xref: /dragonfly/sys/net/rtsock.c (revision f02303f9)
1 /*
2  * Copyright (c) 2004, 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey M. Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of The DragonFly Project nor the names of its
16  *    contributors may be used to endorse or promote products derived
17  *    from this software without specific, prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
22  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
23  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
27  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
29  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1988, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Berkeley and its contributors.
49  * 4. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
66  * $FreeBSD: src/sys/net/rtsock.c,v 1.44.2.11 2002/12/04 14:05:41 ru Exp $
67  * $DragonFly: src/sys/net/rtsock.c,v 1.37 2007/03/04 18:51:59 swildner Exp $
68  */
69 
70 #include "opt_sctp.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/sysctl.h>
76 #include <sys/proc.h>
77 #include <sys/malloc.h>
78 #include <sys/mbuf.h>
79 #include <sys/protosw.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/domain.h>
83 #include <sys/thread2.h>
84 
85 #include <net/if.h>
86 #include <net/route.h>
87 #include <net/raw_cb.h>
88 
89 #ifdef SCTP
90 extern void sctp_add_ip_address(struct ifaddr *ifa);
91 extern void sctp_delete_ip_address(struct ifaddr *ifa);
92 #endif /* SCTP */
93 
94 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
95 
96 static struct route_cb {
97 	int	ip_count;
98 	int	ip6_count;
99 	int	ipx_count;
100 	int	ns_count;
101 	int	any_count;
102 } route_cb;
103 
104 static const struct sockaddr route_src = { 2, PF_ROUTE, };
105 
106 struct walkarg {
107 	int	w_tmemsize;
108 	int	w_op, w_arg;
109 	void	*w_tmem;
110 	struct sysctl_req *w_req;
111 };
112 
113 static struct mbuf *
114 		rt_msg_mbuf (int, struct rt_addrinfo *);
115 static void	rt_msg_buffer (int, struct rt_addrinfo *, void *buf, int len);
116 static int	rt_msgsize (int type, struct rt_addrinfo *rtinfo);
117 static int	rt_xaddrs (char *, char *, struct rt_addrinfo *);
118 static int	sysctl_dumpentry (struct radix_node *rn, void *vw);
119 static int	sysctl_iflist (int af, struct walkarg *w);
120 static int	route_output(struct mbuf *, struct socket *, ...);
121 static void	rt_setmetrics (u_long, struct rt_metrics *,
122 			       struct rt_metrics *);
123 
124 /*
125  * It really doesn't make any sense at all for this code to share much
126  * with raw_usrreq.c, since its functionality is so restricted.  XXX
127  */
128 static int
129 rts_abort(struct socket *so)
130 {
131 	int error;
132 
133 	crit_enter();
134 	error = raw_usrreqs.pru_abort(so);
135 	crit_exit();
136 	return error;
137 }
138 
139 /* pru_accept is EOPNOTSUPP */
140 
141 static int
142 rts_attach(struct socket *so, int proto, struct pru_attach_info *ai)
143 {
144 	struct rawcb *rp;
145 	int error;
146 
147 	if (sotorawcb(so) != NULL)
148 		return EISCONN;	/* XXX panic? */
149 
150 	rp = kmalloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
151 	if (rp == NULL)
152 		return ENOBUFS;
153 
154 	/*
155 	 * The critical section is necessary to block protocols from sending
156 	 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
157 	 * this PCB is extant but incompletely initialized.
158 	 * Probably we should try to do more of this work beforehand and
159 	 * eliminate the critical section.
160 	 */
161 	crit_enter();
162 	so->so_pcb = rp;
163 	error = raw_attach(so, proto, ai->sb_rlimit);
164 	rp = sotorawcb(so);
165 	if (error) {
166 		crit_exit();
167 		kfree(rp, M_PCB);
168 		return error;
169 	}
170 	switch(rp->rcb_proto.sp_protocol) {
171 	case AF_INET:
172 		route_cb.ip_count++;
173 		break;
174 	case AF_INET6:
175 		route_cb.ip6_count++;
176 		break;
177 	case AF_IPX:
178 		route_cb.ipx_count++;
179 		break;
180 	case AF_NS:
181 		route_cb.ns_count++;
182 		break;
183 	}
184 	rp->rcb_faddr = &route_src;
185 	route_cb.any_count++;
186 	soisconnected(so);
187 	so->so_options |= SO_USELOOPBACK;
188 	crit_exit();
189 	return 0;
190 }
191 
192 static int
193 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
194 {
195 	int error;
196 
197 	crit_enter();
198 	error = raw_usrreqs.pru_bind(so, nam, td); /* xxx just EINVAL */
199 	crit_exit();
200 	return error;
201 }
202 
203 static int
204 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
205 {
206 	int error;
207 
208 	crit_enter();
209 	error = raw_usrreqs.pru_connect(so, nam, td); /* XXX just EINVAL */
210 	crit_exit();
211 	return error;
212 }
213 
214 /* pru_connect2 is EOPNOTSUPP */
215 /* pru_control is EOPNOTSUPP */
216 
217 static int
218 rts_detach(struct socket *so)
219 {
220 	struct rawcb *rp = sotorawcb(so);
