xref: /dragonfly/sys/net/zlib.c (revision 3d33658b)
1 /*
2  * This file is derived from various .h and .c files from the zlib-1.0.4
3  * distribution by Jean-loup Gailly and Mark Adler, with some additions
4  * by Paul Mackerras to aid in implementing Deflate compression and
5  * decompression for PPP packets.  See zlib.h for conditions of
6  * distribution and use.
7  *
8  * Changes that have been made include:
9  * - added Z_PACKET_FLUSH (see zlib.h for details)
10  * - added inflateIncomp and deflateOutputPending
11  * - allow strm->next_out to be NULL, meaning discard the output
12  *
13  * $FreeBSD: src/sys/net/zlib.c,v 1.10.2.3 2002/03/24 23:12:48 jedgar Exp $
14  * $DragonFly: src/sys/net/zlib.c,v 1.11 2007/01/07 00:41:29 dillon Exp $
15  */
16 
17 /*
18  *  ==FILEVERSION 971210==
19  *
20  * This marker is used by the Linux installation script to determine
21  * whether an up-to-date version of this file is already installed.
22  */
23 
24 #define NO_DUMMY_DECL
25 #define NO_ZCFUNCS
26 #define MY_ZCALLOC
27 
28 #if (defined(__DragonFly__) || defined(__FreeBSD__)) && defined(_KERNEL)
29 #define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
30 #endif
31 
32 
33 /* +++ zutil.h */
34 /* zutil.h -- internal interface and configuration of the compression library
35  * Copyright (C) 1995-1996 Jean-loup Gailly.
36  * For conditions of distribution and use, see copyright notice in zlib.h
37  */
38 
39 /* WARNING: this file should *not* be used by applications. It is
40    part of the implementation of the compression library and is
41    subject to change. Applications should only use zlib.h.
42  */
43 
44 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
45 
46 #ifndef _Z_UTIL_H
47 #define _Z_UTIL_H
48 
49 #ifdef _KERNEL
50 #include <net/zlib.h>
51 #else
52 #include "zlib.h"
53 #endif
54 
55 #ifdef _KERNEL
56 /* Assume this is a *BSD or SVR4 kernel */
57 #include <sys/param.h>
58 #include <sys/types.h>
59 #include <sys/time.h>
60 #include <sys/systm.h>
61 #include <sys/module.h>
62 #  define HAVE_MEMCPY
63 #  define memcmp		bcmp
64 
65 #else
66 #if defined(__KERNEL__)
67 /* Assume this is a Linux kernel */
68 #include <linux/string.h>
69 #define HAVE_MEMCPY
70 
71 #else /* not kernel */
72 
73 #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
74 #   include <stddef.h>
75 #   include <errno.h>
76 #else
77     extern int errno;
78 #endif
79 #ifdef STDC
80 #  include <string.h>
81 #  include <stdlib.h>
82 #endif
83 #endif /* __KERNEL__ */
84 #endif /* _KERNEL */
85 
86 #ifndef local
87 #  define local static
88 #endif
89 /* compile with -Dlocal if your debugger can't find static symbols */
90 
91 typedef unsigned char  uch;
92 typedef uch FAR uchf;
93 typedef unsigned short ush;
94 typedef ush FAR ushf;
95 typedef unsigned long  ulg;
96 
97 static const char *z_errmsg[10] = {
98 "need dictionary",     /* Z_NEED_DICT       2  */
99 "stream end",          /* Z_STREAM_END      1  */
100 "",                    /* Z_OK              0  */
101 "file error",          /* Z_ERRNO         (-1) */
102 "stream error",        /* Z_STREAM_ERROR  (-2) */
103 "data error",          /* Z_DATA_ERROR    (-3) */
104 "insufficient memory", /* Z_MEM_ERROR     (-4) */
105 "buffer error",        /* Z_BUF_ERROR     (-5) */
106 "incompatible version",/* Z_VERSION_ERROR (-6) */
107 ""};
108 
109 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
110 
111 #define ERR_RETURN(strm,err) \
112   return (strm->msg = (const char*)ERR_MSG(err), (err))
113 /* To be used only when the state is known to be valid */
114 
115         /* common constants */
116 
117 #ifndef DEF_WBITS
118 #  define DEF_WBITS MAX_WBITS
119 #endif
120 /* default windowBits for decompression. MAX_WBITS is for compression only */
121 
122 #if MAX_MEM_LEVEL >= 8
123 #  define DEF_MEM_LEVEL 8
124 #else
125 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
126 #endif
127 /* default memLevel */
128 
129 #define STORED_BLOCK 0
130 #define STATIC_TREES 1
131 #define DYN_TREES    2
132 /* The three kinds of block type */
133 
134 #define MIN_MATCH  3
135 #define MAX_MATCH  258
136 /* The minimum and maximum match lengths */
137 
138 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
139 
140         /* target dependencies */
141 
142 #ifdef MSDOS
143 #  define OS_CODE  0x00
144 #  ifdef __TURBOC__
145 #    include <alloc.h>
146 #  else /* MSC or DJGPP */
147 #    include <malloc.h>
148 #  endif
149 #endif
150 
151 #ifdef OS2
152 #  define OS_CODE  0x06
153 #endif
154 
155 #ifdef WIN32 /* Window 95 & Windows NT */
156 #  define OS_CODE  0x0b
157 #endif
158 
159 #if defined(VAXC) || defined(VMS)
160 #  define OS_CODE  0x02
161 #  define FOPEN(name, mode) \
162      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
163 #endif
164 
165 #ifdef AMIGA
166 #  define OS_CODE  0x01
167 #endif
168 
169 #if defined(ATARI) || defined(atarist)
170 #  define OS_CODE  0x05
171 #endif
172 
173 #ifdef MACOS
174 #  define OS_CODE  0x07
175 #endif
176 
177 #ifdef __50SERIES /* Prime/PRIMOS */
178 #  define OS_CODE  0x0F
179 #endif
180 
181 #ifdef TOPS20
182 #  define OS_CODE  0x0a
183 #endif
184 
185 #if defined(_BEOS_) || defined(RISCOS)
186 #  define fdopen(fd,mode) NULL /* No fdopen() */
187 #endif
188 
189         /* Common defaults */
190 
191 #ifndef OS_CODE
192 #  define OS_CODE  0x03  /* assume Unix */
193 #endif
194 
195 #ifndef FOPEN
196 #  define FOPEN(name, mode) fopen((name), (mode))
197 #endif
198 
199          /* functions */
200 
201 #ifdef HAVE_STRERROR
202    extern char *strerror OF((int));
203 #  define zstrerror(errnum) strerror(errnum)
204 #else
205 #  define zstrerror(errnum) ""
206 #endif
207 
208 #if defined(pyr)
209 #  define NO_MEMCPY
210 #endif
211 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
212  /* Use our own functions for small and medium model with MSC <= 5.0.
213   * You may have to use the same strategy for Borland C (untested).
214   */
215 #  define NO_MEMCPY
216 #endif
217 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
218 #  define HAVE_MEMCPY
219 #endif
220 #ifdef HAVE_MEMCPY
221 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
222 #    define zmemcpy _fmemcpy
223 #    define zmemcmp _fmemcmp
224 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
225 #  else
226 #    define zmemcpy memcpy
227 #    define zmemcmp memcmp
228 #    define zmemzero(dest, len) memset(dest, 0, len)
229 #  endif
230 #else
231    extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
232    extern int  zmemcmp  OF((Bytef* s1,   Bytef* s2, uInt len));
233    extern void zmemzero OF((Bytef* dest, uInt len));
234 #endif
235 
236 /* Diagnostic functions */
237 #ifdef DEBUG_ZLIB
238 #  include <stdio.h>
239 #  ifndef verbose
240 #    define verbose 0
241 #  endif
242    extern void z_error    OF((char *m));
243 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
244 #  define Trace(x) fprintf x
245 #  define Tracev(x) {if (verbose) fprintf x ;}
246 #  define Tracevv(x) {if (verbose>1) fprintf x ;}
247 #  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
248 #  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
249 #else
250 #  define Assert(cond,msg)
251 #  define Trace(x)
252 #  define Tracev(x)
253 #  define Tracevv(x)
254 #  define Tracec(c,x)
255 #  define Tracecv(c,x)
256 #endif
257 
258 
259 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
260 
261 voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
262 void   zcfree  OF((voidpf opaque, voidpf ptr));
263 
264 #define ZALLOC(strm, items, size) \
265            (*((strm)->zalloc))((strm)->opaque, (items), (size))
266 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
267 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
268 
269 #endif /* _Z_UTIL_H */
270 /* --- zutil.h */
271 
272 /* +++ deflate.h */
273 /* deflate.h -- internal compression state
274  * Copyright (C) 1995-1996 Jean-loup Gailly
275  * For conditions of distribution and use, see copyright notice in zlib.h
276  */
277 
278 /* WARNING: this file should *not* be used by applications. It is
279    part of the implementation of the compression library and is
280    subject to change. Applications should only use zlib.h.
281  */
282 
283 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
284 
285 #ifndef _DEFLATE_H
286 #define _DEFLATE_H
287 
288 /* #include "zutil.h" */
289 
290 /* ===========================================================================
291  * Internal compression state.
292  */
293 
294 #define LENGTH_CODES 29
295 /* number of length codes, not counting the special END_BLOCK code */
296 
297 #define LITERALS  256
298 /* number of literal bytes 0..255 */
299 
300 #define L_CODES (LITERALS+1+LENGTH_CODES)
301 /* number of Literal or Length codes, including the END_BLOCK code */
302 
303 #define D_CODES   30
304 /* number of distance codes */
305 
306 #define BL_CODES  19
307 /* number of codes used to transfer the bit lengths */
308 
309 #define HEAP_SIZE (2*L_CODES+1)
310 /* maximum heap size */
311 
312 #define MAX_BITS 15
313 /* All codes must not exceed MAX_BITS bits */
314 
315 #define INIT_STATE    42
316 #define BUSY_STATE   113
317 #define FINISH_STATE 666
318 /* Stream status */
319 
320 
321 /* Data structure describing a single value and its code string. */
322 typedef struct ct_data_s {
323     union {
324         ush  freq;       /* frequency count */
325         ush  code;       /* bit string */
326     } fc;
327     union {
328         ush  dad;        /* father node in Huffman tree */
329         ush  len;        /* length of bit string */
330     } dl;
331 } FAR ct_data;
332 
333 #define Freq fc.freq
334 #define Code fc.code
335 #define Dad  dl.dad
336 #define Len  dl.len
337 
338 typedef struct static_tree_desc_s  static_tree_desc;
339 
340 typedef struct tree_desc_s {
341     ct_data *dyn_tree;           /* the dynamic tree */
342     int     max_code;            /* largest code with non zero frequency */
343     static_tree_desc *stat_desc; /* the corresponding static tree */
344 } FAR tree_desc;
345 
346 typedef ush Pos;
347 typedef Pos FAR Posf;
348 typedef unsigned IPos;
349 
350 /* A Pos is an index in the character window. We use short instead of int to
351  * save space in the various tables. IPos is used only for parameter passing.
352  */
353 
354 typedef struct deflate_state {
355     z_streamp strm;      /* pointer back to this zlib stream */
356     int   status;        /* as the name implies */
357     Bytef *pending_buf;  /* output still pending */
358     ulg   pending_buf_size; /* size of pending_buf */
359     Bytef *pending_out;  /* next pending byte to output to the stream */
360     int   pending;       /* nb of bytes in the pending buffer */
361     int   noheader;      /* suppress zlib header and adler32 */
362     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
363     Byte  method;        /* STORED (for zip only) or DEFLATED */
364     int   last_flush;    /* value of flush param for previous deflate call */
365 
366                 /* used by deflate.c: */
367 
368     uInt  w_size;        /* LZ77 window size (32K by default) */
369     uInt  w_bits;        /* log2(w_size)  (8..16) */
370     uInt  w_mask;        /* w_size - 1 */
371 
372     Bytef *window;
373     /* Sliding window. Input bytes are read into the second half of the window,
374      * and move to the first half later to keep a dictionary of at least wSize
375      * bytes. With this organization, matches are limited to a distance of
376      * wSize-MAX_MATCH bytes, but this ensures that IO is always
377      * performed with a length multiple of the block size. Also, it limits
378      * the window size to 64K, which is quite useful on MSDOS.
379      * To do: use the user input buffer as sliding window.
380      */
381 
382     ulg window_size;
383     /* Actual size of window: 2*wSize, except when the user input buffer
384      * is directly used as sliding window.
385      */
386 
387     Posf *prev;
388     /* Link to older string with same hash index. To limit the size of this
389      * array to 64K, this link is maintained only for the last 32K strings.
390      * An index in this array is thus a window index modulo 32K.
391      */
392 
393     Posf *head; /* Heads of the hash chains or NIL. */
394 
395     uInt  ins_h;          /* hash index of string to be inserted */
396     uInt  hash_size;      /* number of elements in hash table */
397     uInt  hash_bits;      /* log2(hash_size) */
398     uInt  hash_mask;      /* hash_size-1 */
399 
400     uInt  hash_shift;
401     /* Number of bits by which ins_h must be shifted at each input
402      * step. It must be such that after MIN_MATCH steps, the oldest
403      * byte no longer takes part in the hash key, that is:
404      *   hash_shift * MIN_MATCH >= hash_bits
405      */
406 
407     long block_start;
408     /* Window position at the beginning of the current output block. Gets
409      * negative when the window is moved backwards.
410      */
411 
412     uInt match_length;           /* length of best match */
413     IPos prev_match;             /* previous match */
414     int match_available;         /* set if previous match exists */
415     uInt strstart;               /* start of string to insert */
416     uInt match_start;            /* start of matching string */
417     uInt lookahead;              /* number of valid bytes ahead in window */
418 
419     uInt prev_length;
420     /* Length of the best match at previous step. Matches not greater than this
421      * are discarded. This is used in the lazy match evaluation.
422      */
423 
424     uInt max_chain_length;
425     /* To speed up deflation, hash chains are never searched beyond this
426      * length.  A higher limit improves compression ratio but degrades the
427      * speed.
428      */
429 
430     uInt max_lazy_match;
431     /* Attempt to find a better match only when the current match is strictly
432      * smaller than this value. This mechanism is used only for compression
433      * levels >= 4.
434      */
435 #   define max_insert_length  max_lazy_match
436     /* Insert new strings in the hash table only if the match length is not
437      * greater than this length. This saves time but degrades compression.
438      * max_insert_length is used only for compression levels <= 3.
439      */
440 
441     int level;    /* compression level (1..9) */
442     int strategy; /* favor or force Huffman coding*/
443 
444     uInt good_match;
445     /* Use a faster search when the previous match is longer than this */
446 
447     int nice_match; /* Stop searching when current match exceeds this */
448 
449                 /* used by trees.c: */
450     /* Didn't use ct_data typedef below to supress compiler warning */
451     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
452     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
453     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
454 
455     struct tree_desc_s l_desc;               /* desc. for literal tree */
456     struct tree_desc_s d_desc;               /* desc. for distance tree */
457     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
458 
459     ush bl_count[MAX_BITS+1];
460     /* number of codes at each bit length for an optimal tree */
461 
462     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
463     int heap_len;               /* number of elements in the heap */
464     int heap_max;               /* element of largest frequency */
465     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
466      * The same heap array is used to build all trees.
467      */
468 
469     uch depth[2*L_CODES+1];
470     /* Depth of each subtree used as tie breaker for trees of equal frequency
471      */
472 
473     uchf *l_buf;          /* buffer for literals or lengths */
474 
475     uInt  lit_bufsize;
476     /* Size of match buffer for literals/lengths.  There are 4 reasons for
477      * limiting lit_bufsize to 64K:
478      *   - frequencies can be kept in 16 bit counters
479      *   - if compression is not successful for the first block, all input
480      *     data is still in the window so we can still emit a stored block even
481      *     when input comes from standard input.  (This can also be done for
482      *     all blocks if lit_bufsize is not greater than 32K.)
483      *   - if compression is not successful for a file smaller than 64K, we can
484      *     even emit a stored file instead of a stored block (saving 5 bytes).
485      *     This is applicable only for zip (not gzip or zlib).
486      *   - creating new Huffman trees less frequently may not provide fast
487      *     adaptation to changes in the input data statistics. (Take for
488      *     example a binary file with poorly compressible code followed by
489      *     a highly compressible string table.) Smaller buffer sizes give
490      *     fast adaptation but have of course the overhead of transmitting
491      *     trees more frequently.
492      *   - I can't count above 4
493      */
494 
495     uInt last_lit;      /* running index in l_buf */
496 
497     ushf *d_buf;
498     /* Buffer for distances. To simplify the code, d_buf and l_buf have
499      * the same number of elements. To use different lengths, an extra flag
500      * array would be necessary.
501      */
502 
503     ulg opt_len;        /* bit length of current block with optimal trees */
504     ulg static_len;     /* bit length of current block with static trees */
505     ulg compressed_len; /* total bit length of compressed file */
506     uInt matches;       /* number of string matches in current block */
507     int last_eob_len;   /* bit length of EOB code for last block */
508 
509 #ifdef DEBUG_ZLIB
510     ulg bits_sent;      /* bit length of the compressed data */
511 #endif
512 
513     ush bi_buf;
514     /* Output buffer. bits are inserted starting at the bottom (least
515      * significant bits).
516      */
517     int bi_valid;
518     /* Number of valid bits in bi_buf.  All bits above the last valid bit
519      * are always zero.
