrs;
974 	struct mbuf *m;
975 
976 	if (route_cb.any_count == 0)
977 		return;
978 	bzero(&addrs, sizeof(struct rt_addrinfo));
979 	addrs.rti_info[RTAX_DST] = dst;
980 	m = rt_msg_mbuf(type, &addrs);
981 	if (m == NULL)
982 		return;
983 	rtm = mtod(m, struct rt_msghdr *);
984 	rtm->rtm_flags = RTF_DONE;
985 	rtm->rtm_errno = error;
986 	rtm->rtm_addrs = addrs.rti_addrs;
987 	rts_input(m, familyof(dst));
988 }
989 
990 /*
991  * This routine is called to generate a message from the routing
992  * socket indicating that the status of a network interface has changed.
993  */
994 void
995 rt_ifmsg(struct ifnet *ifp)
996 {
997 	struct if_msghdr *ifm;
998 	struct mbuf *m;
999 	struct rt_addrinfo rtinfo;
1000 
1001 	if (route_cb.any_count == 0)
1002 		return;
1003 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1004 	m = rt_msg_mbuf(RTM_IFINFO, &rtinfo);
1005 	if (m == NULL)
1006 		return;
1007 	ifm = mtod(m, struct if_msghdr *);
1008 	ifm->ifm_index = ifp->if_index;
1009 	ifm->ifm_flags = ifp->if_flags;
1010 	ifm->ifm_data = ifp->if_data;
1011 	ifm->ifm_addrs = 0;
1012 	rts_input(m, 0);
1013 }
1014 
1015 static void
1016 rt_ifamsg(int cmd, struct ifaddr *ifa)
1017 {
1018 	struct ifa_msghdr *ifam;
1019 	struct rt_addrinfo rtinfo;
1020 	struct mbuf *m;
1021 	struct ifnet *ifp = ifa->ifa_ifp;
1022 
1023 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1024 	rtinfo.rti_ifaaddr = ifa->ifa_addr;
1025 	rtinfo.rti_ifpaddr =
1026 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1027 	rtinfo.rti_netmask = ifa->ifa_netmask;
1028 	rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
1029 
1030 	m = rt_msg_mbuf(cmd, &rtinfo);
1031 	if (m == NULL)
1032 		return;
1033 
1034 	ifam = mtod(m, struct ifa_msghdr *);
1035 	ifam->ifam_index = ifp->if_index;
1036 	ifam->ifam_metric = ifa->ifa_metric;
1037 	ifam->ifam_flags = ifa->ifa_flags;
1038 	ifam->ifam_addrs = rtinfo.rti_addrs;
1039 
1040 	rts_input(m, familyof(ifa->ifa_addr));
1041 }
1042 
1043 void
1044 rt_rtmsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int error)
1045 {
1046 	struct rt_msghdr *rtm;
1047 	struct rt_addrinfo rtinfo;
1048 	struct mbuf *m;
1049 	struct sockaddr *dst;
1050 
1051 	if (rt == NULL)
1052 		return;
1053 
1054 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1055 	rtinfo.rti_dst = dst = rt_key(rt);
1056 	rtinfo.rti_gateway = rt->rt_gateway;
1057 	rtinfo.rti_netmask = rt_mask(rt);
1058 	if (ifp != NULL) {
1059 		rtinfo.rti_ifpaddr =
1060 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1061 	}
1062 	rtinfo.rti_ifaaddr = rt->rt_ifa->ifa_addr;
1063 
1064 	m = rt_msg_mbuf(cmd, &rtinfo);
1065 	if (m == NULL)
1066 		return;
1067 
1068 	rtm = mtod(m, struct rt_msghdr *);
1069 	if (ifp != NULL)
1070 		rtm->rtm_index = ifp->if_index;
1071 	rtm->rtm_flags |= rt->rt_flags;
1072 	rtm->rtm_errno = error;
1073 	rtm->rtm_addrs = rtinfo.rti_addrs;
1074 
1075 	rts_input(m, familyof(dst));
1076 }
1077 
1078 /*
1079  * This is called to generate messages from the routing socket
1080  * indicating a network interface has had addresses associated with it.