221 	int error;
222 
223 	crit_enter();
224 	if (rp != NULL) {
225 		switch(rp->rcb_proto.sp_protocol) {
226 		case AF_INET:
227 			route_cb.ip_count--;
228 			break;
229 		case AF_INET6:
230 			route_cb.ip6_count--;
231 			break;
232 		case AF_IPX:
233 			route_cb.ipx_count--;
234 			break;
235 		case AF_NS:
236 			route_cb.ns_count--;
237 			break;
238 		}
239 		route_cb.any_count--;
240 	}
241 	error = raw_usrreqs.pru_detach(so);
242 	crit_exit();
243 	return error;
244 }
245 
246 static int
247 rts_disconnect(struct socket *so)
248 {
249 	int error;
250 
251 	crit_enter();
252 	error = raw_usrreqs.pru_disconnect(so);
253 	crit_exit();
254 	return error;
255 }
256 
257 /* pru_listen is EOPNOTSUPP */
258 
259 static int
260 rts_peeraddr(struct socket *so, struct sockaddr **nam)
261 {
262 	int error;
263 
264 	crit_enter();
265 	error = raw_usrreqs.pru_peeraddr(so, nam);
266 	crit_exit();
267 	return error;
268 }
269 
270 /* pru_rcvd is EOPNOTSUPP */
271 /* pru_rcvoob is EOPNOTSUPP */
272 
273 static int
274 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
275 	 struct mbuf *control, struct thread *td)
276 {
277 	int error;
278 
279 	crit_enter();
280 	error = raw_usrreqs.pru_send(so, flags, m, nam, control, td);
281 	crit_exit();
282 	return error;
283 }
284 
285 /* pru_sense is null */
286 
287 static int
288 rts_shutdown(struct socket *so)
289 {
290 	int error;
291 
292 	crit_enter();
293 	error = raw_usrreqs.pru_shutdown(so);
294 	crit_exit();
295 	return error;
296 }
297 
298 static int
299 rts_sockaddr(struct socket *so, struct sockaddr **nam)
300 {
301 	int error;
302 
303 	crit_enter();
304 	error = raw_usrreqs.pru_sockaddr(so, nam);
305 	crit_exit();
306 	return error;
307 }
308 
309 static struct pr_usrreqs route_usrreqs = {
310 	rts_abort, pru_accept_notsupp, rts_attach, rts_bind, rts_connect,
311 	pru_connect2_notsupp, pru_control_notsupp, rts_detach, rts_disconnect,
312 	pru_listen_notsupp, rts_peeraddr, pru_rcvd_notsupp, pru_rcvoob_notsupp,
313 	rts_send, pru_sense_null, rts_shutdown, rts_sockaddr,
314 	sosend, soreceive, sopoll
315 };
316 
317 static __inline sa_family_t
318 familyof(struct sockaddr *sa)
319 {
320 	return (sa != NULL ? sa->sa_family : 0);
321 }
322 
323 static void
324 rts_input(struct mbuf *m, sa_family_t family)
325 {
326 	static const struct sockaddr route_dst = { 2, PF_ROUTE, };
327 	struct sockproto route_proto = { PF_ROUTE, family };
328 
329 	raw_input(m, &route_proto, &route_src, &route_dst);
330 }
331 
332 static void *
333 reallocbuf(void *ptr, size_t len, size_t olen)
334 {
335 	void *newptr;
336 
337 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
338 	if (newptr == NULL)
339 		return NULL;
340 	bcopy(ptr, newptr, olen);
341 	kfree(ptr, M_RTABLE);
342 	return (newptr);
343 }
344 
345 /*
346  * Internal helper routine for route_output().
347  */
348 static int
349 fillrtmsg(struct rt_msghdr **prtm, struct rtentry *rt,
350 	  struct rt_addrinfo *rtinfo)
351 {
352 	int msglen;
353 	struct rt_msghdr *rtm = *prtm;
354 
355 	/* Fill in rt_addrinfo for call to rt_msg_buffer(). */
356 	rtinfo->rti_dst = rt_key(rt);
357 	rtinfo->rti_gateway = rt->rt_gateway;
358 	rtinfo->rti_netmask = rt_mask(rt);		/* might be NULL */
359 	rtinfo->rti_genmask = rt->rt_genmask;		/* might be NULL */
360 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
361 		if (rt->rt_ifp != NULL) {
362 			rtinfo->rti_ifpaddr =
363 			    TAILQ_FIRST(&rt->rt_ifp->if_addrhead)->ifa_addr;
364 			rtinfo->rti_ifaaddr = rt->rt_ifa->ifa_addr;
365 			if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
366 				rtinfo->rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
367 			rtm->rtm_index = rt->rt_ifp->if_index;
368 		} else {
369 			rtinfo->rti_ifpaddr = NULL;
370 			rtinfo->rti_ifaaddr = NULL;
371 	    }
372 	}
373 
374 	msglen = rt_msgsize(rtm->rtm_type, rtinfo);
375 	if (rtm->rtm_msglen < msglen) {
376 		rtm = reallocbuf(rtm, msglen, rtm->rtm_msglen);
377 		if (rtm == NULL)
378 			return (ENOBUFS);
379 		*prtm = rtm;
380 	}
381 	rt_msg_buffer(rtm->rtm_type, rtinfo, rtm, msglen);
382 
383 	rtm->rtm_flags = rt->rt_flags;
384 	rtm->rtm_rmx = rt->rt_rmx;
385 	rtm->rtm_addrs = rtinfo->rti_addrs;
386 
387 	return (0);
388 }
389 
390 static void route_output_add_callback(int, int, struct rt_addrinfo *,
391 					struct rtentry *, void *);
392 static void route_output_delete_callback(int, int, struct rt_addrinfo *,
393 					struct rtentry *, void *);
394 static void route_output_change_callback(int, int, struct rt_addrinfo *,
395 					struct rtentry *, void *);
396 static void route_output_lock_callback(int, int, struct rt_addrinfo *,
397 					struct rtentry *, void *);
398 
399 /*ARGSUSED*/
400 static int
401 route_output(struct mbuf *m, struct socket *so, ...)