520      */
521 
522 } FAR deflate_state;
523 
524 /* Output a byte on the stream.
525  * IN assertion: there is enough room in pending_buf.
526  */
527 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
528 
529 
530 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
531 /* Minimum amount of lookahead, except at the end of the input file.
532  * See deflate.c for comments about the MIN_MATCH+1.
533  */
534 
535 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
536 /* In order to simplify the code, particularly on 16 bit machines, match
537  * distances are limited to MAX_DIST instead of WSIZE.
538  */
539 
540         /* in trees.c */
541 void _tr_init         OF((deflate_state *s));
542 int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
543 ulg  _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
544 			  int eof));
545 void _tr_align        OF((deflate_state *s));
546 void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
547                           int eof));
548 void _tr_stored_type_only OF((deflate_state *));
549 
550 #endif
551 /* --- deflate.h */
552 
553 /* +++ deflate.c */
554 /* deflate.c -- compress data using the deflation algorithm
555  * Copyright (C) 1995-1996 Jean-loup Gailly.
556  * For conditions of distribution and use, see copyright notice in zlib.h
557  */
558 
559 /*
560  *  ALGORITHM
561  *
562  *      The "deflation" process depends on being able to identify portions
563  *      of the input text which are identical to earlier input (within a
564  *      sliding window trailing behind the input currently being processed).
565  *
566  *      The most straightforward technique turns out to be the fastest for
567  *      most input files: try all possible matches and select the longest.
568  *      The key feature of this algorithm is that insertions into the string
569  *      dictionary are very simple and thus fast, and deletions are avoided
570  *      completely. Insertions are performed at each input character, whereas
571  *      string matches are performed only when the previous match ends. So it
572  *      is preferable to spend more time in matches to allow very fast string
573  *      insertions and avoid deletions. The matching algorithm for small
574  *      strings is inspired from that of Rabin & Karp. A brute force approach
575  *      is used to find longer strings when a small match has been found.
576  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
577  *      (by Leonid Broukhis).
578  *         A previous version of this file used a more sophisticated algorithm
579  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
580  *      time, but has a larger average cost, uses more memory and is patented.
581  *      However the F&G algorithm may be faster for some highly redundant
582  *      files if the parameter max_chain_length (described below) is too large.
583  *
584  *  ACKNOWLEDGEMENTS
585  *
586  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
587  *      I found it in 'freeze' written by Leonid Broukhis.
588  *      Thanks to many people for bug reports and testing.
589  *
590  *  REFERENCES
591  *
592  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
593  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
594  *
595  *      A description of the Rabin and Karp algorithm is given in the book
596  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
597  *
598  *      Fiala,E.R., and Greene,D.H.
599  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
600  *
601  */
602 
603 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
604 
605 /* #include "deflate.h" */
606 
607 char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
608 /*
609   If you use the zlib library in a product, an acknowledgment is welcome
610   in the documentation of your product. If for some reason you cannot
611   include such an acknowledgment, I would appreciate that you keep this
612   copyright string in the executable of your product.
613  */
614 
615 /* ===========================================================================
616  *  Function prototypes.
617  */
618 typedef enum {
619     need_more,      /* block not completed, need more input or more output */
620     block_done,     /* block flush performed */
621     finish_started, /* finish started, need only more output at next deflate */
622     finish_done     /* finish done, accept no more input or output */
623 } block_state;
624 
625 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
626 /* Compression function. Returns the block state after the call. */
627 
628 local void fill_window    OF((deflate_state *s));
629 local block_state deflate_stored OF((deflate_state *s, int flush));
630 local block_state deflate_fast   OF((deflate_state *s, int flush));
631 local block_state deflate_slow   OF((deflate_state *s, int flush));
632 local void lm_init        OF((deflate_state *s));
633 local void putShortMSB    OF((deflate_state *s, uInt b));
634 local void flush_pending  OF((z_streamp strm));
635 local int read_buf        OF((z_streamp strm, charf *buf, unsigned size));
636 #ifdef ASMV
637       void match_init OF((void)); /* asm code initialization */
638       uInt longest_match  OF((deflate_state *s, IPos cur_match));
639 #else
640 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
641 #endif
642 
643 #ifdef DEBUG_ZLIB
644 local  void check_match OF((deflate_state *s, IPos start, IPos match,
645                             int length));
646 #endif
647 
648 /* ===========================================================================
649  * Local data
650  */
651 
652 #define NIL 0
653 /* Tail of hash chains */
654 
655 #ifndef TOO_FAR
656 #  define TOO_FAR 4096
657 #endif
658 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
659 
660 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
661 /* Minimum amount of lookahead, except at the end of the input file.
662  * See deflate.c for comments about the MIN_MATCH+1.
663  */
664 
665 /* Values for max_lazy_match, good_match and max_chain_length, depending on
666  * the desired pack level (0..9). The values given below have been tuned to
667  * exclude worst case performance for pathological files. Better values may be
668  * found for specific files.
669  */
670 typedef struct config_s {
671    ush good_length; /* reduce lazy search above this match length */
672    ush max_lazy;    /* do not perform lazy search above this match length */
673    ush nice_length; /* quit search above this match length */
674    ush max_chain;
675    compress_func func;
676 } config;
677 
678 local config configuration_table[10] = {
679 /*      good lazy nice chain */
680 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
681 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
682 /* 2 */ {4,    5, 16,    8, deflate_fast},
683 /* 3 */ {4,    6, 32,   32, deflate_fast},
684 
685 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
686 /* 5 */ {8,   16, 32,   32, deflate_slow},
687 /* 6 */ {8,   16, 128, 128, deflate_slow},
688 /* 7 */ {8,   32, 128, 256, deflate_slow},
689 /* 8 */ {32, 128, 258, 1024, deflate_slow},
690 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
691 
692 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
693  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
694  * meaning.
695  */
696 
697 #define EQUAL 0
698 /* result of memcmp for equal strings */
699 
700 #ifndef NO_DUMMY_DECL
701 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
702 #endif
703 
704 /* ===========================================================================
705  * Update a hash value with the given input byte
706  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
707  *    input characters, so that a running hash key can be computed from the
708  *    previous key instead of complete recalculation each time.
709  */
710 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
711 
712 
713 /* ===========================================================================
714  * Insert string str in the dictionary and set match_head to the previous head
715  * of the hash chain (the most recent string with same hash key). Return
716  * the previous length of the hash chain.
717  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
718  *    input characters and the first MIN_MATCH bytes of str are valid
719  *    (except for the last MIN_MATCH-1 bytes of the input file).
720  */
721 #define INSERT_STRING(s, str, match_head) \
722    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
723     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
724     s->head[s->ins_h] = (Pos)(str))
725 
726 /* ===========================================================================
727  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
728  * prev[] will be initialized on the fly.
729  */
730 #define CLEAR_HASH(s) \
731     s->head[s->hash_size-1] = NIL; \
732     zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
733 
734 /* ========================================================================= */
735 int
736 deflateInit_(z_streamp strm, int level, const char * version,
737 		 int stream_size)
738 {
739     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
740 			 Z_DEFAULT_STRATEGY, version, stream_size);
741     /* To do: ignore strm->next_in if we use it as window */
742 }
743 
744 /* ========================================================================= */
745 int
746 deflateInit2_(z_streamp strm, int level, int method, int windowBits,
747 		  int memLevel, int strategy, const char *version,
748 		  int stream_size)
749 {
750     deflate_state *s;
751     int noheader = 0;
752     static char* my_version = ZLIB_VERSION;
753 
754     ushf *overlay;
755     /* We overlay pending_buf and d_buf+l_buf. This works since the average
756      * output size for (length,distance) codes is <= 24 bits.
757      */
758 
759     if (version == Z_NULL || version[0] != my_version[0] ||
760         stream_size != sizeof(z_stream)) {
761 	return Z_VERSION_ERROR;
762     }
763     if (strm == Z_NULL) return Z_STREAM_ERROR;
764 
765     strm->msg = Z_NULL;
766 #ifndef NO_ZCFUNCS
767     if (strm->zalloc == Z_NULL) {
768 	strm->zalloc = zcalloc;
769 	strm->opaque = (voidpf)0;
770     }
771     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
772 #endif
773 
774     if (level == Z_DEFAULT_COMPRESSION) level = 6;
775 
776     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
777         noheader = 1;
778         windowBits = -windowBits;
779     }
780     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
781         windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
782 	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
783         return Z_STREAM_ERROR;
784     }
785     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
786     if (s == Z_NULL) return Z_MEM_ERROR;
787     strm->state = (struct internal_state FAR *)s;
788     s->strm = strm;
789 
790     s->noheader = noheader;
791     s->w_bits = windowBits;
792     s->w_size = 1 << s->w_bits;
793     s->w_mask = s->w_size - 1;
794 
795     s->hash_bits = memLevel + 7;
796     s->hash_size = 1 << s->hash_bits;
797     s->hash_mask = s->hash_size - 1;
798     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
799 
800     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
801     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
802     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
803 
804     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
805 
806     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
807     s->pending_buf = (uchf *) overlay;
808     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
809 
810     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
811         s->pending_buf == Z_NULL) {
812         strm->msg = (const char*)ERR_MSG(Z_MEM_ERROR);
813         deflateEnd (strm);
814         return Z_MEM_ERROR;
815     }
816     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
817     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
818 
819     s->level = level;
820     s->strategy = strategy;
821     s->method = (Byte)method;
822 
823     return deflateReset(strm);
824 }
825 
826 /* ========================================================================= */
827 int
828 deflateSetDictionary(z_streamp strm, const Bytef *dictionary, uInt dictLength)
829 {
830     deflate_state *s;
831     uInt length = dictLength;
832     uInt n;
833     IPos hash_head = 0;
834 
835     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
836 	return Z_STREAM_ERROR;
837 
838     s = (deflate_state *) strm->state;
839     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
840 
841     strm->adler = adler32(strm->adler, dictionary, dictLength);
842 
843     if (length < MIN_MATCH) return Z_OK;
844     if (length > MAX_DIST(s)) {
845 	length = MAX_DIST(s);
846 #ifndef USE_DICT_HEAD
847 	dictionary += dictLength - length; /* use the tail of the dictionary */
848 #endif
849     }
850     zmemcpy((charf *)s->window, dictionary, length);
851     s->strstart = length;
852     s->block_start = (long)length;
853 
854     /* Insert all strings in the hash table (except for the last two bytes).
855      * s->lookahead stays null, so s->ins_h will be recomputed at the next
856      * call of fill_window.
857      */
858     s->ins_h = s->window[0];
859     UPDATE_HASH(s, s->ins_h, s->window[1]);
860     for (n = 0; n <= length - MIN_MATCH; n++) {
861 	INSERT_STRING(s, n, hash_head);
862     }
863     if (hash_head) hash_head = 0;  /* to make compiler happy */
864     return Z_OK;
865 }
866 
867 /* ========================================================================= */
868 int
869 deflateReset(z_streamp strm)
870 {
871     deflate_state *s;
872 
873     if (strm == Z_NULL || strm->state == Z_NULL ||
874         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
875 
876     strm->total_in = strm->total_out = 0;
877     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
878     strm->data_type = Z_UNKNOWN;
879 
880     s = (deflate_state *)strm->state;
881     s->pending = 0;
882     s->pending_out = s->pending_buf;
883 
884     if (s->noheader < 0) {
885         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
886     }
887     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
888     strm->adler = 1;
889     s->last_flush = Z_NO_FLUSH;
890 
891     _tr_init(s);
892     lm_init(s);
893 
894     return Z_OK;
895 }
896 
897 /* ========================================================================= */
898 int
899 deflateParams(z_streamp strm, int level, int strategy)
900 {
901     deflate_state *s;
902     compress_func func;
903     int err = Z_OK;
904 
905     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
906     s = (deflate_state *) strm->state;
907 
908     if (level == Z_DEFAULT_COMPRESSION) {
909 	level = 6;
910     }
911     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
912 	return Z_STREAM_ERROR;
913     }
914     func = configuration_table[s->level].func;
915 
916     if (func != configuration_table[level].func && strm->total_in != 0) {
917 	/* Flush the last buffer: */
918 	err = deflate(strm, Z_PARTIAL_FLUSH);
919     }
920     if (s->level != level) {
921 	s->level = level;
922 	s->max_lazy_match   = configuration_table[level].max_lazy;
923 	s->good_match       = configuration_table[level].good_length;
924 	s->nice_match       = configuration_table[level].nice_length;
925 	s->max_chain_length = configuration_table[level].max_chain;
926     }
927     s->strategy = strategy;
928     return err;
929 }
930 
931 /* =========================================================================
932  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
933  * IN assertion: the stream state is correct and there is enough room in
934  * pending_buf.
935  */
936 local void
937 putShortMSB(deflate_state *s, uInt b)
938 {
939     put_byte(s, (Byte)(b >> 8));
940     put_byte(s, (Byte)(b & 0xff));
941 }
942 
943 /* =========================================================================
944  * Flush as much pending output as possible. All deflate() output goes
945  * through this function so some applications may wish to modify it
946  * to avoid allocating a large strm->next_out buffer and copying into it.
947  * (See also read_buf()).
948  */
949 local void
950 flush_pending(z_streamp strm)
951 {
952     deflate_state *s = (deflate_state *) strm->state;
953     unsigned len = s->pending;
954 
955     if (len > strm->avail_out) len = strm->avail_out;
956     if (len == 0) return;
957 
958     if (strm->next_out != Z_NULL) {
959 	zmemcpy(strm->next_out, s->pending_out, len);
960 	strm->next_out += len;
961     }
962     s->pending_out += len;
963     strm->total_out += len;
964     strm->avail_out  -= len;
965     s->pending -= len;
966     if (s->pending == 0) {
967         s->pending_out = s->pending_buf;
968     }
969 }
970 
971 /* ========================================================================= */
972 int
973 deflate(z_streamp strm, int flush)
974 {
975     int old_flush; /* value of flush param for previous deflate call */
976     deflate_state *s;
977 
978     if (strm == Z_NULL || strm->state == Z_NULL ||
979 	flush > Z_FINISH || flush < 0) {
980         return Z_STREAM_ERROR;
981     }
982     s = (deflate_state *) strm->state;
983 
984     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
985 	(s->status == FINISH_STATE && flush != Z_FINISH)) {
986         ERR_RETURN(strm, Z_STREAM_ERROR);
987     }
988     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
989 
990     s->strm = strm; /* just in case */
991     old_flush = s->last_flush;
992     s->last_flush = flush;
993 
994     /* Write the zlib header */
995     if (s->status == INIT_STATE) {
996 
997         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
998         uInt level_flags = (s->level-1) >> 1;
999 
1000         if (level_flags > 3) level_flags = 3;
1001         header |= (level_flags << 6);
1002 	if (s->strstart != 0) header |= PRESET_DICT;
1003         header += 31 - (header % 31);
1004 
1005         s->status = BUSY_STATE;
1006         putShortMSB(s, header);
1007 
1008 	/* Save the adler32 of the preset dictionary: */
1009 	if (s->strstart != 0) {
1010 	    putShortMSB(s, (uInt)(strm->adler >> 16));
1011 	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1012 	}
1013 	strm->adler = 1L;
1014     }
1015 
1016     /* Flush as much pending output as possible */
1017     if (s->pending != 0) {
1018         flush_pending(strm);
1019         if (strm->avail_out == 0) {
1020 	    /* Since avail_out is 0, deflate will be called again with
1021 	     * more output space, but possibly with both pending and
1022 	     * avail_in equal to zero. There won't be anything to do,
1023 	     * but this is not an error situation so make sure we
1024 	     * return OK instead of BUF_ERROR at next call of deflate:
1025              */
1026 	    s->last_flush = -1;
1027 	    return Z_OK;
1028 	}
1029 
1030     /* Make sure there is something to do and avoid duplicate consecutive
1031      * flushes. For repeated and useless calls with Z_FINISH, we keep
1032      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1033      */
1034     } else if (strm->avail_in == 0 && flush <= old_flush &&
1035 	       flush != Z_FINISH) {
1036         ERR_RETURN(strm, Z_BUF_ERROR);
1037     }
1038 
1039     /* User must not provide more input after the first FINISH: */
1040     if (s->status == FINISH_STATE && strm->avail_in != 0) {
1041         ERR_RETURN(strm, Z_BUF_ERROR);
1042     }
1043 
1044     /* Start a new block or continue the current one.
1045      */
1046     if (strm->avail_in != 0 || s->lookahead != 0 ||
1047         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1048         block_state bstate;
1049 
1050 	bstate = (*(configuration_table[s->level].func))(s, flush);
1051 
1052         if (bstate == finish_started || bstate == finish_done) {
1053             s->status = FINISH_STATE;
1054         }
1055         if (bstate == need_more || bstate == finish_started) {
1056 	    if (strm->avail_out == 0) {
1057 	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1058 	    }
1059 	    return Z_OK;
1060 	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1061 	     * of deflate should use the same flush parameter to make sure
1062 	     * that the flush is complete. So we don't have to output an
1063 	     * empty block here, this will be done at next call. This also
1064 	     * ensures that for a very small output buffer, we emit at most
1065 	     * one empty block.