1081  * if we ever reverse the logic and replace messages TO the routing
1082  * socket indicate a request to configure interfaces, then it will
1083  * be unnecessary as the routing socket will automatically generate
1084  * copies of it.
1085  */
1086 void
1087 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
1088 {
1089 	if (route_cb.any_count == 0)
1090 		return;
1091 
1092 	if (cmd == RTM_ADD) {
1093 		rt_ifamsg(RTM_NEWADDR, ifa);
1094 		rt_rtmsg(RTM_ADD, rt, ifa->ifa_ifp, error);
1095 	} else {
1096 		KASSERT((cmd == RTM_DELETE), ("unknown cmd %d", cmd));
1097 		rt_rtmsg(RTM_DELETE, rt, ifa->ifa_ifp, error);
1098 		rt_ifamsg(RTM_DELADDR, ifa);
1099 	}
1100 }
1101 
1102 /*
1103  * This is the analogue to the rt_newaddrmsg which performs the same
1104  * function but for multicast group memberhips.  This is easier since
1105  * there is no route state to worry about.
1106  */
1107 void
1108 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1109 {
1110 	struct rt_addrinfo rtinfo;
1111 	struct mbuf *m = NULL;
1112 	struct ifnet *ifp = ifma->ifma_ifp;
1113 	struct ifma_msghdr *ifmam;
1114 
1115 	if (route_cb.any_count == 0)
1116 		return;
1117 
1118 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1119 	rtinfo.rti_ifaaddr = ifma->ifma_addr;
1120 	if (ifp != NULL && !TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
1121 		rtinfo.rti_ifpaddr =
1122 		TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1123 	}
1124 	/*
1125 	 * If a link-layer address is present, present it as a ``gateway''
1126 	 * (similarly to how ARP entries, e.g., are presented).
1127 	 */
1128 	rtinfo.rti_gateway = ifma->ifma_lladdr;
1129 
1130 	m = rt_msg_mbuf(cmd, &rtinfo);
1131 	if (m == NULL)
1132 		return;
1133 
1134 	ifmam = mtod(m, struct ifma_msghdr *);
1135 	ifmam->ifmam_index = ifp->if_index;
1136 	ifmam->ifmam_addrs = rtinfo.rti_addrs;
1137 
1138 	rts_input(m, familyof(ifma->ifma_addr));
1139 }
1140 
1141 static struct mbuf *
1142 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1143 		     struct rt_addrinfo *info)
1144 {
1145 	struct if_announcemsghdr *ifan;
1146 	struct mbuf *m;
1147 
1148 	if (route_cb.any_count == 0)
1149 		return NULL;
1150 
1151 	bzero(info, sizeof(*info));
1152 	m = rt_msg_mbuf(type, info);
1153 	if (m == NULL)
1154 		return NULL;
1155 
1156 	ifan = mtod(m, struct if_announcemsghdr *);
1157 	ifan->ifan_index = ifp->if_index;
1158 	strlcpy(ifan->ifan_name, ifp->if_xname, sizeof ifan->ifan_name);
1159 	ifan->ifan_what = what;
1160 	return m;
1161 }
1162 
1163 /*
1164  * This is called to generate routing socket messages indicating
1165  * IEEE80211 wireless events.
1166  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1167  */
1168 void
1169 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1170 {
1171 	struct rt_addrinfo info;
1172 	struct mbuf *m;
1173 
1174 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1175 	if (m == NULL)
1176 		return;
1177 
1178 	/*
1179 	 * Append the ieee80211 data.  Try to stick it in the
1180 	 * mbuf containing the ifannounce msg; otherwise allocate
1181 	 * a new mbuf and append.