402 {
403 	struct rt_msghdr *rtm = NULL;
404 	struct rtentry *rt;
405 	struct radix_node_head *rnh;
406 	struct rawcb *rp = NULL;
407 	struct pr_output_info *oi;
408 	struct rt_addrinfo rtinfo;
409 	int len, error = 0;
410 	__va_list ap;
411 
412 	__va_start(ap, so);
413 	oi = __va_arg(ap, struct pr_output_info *);
414 	__va_end(ap);
415 
416 #define gotoerr(e) { error = e; goto flush;}
417 
418 	if (m == NULL ||
419 	    (m->m_len < sizeof(long) &&
420 	     (m = m_pullup(m, sizeof(long))) == NULL))
421 		return (ENOBUFS);
422 	if (!(m->m_flags & M_PKTHDR))
423 		panic("route_output");
424 	len = m->m_pkthdr.len;
425 	if (len < sizeof(struct rt_msghdr) ||
426 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
427 		rtinfo.rti_dst = NULL;
428 		gotoerr(EINVAL);
429 	}
430 	rtm = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
431 	if (rtm == NULL) {
432 		rtinfo.rti_dst = NULL;
433 		gotoerr(ENOBUFS);
434 	}
435 	m_copydata(m, 0, len, (caddr_t)rtm);
436 	if (rtm->rtm_version != RTM_VERSION) {
437 		rtinfo.rti_dst = NULL;
438 		gotoerr(EPROTONOSUPPORT);
439 	}
440 	rtm->rtm_pid = oi->p_pid;
441 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
442 	rtinfo.rti_addrs = rtm->rtm_addrs;
443 	if (rt_xaddrs((char *)(rtm + 1), (char *)rtm + len, &rtinfo) != 0) {
444 		rtinfo.rti_dst = NULL;
445 		gotoerr(EINVAL);
446 	}
447 	rtinfo.rti_flags = rtm->rtm_flags;
448 	if (rtinfo.rti_dst == NULL || rtinfo.rti_dst->sa_family >= AF_MAX ||
449 	    (rtinfo.rti_gateway && rtinfo.rti_gateway->sa_family >= AF_MAX))
450 		gotoerr(EINVAL);
451 
452 	if (rtinfo.rti_genmask != NULL) {
453 		struct radix_node *n;
454 
455 #define	clen(s)	(*(u_char *)(s))
456 		n = rn_addmask((char *)rtinfo.rti_genmask, TRUE, 1);
457 		if (n != NULL &&
458 		    rtinfo.rti_genmask->sa_len >= clen(n->rn_key) &&
459 		    bcmp((char *)rtinfo.rti_genmask + 1,
460 		         (char *)n->rn_key + 1, clen(n->rn_key) - 1) == 0)
461 			rtinfo.rti_genmask = (struct sockaddr *)n->rn_key;
462 		else
463 			gotoerr(ENOBUFS);
464 	}
465 
466 	/*
467 	 * Verify that the caller has the appropriate privilege; RTM_GET
468 	 * is the only operation the non-superuser is allowed.
469 	 */
470 	if (rtm->rtm_type != RTM_GET && suser_cred(so->so_cred, 0) != 0)
471 		gotoerr(EPERM);
472 
473 	switch (rtm->rtm_type) {
474 	case RTM_ADD:
475 		if (rtinfo.rti_gateway == NULL) {
476 			error = EINVAL;
477 		} else {
478 			error = rtrequest1_global(RTM_ADD, &rtinfo,
479 					  route_output_add_callback, rtm);
480 		}
481 		break;
482 	case RTM_DELETE:
483 		/*
484 		 * note: &rtm passed as argument so 'rtm' can be replaced.
485 		 */
486 		error = rtrequest1_global(RTM_DELETE, &rtinfo,
487 					  route_output_delete_callback, &rtm);
488 		break;
489 	case RTM_GET:
490 		rnh = rt_tables[mycpuid][rtinfo.rti_dst->sa_family];
491 		if (rnh == NULL) {
492 			error = EAFNOSUPPORT;
493 			break;
494 		}
495 		rt = (struct rtentry *)
496 		    rnh->rnh_lookup((char *)rtinfo.rti_dst,
497 		    		    (char *)rtinfo.rti_netmask, rnh);
498 		if (rt == NULL) {
499 			error = ESRCH;
500 			break;
501 		}
502 		rt->rt_refcnt++;
503 		if (fillrtmsg(&rtm, rt, &rtinfo) != 0)
504 			gotoerr(ENOBUFS);
505 		--rt->rt_refcnt;
506 		break;
507 	case RTM_CHANGE:
508 		error = rtrequest1_global(RTM_GET, &rtinfo,
509 					  route_output_change_callback, rtm);
510 		break;
511 	case RTM_LOCK:
512 		error = rtrequest1_global(RTM_GET, &rtinfo,
513 					  route_output_lock_callback, rtm);
514 		break;
515 	default:
516 		error = EOPNOTSUPP;
517 		break;
518 	}
519 
520 flush:
521 	if (rtm != NULL) {
522 		if (error != 0)
523 			rtm->rtm_errno = error;
524 		else
525 			rtm->rtm_flags |= RTF_DONE;
526 	}
527 
528 	/*
529 	 * Check to see if we don't want our own messages.