1066 	     */
1067 	}
1068         if (bstate == block_done) {
1069             if (flush == Z_PARTIAL_FLUSH) {
1070                 _tr_align(s);
1071 	    } else if (flush == Z_PACKET_FLUSH) {
1072 		/* Output just the 3-bit `stored' block type value,
1073 		   but not a zero length. */
1074 		_tr_stored_type_only(s);
1075             } else { /* FULL_FLUSH or SYNC_FLUSH */
1076                 _tr_stored_block(s, NULL, 0L, 0);
1077                 /* For a full flush, this empty block will be recognized
1078                  * as a special marker by inflate_sync().
1079                  */
1080                 if (flush == Z_FULL_FLUSH) {
1081                     CLEAR_HASH(s);             /* forget history */
1082                 }
1083             }
1084             flush_pending(strm);
1085 	    if (strm->avail_out == 0) {
1086 	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1087 	      return Z_OK;
1088 	    }
1089         }
1090     }
1091     Assert(strm->avail_out > 0, "bug2");
1092 
1093     if (flush != Z_FINISH) return Z_OK;
1094     if (s->noheader) return Z_STREAM_END;
1095 
1096     /* Write the zlib trailer (adler32) */
1097     putShortMSB(s, (uInt)(strm->adler >> 16));
1098     putShortMSB(s, (uInt)(strm->adler & 0xffff));
1099     flush_pending(strm);
1100     /* If avail_out is zero, the application will call deflate again
1101      * to flush the rest.
1102      */
1103     s->noheader = -1; /* write the trailer only once! */
1104     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1105 }
1106 
1107 /* ========================================================================= */
1108 int
1109 deflateEnd(z_streamp strm)
1110 {
1111     int status;
1112     deflate_state *s;
1113 
1114     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1115     s = (deflate_state *) strm->state;
1116 
1117     status = s->status;
1118     if (status != INIT_STATE && status != BUSY_STATE &&
1119 	status != FINISH_STATE) {
1120       return Z_STREAM_ERROR;
1121     }
1122 
1123     /* Deallocate in reverse order of allocations: */
1124     TRY_FREE(strm, s->pending_buf);
1125     TRY_FREE(strm, s->head);
1126     TRY_FREE(strm, s->prev);
1127     TRY_FREE(strm, s->window);
1128 
1129     ZFREE(strm, s);
1130     strm->state = Z_NULL;
1131 
1132     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1133 }
1134 
1135 /* =========================================================================
1136  * Copy the source state to the destination state.
1137  */
1138 int
1139 deflateCopy(z_streamp dest, z_streamp source)
1140 {
1141     deflate_state *ds;
1142     deflate_state *ss;
1143     ushf *overlay;
1144 
1145     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1146         return Z_STREAM_ERROR;
1147     ss = (deflate_state *) source->state;
1148 
1149     zmemcpy(dest, source, sizeof(*dest));
1150 
1151     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1152     if (ds == Z_NULL) return Z_MEM_ERROR;
1153     dest->state = (struct internal_state FAR *) ds;
1154     zmemcpy(ds, ss, sizeof(*ds));
1155     ds->strm = dest;
1156 
1157     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1158     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1159     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1160     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1161     ds->pending_buf = (uchf *) overlay;
1162 
1163     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1164         ds->pending_buf == Z_NULL) {
1165         deflateEnd (dest);
1166         return Z_MEM_ERROR;
1167     }
1168     /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1169     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1170     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1171     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1172     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1173 
1174     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1175     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1176     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1177 
1178     ds->l_desc.dyn_tree = ds->dyn_ltree;
1179     ds->d_desc.dyn_tree = ds->dyn_dtree;
1180     ds->bl_desc.dyn_tree = ds->bl_tree;
1181 
1182     return Z_OK;
1183 }
1184 
1185 /* ===========================================================================
1186  * Return the number of bytes of output which are immediately available
1187  * for output from the decompressor.
1188  */
1189 int
1190 deflateOutputPending(z_streamp strm)
1191 {
1192     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1193 
1194     return ((deflate_state *)(strm->state))->pending;
1195 }
1196 
1197 /* ===========================================================================
1198  * Read a new buffer from the current input stream, update the adler32
1199  * and total number of bytes read.  All deflate() input goes through
1200  * this function so some applications may wish to modify it to avoid
1201  * allocating a large strm->next_in buffer and copying from it.
1202  * (See also flush_pending()).
1203  */
1204 local int
1205 read_buf(z_streamp strm, charf *buf, unsigned size)
1206 {
1207     unsigned len = strm->avail_in;
1208 
1209     if (len > size) len = size;
1210     if (len == 0) return 0;
1211 
1212     strm->avail_in  -= len;
1213 
1214     if (!((deflate_state *)(strm->state))->noheader) {
1215         strm->adler = adler32(strm->adler, strm->next_in, len);
1216     }
1217     zmemcpy(buf, strm->next_in, len);
1218     strm->next_in  += len;
1219     strm->total_in += len;
1220 
1221     return (int)len;
1222 }
1223 
1224 /* ===========================================================================
1225  * Initialize the "longest match" routines for a new zlib stream
1226  */
1227 local void
1228 lm_init(deflate_state *s)
1229 {
1230     s->window_size = (ulg)2L*s->w_size;
1231 
1232     CLEAR_HASH(s);
1233 
1234     /* Set the default configuration parameters:
1235      */
1236     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1237     s->good_match       = configuration_table[s->level].good_length;
1238     s->nice_match       = configuration_table[s->level].nice_length;
1239     s->max_chain_length = configuration_table[s->level].max_chain;
1240 
1241     s->strstart = 0;
1242     s->block_start = 0L;
1243     s->lookahead = 0;
1244     s->match_length = s->prev_length = MIN_MATCH-1;
1245     s->match_available = 0;
1246     s->ins_h = 0;
1247 #ifdef ASMV
1248     match_init(); /* initialize the asm code */
1249 #endif
1250 }
1251 
1252 /* ===========================================================================
1253  * Set match_start to the longest match starting at the given string and
1254  * return its length. Matches shorter or equal to prev_length are discarded,
1255  * in which case the result is equal to prev_length and match_start is
1256  * garbage.
1257  * IN assertions: cur_match is the head of the hash chain for the current
1258  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1259  * OUT assertion: the match length is not greater than s->lookahead.
1260  *
1261  * Parameters:
1262  *	cur_match:	current match
1263  */
1264 #ifndef ASMV
1265 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1266  * match.S. The code will be functionally equivalent.
1267  */
1268 local uInt
1269 longest_match(deflate_state *s, IPos cur_match)
1270 {
1271     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1272     Bytef *scan = s->window + s->strstart; /* current string */
1273     Bytef *match;                       /* matched string */
1274     int len;                           /* length of current match */
1275     int best_len = s->prev_length;              /* best match length so far */
1276     int nice_match = s->nice_match;             /* stop if match long enough */
1277     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1278         s->strstart - (IPos)MAX_DIST(s) : NIL;
1279     /* Stop when cur_match becomes <= limit. To simplify the code,
1280      * we prevent matches with the string of window index 0.
1281      */
1282     Posf *prev = s->prev;
1283     uInt wmask = s->w_mask;
1284 
1285 #ifdef UNALIGNED_OK
1286     /* Compare two bytes at a time. Note: this is not always beneficial.
1287      * Try with and without -DUNALIGNED_OK to check.
1288      */
1289     Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1290     ush scan_start = *(ushf*)scan;
1291     ush scan_end   = *(ushf*)(scan+best_len-1);
1292 #else
1293     Bytef *strend = s->window + s->strstart + MAX_MATCH;
1294     Byte scan_end1  = scan[best_len-1];
1295     Byte scan_end   = scan[best_len];
1296 #endif
1297 
1298     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1299      * It is easy to get rid of this optimization if necessary.
1300      */
1301     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1302 
1303     /* Do not waste too much time if we already have a good match: */
1304     if (s->prev_length >= s->good_match) {
1305         chain_length >>= 2;
1306     }
1307     /* Do not look for matches beyond the end of the input. This is necessary
1308      * to make deflate deterministic.
1309      */
1310     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1311 
1312     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1313 
1314     do {
1315         Assert(cur_match < s->strstart, "no future");
1316         match = s->window + cur_match;
1317 
1318         /* Skip to next match if the match length cannot increase
1319          * or if the match length is less than 2:
1320          */
1321 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1322         /* This code assumes sizeof(unsigned short) == 2. Do not use
1323          * UNALIGNED_OK if your compiler uses a different size.
1324          */
1325         if (*(ushf*)(match+best_len-1) != scan_end ||
1326             *(ushf*)match != scan_start) continue;
1327 
1328         /* It is not necessary to compare scan[2] and match[2] since they are
1329          * always equal when the other bytes match, given that the hash keys
1330          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1331          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1332          * lookahead only every 4th comparison; the 128th check will be made
1333          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1334          * necessary to put more guard bytes at the end of the window, or
1335          * to check more often for insufficient lookahead.
1336          */
1337         Assert(scan[2] == match[2], "scan[2]?");
1338         scan++, match++;
1339         do {
1340         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1341                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1342                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1343                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1344                  scan < strend);
1345         /* The funny "do {}" generates better code on most compilers */
1346 
1347         /* Here, scan <= window+strstart+257 */
1348         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1349         if (*scan == *match) scan++;
1350 
1351         len = (MAX_MATCH - 1) - (int)(strend-scan);
1352         scan = strend - (MAX_MATCH-1);
1353 
1354 #else /* UNALIGNED_OK */
1355 
1356         if (match[best_len]   != scan_end  ||
1357             match[best_len-1] != scan_end1 ||
1358             *match            != *scan     ||
1359             *++match          != scan[1])      continue;
1360 
1361         /* The check at best_len-1 can be removed because it will be made
1362          * again later. (This heuristic is not always a win.)
1363          * It is not necessary to compare scan[2] and match[2] since they
1364          * are always equal when the other bytes match, given that
1365          * the hash keys are equal and that HASH_BITS >= 8.
1366          */
1367         scan += 2, match++;
1368         Assert(*scan == *match, "match[2]?");
1369 
1370         /* We check for insufficient lookahead only every 8th comparison;
1371          * the 256th check will be made at strstart+258.
1372          */
1373         do {
1374         } while (*++scan == *++match && *++scan == *++match &&
1375                  *++scan == *++match && *++scan == *++match &&
1376                  *++scan == *++match && *++scan == *++match &&
1377                  *++scan == *++match && *++scan == *++match &&
1378                  scan < strend);
1379 
1380         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1381 
1382         len = MAX_MATCH - (int)(strend - scan);
1383         scan = strend - MAX_MATCH;
1384 
1385 #endif /* UNALIGNED_OK */
1386 
1387         if (len > best_len) {
1388             s->match_start = cur_match;
1389             best_len = len;
1390             if (len >= nice_match) break;
1391 #ifdef UNALIGNED_OK
1392             scan_end = *(ushf*)(scan+best_len-1);
1393 #else
1394             scan_end1  = scan[best_len-1];
1395             scan_end   = scan[best_len];
1396 #endif
1397         }
1398     } while ((cur_match = prev[cur_match & wmask]) > limit
1399              && --chain_length != 0);
1400 
1401     if ((uInt)best_len <= s->lookahead) return best_len;
1402     return s->lookahead;
1403 }
1404 #endif /* ASMV */
1405 
1406 #ifdef DEBUG_ZLIB
1407 /* ===========================================================================
1408  * Check that the match at match_start is indeed a match.
1409  */
1410 local void
1411 check_match(deflate_state *s, IPos start, IPos match, int length)
1412 {
1413     /* check that the match is indeed a match */
1414     if (zmemcmp((charf *)s->window + match,
1415                 (charf *)s->window + start, length) != EQUAL) {
1416         fprintf(stderr, " start %u, match %u, length %d\n",
1417 		start, match, length);
1418         do {
1419 	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1420 	} while (--length != 0);
1421         z_error("invalid match");
1422     }
1423     if (z_verbose > 1) {
1424         fprintf(stderr,"\\[%d,%d]", start-match, length);
1425         do { putc(s->window[start++], stderr); } while (--length != 0);
1426     }
1427 }
1428 #else
1429 #  define check_match(s, start, match, length)
1430 #endif
1431 
1432 /* ===========================================================================
1433  * Fill the window when the lookahead becomes insufficient.
1434  * Updates strstart and lookahead.
1435  *
1436  * IN assertion: lookahead < MIN_LOOKAHEAD
1437  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1438  *    At least one byte has been read, or avail_in == 0; reads are
1439  *    performed for at least two bytes (required for the zip translate_eol
1440  *    option -- not supported here).
1441  */
1442 local void
1443 fill_window(deflate_state *s)
1444 {
1445     unsigned n, m;
1446     Posf *p;
1447     unsigned more;    /* Amount of free space at the end of the window. */
1448     uInt wsize = s->w_size;
1449 
1450     do {
1451         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1452 
1453         /* Deal with !@#$% 64K limit: */
1454         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1455             more = wsize;
1456 
1457         } else if (more == (unsigned)(-1)) {
1458             /* Very unlikely, but possible on 16 bit machine if strstart == 0
1459              * and lookahead == 1 (input done one byte at time)
1460              */
1461             more--;
1462 
1463         /* If the window is almost full and there is insufficient lookahead,
1464          * move the upper half to the lower one to make room in the upper half.
1465          */
1466         } else if (s->strstart >= wsize+MAX_DIST(s)) {
1467 
1468             zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1469                    (unsigned)wsize);
1470             s->match_start -= wsize;
1471             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1472             s->block_start -= (long) wsize;
1473 
1474             /* Slide the hash table (could be avoided with 32 bit values
1475                at the expense of memory usage). We slide even when level == 0
1476                to keep the hash table consistent if we switch back to level > 0
1477                later. (Using level 0 permanently is not an optimal usage of
1478                zlib, so we don't care about this pathological case.)
1479              */
1480             n = s->hash_size;
1481             p = &s->head[n];
1482             do {
1483                 m = *--p;
1484                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1485             } while (--n);
1486 
1487             n = wsize;
1488             p = &s->prev[n];
1489             do {
1490                 m = *--p;
1491                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1492                 /* If n is not on any hash chain, prev[n] is garbage but
1493                  * its value will never be used.
1494                  */
1495             } while (--n);
1496             more += wsize;
1497         }
1498         if (s->strm->avail_in == 0) return;
1499 
1500         /* If there was no sliding:
1501          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1502          *    more == window_size - lookahead - strstart
1503          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1504          * => more >= window_size - 2*WSIZE + 2
1505          * In the BIG_MEM or MMAP case (not yet supported),
1506          *   window_size == input_size + MIN_LOOKAHEAD  &&
1507          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1508          * Otherwise, window_size == 2*WSIZE so more >= 2.
1509          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1510          */
1511         Assert(more >= 2, "more < 2");
1512 
1513         n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1514                      more);
1515         s->lookahead += n;
1516 
1517         /* Initialize the hash value now that we have some input: */
1518         if (s->lookahead >= MIN_MATCH) {
1519             s->ins_h = s->window[s->strstart];
1520             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1521 #if MIN_MATCH != 3
1522             Call UPDATE_HASH() MIN_MATCH-3 more times
1523 #endif
1524         }
1525         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1526          * but this is not important since only literal bytes will be emitted.
1527          */
1528 
1529     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1530 }
1531 
1532 /* ===========================================================================
1533  * Flush the current block, with given end-of-file flag.
1534  * IN assertion: strstart is set to the end of the current match.
1535  */
1536 #define FLUSH_BLOCK_ONLY(s, eof) { \
1537    _tr_flush_block(s, (s->block_start >= 0L ? \
1538                    (charf *)&s->window[(unsigned)s->block_start] : \
1539                    (charf *)Z_NULL), \
1540 		(ulg)((long)s->strstart - s->block_start), \
1541 		(eof)); \
1542    s->block_start = s->strstart; \
1543    flush_pending(s->strm); \
1544    Tracev((stderr,"[FLUSH]")); \
1545 }
1546 
1547 /* Same but force premature exit if necessary. */
1548 #define FLUSH_BLOCK(s, eof) { \
1549    FLUSH_BLOCK_ONLY(s, eof); \
1550    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1551 }
1552 
1553 /* ===========================================================================
1554  * Copy without compression as much as possible from the input stream, return
1555  * the current block state.
1556  * This function does not insert new strings in the dictionary since
1557  * uncompressible data is probably not useful. This function is used
1558  * only for the level=0 compression option.
1559  * NOTE: this function should be optimized to avoid extra copying from
1560  * window to pending_buf.
1561  */
1562 local block_state
1563 deflate_stored(deflate_state *s, int flush)
1564 {
1565     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1566      * to pending_buf_size, and each stored block has a 5 byte header:
1567      */
1568     ulg max_block_size = 0xffff;
1569     ulg max_start;
1570 
1571     if (max_block_size > s->pending_buf_size - 5) {
1572         max_block_size = s->pending_buf_size - 5;
1573     }
1574 
1575     /* Copy as much as possible from input to output: */
1576     for (;;) {
1577         /* Fill the window as much as possible: */
1578         if (s->lookahead <= 1) {
1579 
1580             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1581 		   s->block_start >= (long)s->w_size, "slide too late");
1582 
1583             fill_window(s);
1584             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1585 
1586             if (s->lookahead == 0) break; /* flush the current block */
1587         }
1588 	Assert(s->block_start >= 0L, "block gone");
1589 
1590 	s->strstart += s->lookahead;
1591 	s->lookahead = 0;
1592 
1593 	/* Emit a stored block if pending_buf will be full: */
1594 	max_start = s->block_start + max_block_size;
1595         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1596 	    /* strstart == 0 is possible when wraparound on 16-bit machine */
1597 	    s->lookahead = (uInt)(s->strstart - max_start);
1598 	    s->strstart = (uInt)max_start;
1599             FLUSH_BLOCK(s, 0);
1600 	}
1601 	/* Flush if we may have to slide, otherwise block_start may become
1602          * negative and the data will be gone:
1603          */
1604         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1605             FLUSH_BLOCK(s, 0);
1606 	}
1607     }
1608     FLUSH_BLOCK(s, flush == Z_FINISH);
1609     return flush == Z_FINISH ? finish_done : block_done;
1610 }
1611 
1612 /* ===========================================================================
1613  * Compress as much as possible from the input stream, return the current
1614  * block state.