1182 	 *
1183 	 * NB: we assume m is a single mbuf.
1184 	 */
1185 	if (data_len > M_TRAILINGSPACE(m)) {
1186 		/* XXX use m_getb(data_len, M_NOWAIT, MT_DATA, 0); */
1187 		struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1188 		if (n == NULL) {
1189 			m_freem(m);
1190 			return;
1191 		}
1192 		KKASSERT(data_len <= M_TRAILINGSPACE(n));
1193 		bcopy(data, mtod(n, void *), data_len);
1194 		n->m_len = data_len;
1195 		m->m_next = n;
1196 	} else if (data_len > 0) {
1197 		bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1198 		m->m_len += data_len;
1199 	}
1200 	mbuftrackid(m, 33);
1201 	if (m->m_flags & M_PKTHDR)
1202 		m->m_pkthdr.len += data_len;
1203 	mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1204 	rts_input(m, 0);
1205 }
1206 
1207 /*
1208  * This is called to generate routing socket messages indicating
1209  * network interface arrival and departure.
1210  */
1211 void
1212 rt_ifannouncemsg(struct ifnet *ifp, int what)
1213 {
1214 	struct rt_addrinfo addrinfo;
1215 	struct mbuf *m;
1216 
1217 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &addrinfo);
1218 	if (m != NULL)
1219 		rts_input(m, 0);
1220 }
1221 
1222 static int
1223 resizewalkarg(struct walkarg *w, int len)
1224 {
1225 	void *newptr;
1226 
1227 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
1228 	if (newptr == NULL)
1229 		return (ENOMEM);
1230 	if (w->w_tmem != NULL)
1231 		kfree(w->w_tmem, M_RTABLE);
1232 	w->w_tmem = newptr;
1233 	w->w_tmemsize = len;
1234 	return (0);
1235 }
1236 
1237 /*
1238  * This is used in dumping the kernel table via sysctl().
1239  */
1240 int
1241 sysctl_dumpentry(struct radix_node *rn, void *vw)
1242 {
1243 	struct walkarg *w = vw;
1244 	struct rtentry *rt = (struct rtentry *)rn;
1245 	struct rt_addrinfo rtinfo;
1246 	int error, msglen;
1247 
1248 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1249 		return 0;
1250 
1251 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1252 	rtinfo.rti_dst = rt_key(rt);
1253 	rtinfo.rti_gateway = rt->rt_gateway;
1254 	rtinfo.rti_netmask = rt_mask(rt);
1255 	rtinfo.rti_genmask = rt->rt_genmask;
1256 	if (rt->rt_ifp != NULL) {
1257 		rtinfo.rti_ifpaddr =
1258 		TAILQ_FIRST(&rt->rt_ifp->if_addrheads[mycpuid])->ifa->ifa_addr;
1259 		rtinfo.rti_ifaaddr = rt->rt_ifa->ifa_addr;
1260 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1261 			rtinfo.rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
1262 	}
1263 	msglen = rt_msgsize(RTM_GET, &rtinfo);
1264 	if (w->w_tmemsize < msglen && resizewalkarg(w, msglen) != 0)
1265 		return (ENOMEM);
1266 	rt_msg_buffer(RTM_GET, &rtinfo, w->w_tmem, msglen);
1267 	if (w->w_req != NULL) {
1268 		struct rt_msghdr *rtm = w->w_tmem;
1269 
1270 		rtm->rtm_flags = rt->rt_flags;
1271 		rtm->rtm_use = rt->rt_use;
1272 		rtm->rtm_rmx = rt->rt_rmx;
1273 		rtm->rtm_index = rt->rt_ifp->if_index;
1274 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1275 		rtm->rtm_addrs = rtinfo.rti_addrs;
1276 		error = SYSCTL_OUT(w->w_req, rtm, msglen);