530 	 */
531 	if (!(so->so_options & SO_USELOOPBACK)) {
532 		if (route_cb.any_count <= 1) {
533 			if (rtm != NULL)
534 				kfree(rtm, M_RTABLE);
535 			m_freem(m);
536 			return (error);
537 		}
538 		/* There is another listener, so construct message */
539 		rp = sotorawcb(so);
540 	}
541 	if (rtm != NULL) {
542 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
543 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
544 			m_freem(m);
545 			m = NULL;
546 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
547 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
548 		kfree(rtm, M_RTABLE);
549 	}
550 	if (rp != NULL)
551 		rp->rcb_proto.sp_family = 0; /* Avoid us */
552 	if (m != NULL)
553 		rts_input(m, familyof(rtinfo.rti_dst));
554 	if (rp != NULL)
555 		rp->rcb_proto.sp_family = PF_ROUTE;
556 	return (error);
557 }
558 
559 static void
560 route_output_add_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
561 			  struct rtentry *rt, void *arg)
562 {
563 	struct rt_msghdr *rtm = arg;
564 
565 	if (error == 0 && rt != NULL) {
566 		rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
567 		    &rt->rt_rmx);
568 		rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
569 		rt->rt_rmx.rmx_locks |=
570 		    (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
571 		rt->rt_genmask = rtinfo->rti_genmask;
572 	}
573 }
574 
575 static void
576 route_output_delete_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
577 			  struct rtentry *rt, void *arg)
578 {
579 	struct rt_msghdr **rtm = arg;
580 
581 	if (error == 0 && rt) {
582 		++rt->rt_refcnt;
583 		if (fillrtmsg(rtm, rt, rtinfo) != 0) {
584 			error = ENOBUFS;
585 			/* XXX no way to return the error */
586 		}
587 		--rt->rt_refcnt;
588 	}
589 }
590 
591 static void
592 route_output_change_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
593 			  struct rtentry *rt, void *arg)
594 {
595 	struct rt_msghdr *rtm = arg;
596 	struct ifaddr *ifa;
597 
598 	if (error)
599 		goto done;
600 
601 	/*
602 	 * new gateway could require new ifaddr, ifp;
603 	 * flags may also be different; ifp may be specified
604 	 * by ll sockaddr when protocol address is ambiguous
605 	 */
606 	if (((rt->rt_flags & RTF_GATEWAY) && rtinfo->rti_gateway != NULL) ||
607 	    rtinfo->rti_ifpaddr != NULL || (rtinfo->rti_ifaaddr != NULL &&
608 	    sa_equal(rtinfo->rti_ifaaddr, rt->rt_ifa->ifa_addr))
609 	) {
610 		error = rt_getifa(rtinfo);
611 		if (error != 0)
612 			goto done;
613 	}
614 	if (rtinfo->rti_gateway != NULL) {
615 		error = rt_setgate(rt, rt_key(rt), rtinfo->rti_gateway);
616 		if (error != 0)
617 			goto done;
618 	}
619 	if ((ifa = rtinfo->rti_ifa) != NULL) {
620 		struct ifaddr *oifa = rt->rt_ifa;
621 
622 		if (oifa != ifa) {
623 			if (oifa && oifa->ifa_rtrequest)
624 				oifa->ifa_rtrequest(RTM_DELETE, rt, rtinfo);
625 			IFAFREE(rt->rt_ifa);
626 			IFAREF(ifa);
627 			rt->rt_ifa = ifa;
628 			rt->rt_ifp = rtinfo->rti_ifp;
629 		}
630 	}
631 	rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx);
632 	if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
633 	       rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, rtinfo);
634 	if (rtinfo->rti_genmask != NULL)
635 		rt->rt_genmask = rtinfo->rti_genmask;
636 done:
637 	/* XXX no way to return error */
638 	;
639 }
640 
641 static void
642 route_output_lock_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
643 			   struct rtentry *rt, void *arg)
644 {
645 	struct rt_msghdr *rtm = arg;
646 
647 	rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
648 	rt->rt_rmx.rmx_locks |=
649 		(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
650 }
651 
652 static void
653 rt_setmetrics(u_long which, struct rt_metrics *in, struct rt_metrics *out)
654 {
655 #define setmetric(flag, elt) if (which & (flag)) out->elt = in->elt;
656 	setmetric(RTV_RPIPE, rmx_recvpipe);
657 	setmetric(RTV_SPIPE, rmx_sendpipe);
658 	setmetric(RTV_SSTHRESH, rmx_ssthresh);
659 	setmetric(RTV_RTT, rmx_rtt);
660 	setmetric(RTV_RTTVAR, rmx_rttvar);
661 	setmetric(RTV_HOPCOUNT, rmx_hopcount);
662 	setmetric(RTV_MTU, rmx_mtu);
663 	setmetric(RTV_EXPIRE, rmx_expire);
664 #undef setmetric
665 }
666 
667 #define ROUNDUP(a) \
668 	((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
669 
670 /*
671  * Extract the addresses of the passed sockaddrs.
672  * Do a little sanity checking so as to avoid bad memory references.
673  * This data is derived straight from userland.
674  */
675 static int
676 rt_xaddrs(char *cp, char *cplim, struct rt_addrinfo *rtinfo)
677 {
678 	struct sockaddr *sa;
679 	int i;
680 
681 	for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
682 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
683 			continue;
684 		sa = (struct sockaddr *)cp;
685 		/*
686 		 * It won't fit.
687 		 */
688 		if ((cp + sa->sa_len) > cplim) {
689 			return (EINVAL);
690 		}
691 
692 		/*
693 		 * There are no more...  Quit now.
694 		 * If there are more bits, they are in error.
695 		 * I've seen this.  route(1) can evidently generate these.
696 		 * This causes kernel to core dump.
697 		 * For compatibility, if we see this, point to a safe address.
698 		 */
699 		if (sa->sa_len == 0) {
700 			static struct sockaddr sa_zero = {
701 				sizeof sa_zero, AF_INET,
702 			};
703 
704 			rtinfo->rti_info[i] = &sa_zero;
705 			return (0); /* should be EINVAL but for compat */
706 		}
707 
708 		/* Accept the sockaddr. */
709 		rtinfo->rti_info[i] = sa;
710 		cp += ROUNDUP(sa->sa_len);
711 	}
712 	return (0);
713 }
714 
715 static int
716 rt_msghdrsize(int type)
717 {
718 	switch (type) {
719 	case RTM_DELADDR:
720 	case RTM_NEWADDR:
721 		return sizeof(struct ifa_msghdr);
722 	case RTM_DELMADDR:
723 	case RTM_NEWMADDR:
724 		return sizeof(struct ifma_msghdr);
725 	case RTM_IFINFO:
726 		return sizeof(struct if_msghdr);
727 	case RTM_IFANNOUNCE:
728 	case RTM_IEEE80211:
729 		return sizeof(struct if_announcemsghdr);
730 	default:
731 		return sizeof(struct rt_msghdr);
732 	}
733 }
734 
735 static int
736 rt_msgsize(int type, struct rt_addrinfo *rtinfo)
737 {
738 	int len, i;
739 
740 	len = rt_msghdrsize(type);
741 	for (i = 0; i < RTAX_MAX; i++) {
742 		if (rtinfo->rti_info[i] != NULL)
743 			len += ROUNDUP(rtinfo->rti_info[i]->sa_len);
744 	}
745 	len = ALIGN(len);
746 	return len;
747 }
748 
749 /*
750  * Build a routing message in a buffer.