1615  * This function does not perform lazy evaluation of matches and inserts
1616  * new strings in the dictionary only for unmatched strings or for short
1617  * matches. It is used only for the fast compression options.
1618  */
1619 local block_state
1620 deflate_fast(deflate_state *s, int flush)
1621 {
1622     IPos hash_head = NIL; /* head of the hash chain */
1623     int bflush;           /* set if current block must be flushed */
1624 
1625     for (;;) {
1626         /* Make sure that we always have enough lookahead, except
1627          * at the end of the input file. We need MAX_MATCH bytes
1628          * for the next match, plus MIN_MATCH bytes to insert the
1629          * string following the next match.
1630          */
1631         if (s->lookahead < MIN_LOOKAHEAD) {
1632             fill_window(s);
1633             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1634 	        return need_more;
1635 	    }
1636             if (s->lookahead == 0) break; /* flush the current block */
1637         }
1638 
1639         /* Insert the string window[strstart .. strstart+2] in the
1640          * dictionary, and set hash_head to the head of the hash chain:
1641          */
1642         if (s->lookahead >= MIN_MATCH) {
1643             INSERT_STRING(s, s->strstart, hash_head);
1644         }
1645 
1646         /* Find the longest match, discarding those <= prev_length.
1647          * At this point we have always match_length < MIN_MATCH
1648          */
1649         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1650             /* To simplify the code, we prevent matches with the string
1651              * of window index 0 (in particular we have to avoid a match
1652              * of the string with itself at the start of the input file).
1653              */
1654             if (s->strategy != Z_HUFFMAN_ONLY) {
1655                 s->match_length = longest_match (s, hash_head);
1656             }
1657             /* longest_match() sets match_start */
1658         }
1659         if (s->match_length >= MIN_MATCH) {
1660             check_match(s, s->strstart, s->match_start, s->match_length);
1661 
1662             bflush = _tr_tally(s, s->strstart - s->match_start,
1663                                s->match_length - MIN_MATCH);
1664 
1665             s->lookahead -= s->match_length;
1666 
1667             /* Insert new strings in the hash table only if the match length
1668              * is not too large. This saves time but degrades compression.
1669              */
1670             if (s->match_length <= s->max_insert_length &&
1671                 s->lookahead >= MIN_MATCH) {
1672                 s->match_length--; /* string at strstart already in hash table */
1673                 do {
1674                     s->strstart++;
1675                     INSERT_STRING(s, s->strstart, hash_head);
1676                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1677                      * always MIN_MATCH bytes ahead.
1678                      */
1679                 } while (--s->match_length != 0);
1680                 s->strstart++;
1681             } else {
1682                 s->strstart += s->match_length;
1683                 s->match_length = 0;
1684                 s->ins_h = s->window[s->strstart];
1685                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1686 #if MIN_MATCH != 3
1687                 Call UPDATE_HASH() MIN_MATCH-3 more times
1688 #endif
1689                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1690                  * matter since it will be recomputed at next deflate call.
1691                  */
1692             }
1693         } else {
1694             /* No match, output a literal byte */
1695             Tracevv((stderr,"%c", s->window[s->strstart]));
1696             bflush = _tr_tally (s, 0, s->window[s->strstart]);
1697             s->lookahead--;
1698             s->strstart++;
1699         }
1700         if (bflush) FLUSH_BLOCK(s, 0);
1701     }
1702     FLUSH_BLOCK(s, flush == Z_FINISH);
1703     return flush == Z_FINISH ? finish_done : block_done;
1704 }
1705 
1706 /* ===========================================================================
1707  * Same as above, but achieves better compression. We use a lazy
1708  * evaluation for matches: a match is finally adopted only if there is
1709  * no better match at the next window position.
1710  */
1711 local block_state
1712 deflate_slow(deflate_state *s, int flush)
1713 {
1714     IPos hash_head = NIL;    /* head of hash chain */
1715     int bflush;              /* set if current block must be flushed */
1716 
1717     /* Process the input block. */
1718     for (;;) {
1719         /* Make sure that we always have enough lookahead, except
1720          * at the end of the input file. We need MAX_MATCH bytes
1721          * for the next match, plus MIN_MATCH bytes to insert the
1722          * string following the next match.
1723          */
1724         if (s->lookahead < MIN_LOOKAHEAD) {
1725             fill_window(s);
1726             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1727 	        return need_more;
1728 	    }
1729             if (s->lookahead == 0) break; /* flush the current block */
1730         }
1731 
1732         /* Insert the string window[strstart .. strstart+2] in the
1733          * dictionary, and set hash_head to the head of the hash chain:
1734          */
1735         if (s->lookahead >= MIN_MATCH) {
1736             INSERT_STRING(s, s->strstart, hash_head);
1737         }
1738 
1739         /* Find the longest match, discarding those <= prev_length.
1740          */
1741         s->prev_length = s->match_length, s->prev_match = s->match_start;
1742         s->match_length = MIN_MATCH-1;
1743 
1744         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1745             s->strstart - hash_head <= MAX_DIST(s)) {
1746             /* To simplify the code, we prevent matches with the string
1747              * of window index 0 (in particular we have to avoid a match
1748              * of the string with itself at the start of the input file).
1749              */
1750             if (s->strategy != Z_HUFFMAN_ONLY) {
1751                 s->match_length = longest_match (s, hash_head);
1752             }
1753             /* longest_match() sets match_start */
1754 
1755             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1756                  (s->match_length == MIN_MATCH &&
1757                   s->strstart - s->match_start > TOO_FAR))) {
1758 
1759                 /* If prev_match is also MIN_MATCH, match_start is garbage
1760                  * but we will ignore the current match anyway.
1761                  */
1762                 s->match_length = MIN_MATCH-1;
1763             }
1764         }
1765         /* If there was a match at the previous step and the current
1766          * match is not better, output the previous match:
1767          */
1768         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1769             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1770             /* Do not insert strings in hash table beyond this. */
1771 
1772             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1773 
1774             bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1775                                s->prev_length - MIN_MATCH);
1776 
1777             /* Insert in hash table all strings up to the end of the match.
1778              * strstart-1 and strstart are already inserted. If there is not
1779              * enough lookahead, the last two strings are not inserted in
1780              * the hash table.
1781              */
1782             s->lookahead -= s->prev_length-1;
1783             s->prev_length -= 2;
1784             do {
1785                 if (++s->strstart <= max_insert) {
1786                     INSERT_STRING(s, s->strstart, hash_head);
1787                 }
1788             } while (--s->prev_length != 0);
1789             s->match_available = 0;
1790             s->match_length = MIN_MATCH-1;
1791             s->strstart++;
1792 
1793             if (bflush) FLUSH_BLOCK(s, 0);
1794 
1795         } else if (s->match_available) {
1796             /* If there was no match at the previous position, output a
1797              * single literal. If there was a match but the current match
1798              * is longer, truncate the previous match to a single literal.
1799              */
1800             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1801             if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1802                 FLUSH_BLOCK_ONLY(s, 0);
1803             }
1804             s->strstart++;
1805             s->lookahead--;
1806             if (s->strm->avail_out == 0) return need_more;
1807         } else {
1808             /* There is no previous match to compare with, wait for
1809              * the next step to decide.
1810              */
1811             s->match_available = 1;
1812             s->strstart++;
1813             s->lookahead--;
1814         }
1815     }
1816     Assert (flush != Z_NO_FLUSH, "no flush?");
1817     if (s->match_available) {
1818         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1819         _tr_tally (s, 0, s->window[s->strstart-1]);
1820         s->match_available = 0;
1821     }
1822     FLUSH_BLOCK(s, flush == Z_FINISH);
1823     return flush == Z_FINISH ? finish_done : block_done;
1824 }
1825 /* --- deflate.c */
1826 
1827 /* +++ trees.c */
1828 /* trees.c -- output deflated data using Huffman coding
1829  * Copyright (C) 1995-1996 Jean-loup Gailly
1830  * For conditions of distribution and use, see copyright notice in zlib.h
1831  */
1832 
1833 /*
1834  *  ALGORITHM
1835  *
1836  *      The "deflation" process uses several Huffman trees. The more
1837  *      common source values are represented by shorter bit sequences.
1838  *
1839  *      Each code tree is stored in a compressed form which is itself
1840  * a Huffman encoding of the lengths of all the code strings (in
1841  * ascending order by source values).  The actual code strings are
1842  * reconstructed from the lengths in the inflate process, as described
1843  * in the deflate specification.
1844  *
1845  *  REFERENCES
1846  *
1847  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1848  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1849  *
1850  *      Storer, James A.
1851  *          Data Compression:  Methods and Theory, pp. 49-50.
1852  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1853  *
1854  *      Sedgewick, R.
1855  *          Algorithms, p290.
1856  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1857  */
1858 
1859 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1860 
1861 /* #include "deflate.h" */
1862 
1863 #ifdef DEBUG_ZLIB
1864 #  include <ctype.h>
1865 #endif
1866 
1867 /* ===========================================================================
1868  * Constants
1869  */
1870 
1871 #define MAX_BL_BITS 7
1872 /* Bit length codes must not exceed MAX_BL_BITS bits */
1873 
1874 #define END_BLOCK 256
1875 /* end of block literal code */
1876 
1877 #define REP_3_6      16
1878 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1879 
1880 #define REPZ_3_10    17
1881 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
1882 
1883 #define REPZ_11_138  18
1884 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
1885 
1886 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1887    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1888 
1889 local int extra_dbits[D_CODES] /* extra bits for each distance code */
1890    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1891 
1892 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1893    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1894 
1895 local uch bl_order[BL_CODES]
1896    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1897 /* The lengths of the bit length codes are sent in order of decreasing
1898  * probability, to avoid transmitting the lengths for unused bit length codes.
1899  */
1900 
1901 #define Buf_size (8 * 2*sizeof(char))
1902 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1903  * more than 16 bits on some systems.)
1904  */
1905 
1906 /* ===========================================================================
1907  * Local data. These are initialized only once.
1908  */
1909 
1910 local ct_data static_ltree[L_CODES+2];
1911 /* The static literal tree. Since the bit lengths are imposed, there is no
1912  * need for the L_CODES extra codes used during heap construction. However
1913  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1914  * below).
1915  */
1916 
1917 local ct_data static_dtree[D_CODES];
1918 /* The static distance tree. (Actually a trivial tree since all codes use
1919  * 5 bits.)
1920  */
1921 
1922 local uch dist_code[512];
1923 /* distance codes. The first 256 values correspond to the distances
1924  * 3 .. 258, the last 256 values correspond to the top 8 bits of
1925  * the 15 bit distances.
1926  */
1927 
1928 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1929 /* length code for each normalized match length (0 == MIN_MATCH) */
1930 
1931 local int base_length[LENGTH_CODES];
1932 /* First normalized length for each code (0 = MIN_MATCH) */
1933 
1934 local int base_dist[D_CODES];
1935 /* First normalized distance for each code (0 = distance of 1) */
1936 
1937 struct static_tree_desc_s {
1938     ct_data *static_tree;        /* static tree or NULL */
1939     intf    *extra_bits;         /* extra bits for each code or NULL */
1940     int     extra_base;          /* base index for extra_bits */
1941     int     elems;               /* max number of elements in the tree */
1942     int     max_length;          /* max bit length for the codes */
1943 };
1944 
1945 local static_tree_desc  static_l_desc =
1946 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1947 
1948 local static_tree_desc  static_d_desc =
1949 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1950 
1951 local static_tree_desc  static_bl_desc =
1952 {NULL, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1953 
1954 /* ===========================================================================
1955  * Local (static) routines in this file.
1956  */
1957 
1958 local void tr_static_init OF((void));
1959 local void init_block     OF((deflate_state *s));
1960 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1961 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1962 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1963 local void build_tree     OF((deflate_state *s, tree_desc *desc));
1964 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1965 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1966 local int  build_bl_tree  OF((deflate_state *s));
1967 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1968                               int blcodes));
1969 local void compress_block OF((deflate_state *s, ct_data *ltree,
1970                               ct_data *dtree));
1971 local void set_data_type  OF((deflate_state *s));
1972 local unsigned bi_reverse OF((unsigned value, int length));
1973 local void bi_windup      OF((deflate_state *s));
1974 local void bi_flush       OF((deflate_state *s));
1975 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1976                               int header));
1977 
1978 #ifndef DEBUG_ZLIB
1979 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1980    /* Send a code of the given tree. c and tree must not have side effects */
1981 
1982 #else /* DEBUG_ZLIB */
1983 #  define send_code(s, c, tree) \
1984      { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1985        send_bits(s, tree[c].Code, tree[c].Len); }
1986 #endif
1987 
1988 #define d_code(dist) \
1989    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1990 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1991  * must not have side effects. dist_code[256] and dist_code[257] are never
1992  * used.
1993  */
1994 
1995 /* ===========================================================================
1996  * Output a short LSB first on the stream.
1997  * IN assertion: there is enough room in pendingBuf.
1998  */
1999 #define put_short(s, w) { \
2000     put_byte(s, (uch)((w) & 0xff)); \
2001     put_byte(s, (uch)((ush)(w) >> 8)); \
2002 }
2003 
2004 /* ===========================================================================
2005  * Send a value on a given number of bits.
2006  * IN assertion: length <= 16 and value fits in length bits.
2007  *
2008  * Parameters:
2009  *	value:	value to send
2010  *	length:	number of bits
2011  */
2012 #ifdef DEBUG_ZLIB
2013 local void send_bits      OF((deflate_state *s, int value, int length));
2014 
2015 local void
2016 send_bits(deflate_state *s, int value, int length)
2017 {
2018     Tracevv((stderr," l %2d v %4x ", length, value));
2019     Assert(length > 0 && length <= 15, "invalid length");
2020     s->bits_sent += (ulg)length;
2021 
2022     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2023      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2024      * unused bits in value.
2025      */
2026     if (s->bi_valid > (int)Buf_size - length) {
2027         s->bi_buf |= (value << s->bi_valid);
2028         put_short(s, s->bi_buf);
2029         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2030         s->bi_valid += length - Buf_size;
2031     } else {
2032         s->bi_buf |= value << s->bi_valid;
2033         s->bi_valid += length;
2034     }
2035 }
2036 #else /* !DEBUG_ZLIB */
2037 
2038 #define send_bits(s, value, length) \
2039 { int len = length;\
2040   if (s->bi_valid > (int)Buf_size - len) {\
2041     int val = value;\
2042     s->bi_buf |= (val << s->bi_valid);\
2043     put_short(s, s->bi_buf);\
2044     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2045     s->bi_valid += len - Buf_size;\
2046   } else {\
2047     s->bi_buf |= (value) << s->bi_valid;\
2048     s->bi_valid += len;\
2049   }\
2050 }
2051 #endif /* DEBUG_ZLIB */
2052 
2053 /* the arguments must not have side effects */
2054 
2055 /* ===========================================================================
2056  * Initialize the various 'constant' tables. In a multi-threaded environment,
2057  * this function may be called by two threads concurrently, but this is
2058  * harmless since both invocations do exactly the same thing.
2059  */
2060 local void
2061 tr_static_init(void)
2062 {
2063     static int static_init_done = 0;
2064     int n;        /* iterates over tree elements */
2065     int bits;     /* bit counter */
2066     int length;   /* length value */
2067     int code;     /* code value */
2068     int dist;     /* distance index */
2069     ush bl_count[MAX_BITS+1];
2070     /* number of codes at each bit length for an optimal tree */
2071 
2072     if (static_init_done) return;
2073 
2074     /* Initialize the mapping length (0..255) -> length code (0..28) */
2075     length = 0;
2076     for (code = 0; code < LENGTH_CODES-1; code++) {
2077         base_length[code] = length;
2078         for (n = 0; n < (1<<extra_lbits[code]); n++) {
2079             length_code[length++] = (uch)code;
2080         }
2081     }
2082     Assert (length == 256, "tr_static_init: length != 256");
2083     /* Note that the length 255 (match length 258) can be represented
2084      * in two different ways: code 284 + 5 bits or code 285, so we
2085      * overwrite length_code[255] to use the best encoding:
2086      */
2087     length_code[length-1] = (uch)code;
2088 
2089     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2090     dist = 0;
2091     for (code = 0 ; code < 16; code++) {
2092         base_dist[code] = dist;
2093         for (n = 0; n < (1<<extra_dbits[code]); n++) {
2094             dist_code[dist++] = (uch)code;
2095         }
2096     }
2097     Assert (dist == 256, "tr_static_init: dist != 256");
2098     dist >>= 7; /* from now on, all distances are divided by 128 */
2099     for ( ; code < D_CODES; code++) {
2100         base_dist[code] = dist << 7;
2101         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2102             dist_code[256 + dist++] = (uch)code;
2103         }
2104     }
2105     Assert (dist == 256, "tr_static_init: 256+dist != 512");
2106 
2107     /* Construct the codes of the static literal tree */
2108     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2109     n = 0;
2110     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2111     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2112     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2113     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2114     /* Codes 286 and 287 do not exist, but we must include them in the
2115      * tree construction to get a canonical Huffman tree (longest code
2116      * all ones)
2117      */
2118     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2119 
2120     /* The static distance tree is trivial: */
2121     for (n = 0; n < D_CODES; n++) {
2122         static_dtree[n].Len = 5;
2123         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2124     }
2125     static_init_done = 1;
2126 }
2127 
2128 /* ===========================================================================
2129  * Initialize the tree data structures for a new zlib stream.