1277 		return (error);
1278 	}
1279 	return (0);
1280 }
1281 
1282 static void
1283 ifnet_compute_stats(struct ifnet *ifp)
1284 {
1285 	IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1286 	IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1287 	IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1288 	IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1289 	IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1290 	IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1291 	IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1292 	IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1293 	IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1294 	IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1295 }
1296 
1297 static int
1298 sysctl_iflist(int af, struct walkarg *w)
1299 {
1300 	struct ifnet *ifp;
1301 	struct rt_addrinfo rtinfo;
1302 	int msglen, error;
1303 
1304 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1305 
1306 	ifnet_lock();
1307 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1308 		struct ifaddr_container *ifac;
1309 		struct ifaddr *ifa;
1310 
1311 		if (w->w_arg && w->w_arg != ifp->if_index)
1312 			continue;
1313 		ifac = TAILQ_FIRST(&ifp->if_addrheads[mycpuid]);
1314 		ifa = ifac->ifa;
1315 		rtinfo.rti_ifpaddr = ifa->ifa_addr;
1316 		msglen = rt_msgsize(RTM_IFINFO, &rtinfo);
1317 		if (w->w_tmemsize < msglen && resizewalkarg(w, msglen) != 0) {
1318 			ifnet_unlock();
1319 			return (ENOMEM);
1320 		}
1321 		rt_msg_buffer(RTM_IFINFO, &rtinfo, w->w_tmem, msglen);
1322 		rtinfo.rti_ifpaddr = NULL;
1323 		if (w->w_req != NULL && w->w_tmem != NULL) {
1324 			struct if_msghdr *ifm = w->w_tmem;
1325 
1326 			ifm->ifm_index = ifp->if_index;
1327 			ifm->ifm_flags = ifp->if_flags;
1328 			ifnet_compute_stats(ifp);
1329 			ifm->ifm_data = ifp->if_data;
1330 			ifm->ifm_addrs = rtinfo.rti_addrs;
1331 			error = SYSCTL_OUT(w->w_req, ifm, msglen);
1332 			if (error) {
1333 				ifnet_unlock();
1334 				return (error);
1335 			}
1336 		}
1337 		while ((ifac = TAILQ_NEXT(ifac, ifa_link)) != NULL) {
1338 			ifa = ifac->ifa;
1339 
1340 			if (af && af != ifa->ifa_addr->sa_family)
1341 				continue;
1342 			if (curproc->p_ucred->cr_prison &&
1343 			    prison_if(curproc->p_ucred, ifa->ifa_addr))
1344 				continue;
1345 			rtinfo.rti_ifaaddr = ifa->ifa_addr;
1346 			rtinfo.rti_netmask = ifa->ifa_netmask;
1347 			rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
1348 			msglen = rt_msgsize(RTM_NEWADDR, &rtinfo);
1349 			if (w->w_tmemsize < msglen &&
1350 			    resizewalkarg(w, msglen) != 0) {
1351 				ifnet_unlock();
1352 				return (ENOMEM);
1353 			}
1354 			rt_msg_buffer(RTM_NEWADDR, &rtinfo, w->w_tmem, msglen);
1355 			if (w->w_req != NULL) {
1356 				struct ifa_msghdr *ifam = w->w_tmem;
1357 
1358 				ifam->ifam_index = ifa->ifa_ifp->if_index;
1359 				ifam->ifam_flags = ifa->ifa_flags;
1360 				ifam->ifam_metric = ifa->ifa_metric;
1361 				ifam->ifam_addrs = rtinfo.rti_addrs;