751  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
752  * to the end of the buffer after the message header.
753  *
754  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
755  * This side-effect can be avoided if we reorder the addrs bitmask field in all
756  * the route messages to line up so we can set it here instead of back in the
757  * calling routine.
758  */
759 static void
760 rt_msg_buffer(int type, struct rt_addrinfo *rtinfo, void *buf, int msglen)
761 {
762 	struct rt_msghdr *rtm;
763 	char *cp;
764 	int dlen, i;
765 
766 	rtm = (struct rt_msghdr *) buf;
767 	rtm->rtm_version = RTM_VERSION;
768 	rtm->rtm_type = type;
769 	rtm->rtm_msglen = msglen;
770 
771 	cp = (char *)buf + rt_msghdrsize(type);
772 	rtinfo->rti_addrs = 0;
773 	for (i = 0; i < RTAX_MAX; i++) {
774 		struct sockaddr *sa;
775 
776 		if ((sa = rtinfo->rti_info[i]) == NULL)
777 			continue;
778 		rtinfo->rti_addrs |= (1 << i);
779 		dlen = ROUNDUP(sa->sa_len);
780 		bcopy(sa, cp, dlen);
781 		cp += dlen;
782 	}
783 }
784 
785 /*
786  * Build a routing message in a mbuf chain.
787  * Copy the addresses in the rtinfo->rti_info[] sockaddr array
788  * to the end of the mbuf after the message header.
789  *
790  * Set the rtinfo->rti_addrs bitmask of addresses present in rtinfo->rti_info[].
791  * This side-effect can be avoided if we reorder the addrs bitmask field in all
792  * the route messages to line up so we can set it here instead of back in the
793  * calling routine.
794  */
795 static struct mbuf *
796 rt_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
797 {
798 	struct mbuf *m;
799 	struct rt_msghdr *rtm;
800 	int hlen, len;
801 	int i;
802 
803 	hlen = rt_msghdrsize(type);
804 	KASSERT(hlen <= MCLBYTES, ("rt_msg_mbuf: hlen %d doesn't fit", hlen));
805 
806 	m = m_getl(hlen, MB_DONTWAIT, MT_DATA, M_PKTHDR, NULL);
807 	if (m == NULL)
808 		return (NULL);
809 	m->m_pkthdr.len = m->m_len = hlen;
810 	m->m_pkthdr.rcvif = NULL;
811 	rtinfo->rti_addrs = 0;
812 	len = hlen;
813 	for (i = 0; i < RTAX_MAX; i++) {
814 		struct sockaddr *sa;
815 		int dlen;
816 
817 		if ((sa = rtinfo->rti_info[i]) == NULL)
818 			continue;
819 		rtinfo->rti_addrs |= (1 << i);
820 		dlen = ROUNDUP(sa->sa_len);
821 		m_copyback(m, len, dlen, (caddr_t)sa); /* can grow mbuf chain */
822 		len += dlen;
823 	}
824 	if (m->m_pkthdr.len != len) { /* one of the m_copyback() calls failed */
825 		m_freem(m);
826 		return (NULL);
827 	}
828 	rtm = mtod(m, struct rt_msghdr *);
829 	bzero(rtm, hlen);
830 	rtm->rtm_msglen = len;
831 	rtm->rtm_version = RTM_VERSION;
832 	rtm->rtm_type = type;
833 	return (m);
834 }
835 
836 /*
837  * This routine is called to generate a message from the routing
838  * socket indicating that a redirect has occurred, a routing lookup
839  * has failed, or that a protocol has detected timeouts to a particular
840  * destination.
841  */
842 void
843 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
844 {
845 	struct sockaddr *dst = rtinfo->rti_info[RTAX_DST];
846 	struct rt_msghdr *rtm;
847 	struct mbuf *m;
848 
849 	if (route_cb.any_count == 0)
850 		return;
851 	m = rt_msg_mbuf(type, rtinfo);
852 	if (m == NULL)
853 		return;
854 	rtm = mtod(m, struct rt_msghdr *);
855 	rtm->rtm_flags = RTF_DONE | flags;
856 	rtm->rtm_errno = error;
857 	rtm->rtm_addrs = rtinfo->rti_addrs;
858 	rts_input(m, familyof(dst));
859 }
860 
861 void
862 rt_dstmsg(int type, struct sockaddr *dst, int error)
863 {
864 	struct rt_msghdr *rtm;
865 	struct rt_addrinfo addrs;
866 	struct mbuf *m;
867 
868 	if (route_cb.any_count == 0)
869 		return;
870 	bzero(&addrs, sizeof(struct rt_addrinfo));
871 	addrs.rti_info[RTAX_DST] = dst;
872 	m = rt_msg_mbuf(type, &addrs);
873 	if (m == NULL)
874 		return;
875 	rtm = mtod(m, struct rt_msghdr *);
876 	rtm->rtm_flags = RTF_DONE;
877 	rtm->rtm_errno = error;
878 	rtm->rtm_addrs = addrs.rti_addrs;
879 	rts_input(m, familyof(dst));
880 }
881 
882 /*
883  * This routine is called to generate a message from the routing
884  * socket indicating that the status of a network interface has changed.