2130  */
2131 void
2132 _tr_init(deflate_state *s)
2133 {
2134     tr_static_init();
2135 
2136     s->compressed_len = 0L;
2137 
2138     s->l_desc.dyn_tree = s->dyn_ltree;
2139     s->l_desc.stat_desc = &static_l_desc;
2140 
2141     s->d_desc.dyn_tree = s->dyn_dtree;
2142     s->d_desc.stat_desc = &static_d_desc;
2143 
2144     s->bl_desc.dyn_tree = s->bl_tree;
2145     s->bl_desc.stat_desc = &static_bl_desc;
2146 
2147     s->bi_buf = 0;
2148     s->bi_valid = 0;
2149     s->last_eob_len = 8; /* enough lookahead for inflate */
2150 #ifdef DEBUG_ZLIB
2151     s->bits_sent = 0L;
2152 #endif
2153 
2154     /* Initialize the first block of the first file: */
2155     init_block(s);
2156 }
2157 
2158 /* ===========================================================================
2159  * Initialize a new block.
2160  */
2161 local void
2162 init_block(deflate_state *s)
2163 {
2164     int n; /* iterates over tree elements */
2165 
2166     /* Initialize the trees. */
2167     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2168     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2169     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2170 
2171     s->dyn_ltree[END_BLOCK].Freq = 1;
2172     s->opt_len = s->static_len = 0L;
2173     s->last_lit = s->matches = 0;
2174 }
2175 
2176 #define SMALLEST 1
2177 /* Index within the heap array of least frequent node in the Huffman tree */
2178 
2179 
2180 /* ===========================================================================
2181  * Remove the smallest element from the heap and recreate the heap with
2182  * one less element. Updates heap and heap_len.
2183  */
2184 #define pqremove(s, tree, top) \
2185 {\
2186     top = s->heap[SMALLEST]; \
2187     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2188     pqdownheap(s, tree, SMALLEST); \
2189 }
2190 
2191 /* ===========================================================================
2192  * Compares to subtrees, using the tree depth as tie breaker when
2193  * the subtrees have equal frequency. This minimizes the worst case length.
2194  */
2195 #define smaller(tree, n, m, depth) \
2196    (tree[n].Freq < tree[m].Freq || \
2197    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2198 
2199 /* ===========================================================================
2200  * Restore the heap property by moving down the tree starting at node k,
2201  * exchanging a node with the smallest of its two sons if necessary, stopping
2202  * when the heap property is re-established (each father smaller than its
2203  * two sons).
2204  *
2205  * Parameters:
2206  *	tree:	the tree to restore
2207  *	k:	node to move down
2208  */
2209 local void
2210 pqdownheap(deflate_state *s, ct_data *tree, int k)
2211 {
2212     int v = s->heap[k];
2213     int j = k << 1;  /* left son of k */
2214     while (j <= s->heap_len) {
2215         /* Set j to the smallest of the two sons: */
2216         if (j < s->heap_len &&
2217             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2218             j++;
2219         }
2220         /* Exit if v is smaller than both sons */
2221         if (smaller(tree, v, s->heap[j], s->depth)) break;
2222 
2223         /* Exchange v with the smallest son */
2224         s->heap[k] = s->heap[j];  k = j;
2225 
2226         /* And continue down the tree, setting j to the left son of k */
2227         j <<= 1;
2228     }
2229     s->heap[k] = v;
2230 }
2231 
2232 /* ===========================================================================
2233  * Compute the optimal bit lengths for a tree and update the total bit length
2234  * for the current block.
2235  * IN assertion: the fields freq and dad are set, heap[heap_max] and
2236  *    above are the tree nodes sorted by increasing frequency.
2237  * OUT assertions: the field len is set to the optimal bit length, the
2238  *     array bl_count contains the frequencies for each bit length.
2239  *     The length opt_len is updated; static_len is also updated if stree is
2240  *     not null.
2241  *
2242  * Parameters:
2243  *	desc:	the tree descriptor
2244  */
2245 local void
2246 gen_bitlen(deflate_state *s, tree_desc *desc)
2247 {
2248     ct_data *tree  = desc->dyn_tree;
2249     int max_code   = desc->max_code;
2250     ct_data *stree = desc->stat_desc->static_tree;
2251     intf *extra    = desc->stat_desc->extra_bits;
2252     int base       = desc->stat_desc->extra_base;
2253     int max_length = desc->stat_desc->max_length;
2254     int h;              /* heap index */
2255     int n, m;           /* iterate over the tree elements */
2256     int bits;           /* bit length */
2257     int xbits;          /* extra bits */
2258     ush f;              /* frequency */
2259     int overflow = 0;   /* number of elements with bit length too large */
2260 
2261     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2262 
2263     /* In a first pass, compute the optimal bit lengths (which may
2264      * overflow in the case of the bit length tree).
2265      */
2266     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2267 
2268     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2269         n = s->heap[h];
2270         bits = tree[tree[n].Dad].Len + 1;
2271         if (bits > max_length) bits = max_length, overflow++;
2272         tree[n].Len = (ush)bits;
2273         /* We overwrite tree[n].Dad which is no longer needed */
2274 
2275         if (n > max_code) continue; /* not a leaf node */
2276 
2277         s->bl_count[bits]++;
2278         xbits = 0;
2279         if (n >= base) xbits = extra[n-base];
2280         f = tree[n].Freq;
2281         s->opt_len += (ulg)f * (bits + xbits);
2282         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2283     }
2284     if (overflow == 0) return;
2285 
2286     Trace((stderr,"\nbit length overflow\n"));
2287     /* This happens for example on obj2 and pic of the Calgary corpus */
2288 
2289     /* Find the first bit length which could increase: */
2290     do {
2291         bits = max_length-1;
2292         while (s->bl_count[bits] == 0) bits--;
2293         s->bl_count[bits]--;      /* move one leaf down the tree */
2294         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2295         s->bl_count[max_length]--;
2296         /* The brother of the overflow item also moves one step up,
2297          * but this does not affect bl_count[max_length]
2298          */
2299         overflow -= 2;
2300     } while (overflow > 0);
2301 
2302     /* Now recompute all bit lengths, scanning in increasing frequency.
2303      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2304      * lengths instead of fixing only the wrong ones. This idea is taken
2305      * from 'ar' written by Haruhiko Okumura.)
2306      */
2307     for (bits = max_length; bits != 0; bits--) {
2308         n = s->bl_count[bits];
2309         while (n != 0) {
2310             m = s->heap[--h];
2311             if (m > max_code) continue;
2312             if (tree[m].Len != (unsigned) bits) {
2313                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2314                 s->opt_len += ((long)bits - (long)tree[m].Len)
2315                               *(long)tree[m].Freq;
2316                 tree[m].Len = (ush)bits;
2317             }
2318             n--;
2319         }
2320     }
2321 }
2322 
2323 /* ===========================================================================
2324  * Generate the codes for a given tree and bit counts (which need not be
2325  * optimal).
2326  * IN assertion: the array bl_count contains the bit length statistics for
2327  * the given tree and the field len is set for all tree elements.
2328  * OUT assertion: the field code is set for all tree elements of non
2329  *     zero code length.
2330  *
2331  * Parameters:
2332  *	tree:		the tree to decorate
2333  *	max_code:	largest code with non zero frequency
2334  *	bl_count:	number of codes at each bit length
2335  */
2336 local void
2337 gen_codes(ct_data *tree, int max_code, ushf *bl_count)
2338 {
2339     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2340     ush code = 0;              /* running code value */
2341     int bits;                  /* bit index */
2342     int n;                     /* code index */
2343 
2344     /* The distribution counts are first used to generate the code values
2345      * without bit reversal.
2346      */
2347     for (bits = 1; bits <= MAX_BITS; bits++) {
2348         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2349     }
2350     /* Check that the bit counts in bl_count are consistent. The last code
2351      * must be all ones.
2352      */
2353     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2354             "inconsistent bit counts");
2355     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2356 
2357     for (n = 0;  n <= max_code; n++) {
2358         int len = tree[n].Len;
2359         if (len == 0) continue;
2360         /* Now reverse the bits */
2361         tree[n].Code = bi_reverse(next_code[len]++, len);
2362 
2363         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2364              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2365     }
2366 }
2367 
2368 /* ===========================================================================
2369  * Construct one Huffman tree and assigns the code bit strings and lengths.
2370  * Update the total bit length for the current block.
2371  * IN assertion: the field freq is set for all tree elements.
2372  * OUT assertions: the fields len and code are set to the optimal bit length
2373  *     and corresponding code. The length opt_len is updated; static_len is
2374  *     also updated if stree is not null. The field max_code is set.
2375  *
2376  * Parameters:
2377  *	desc:	the tree descriptor
2378  */
2379 local void
2380 build_tree(deflate_state *s, tree_desc *desc)
2381 {
2382     ct_data *tree   = desc->dyn_tree;
2383     ct_data *stree  = desc->stat_desc->static_tree;
2384     int elems       = desc->stat_desc->elems;
2385     int n, m;          /* iterate over heap elements */
2386     int max_code = -1; /* largest code with non zero frequency */
2387     int node;          /* new node being created */
2388 
2389     /* Construct the initial heap, with least frequent element in
2390      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2391      * heap[0] is not used.
2392      */
2393     s->heap_len = 0, s->heap_max = HEAP_SIZE;
2394 
2395     for (n = 0; n < elems; n++) {
2396         if (tree[n].Freq != 0) {
2397             s->heap[++(s->heap_len)] = max_code = n;
2398             s->depth[n] = 0;
2399         } else {
2400             tree[n].Len = 0;
2401         }
2402     }
2403 
2404     /* The pkzip format requires that at least one distance code exists,
2405      * and that at least one bit should be sent even if there is only one
2406      * possible code. So to avoid special checks later on we force at least
2407      * two codes of non zero frequency.
2408      */
2409     while (s->heap_len < 2) {
2410         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2411         tree[node].Freq = 1;
2412         s->depth[node] = 0;
2413         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2414         /* node is 0 or 1 so it does not have extra bits */
2415     }
2416     desc->max_code = max_code;
2417 
2418     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2419      * establish sub-heaps of increasing lengths:
2420      */
2421     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2422 
2423     /* Construct the Huffman tree by repeatedly combining the least two
2424      * frequent nodes.
2425      */
2426     node = elems;              /* next internal node of the tree */
2427     do {
2428         pqremove(s, tree, n);  /* n = node of least frequency */
2429         m = s->heap[SMALLEST]; /* m = node of next least frequency */
2430 
2431         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2432         s->heap[--(s->heap_max)] = m;
2433 
2434         /* Create a new node father of n and m */
2435         tree[node].Freq = tree[n].Freq + tree[m].Freq;
2436         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2437         tree[n].Dad = tree[m].Dad = (ush)node;
2438 #ifdef DUMP_BL_TREE
2439         if (tree == s->bl_tree) {
2440             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2441                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2442         }
2443 #endif
2444         /* and insert the new node in the heap */
2445         s->heap[SMALLEST] = node++;
2446         pqdownheap(s, tree, SMALLEST);
2447 
2448     } while (s->heap_len >= 2);
2449 
2450     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2451 
2452     /* At this point, the fields freq and dad are set. We can now
2453      * generate the bit lengths.
2454      */
2455     gen_bitlen(s, (tree_desc *)desc);
2456 
2457     /* The field len is now set, we can generate the bit codes */
2458     gen_codes ((ct_data *)tree, max_code, s->bl_count);
2459 }
2460 
2461 /* ===========================================================================
2462  * Scan a literal or distance tree to determine the frequencies of the codes
2463  * in the bit length tree.
2464  *
2465  * Parameters:
2466  *	tree:		the tree to be scanned
2467  *	max_code:	and its largest code of non zero frequency
2468  */
2469 local void
2470 scan_tree (deflate_state *s, ct_data *tree, int max_code)
2471 {
2472     int n;                     /* iterates over all tree elements */
2473     int prevlen = -1;          /* last emitted length */
2474     int curlen;                /* length of current code */
2475     int nextlen = tree[0].Len; /* length of next code */
2476     int count = 0;             /* repeat count of the current code */
2477     int max_count = 7;         /* max repeat count */
2478     int min_count = 4;         /* min repeat count */
2479 
2480     if (nextlen == 0) max_count = 138, min_count = 3;
2481     tree[max_code+1].Len = (ush)0xffff; /* guard */
2482 
2483     for (n = 0; n <= max_code; n++) {
2484         curlen = nextlen; nextlen = tree[n+1].Len;
2485         if (++count < max_count && curlen == nextlen) {
2486             continue;
2487         } else if (count < min_count) {
2488             s->bl_tree[curlen].Freq += count;
2489         } else if (curlen != 0) {
2490             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2491             s->bl_tree[REP_3_6].Freq++;
2492         } else if (count <= 10) {
2493             s->bl_tree[REPZ_3_10].Freq++;
2494         } else {
2495             s->bl_tree[REPZ_11_138].Freq++;
2496         }
2497         count = 0; prevlen = curlen;
2498         if (nextlen == 0) {
2499             max_count = 138, min_count = 3;
2500         } else if (curlen == nextlen) {
2501             max_count = 6, min_count = 3;
2502         } else {
2503             max_count = 7, min_count = 4;
2504         }
2505     }
2506 }
2507 
2508 /* ===========================================================================
2509  * Send a literal or distance tree in compressed form, using the codes in
2510  * bl_tree.
2511  *
2512  * Parameters:
2513  *	tree:		the tree to be scanned
2514  *	max_code:	and its largest code of non zero frequency
2515  */
2516 local void
2517 send_tree(deflate_state *s, ct_data *tree, int max_code)
2518 {
2519     int n;                     /* iterates over all tree elements */
2520     int prevlen = -1;          /* last emitted length */
2521     int curlen;                /* length of current code */
2522     int nextlen = tree[0].Len; /* length of next code */
2523     int count = 0;             /* repeat count of the current code */
2524     int max_count = 7;         /* max repeat count */
2525     int min_count = 4;         /* min repeat count */
2526 
2527     /* tree[max_code+1].Len = -1; */  /* guard already set */
2528     if (nextlen == 0) max_count = 138, min_count = 3;
2529 
2530     for (n = 0; n <= max_code; n++) {
2531         curlen = nextlen; nextlen = tree[n+1].Len;
2532         if (++count < max_count && curlen == nextlen) {
2533             continue;
2534         } else if (count < min_count) {
2535             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2536 
2537         } else if (curlen != 0) {
2538             if (curlen != prevlen) {
2539                 send_code(s, curlen, s->bl_tree); count--;
2540             }
2541             Assert(count >= 3 && count <= 6, " 3_6?");
2542             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2543 
2544         } else if (count <= 10) {
2545             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2546 
2547         } else {
2548             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2549         }
2550         count = 0; prevlen = curlen;
2551         if (nextlen == 0) {
2552             max_count = 138, min_count = 3;
2553         } else if (curlen == nextlen) {
2554             max_count = 6, min_count = 3;
2555         } else {
2556             max_count = 7, min_count = 4;
2557         }
2558     }
2559 }
2560 
2561 /* ===========================================================================
2562  * Construct the Huffman tree for the bit lengths and return the index in
2563  * bl_order of the last bit length code to send.
2564  */
2565 local int
2566 build_bl_tree(deflate_state *s)
2567 {
2568     int max_blindex;  /* index of last bit length code of non zero freq */
2569 
2570     /* Determine the bit length frequencies for literal and distance trees */
2571     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2572     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2573 
2574     /* Build the bit length tree: */
2575     build_tree(s, (tree_desc *)(&(s->bl_desc)));
2576     /* opt_len now includes the length of the tree representations, except
2577      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2578      */
2579 
2580     /* Determine the number of bit length codes to send. The pkzip format
2581      * requires that at least 4 bit length codes be sent. (appnote.txt says
2582      * 3 but the actual value used is 4.)
2583      */
2584     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2585         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2586     }
2587     /* Update opt_len to include the bit length tree and counts */
2588     s->opt_len += 3*(max_blindex+1) + 5+5+4;
2589     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2590             s->opt_len, s->static_len));
2591 
2592     return max_blindex;
2593 }
2594 
2595 /* ===========================================================================
2596  * Send the header for a block using dynamic Huffman trees: the counts, the
2597  * lengths of the bit length codes, the literal tree and the distance tree.
2598  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2599  *
2600  * Parameters:
2601  *	lcodes, dcodes, blcodes:	number of codes for each tree
2602  */
2603 local void
2604 send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
2605 {
2606     int rank;                    /* index in bl_order */
2607 
2608     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2609     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2610             "too many codes");
2611     Tracev((stderr, "\nbl counts: "));
2612     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2613     send_bits(s, dcodes-1,   5);
2614     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2615     for (rank = 0; rank < blcodes; rank++) {
2616         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2617         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2618     }
2619     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2620 
2621     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2622     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2623 
2624     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2625     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2626 }
2627 
2628 /* ===========================================================================
2629  * Send a stored block
2630  *
2631  * Parameters:
2632  *	buf:		input block
2633  *	stored_len:	length of input block
2634  *	eof:		true if this is the last block for a file
2635  */
2636 void
2637 _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
2638 {
2639     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2640     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2641     s->compressed_len += (stored_len + 4) << 3;
2642 
2643     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2644 }
2645 
2646 /* Send just the `stored block' type code without any length bytes or data.