1362 				error = SYSCTL_OUT(w->w_req, w->w_tmem, msglen);
1363 				if (error) {
1364 					ifnet_unlock();
1365 					return (error);
1366 				}
1367 			}
1368 		}
1369 		rtinfo.rti_netmask = NULL;
1370 		rtinfo.rti_ifaaddr = NULL;
1371 		rtinfo.rti_bcastaddr = NULL;
1372 	}
1373 	ifnet_unlock();
1374 	return (0);
1375 }
1376 
1377 static int
1378 sysctl_rttable(int af, struct sysctl_req *req, int op, int arg)
1379 {
1380 	struct walkarg w;
1381 	int i, error = EINVAL;
1382 
1383 	bzero(&w, sizeof(w));
1384 	w.w_op = op;
1385 	w.w_arg = arg;
1386 	w.w_req = req;
1387 
1388 	for (i = 1; i <= AF_MAX; i++) {
1389 		struct radix_node_head *rnh;
1390 
1391 		if ((rnh = rt_tables[mycpuid][i]) && (af == 0 || af == i) &&
1392 		    (error = rnh->rnh_walktree(rnh, sysctl_dumpentry, &w)))
1393 			break;
1394 	}
1395 
1396 	if (w.w_tmem != NULL)
1397 		kfree(w.w_tmem, M_RTABLE);
1398 
1399 	return error;
1400 }
1401 
1402 static int
1403 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1404 {
1405 	int	*name = (int *)arg1;
1406 	u_int	namelen = arg2;
1407 	int	error = EINVAL;
1408 	int	origcpu;
1409 	u_char  af;
1410 	struct	walkarg w;
1411 
1412 	name ++;
1413 	namelen--;
1414 	if (req->newptr)
1415 		return (EPERM);
1416 	if (namelen != 3 && namelen != 4)
1417 		return (EINVAL);
1418 	af = name[0];
1419 	bzero(&w, sizeof w);
1420 	w.w_op = name[1];
1421 	w.w_arg = name[2];
1422 	w.w_req = req;
1423 
1424 	/*
1425 	 * Optional third argument specifies cpu, used primarily for
1426 	 * debugging the route table.
1427 	 */
1428 	if (namelen == 4) {
1429 		if (name[3] < 0 || name[3] >= ncpus)
1430 			return (EINVAL);
1431 		origcpu = mycpuid;
1432 		lwkt_migratecpu(name[3]);
1433 	} else {
1434 		origcpu = -1;
1435 	}
1436 
1437 	switch (w.w_op) {
1438 	case NET_RT_DUMP:
1439 	case NET_RT_FLAGS:
1440 		error = sysctl_rttable(af, w.w_req, w.w_op, w.w_arg);
1441 		break;
1442 
1443 	case NET_RT_IFLIST:
1444 		error = sysctl_iflist(af, &w);
1445 		break;
1446 	}
1447 	if (w.w_tmem != NULL)
1448 		kfree(w.w_tmem, M_RTABLE);
1449 
1450 	if (origcpu >= 0)
1451 		lwkt_migratecpu(origcpu);
1452 	return (error);
1453 }
1454 
1455 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1456 
1457 /*
1458  * Definitions of protocols supported in the ROUTE domain.
1459  */
1460 
1461 static struct domain routedomain;		/* or at least forward */
1462 
1463 static struct protosw routesw[] = {
1464     {
1465 	.pr_type = SOCK_RAW,
1466 	.pr_domain = &routedomain,
1467 	.pr_protocol = 0,
1468 	.pr_flags = PR_ATOMIC|PR_ADDR,
1469 	.pr_input = NULL,
1470 	.pr_output = route_output,
1471 	.pr_ctlinput = raw_ctlinput,
1472 	.pr_ctloutput = NULL,
1473 	.pr_ctlport = cpu0_ctlport,
1474 
1475 	.pr_init = raw_init,
1476 	.pr_usrreqs = &route_usrreqs
1477     }
1478 };
1479 
1480 static struct domain routedomain = {
1481 	PF_ROUTE, "route", NULL, NULL, NULL,
1482 	routesw, &routesw[(sizeof routesw)/(sizeof routesw[0])],
1483 };
1484 
1485 DOMAIN_SET(route);
1486 
1487