885  */
886 void
887 rt_ifmsg(struct ifnet *ifp)
888 {
889 	struct if_msghdr *ifm;
890 	struct mbuf *m;
891 	struct rt_addrinfo rtinfo;
892 
893 	if (route_cb.any_count == 0)
894 		return;
895 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
896 	m = rt_msg_mbuf(RTM_IFINFO, &rtinfo);
897 	if (m == NULL)
898 		return;
899 	ifm = mtod(m, struct if_msghdr *);
900 	ifm->ifm_index = ifp->if_index;
901 	ifm->ifm_flags = ifp->if_flags;
902 	ifm->ifm_data = ifp->if_data;
903 	ifm->ifm_addrs = 0;
904 	rts_input(m, 0);
905 }
906 
907 static void
908 rt_ifamsg(int cmd, struct ifaddr *ifa)
909 {
910 	struct ifa_msghdr *ifam;
911 	struct rt_addrinfo rtinfo;
912 	struct mbuf *m;
913 	struct ifnet *ifp = ifa->ifa_ifp;
914 
915 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
916 	rtinfo.rti_ifaaddr = ifa->ifa_addr;
917 	rtinfo.rti_ifpaddr = TAILQ_FIRST(&ifp->if_addrhead)->ifa_addr;
918 	rtinfo.rti_netmask = ifa->ifa_netmask;
919 	rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
920 
921 	m = rt_msg_mbuf(cmd, &rtinfo);
922 	if (m == NULL)
923 		return;
924 
925 	ifam = mtod(m, struct ifa_msghdr *);
926 	ifam->ifam_index = ifp->if_index;
927 	ifam->ifam_metric = ifa->ifa_metric;
928 	ifam->ifam_flags = ifa->ifa_flags;
929 	ifam->ifam_addrs = rtinfo.rti_addrs;
930 
931 	rts_input(m, familyof(ifa->ifa_addr));
932 }
933 
934 void
935 rt_rtmsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int error)
936 {
937 	struct rt_msghdr *rtm;
938 	struct rt_addrinfo rtinfo;
939 	struct mbuf *m;
940 	struct sockaddr *dst;
941 
942 	if (rt == NULL)
943 		return;
944 
945 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
946 	rtinfo.rti_dst = dst = rt_key(rt);
947 	rtinfo.rti_gateway = rt->rt_gateway;
948 	rtinfo.rti_netmask = rt_mask(rt);
949 	if (ifp != NULL)
950 		rtinfo.rti_ifpaddr = TAILQ_FIRST(&ifp->if_addrhead)->ifa_addr;
951 	rtinfo.rti_ifaaddr = rt->rt_ifa->ifa_addr;
952 
953 	m = rt_msg_mbuf(cmd, &rtinfo);
954 	if (m == NULL)
955 		return;
956 
957 	rtm = mtod(m, struct rt_msghdr *);
958 	if (ifp != NULL)
959 		rtm->rtm_index = ifp->if_index;
960 	rtm->rtm_flags |= rt->rt_flags;
961 	rtm->rtm_errno = error;
962 	rtm->rtm_addrs = rtinfo.rti_addrs;
963 
964 	rts_input(m, familyof(dst));
965 }
966 
967 /*
968  * This is called to generate messages from the routing socket
969  * indicating a network interface has had addresses associated with it.
970  * if we ever reverse the logic and replace messages TO the routing
971  * socket indicate a request to configure interfaces, then it will
972  * be unnecessary as the routing socket will automatically generate
973  * copies of it.
974  */
975 void
976 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
977 {
978 #ifdef SCTP
979 	/*
980 	 * notify the SCTP stack
981 	 * this will only get called when an address is added/deleted
982 	 * XXX pass the ifaddr struct instead if ifa->ifa_addr...
983 	 */
984 	if (cmd == RTM_ADD)
985 		sctp_add_ip_address(ifa);
986 	else if (cmd == RTM_DELETE)
987 		sctp_delete_ip_address(ifa);
988 #endif /* SCTP */
989 
990 	if (route_cb.any_count == 0)
991 		return;
992 
993 	if (cmd == RTM_ADD) {
994 		rt_ifamsg(RTM_NEWADDR, ifa);
995 		rt_rtmsg(RTM_ADD, rt, ifa->ifa_ifp, error);
996 	} else {
997 		KASSERT((cmd == RTM_DELETE), ("unknown cmd %d", cmd));
998 		rt_rtmsg(RTM_DELETE, rt, ifa->ifa_ifp, error);
999 		rt_ifamsg(RTM_DELADDR, ifa);
1000 	}
1001 }
1002 
1003 /*
1004  * This is the analogue to the rt_newaddrmsg which performs the same
1005  * function but for multicast group memberhips.  This is easier since
1006  * there is no route state to worry about.
1007  */
1008 void
1009 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1010 {
1011 	struct rt_addrinfo rtinfo;
1012 	struct mbuf *m = NULL;
1013 	struct ifnet *ifp = ifma->ifma_ifp;
1014 	struct ifma_msghdr *ifmam;
1015 
1016 	if (route_cb.any_count == 0)
1017 		return;
1018 
1019 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1020 	rtinfo.rti_ifaaddr = ifma->ifma_addr;
1021 	if (ifp != NULL && !TAILQ_EMPTY(&ifp->if_addrhead))
1022 		rtinfo.rti_ifpaddr = TAILQ_FIRST(&ifp->if_addrhead)->ifa_addr;
1023 	/*
1024 	 * If a link-layer address is present, present it as a ``gateway''
1025 	 * (similarly to how ARP entries, e.g., are presented).