2647  */
2648 void
2649 _tr_stored_type_only(deflate_state *s)
2650 {
2651     send_bits(s, (STORED_BLOCK << 1), 3);
2652     bi_windup(s);
2653     s->compressed_len = (s->compressed_len + 3) & ~7L;
2654 }
2655 
2656 
2657 /* ===========================================================================
2658  * Send one empty static block to give enough lookahead for inflate.
2659  * This takes 10 bits, of which 7 may remain in the bit buffer.
2660  * The current inflate code requires 9 bits of lookahead. If the
2661  * last two codes for the previous block (real code plus EOB) were coded
2662  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2663  * the last real code. In this case we send two empty static blocks instead
2664  * of one. (There are no problems if the previous block is stored or fixed.)
2665  * To simplify the code, we assume the worst case of last real code encoded
2666  * on one bit only.
2667  */
2668 void
2669 _tr_align(deflate_state *s)
2670 {
2671     send_bits(s, STATIC_TREES<<1, 3);
2672     send_code(s, END_BLOCK, static_ltree);
2673     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2674     bi_flush(s);
2675     /* Of the 10 bits for the empty block, we have already sent
2676      * (10 - bi_valid) bits. The lookahead for the last real code (before
2677      * the EOB of the previous block) was thus at least one plus the length
2678      * of the EOB plus what we have just sent of the empty static block.
2679      */
2680     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2681         send_bits(s, STATIC_TREES<<1, 3);
2682         send_code(s, END_BLOCK, static_ltree);
2683         s->compressed_len += 10L;
2684         bi_flush(s);
2685     }
2686     s->last_eob_len = 7;
2687 }
2688 
2689 /* ===========================================================================
2690  * Determine the best encoding for the current block: dynamic trees, static
2691  * trees or store, and output the encoded block to the zip file. This function
2692  * returns the total compressed length for the file so far.
2693  *
2694  * Parameters:
2695  *	buf:		input block, or NULL if too old
2696  *	stored_len:	length of input block
2697  *	eof:		true if this is the last block for a file
2698  */
2699 ulg
2700 _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
2701 {
2702     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2703     int max_blindex = 0;  /* index of last bit length code of non zero freq */
2704 
2705     /* Build the Huffman trees unless a stored block is forced */
2706     if (s->level > 0) {
2707 
2708 	 /* Check if the file is ascii or binary */
2709 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
2710 
2711 	/* Construct the literal and distance trees */
2712 	build_tree(s, (tree_desc *)(&(s->l_desc)));
2713 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2714 		s->static_len));
2715 
2716 	build_tree(s, (tree_desc *)(&(s->d_desc)));
2717 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2718 		s->static_len));
2719 	/* At this point, opt_len and static_len are the total bit lengths of
2720 	 * the compressed block data, excluding the tree representations.
2721 	 */
2722 
2723 	/* Build the bit length tree for the above two trees, and get the index
2724 	 * in bl_order of the last bit length code to send.
2725 	 */
2726 	max_blindex = build_bl_tree(s);
2727 
2728 	/* Determine the best encoding. Compute first the block length in bytes*/
2729 	opt_lenb = (s->opt_len+3+7)>>3;
2730 	static_lenb = (s->static_len+3+7)>>3;
2731 
2732 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2733 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2734 		s->last_lit));
2735 
2736 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2737 
2738     } else {
2739         Assert(buf != NULL, "lost buf");
2740 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2741     }
2742 
2743     /* If compression failed and this is the first and last block,
2744      * and if the .zip file can be seeked (to rewrite the local header),
2745      * the whole file is transformed into a stored file:
2746      */
2747 #ifdef STORED_FILE_OK
2748 #  ifdef FORCE_STORED_FILE
2749     if (eof && s->compressed_len == 0L) { /* force stored file */
2750 #  else
2751     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2752 #  endif
2753         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2754         if (buf == NULL) error ("block vanished");
2755 
2756         copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2757         s->compressed_len = stored_len << 3;
2758         s->method = STORED;
2759     } else
2760 #endif /* STORED_FILE_OK */
2761 
2762 #ifdef FORCE_STORED
2763     if (buf != NULL) { /* force stored block */
2764 #else
2765     if (stored_len+4 <= opt_lenb && buf != NULL) {
2766                        /* 4: two words for the lengths */
2767 #endif
2768         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2769          * Otherwise we can't have processed more than WSIZE input bytes since
2770          * the last block flush, because compression would have been
2771          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2772          * transform a block into a stored block.
2773          */
2774         _tr_stored_block(s, buf, stored_len, eof);
2775 
2776 #ifdef FORCE_STATIC
2777     } else if (static_lenb >= 0) { /* force static trees */
2778 #else
2779     } else if (static_lenb == opt_lenb) {
2780 #endif
2781         send_bits(s, (STATIC_TREES<<1)+eof, 3);
2782         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2783         s->compressed_len += 3 + s->static_len;
2784     } else {
2785         send_bits(s, (DYN_TREES<<1)+eof, 3);
2786         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2787                        max_blindex+1);
2788         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2789         s->compressed_len += 3 + s->opt_len;
2790     }
2791     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2792     init_block(s);
2793 
2794     if (eof) {
2795         bi_windup(s);
2796         s->compressed_len += 7;  /* align on byte boundary */
2797     }
2798     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2799            s->compressed_len-7*eof));
2800 
2801     return s->compressed_len >> 3;
2802 }
2803 
2804 /* ===========================================================================
2805  * Save the match info and tally the frequency counts. Return true if
2806  * the current block must be flushed.
2807  *
2808  * Parameters:
2809  *	dist:	distance of matched string
2810  *	lc:	match length-MIN_MATCH or unmatched char (if dist==0)
2811  */
2812 int
2813 _tr_tally(deflate_state *s, unsigned dist, unsigned lc)
2814 {
2815     s->d_buf[s->last_lit] = (ush)dist;
2816     s->l_buf[s->last_lit++] = (uch)lc;
2817     if (dist == 0) {
2818         /* lc is the unmatched char */
2819         s->dyn_ltree[lc].Freq++;
2820     } else {
2821         s->matches++;
2822         /* Here, lc is the match length - MIN_MATCH */
2823         dist--;             /* dist = match distance - 1 */
2824         Assert((ush)dist < (ush)MAX_DIST(s) &&
2825                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2826                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
2827 
2828         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2829         s->dyn_dtree[d_code(dist)].Freq++;
2830     }
2831 
2832     /* Try to guess if it is profitable to stop the current block here */
2833     if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2834         /* Compute an upper bound for the compressed length */
2835         ulg out_length = (ulg)s->last_lit*8L;
2836         ulg in_length = (ulg)((long)s->strstart - s->block_start);
2837         int dcode;
2838         for (dcode = 0; dcode < D_CODES; dcode++) {
2839             out_length += (ulg)s->dyn_dtree[dcode].Freq *
2840                 (5L+extra_dbits[dcode]);
2841         }
2842         out_length >>= 3;
2843         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2844                s->last_lit, in_length, out_length,
2845                100L - out_length*100L/in_length));
2846         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2847     }
2848     return (s->last_lit == s->lit_bufsize-1);
2849     /* We avoid equality with lit_bufsize because of wraparound at 64K
2850      * on 16 bit machines and because stored blocks are restricted to
2851      * 64K-1 bytes.
2852      */
2853 }
2854 
2855 /* ===========================================================================
2856  * Send the block data compressed using the given Huffman trees
2857  *
2858  * Parameters:
2859  *	ltree:	literal tree
2860  *	dtree:	distance tree
2861  */
2862 local void
2863 compress_block(deflate_state *s, ct_data *ltree, ct_data *dtree)
2864 {
2865     unsigned dist;      /* distance of matched string */
2866     int lc;             /* match length or unmatched char (if dist == 0) */
2867     unsigned lx = 0;    /* running index in l_buf */
2868     unsigned code;      /* the code to send */
2869     int extra;          /* number of extra bits to send */
2870 
2871     if (s->last_lit != 0) do {
2872         dist = s->d_buf[lx];
2873         lc = s->l_buf[lx++];
2874         if (dist == 0) {
2875             send_code(s, lc, ltree); /* send a literal byte */
2876             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2877         } else {
2878             /* Here, lc is the match length - MIN_MATCH */
2879             code = length_code[lc];
2880             send_code(s, code+LITERALS+1, ltree); /* send the length code */
2881             extra = extra_lbits[code];
2882             if (extra != 0) {
2883                 lc -= base_length[code];
2884                 send_bits(s, lc, extra);       /* send the extra length bits */
2885             }
2886             dist--; /* dist is now the match distance - 1 */
2887             code = d_code(dist);
2888             Assert (code < D_CODES, "bad d_code");
2889 
2890             send_code(s, code, dtree);       /* send the distance code */
2891             extra = extra_dbits[code];
2892             if (extra != 0) {
2893                 dist -= base_dist[code];
2894                 send_bits(s, dist, extra);   /* send the extra distance bits */
2895             }
2896         } /* literal or match pair ? */
2897 
2898         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2899         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2900 
2901     } while (lx < s->last_lit);
2902 
2903     send_code(s, END_BLOCK, ltree);
2904     s->last_eob_len = ltree[END_BLOCK].Len;
2905 }
2906 
2907 /* ===========================================================================
2908  * Set the data type to ASCII or BINARY, using a crude approximation:
2909  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2910  * IN assertion: the fields freq of dyn_ltree are set and the total of all
2911  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2912  */
2913 local void
2914 set_data_type(deflate_state *s)
2915 {
2916     int n = 0;
2917     unsigned ascii_freq = 0;
2918     unsigned bin_freq = 0;
2919     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2920     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2921     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2922     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2923 }
2924 
2925 /* ===========================================================================
2926  * Reverse the first len bits of a code, using straightforward code (a faster
2927  * method would use a table)
2928  * IN assertion: 1 <= len <= 15
2929  *
2930  * Parameters:
2931  *	code:	the value to invert
2932  *	len:	its bit length
2933  */
2934 local unsigned
2935 bi_reverse(unsigned code, int len)
2936 {
2937     unsigned res = 0;
2938     do {
2939         res |= code & 1;
2940         code >>= 1, res <<= 1;
2941     } while (--len > 0);
2942     return res >> 1;
2943 }
2944 
2945 /* ===========================================================================
2946  * Flush the bit buffer, keeping at most 7 bits in it.
2947  */
2948 local void
2949 bi_flush(deflate_state *s)
2950 {
2951     if (s->bi_valid == 16) {
2952         put_short(s, s->bi_buf);
2953         s->bi_buf = 0;
2954         s->bi_valid = 0;
2955     } else if (s->bi_valid >= 8) {
2956         put_byte(s, (Byte)s->bi_buf);
2957         s->bi_buf >>= 8;
2958         s->bi_valid -= 8;
2959     }
2960 }
2961 
2962 /* ===========================================================================
2963  * Flush the bit buffer and align the output on a byte boundary
2964  */
2965 local void
2966 bi_windup(deflate_state *s)
2967 {
2968     if (s->bi_valid > 8) {
2969         put_short(s, s->bi_buf);
2970     } else if (s->bi_valid > 0) {
2971         put_byte(s, (Byte)s->bi_buf);
2972     }
2973     s->bi_buf = 0;
2974     s->bi_valid = 0;
2975 #ifdef DEBUG_ZLIB
2976     s->bits_sent = (s->bits_sent+7) & ~7;
2977 #endif
2978 }
2979 
2980 /* ===========================================================================
2981  * Copy a stored block, storing first the length and its
2982  * one's complement if requested.
2983  *
2984  * Parameters:
2985  *	buf:	the input data
2986  *	len:	its length
2987  *	header:	true if block header must be written
2988  */
2989 local void
2990 copy_block(deflate_state *s, charf *buf, unsigned len, int header)
2991 {
2992     bi_windup(s);        /* align on byte boundary */
2993     s->last_eob_len = 8; /* enough lookahead for inflate */
2994 
2995     if (header) {
2996         put_short(s, (ush)len);
2997         put_short(s, (ush)~len);
2998 #ifdef DEBUG_ZLIB
2999         s->bits_sent += 2*16;
3000 #endif
3001     }
3002 #ifdef DEBUG_ZLIB
3003     s->bits_sent += (ulg)len<<3;
3004 #endif
3005     /* bundle up the put_byte(s, *buf++) calls */
3006     zmemcpy(&s->pending_buf[s->pending], buf, len);
3007     s->pending += len;
3008 }
3009 /* --- trees.c */
3010 
3011 /* +++ inflate.c */
3012 /* inflate.c -- zlib interface to inflate modules
3013  * Copyright (C) 1995-1996 Mark Adler
3014  * For conditions of distribution and use, see copyright notice in zlib.h
3015  */
3016 
3017 /* #include "zutil.h" */
3018 
3019 /* +++ infblock.h */
3020 /* infblock.h -- header to use infblock.c
3021  * Copyright (C) 1995-1996 Mark Adler
3022  * For conditions of distribution and use, see copyright notice in zlib.h
3023  */
3024 
3025 /* WARNING: this file should *not* be used by applications. It is
3026    part of the implementation of the compression library and is
3027    subject to change. Applications should only use zlib.h.
3028  */
3029 
3030 struct inflate_blocks_state;
3031 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3032 
3033 extern inflate_blocks_statef * inflate_blocks_new OF((
3034     z_streamp z,
3035     check_func c,               /* check function */
3036     uInt w));                   /* window size */
3037 
3038 extern int inflate_blocks OF((
3039     inflate_blocks_statef *,
3040     z_streamp ,
3041     int));                      /* initial return code */
3042 
3043 extern void inflate_blocks_reset OF((
3044     inflate_blocks_statef *,
3045     z_streamp ,
3046     uLongf *));                  /* check value on output */
3047 
3048 extern int inflate_blocks_free OF((
3049     inflate_blocks_statef *,
3050     z_streamp ,
3051     uLongf *));                  /* check value on output */
3052 
3053 extern void inflate_set_dictionary OF((
3054     inflate_blocks_statef *s,
3055     const Bytef *d,  /* dictionary */
3056     uInt  n));       /* dictionary length */
3057 
3058 extern int inflate_addhistory OF((
3059     inflate_blocks_statef *,
3060     z_streamp));
3061 
3062 extern int inflate_packet_flush OF((
3063     inflate_blocks_statef *));
3064 /* --- infblock.h */
3065 
3066 #ifndef NO_DUMMY_DECL
3067 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3068 #endif
3069 
3070 /* inflate private state */
3071 struct internal_state {
3072 
3073   /* mode */
3074   enum {
3075       METHOD,   /* waiting for method byte */
3076       FLAG,     /* waiting for flag byte */
3077       DICT4,    /* four dictionary check bytes to go */
3078       DICT3,    /* three dictionary check bytes to go */
3079       DICT2,    /* two dictionary check bytes to go */
3080       DICT1,    /* one dictionary check byte to go */
3081       DICT0,    /* waiting for inflateSetDictionary */
3082       BLOCKS,   /* decompressing blocks */
3083       CHECK4,   /* four check bytes to go */
3084       CHECK3,   /* three check bytes to go */
3085       CHECK2,   /* two check bytes to go */
3086       CHECK1,   /* one check byte to go */
3087       DONE,     /* finished check, done */
3088       BAD}      /* got an error--stay here */
3089     mode;               /* current inflate mode */
3090 
3091   /* mode dependent information */
3092   union {
3093     uInt method;        /* if FLAGS, method byte */
3094     struct {
3095       uLong was;                /* computed check value */
3096       uLong need;               /* stream check value */
3097     } check;            /* if CHECK, check values to compare */
3098     uInt marker;        /* if BAD, inflateSync's marker bytes count */
3099   } sub;        /* submode */
3100 
3101   /* mode independent information */
3102   int  nowrap;          /* flag for no wrapper */
3103   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
3104   inflate_blocks_statef
3105     *blocks;            /* current inflate_blocks state */
3106 
3107 };
3108 
3109 
3110 int
3111 inflateReset(z_streamp z)
3112 {
3113   uLong c;
3114 
3115   if (z == Z_NULL || z->state == Z_NULL)
3116     return Z_STREAM_ERROR;
3117   z->total_in = z->total_out = 0;
3118   z->msg = Z_NULL;
3119   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3120   inflate_blocks_reset(z->state->blocks, z, &c);
3121   Trace((stderr, "inflate: reset\n"));
3122   return Z_OK;
3123 }
3124 
3125 
3126 int
3127 inflateEnd(z_streamp z)
3128 {
3129   uLong c;
3130 
3131   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3132     return Z_STREAM_ERROR;
3133   if (z->state->blocks != Z_NULL)
3134     inflate_blocks_free(z->state->blocks, z, &c);
3135   ZFREE(z, z->state);
3136   z->state = Z_NULL;
3137   Trace((stderr, "inflate: end\n"));
3138   return Z_OK;
3139 }
3140 
3141 
3142 int
3143 inflateInit2_(z_streamp z, int w, const char *version, int stream_size)
3144 {
3145   if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3146       stream_size != sizeof(z_stream))
3147       return Z_VERSION_ERROR;
3148 
3149   /* initialize state */
3150   if (z == Z_NULL)
3151     return Z_STREAM_ERROR;
3152   z->msg = Z_NULL;
3153 #ifndef NO_ZCFUNCS
3154   if (z->zalloc == Z_NULL)
3155   {
3156     z->zalloc = zcalloc;
3157     z->opaque = (voidpf)0;
3158   }
3159   if (z->zfree == Z_NULL) z->zfree = zcfree;
3160 #endif
3161   if ((z->state = (struct internal_state FAR *)
3162        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3163     return Z_MEM_ERROR;
3164   z->state->blocks = Z_NULL;
3165 
3166   /* handle undocumented nowrap option (no zlib header or check) */
3167   z->state->nowrap = 0;
3168   if (w < 0)
3169   {
3170     w = - w;
3171     z->state->nowrap = 1;
3172   }
3173 
3174   /* set window size */
3175   if (w < 8 || w > 15)
3176   {
3177     inflateEnd(z);
3178     return Z_STREAM_ERROR;
3179   }
3180   z->state->wbits = (uInt)w;
3181 
3182   /* create inflate_blocks state */
3183   if ((z->state->blocks =
3184       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3185       == Z_NULL)
3186   {
3187     inflateEnd(z);
3188     return Z_MEM_ERROR;
3189   }
3190   Trace((stderr, "inflate: allocated\n"));
3191 
3192   /* reset state */
3193   inflateReset(z);
3194   return Z_OK;
3195 }
3196 
3197 
3198 int
3199 inflateInit_(z_streamp z, const char *version, int stream_size)
3200 {
3201   return inflateInit2_(z, DEF_WBITS, version, stream_size);
3202 }
3203 
3204 
3205 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3206 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3207 
3208 int
3209 inflate(z_streamp z, int f)
3210 {
3211   int r;
3212   uInt b;
3213 
3214   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3215     return Z_STREAM_ERROR;
3216   r = Z_BUF_ERROR;
3217   while (1) switch (z->state->mode)
3218   {
3219     case METHOD:
3220       NEEDBYTE
3221       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3222       {
3223         z->state->mode = BAD;
3224         z->msg = (char*)"unknown compression method";
3225         z->state->sub.marker = 5;       /* can't try inflateSync */
3226         break;
3227       }
3228       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3229       {
3230         z->state->mode = BAD;
3231         z->msg = (char*)"invalid window size";
3232         z->state->sub.marker = 5;       /* can't try inflateSync */
3233         break;
3234       }
3235       z->state->mode = FLAG;
3236     case FLAG:
3237       NEEDBYTE
3238       b = NEXTBYTE;
3239       if (((z->state->sub.method << 8) + b) % 31)
3240       {
3241         z->state->mode = BAD;
3242         z->msg = (char*)"incorrect header check";
3243         z->state->sub.marker = 5;       /* can't try inflateSync */
3244         break;
3245       }
3246       Trace((stderr, "inflate: zlib header ok\n"));
3247       if (!(b & PRESET_DICT))
3248       {
3249         z->state->mode = BLOCKS;
3250 	break;
3251       }
3252       z->state->mode = DICT4;
3253     case DICT4:
3254       NEEDBYTE
3255       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3256       z->state->mode = DICT3;
3257     case DICT3:
3258       NEEDBYTE
3259       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3260       z->state->mode = DICT2;
3261     case DICT2:
3262       NEEDBYTE
3263       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3264       z->state->mode = DICT1;
3265     case DICT1:
3266       NEEDBYTE
3267       z->state->sub.check.need += (uLong)NEXTBYTE;
3268       z->adler = z->state->sub.check.need;
3269       z->state->mode = DICT0;
3270       return Z_NEED_DICT;
3271     case DICT0:
3272       z->state->mode = BAD;
3273       z->msg = (char*)"need dictionary";
3274       z->state->sub.marker = 0;       /* can try inflateSync */
3275       return Z_STREAM_ERROR;
3276     case BLOCKS:
3277       r = inflate_blocks(z->state->blocks, z, r);
3278       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3279 	  r = inflate_packet_flush(z->state->blocks);
3280       if (r == Z_DATA_ERROR)
3281       {
3282         z->state->mode = BAD;
3283         z->state->sub.marker = 0;       /* can try inflateSync */
3284         break;
3285       }
3286       if (r != Z_STREAM_END)
3287         return r;
3288       r = Z_OK;
3289       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3290       if (z->state->nowrap)
3291       {
3292         z->state->mode = DONE;
3293         break;
3294       }
3295       z->state->mode = CHECK4;
3296     case CHECK4:
3297       NEEDBYTE
3298       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3299       z->state->mode = CHECK3;
3300     case CHECK3:
3301       NEEDBYTE
3302       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3303       z->state->mode = CHECK2;
3304     case CHECK2:
3305       NEEDBYTE
3306       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3307       z->state->mode = CHECK1;
3308     case CHECK1:
3309       NEEDBYTE
3310       z->state->sub.check.need += (uLong)NEXTBYTE;
3311 
3312       if (z->state->sub.check.was != z->state->sub.check.need)
3313       {
3314         z->state->mode = BAD;
3315         z->msg = (char*)"incorrect data check";
3316         z->state->sub.marker = 5;       /* can't try inflateSync */
3317         break;
3318       }
3319       Trace((stderr, "inflate: zlib check ok\n"));
3320       z->state->mode = DONE;
3321     case DONE:
3322       return Z_STREAM_END;
3323     case BAD:
3324       return Z_DATA_ERROR;
3325     default:
3326       return Z_STREAM_ERROR;
3327   }
3328 
3329  empty:
3330   if (f != Z_PACKET_FLUSH)
3331     return r;
3332   z->state->mode = BAD;
3333   z->msg = (char *)"need more for packet flush";
3334   z->state->sub.marker = 0;       /* can try inflateSync */
3335   return Z_DATA_ERROR;
3336 }
3337 
3338 
3339 int
3340 inflateSetDictionary(z_streamp z, const Bytef *dictionary, uInt dictLength)
3341 {
3342   uInt length = dictLength;
3343 
3344   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3345     return Z_STREAM_ERROR;
3346 
3347   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3348   z->adler = 1L;
3349 
3350   if (length >= ((uInt)1<<z->state->wbits))
3351   {
3352     length = (1<<z->state->wbits)-1;
3353     dictionary += dictLength - length;
3354   }
3355   inflate_set_dictionary(z->state->blocks, dictionary, length);
3356   z->state->mode = BLOCKS;
3357   return Z_OK;
3358 }
3359 
3360 /*
3361  * This subroutine adds the data at next_in/avail_in to the output history
3362  * without performing any output.  The output buffer must be "caught up";
3363  * i.e. no pending output (hence s->read equals s->write), and the state must
3364  * be BLOCKS (i.e. we should be willing to see the start of a series of
3365  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3366  * will have been updated if need be.
3367  */
3368 
3369 int
3370 inflateIncomp(z_stream *z)
3371 {
3372     if (z->state->mode != BLOCKS)
3373 	return Z_DATA_ERROR;
3374     return inflate_addhistory(z->state->blocks, z);
3375 }
3376 
3377 
3378 int
3379 inflateSync(z_streamp z)
3380 {
3381   uInt n;       /* number of bytes to look at */
3382   Bytef *p;     /* pointer to bytes */
3383   uInt m;       /* number of marker bytes found in a row */
3384   uLong r, w;   /* temporaries to save total_in and total_out */
3385 
3386   /* set up */
3387   if (z == Z_NULL || z->state == Z_NULL)
3388     return Z_STREAM_ERROR;
3389   if (z->state->mode != BAD)
3390   {
3391     z->state->mode = BAD;
3392     z->state->sub.marker = 0;
3393   }
3394   if ((n = z->avail_in) == 0)
3395     return Z_BUF_ERROR;
3396   p = z->next_in;
3397   m = z->state->sub.marker;
3398 
3399   /* search */
3400   while (n && m < 4)
3401   {
3402     if (*p == (Byte)(m < 2 ? 0 : 0xff))
3403       m++;
3404     else if (*p)
3405       m = 0;
3406     else
3407       m = 4 - m;
3408     p++, n--;
3409   }
3410 
3411   /* restore */
3412   z->total_in += p - z->next_in;
3413   z->next_in = p;
3414   z->avail_in = n;
3415   z->state->sub.marker = m;
3416 
3417   /* return no joy or set up to restart on a new block */
3418   if (m != 4)
3419     return Z_DATA_ERROR;
3420   r = z->total_in;  w = z->total_out;
3421   inflateReset(z);
3422   z->total_in = r;  z->total_out = w;
3423   z->state->mode = BLOCKS;
3424   return Z_OK;
3425 }
3426 
3427 #undef NEEDBYTE
3428 #undef NEXTBYTE
3429 /* --- inflate.c */
3430 
3431 /* +++ infblock.c */
3432 /* infblock.c -- interpret and process block types to last block
3433  * Copyright (C) 1995-1996 Mark Adler
3434  * For conditions of distribution and use, see copyright notice in zlib.h
3435  */
3436 
3437 /* #include "zutil.h" */
3438 /* #include "infblock.h" */
3439 
3440 /* +++ inftrees.h */
3441 /* inftrees.h -- header to use inftrees.c
3442  * Copyright (C) 1995-1996 Mark Adler
3443  * For conditions of distribution and use, see copyright notice in zlib.h
3444  */
3445 
3446 /* WARNING: this file should *not* be used by applications. It is
3447    part of the implementation of the compression library and is
3448    subject to change. Applications should only use zlib.h.
3449  */
3450 
3451 /* Huffman code lookup table entry--this entry is four bytes for machines
3452    that have 16-bit pointers (e.g. PC's in the small or medium model). */
3453 
3454 typedef struct inflate_huft_s FAR inflate_huft;
3455 
3456 struct inflate_huft_s {
3457   union {
3458     struct {
3459       Byte Exop;        /* number of extra bits or operation */
3460       Byte Bits;        /* number of bits in this code or subcode */
3461     } what;
3462     Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
3463   } word;               /*  16-bit, 8 bytes for 32-bit machines) */
3464   union {
3465     uInt Base;          /* literal, length base, or distance base */
3466     inflate_huft *Next; /* pointer to next level of table */
3467   } more;
3468 };
3469 
3470 #ifdef DEBUG_ZLIB
3471   extern uInt inflate_hufts;
3472 #endif
3473 
3474 extern int inflate_trees_bits OF((
3475     uIntf *,                    /* 19 code lengths */
3476     uIntf *,                    /* bits tree desired/actual depth */
3477     inflate_huft * FAR *,       /* bits tree result */
3478     z_streamp ));               /* for zalloc, zfree functions */
3479 
3480 extern int inflate_trees_dynamic OF((
3481     uInt,                       /* number of literal/length codes */
3482     uInt,                       /* number of distance codes */
3483     uIntf *,                    /* that many (total) code lengths */
3484     uIntf *,                    /* literal desired/actual bit depth */
3485     uIntf *,                    /* distance desired/actual bit depth */
3486     inflate_huft * FAR *,       /* literal/length tree result */
3487     inflate_huft * FAR *,       /* distance tree result */
3488     z_streamp ));               /* for zalloc, zfree functions */
3489 
3490 extern int inflate_trees_fixed OF((
3491     uIntf *,                    /* literal desired/actual bit depth */
3492     uIntf *,                    /* distance desired/actual bit depth */
3493     inflate_huft * FAR *,       /* literal/length tree result */
3494     inflate_huft * FAR *));     /* distance tree result */
3495 
3496 extern int inflate_trees_free OF((
3497     inflate_huft *,             /* tables to free */
3498     z_streamp ));               /* for zfree function */
3499 
3500 /* --- inftrees.h */
3501 
3502 /* +++ infcodes.h */
3503 /* infcodes.h -- header to use infcodes.c
3504  * Copyright (C) 1995-1996 Mark Adler
3505  * For conditions of distribution and use, see copyright notice in zlib.h
3506  */
3507 
3508 /* WARNING: this file should *not* be used by applications. It is
3509    part of the implementation of the compression library and is
3510    subject to change. Applications should only use zlib.h.
3511  */
3512 
3513 struct inflate_codes_state;
3514 typedef struct inflate_codes_state FAR inflate_codes_statef;
3515 
3516 extern inflate_codes_statef *inflate_codes_new OF((
3517     uInt, uInt,
3518     inflate_huft *, inflate_huft *,
3519     z_streamp ));
3520 
3521 extern int inflate_codes OF((
3522     inflate_blocks_statef *,
3523     z_streamp ,
3524     int));
3525 
3526 extern void inflate_codes_free OF((
3527     inflate_codes_statef *,
3528     z_streamp ));
3529 
3530 /* --- infcodes.h */
3531 
3532 /* +++ infutil.h */
3533 /* infutil.h -- types and macros common to blocks and codes
3534  * Copyright (C) 1995-1996 Mark Adler
3535  * For conditions of distribution and use, see copyright notice in zlib.h
3536  */
3537 
3538 /* WARNING: this file should *not* be used by applications. It is
3539    part of the implementation of the compression library and is
3540    subject to change. Applications should only use zlib.h.
3541  */
3542 
3543 #ifndef _INFUTIL_H
3544 #define _INFUTIL_H
3545 
3546 typedef enum {
3547       TYPE,     /* get type bits (3, including end bit) */
3548       LENS,     /* get lengths for stored */
3549       STORED,   /* processing stored block */
3550       TABLE,    /* get table lengths */
3551       BTREE,    /* get bit lengths tree for a dynamic block */
3552       DTREE,    /* get length, distance trees for a dynamic block */
3553       CODES,    /* processing fixed or dynamic block */
3554       DRY,      /* output remaining window bytes */
3555       DONEB,    /* finished last block, done */
3556       BADB}     /* got a data error--stuck here */
3557 inflate_block_mode;
3558 
3559 /* inflate blocks semi-private state */
3560 struct inflate_blocks_state {
3561 
3562   /* mode */
3563   inflate_block_mode  mode;     /* current inflate_block mode */
3564 
3565   /* mode dependent information */
3566   union {
3567     uInt left;          /* if STORED, bytes left to copy */
3568     struct {
3569       uInt table;               /* table lengths (14 bits) */
3570       uInt index;               /* index into blens (or border) */
3571       uIntf *blens;             /* bit lengths of codes */
3572       uInt bb;                  /* bit length tree depth */
3573       inflate_huft *tb;         /* bit length decoding tree */
3574     } trees;            /* if DTREE, decoding info for trees */
3575     struct {
3576       inflate_huft *tl;
3577       inflate_huft *td;         /* trees to free */
3578       inflate_codes_statef
3579          *codes;
3580     } decode;           /* if CODES, current state */
3581   } sub;                /* submode */
3582   uInt last;            /* true if this block is the last block */
3583 
3584   /* mode independent information */
3585   uInt bitk;            /* bits in bit buffer */
3586   uLong bitb;           /* bit buffer */
3587   Bytef *window;        /* sliding window */
3588   Bytef *end;           /* one byte after sliding window */
3589   Bytef *read;          /* window read pointer */
3590   Bytef *write;         /* window write pointer */
3591   check_func checkfn;   /* check function */
3592   uLong check;          /* check on output */
3593 
3594 };
3595 
3596 
3597 /* defines for inflate input/output */
3598 /*   update pointers and return */
3599 #define UPDBITS {s->bitb=b;s->bitk=k;}
3600 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3601 #define UPDOUT {s->write=q;}
3602 #define UPDATE {UPDBITS UPDIN UPDOUT}
3603 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3604 /*   get bytes and bits */
3605 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3606 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3607 #define NEXTBYTE (n--,*p++)
3608 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3609 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3610 /*   output bytes */
3611 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3612 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3613 #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3614 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3615 #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3616 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3617 /*   load local pointers */
3618 #define LOAD {LOADIN LOADOUT}
3619 
3620 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3621 extern uInt inflate_mask[17];
3622 
3623 /* copy as much as possible from the sliding window to the output area */
3624 extern int inflate_flush OF((
3625     inflate_blocks_statef *,
3626     z_streamp ,
3627     int));
3628 
3629 #ifndef NO_DUMMY_DECL
3630 struct internal_state      {int dummy;}; /* for buggy compilers */
3631 #endif
3632 
3633 #endif
3634 /* --- infutil.h */
3635 
3636 #ifndef NO_DUMMY_DECL
3637 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3638 #endif
3639 
3640 /* Table for deflate from PKZIP's appnote.txt. */
3641 local const uInt border[] = { /* Order of the bit length code lengths */
3642         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3643 
3644 /*
3645    Notes beyond the 1.93a appnote.txt:
3646 
3647    1. Distance pointers never point before the beginning of the output
3648       stream.
3649    2. Distance pointers can point back across blocks, up to 32k away.
3650    3. There is an implied maximum of 7 bits for the bit length table and
3651       15 bits for the actual data.
3652    4. If only one code exists, then it is encoded using one bit.  (Zero
3653       would be more efficient, but perhaps a little confusing.)  If two
3654       codes exist, they are coded using one bit each (0 and 1).
3655    5. There is no way of sending zero distance codes--a dummy must be
3656       sent if there are none.  (History: a pre 2.0 version of PKZIP would
3657       store blocks with no distance codes, but this was discovered to be
3658       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3659       zero distance codes, which is sent as one code of zero bits in
3660       length.