1026 	 */
1027 	rtinfo.rti_gateway = ifma->ifma_lladdr;
1028 
1029 	m = rt_msg_mbuf(cmd, &rtinfo);
1030 	if (m == NULL)
1031 		return;
1032 
1033 	ifmam = mtod(m, struct ifma_msghdr *);
1034 	ifmam->ifmam_index = ifp->if_index;
1035 	ifmam->ifmam_addrs = rtinfo.rti_addrs;
1036 
1037 	rts_input(m, familyof(ifma->ifma_addr));
1038 }
1039 
1040 static struct mbuf *
1041 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1042 		     struct rt_addrinfo *info)
1043 {
1044 	struct if_announcemsghdr *ifan;
1045 	struct mbuf *m;
1046 
1047 	if (route_cb.any_count == 0)
1048 		return NULL;
1049 
1050 	bzero(info, sizeof(*info));
1051 	m = rt_msg_mbuf(type, info);
1052 	if (m == NULL)
1053 		return NULL;
1054 
1055 	ifan = mtod(m, struct if_announcemsghdr *);
1056 	ifan->ifan_index = ifp->if_index;
1057 	strlcpy(ifan->ifan_name, ifp->if_xname, sizeof ifan->ifan_name);
1058 	ifan->ifan_what = what;
1059 	return m;
1060 }
1061 
1062 /*
1063  * This is called to generate routing socket messages indicating
1064  * IEEE80211 wireless events.
1065  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1066  */
1067 void
1068 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1069 {
1070 	struct rt_addrinfo info;
1071 	struct mbuf *m;
1072 
1073 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1074 	if (m == NULL)
1075 		return;
1076 
1077 	/*
1078 	 * Append the ieee80211 data.  Try to stick it in the
1079 	 * mbuf containing the ifannounce msg; otherwise allocate
1080 	 * a new mbuf and append.
1081 	 *
1082 	 * NB: we assume m is a single mbuf.
1083 	 */
1084 	if (data_len > M_TRAILINGSPACE(m)) {
1085 		struct mbuf *n = m_get(MB_DONTWAIT, MT_DATA);
1086 		if (n == NULL) {
1087 			m_freem(m);
1088 			return;
1089 		}
1090 		bcopy(data, mtod(n, void *), data_len);
1091 		n->m_len = data_len;
1092 		m->m_next = n;
1093 	} else if (data_len > 0) {
1094 		bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1095 		m->m_len += data_len;
1096 	}
1097 	if (m->m_flags & M_PKTHDR)
1098 		m->m_pkthdr.len += data_len;
1099 	mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1100 	rts_input(m, 0);
1101 }
1102 
1103 /*
1104  * This is called to generate routing socket messages indicating
1105  * network interface arrival and departure.
1106  */
1107 void
1108 rt_ifannouncemsg(struct ifnet *ifp, int what)
1109 {
1110 	struct rt_addrinfo addrinfo;
1111 	struct mbuf *m;
1112 
1113 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &addrinfo);
1114 	if (m != NULL)
1115 		rts_input(m, 0);
1116 }
1117 
1118 static int
1119 resizewalkarg(struct walkarg *w, int len)
1120 {
1121 	void *newptr;
1122 
1123 	newptr = kmalloc(len, M_RTABLE, M_INTWAIT | M_NULLOK);
1124 	if (newptr == NULL)
1125 		return (ENOMEM);
1126 	if (w->w_tmem != NULL)
1127 		kfree(w->w_tmem, M_RTABLE);
1128 	w->w_tmem = newptr;
1129 	w->w_tmemsize = len;
1130 	return (0);
1131 }
1132 
1133 /*
1134  * This is used in dumping the kernel table via sysctl().
1135  */
1136 int
1137 sysctl_dumpentry(struct radix_node *rn, void *vw)
1138 {
1139 	struct walkarg *w = vw;
1140 	struct rtentry *rt = (struct rtentry *)rn;
1141 	struct rt_addrinfo rtinfo;
1142 	int error, msglen;
1143 
1144 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1145 		return 0;
1146 
1147 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1148 	rtinfo.rti_dst = rt_key(rt);
1149 	rtinfo.rti_gateway = rt->rt_gateway;
1150 	rtinfo.rti_netmask = rt_mask(rt);
1151 	rtinfo.rti_genmask = rt->rt_genmask;
1152 	if (rt->rt_ifp != NULL) {
1153 		rtinfo.rti_ifpaddr =
1154 		    TAILQ_FIRST(&rt->rt_ifp->if_addrhead)->ifa_addr;
1155 		rtinfo.rti_ifaaddr = rt->rt_ifa->ifa_addr;
1156 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1157 			rtinfo.rti_bcastaddr = rt->rt_ifa->ifa_dstaddr;
1158 	}
1159 	msglen = rt_msgsize(RTM_GET, &rtinfo);
1160 	if (w->w_tmemsize < msglen && resizewalkarg(w, msglen) != 0)
1161 		return (ENOMEM);
1162 	rt_msg_buffer(RTM_GET, &rtinfo, w->w_tmem, msglen);
1163 	if (w->w_req != NULL) {
1164 		struct rt_msghdr *rtm = w->w_tmem;
1165 
1166 		rtm->rtm_flags = rt->rt_flags;
1167 		rtm->rtm_use = rt->rt_use;
1168 		rtm->rtm_rmx = rt->rt_rmx;
1169 		rtm->rtm_index = rt->rt_ifp->if_index;
1170 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1171 		rtm->rtm_addrs = rtinfo.rti_addrs;
1172 		error = SYSCTL_OUT(w->w_req, rtm, msglen);
1173 		return (error);
1174 	}
1175 	return (0);
1176 }
1177 
1178 static int
1179 sysctl_iflist(int af, struct walkarg *w)
1180 {
1181 	struct ifnet *ifp;
1182 	struct ifaddr *ifa;
1183 	struct rt_addrinfo rtinfo;
1184 	int msglen, error;
1185 
1186 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
1187 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1188 		if (w->w_arg && w->w_arg != ifp->if_index)
1189 			continue;
1190 		ifa = TAILQ_FIRST(&ifp->if_addrhead);
1191 		rtinfo.rti_ifpaddr = ifa->ifa_addr;
1192 		msglen = rt_msgsize(RTM_IFINFO, &rtinfo);
1193 		if (w->w_tmemsize < msglen && resizewalkarg(w, msglen) != 0)
1194 			return (ENOMEM);
1195 		rt_msg_buffer(RTM_IFINFO, &rtinfo, w->w_tmem, msglen);
1196 		rtinfo.rti_ifpaddr = NULL;
1197 		if (w->w_req != NULL && w->w_tmem != NULL) {
1198 			struct if_msghdr *ifm = w->w_tmem;
1199 
1200 			ifm->ifm_index = ifp->if_index;
1201 			ifm->ifm_flags = ifp->if_flags;
1202 			ifm->ifm_data = ifp->if_data;
1203 			ifm->ifm_addrs = rtinfo.rti_addrs;
1204 			error = SYSCTL_OUT(w->w_req, ifm, msglen);
1205 			if (error)
1206 				return (error);
1207 		}
1208 		while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
1209 			if (af && af != ifa->ifa_addr->sa_family)
1210 				continue;
1211 			if (curproc->p_ucred->cr_prison &&
1212 			    prison_if(curproc->p_ucred, ifa->ifa_addr))
1213 				continue;
1214 			rtinfo.rti_ifaaddr = ifa->ifa_addr;
1215 			rtinfo.rti_netmask = ifa->ifa_netmask;
1216 			rtinfo.rti_bcastaddr = ifa->ifa_dstaddr;
1217 			msglen = rt_msgsize(RTM_NEWADDR, &rtinfo);
1218 			if (w->w_tmemsize < msglen &&
1219 			    resizewalkarg(w, msglen) != 0)
1220 				return (ENOMEM);
1221 			rt_msg_buffer(RTM_NEWADDR, &rtinfo, w->w_tmem, msglen);
1222 			if (w->w_req != NULL) {
1223 				struct ifa_msghdr *ifam = w->w_tmem;
1224 
1225 				ifam->ifam_index = ifa->ifa_ifp->if_index;
1226 				ifam->ifam_flags = ifa->ifa_flags;
1227 				ifam->ifam_metric = ifa->ifa_metric;
1228 				ifam->ifam_addrs = rtinfo.rti_addrs;
1229 				error = SYSCTL_OUT(w->w_req, w->w_tmem, msglen);
1230 				if (error)
1231 					return (error);
1232 			}
1233 		}
1234 		rtinfo.rti_netmask = NULL;
1235 		rtinfo.rti_ifaaddr = NULL;
1236 		rtinfo.rti_bcastaddr = NULL;
1237 	}
1238 	return (0);
1239 }
1240 
1241 static int
1242 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1243 {
1244 	int	*name = (int *)arg1;
1245 	u_int	namelen = arg2;
1246 	struct radix_node_head *rnh;
1247 	int	i, error = EINVAL;
1248 	int	origcpu;
1249 	u_char  af;
1250 	struct	walkarg w;
1251 
1252 	name ++;
1253 	namelen--;
1254 	if (req->newptr)
1255 		return (EPERM);
1256 	if (namelen != 3 && namelen != 4)
1257 		return (EINVAL);
1258 	af = name[0];
1259 	bzero(&w, sizeof w);
1260 	w.w_op = name[1];
1261 	w.w_arg = name[2];
1262 	w.w_req = req;
1263 
1264 	/*
1265 	 * Optional third argument specifies cpu, used primarily for
1266 	 * debugging the route table.
1267 	 */
1268 	if (namelen == 4) {
1269 		if (name[3] < 0 || name[3] >= ncpus)
1270 			return (EINVAL);
1271 		origcpu = mycpuid;
1272 		lwkt_migratecpu(name[3]);
1273 	} else {
1274 		origcpu = -1;
1275 	}
1276 	crit_enter();
1277 	switch (w.w_op) {
1278 	case NET_RT_DUMP:
1279 	case NET_RT_FLAGS:
1280 		for (i = 1; i <= AF_MAX; i++)
1281 			if ((rnh = rt_tables[mycpuid][i]) &&
1282 			    (af == 0 || af == i) &&
1283 			    (error = rnh->rnh_walktree(rnh,
1284 						       sysctl_dumpentry, &w)))
1285 				break;
1286 		break;
1287 
1288 	case NET_RT_IFLIST:
1289 		error = sysctl_iflist(af, &w);
1290 	}
1291 	crit_exit();
1292 	if (w.w_tmem != NULL)
1293 		kfree(w.w_tmem, M_RTABLE);
1294 	if (origcpu >= 0)
1295 		lwkt_migratecpu(origcpu);
1296 	return (error);
1297 }
1298 
1299 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1300 
1301 /*
1302  * Definitions of protocols supported in the ROUTE domain.
1303  */
1304 
1305 static struct domain routedomain;		/* or at least forward */
1306 
1307 static struct protosw routesw[] = {
1308 { SOCK_RAW,	&routedomain,	0,		PR_ATOMIC|PR_ADDR,
1309   0,		route_output,	raw_ctlinput,	0,
1310   cpu0_soport,
1311   raw_init,	0,		0,		0,
1312   &route_usrreqs
1313 }
1314 };
1315 
1316 static struct domain routedomain = {
1317 	PF_ROUTE, "route", NULL, NULL, NULL,
1318 	routesw, &routesw[(sizeof routesw)/(sizeof routesw[0])],
1319 };
1320 
1321 DOMAIN_SET(route);
1322