3661    6. There are up to 286 literal/length codes.  Code 256 represents the
3662       end-of-block.  Note however that the static length tree defines
3663       288 codes just to fill out the Huffman codes.  Codes 286 and 287
3664       cannot be used though, since there is no length base or extra bits
3665       defined for them.  Similarily, there are up to 30 distance codes.
3666       However, static trees define 32 codes (all 5 bits) to fill out the
3667       Huffman codes, but the last two had better not show up in the data.
3668    7. Unzip can check dynamic Huffman blocks for complete code sets.
3669       The exception is that a single code would not be complete (see #4).
3670    8. The five bits following the block type is really the number of
3671       literal codes sent minus 257.
3672    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3673       (1+6+6).  Therefore, to output three times the length, you output
3674       three codes (1+1+1), whereas to output four times the same length,
3675       you only need two codes (1+3).  Hmm.
3676   10. In the tree reconstruction algorithm, Code = Code + Increment
3677       only if BitLength(i) is not zero.  (Pretty obvious.)
3678   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3679   12. Note: length code 284 can represent 227-258, but length code 285
3680       really is 258.  The last length deserves its own, short code
3681       since it gets used a lot in very redundant files.  The length
3682       258 is special since 258 - 3 (the min match length) is 255.
3683   13. The literal/length and distance code bit lengths are read as a
3684       single stream of lengths.  It is possible (and advantageous) for
3685       a repeat code (16, 17, or 18) to go across the boundary between
3686       the two sets of lengths.
3687  */
3688 
3689 
3690 void
3691 inflate_blocks_reset(inflate_blocks_statef *s, z_streamp z, uLongf *c)
3692 {
3693   if (s->checkfn != Z_NULL)
3694     *c = s->check;
3695   if (s->mode == BTREE || s->mode == DTREE)
3696     ZFREE(z, s->sub.trees.blens);
3697   if (s->mode == CODES)
3698   {
3699     inflate_codes_free(s->sub.decode.codes, z);
3700     inflate_trees_free(s->sub.decode.td, z);
3701     inflate_trees_free(s->sub.decode.tl, z);
3702   }
3703   s->mode = TYPE;
3704   s->bitk = 0;
3705   s->bitb = 0;
3706   s->read = s->write = s->window;
3707   if (s->checkfn != Z_NULL)
3708     z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3709   Trace((stderr, "inflate:   blocks reset\n"));
3710 }
3711 
3712 
3713 inflate_blocks_statef *
3714 inflate_blocks_new(z_streamp z, check_func c, uInt w)
3715 {
3716   inflate_blocks_statef *s;
3717 
3718   if ((s = (inflate_blocks_statef *)ZALLOC
3719        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3720     return s;
3721   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3722   {
3723     ZFREE(z, s);
3724     return Z_NULL;
3725   }
3726   s->end = s->window + w;
3727   s->checkfn = c;
3728   s->mode = TYPE;
3729   Trace((stderr, "inflate:   blocks allocated\n"));
3730   inflate_blocks_reset(s, z, &s->check);
3731   return s;
3732 }
3733 
3734 
3735 #ifdef DEBUG_ZLIB
3736   extern uInt inflate_hufts;
3737 #endif
3738 
3739 int
3740 inflate_blocks(inflate_blocks_statef *s, z_streamp z, int r)
3741 {
3742   uInt t;               /* temporary storage */
3743   uLong b;              /* bit buffer */
3744   uInt k;               /* bits in bit buffer */
3745   Bytef *p;             /* input data pointer */
3746   uInt n;               /* bytes available there */
3747   Bytef *q;             /* output window write pointer */
3748   uInt m;               /* bytes to end of window or read pointer */
3749 
3750   /* copy input/output information to locals (UPDATE macro restores) */
3751   LOAD
3752 
3753   /* process input based on current state */
3754   while (1) switch (s->mode)
3755   {
3756     case TYPE:
3757       NEEDBITS(3)
3758       t = (uInt)b & 7;
3759       s->last = t & 1;
3760       switch (t >> 1)
3761       {
3762         case 0:                         /* stored */
3763           Trace((stderr, "inflate:     stored block%s\n",
3764                  s->last ? " (last)" : ""));
3765           DUMPBITS(3)
3766           t = k & 7;                    /* go to byte boundary */
3767           DUMPBITS(t)
3768           s->mode = LENS;               /* get length of stored block */
3769           break;
3770         case 1:                         /* fixed */
3771           Trace((stderr, "inflate:     fixed codes block%s\n",
3772                  s->last ? " (last)" : ""));
3773           {
3774             uInt bl, bd;
3775             inflate_huft *tl, *td;
3776 
3777             inflate_trees_fixed(&bl, &bd, &tl, &td);
3778             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3779             if (s->sub.decode.codes == Z_NULL)
3780             {
3781               r = Z_MEM_ERROR;
3782               LEAVE
3783             }
3784             s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3785             s->sub.decode.td = Z_NULL;
3786           }
3787           DUMPBITS(3)
3788           s->mode = CODES;
3789           break;
3790         case 2:                         /* dynamic */
3791           Trace((stderr, "inflate:     dynamic codes block%s\n",
3792                  s->last ? " (last)" : ""));
3793           DUMPBITS(3)
3794           s->mode = TABLE;
3795           break;
3796         case 3:                         /* illegal */
3797           DUMPBITS(3)
3798           s->mode = BADB;
3799           z->msg = (char*)"invalid block type";
3800           r = Z_DATA_ERROR;
3801           LEAVE
3802       }
3803       break;
3804     case LENS:
3805       NEEDBITS(32)
3806       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3807       {
3808         s->mode = BADB;
3809         z->msg = (char*)"invalid stored block lengths";
3810         r = Z_DATA_ERROR;
3811         LEAVE
3812       }
3813       s->sub.left = (uInt)b & 0xffff;
3814       b = k = 0;                      /* dump bits */
3815       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3816       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3817       break;
3818     case STORED:
3819       if (n == 0)
3820         LEAVE
3821       NEEDOUT
3822       t = s->sub.left;
3823       if (t > n) t = n;
3824       if (t > m) t = m;
3825       zmemcpy(q, p, t);
3826       p += t;  n -= t;
3827       q += t;  m -= t;
3828       if ((s->sub.left -= t) != 0)
3829         break;
3830       Tracev((stderr, "inflate:       stored end, %lu total out\n",
3831               z->total_out + (q >= s->read ? q - s->read :
3832               (s->end - s->read) + (q - s->window))));
3833       s->mode = s->last ? DRY : TYPE;
3834       break;
3835     case TABLE:
3836       NEEDBITS(14)
3837       s->sub.trees.table = t = (uInt)b & 0x3fff;
3838 #ifndef PKZIP_BUG_WORKAROUND
3839       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3840       {
3841         s->mode = BADB;
3842         z->msg = (char*)"too many length or distance symbols";
3843         r = Z_DATA_ERROR;
3844         LEAVE
3845       }
3846 #endif
3847       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3848       if (t < 19)
3849         t = 19;
3850       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3851       {
3852         r = Z_MEM_ERROR;
3853         LEAVE
3854       }
3855       DUMPBITS(14)
3856       s->sub.trees.index = 0;
3857       Tracev((stderr, "inflate:       table sizes ok\n"));
3858       s->mode = BTREE;
3859     case BTREE:
3860       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3861       {
3862         NEEDBITS(3)
3863         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3864         DUMPBITS(3)
3865       }
3866       while (s->sub.trees.index < 19)
3867         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3868       s->sub.trees.bb = 7;
3869       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3870                              &s->sub.trees.tb, z);
3871       if (t != Z_OK)
3872       {
3873         r = t;
3874         if (r == Z_DATA_ERROR) {
3875           ZFREE(z, s->sub.trees.blens);
3876           s->mode = BADB;
3877         }
3878         LEAVE
3879       }
3880       s->sub.trees.index = 0;
3881       Tracev((stderr, "inflate:       bits tree ok\n"));
3882       s->mode = DTREE;
3883     case DTREE:
3884       while (t = s->sub.trees.table,
3885              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3886       {
3887         inflate_huft *h;
3888         uInt i, j, c;
3889 
3890         t = s->sub.trees.bb;
3891         NEEDBITS(t)
3892         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3893         t = h->word.what.Bits;
3894         c = h->more.Base;
3895         if (c < 16)
3896         {
3897           DUMPBITS(t)
3898           s->sub.trees.blens[s->sub.trees.index++] = c;
3899         }
3900         else /* c == 16..18 */
3901         {
3902           i = c == 18 ? 7 : c - 14;
3903           j = c == 18 ? 11 : 3;
3904           NEEDBITS(t + i)
3905           DUMPBITS(t)
3906           j += (uInt)b & inflate_mask[i];
3907           DUMPBITS(i)
3908           i = s->sub.trees.index;
3909           t = s->sub.trees.table;
3910           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3911               (c == 16 && i < 1))
3912           {
3913             inflate_trees_free(s->sub.trees.tb, z);
3914             ZFREE(z, s->sub.trees.blens);
3915             s->mode = BADB;
3916             z->msg = (char*)"invalid bit length repeat";
3917             r = Z_DATA_ERROR;
3918             LEAVE
3919           }
3920           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3921           do {
3922             s->sub.trees.blens[i++] = c;
3923           } while (--j);
3924           s->sub.trees.index = i;
3925         }
3926       }
3927       inflate_trees_free(s->sub.trees.tb, z);
3928       s->sub.trees.tb = Z_NULL;
3929       {
3930         uInt bl, bd;
3931         inflate_huft *tl, *td;
3932         inflate_codes_statef *c;
3933 
3934         bl = 9;         /* must be <= 9 for lookahead assumptions */
3935         bd = 6;         /* must be <= 9 for lookahead assumptions */
3936         t = s->sub.trees.table;
3937 #ifdef DEBUG_ZLIB
3938       inflate_hufts = 0;
3939 #endif
3940         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3941                                   s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3942         if (t != Z_OK)
3943         {
3944           if (t == (uInt)Z_DATA_ERROR) {
3945             ZFREE(z, s->sub.trees.blens);
3946             s->mode = BADB;
3947           }
3948           r = t;
3949           LEAVE
3950         }
3951         Tracev((stderr, "inflate:       trees ok, %d * %d bytes used\n",
3952               inflate_hufts, sizeof(inflate_huft)));
3953         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3954         {
3955           inflate_trees_free(td, z);
3956           inflate_trees_free(tl, z);
3957           r = Z_MEM_ERROR;
3958           LEAVE
3959         }
3960 	/*
3961 	 * this ZFREE must occur *BEFORE* we mess with sub.decode, because
3962 	 * sub.trees is union'd with sub.decode.
3963 	 */
3964         ZFREE(z, s->sub.trees.blens);
3965         s->sub.decode.codes = c;
3966         s->sub.decode.tl = tl;
3967         s->sub.decode.td = td;
3968       }
3969       s->mode = CODES;
3970     case CODES:
3971       UPDATE
3972       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3973         return inflate_flush(s, z, r);
3974       r = Z_OK;
3975       inflate_codes_free(s->sub.decode.codes, z);
3976       inflate_trees_free(s->sub.decode.td, z);
3977       inflate_trees_free(s->sub.decode.tl, z);
3978       LOAD
3979       Tracev((stderr, "inflate:       codes end, %lu total out\n",
3980               z->total_out + (q >= s->read ? q - s->read :
3981               (s->end - s->read) + (q - s->window))));
3982       if (!s->last)
3983       {
3984         s->mode = TYPE;
3985         break;
3986       }
3987       if (k > 7)              /* return unused byte, if any */
3988       {
3989         Assert(k < 16, "inflate_codes grabbed too many bytes")
3990         k -= 8;
3991         n++;
3992         p--;                    /* can always return one */
3993       }
3994       s->mode = DRY;
3995     case DRY:
3996       FLUSH
3997       if (s->read != s->write)
3998         LEAVE
3999       s->mode = DONEB;
4000     case DONEB:
4001       r = Z_STREAM_END;
4002       LEAVE
4003     case BADB:
4004       r = Z_DATA_ERROR;
4005       LEAVE
4006     default:
4007       r = Z_STREAM_ERROR;
4008       LEAVE
4009   }
4010 }
4011 
4012 
4013 int
4014 inflate_blocks_free(inflate_blocks_statef *s, z_streamp z, uLongf *c)
4015 {
4016   inflate_blocks_reset(s, z, c);
4017   ZFREE(z, s->window);
4018   ZFREE(z, s);
4019   Trace((stderr, "inflate:   blocks freed\n"));
4020   return Z_OK;
4021 }
4022 
4023 
4024 void
4025 inflate_set_dictionary(inflate_blocks_statef *s, const Bytef *d, uInt n)
4026 {
4027   zmemcpy((charf *)s->window, d, n);
4028   s->read = s->write = s->window + n;
4029 }
4030 
4031 /*
4032  * This subroutine adds the data at next_in/avail_in to the output history
4033  * without performing any output.  The output buffer must be "caught up";
4034  * i.e. no pending output (hence s->read equals s->write), and the state must
4035  * be BLOCKS (i.e. we should be willing to see the start of a series of
4036  * BLOCKS).  On exit, the output will also be caught up, and the checksum
4037  * will have been updated if need be.
4038  */
4039 int
4040 inflate_addhistory(inflate_blocks_statef *s, z_stream *z)
4041 {
4042     uLong b;              /* bit buffer */  /* NOT USED HERE */
4043     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
4044     uInt t;               /* temporary storage */
4045     Bytef *p;             /* input data pointer */
4046     uInt n;               /* bytes available there */
4047     Bytef *q;             /* output window write pointer */
4048     uInt m;               /* bytes to end of window or read pointer */
4049 
4050     if (s->read != s->write)
4051 	return Z_STREAM_ERROR;
4052     if (s->mode != TYPE)
4053 	return Z_DATA_ERROR;
4054 
4055     /* we're ready to rock */
4056     LOAD
4057     /* while there is input ready, copy to output buffer, moving
4058      * pointers as needed.
4059      */
4060     while (n) {
4061 	t = n;  /* how many to do */
4062 	/* is there room until end of buffer? */
4063 	if (t > m) t = m;
4064 	/* update check information */
4065 	if (s->checkfn != Z_NULL)
4066 	    s->check = (*s->checkfn)(s->check, q, t);
4067 	zmemcpy(q, p, t);
4068 	q += t;
4069 	p += t;
4070 	n -= t;
4071 	z->total_out += t;
4072 	s->read = q;    /* drag read pointer forward */
4073 /*      WWRAP  */	/* expand WWRAP macro by hand to handle s->read */
4074 	if (q == s->end) {
4075 	    s->read = q = s->window;
4076 	    m = WAVAIL;
4077 	}
4078     }
4079     UPDATE
4080     return Z_OK;
4081 }
4082 
4083 
4084 /*
4085  * At the end of a Deflate-compressed PPP packet, we expect to have seen
4086  * a `stored' block type value but not the (zero) length bytes.
4087  */
4088 int
4089 inflate_packet_flush(inflate_blocks_statef *s)
4090 {
4091     if (s->mode != LENS)
4092 	return Z_DATA_ERROR;
4093     s->mode = TYPE;
4094     return Z_OK;
4095 }
4096 /* --- infblock.c */
4097 
4098 /* +++ inftrees.c */
4099 /* inftrees.c -- generate Huffman trees for efficient decoding
4100  * Copyright (C) 1995-1996 Mark Adler
4101  * For conditions of distribution and use, see copyright notice in zlib.h
4102  */
4103 
4104 /* #include "zutil.h" */
4105 /* #include "inftrees.h" */
4106 
4107 char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4108 /*
4109   If you use the zlib library in a product, an acknowledgment is welcome
4110   in the documentation of your product. If for some reason you cannot
4111   include such an acknowledgment, I would appreciate that you keep this
4112   copyright string in the executable of your product.
4113  */
4114 
4115 #ifndef NO_DUMMY_DECL
4116 struct internal_state  {int dummy;}; /* for buggy compilers */
4117 #endif
4118 
4119 /* simplify the use of the inflate_huft type with some defines */
4120 #define base more.Base
4121 #define next more.Next
4122 #define exop word.what.Exop
4123 #define bits word.what.Bits
4124 
4125 
4126 local int huft_build OF((
4127     uIntf *,            /* code lengths in bits */
4128     uInt,               /* number of codes */
4129     uInt,               /* number of "simple" codes */
4130     const uIntf *,      /* list of base values for non-simple codes */
4131     const uIntf *,      /* list of extra bits for non-simple codes */
4132     inflate_huft * FAR*,/* result: starting table */
4133     uIntf *,            /* maximum lookup bits (returns actual) */
4134     z_streamp ));       /* for zalloc function */
4135 
4136 local voidpf zfalloc OF((
4137     voidpf,             /* opaque pointer (not used) */
4138     uInt,               /* number of items */
4139     uInt));             /* size of item */
4140 
4141 /* Tables for deflate from PKZIP's appnote.txt. */
4142 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4143         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4144         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4145         /* see note #13 above about 258 */
4146 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4147         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4148         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4149 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4150         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4151         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4152         8193, 12289, 16385, 24577};
4153 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4154         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4155         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4156         12, 12, 13, 13};
4157 
4158 /*
4159    Huffman code decoding is performed using a multi-level table lookup.
4160    The fastest way to decode is to simply build a lookup table whose
4161    size is determined by the longest code.  However, the time it takes
4162    to build this table can also be a factor if the data being decoded
4163    is not very long.  The most common codes are necessarily the
4164    shortest codes, so those codes dominate the decoding time, and hence
4165    the speed.  The idea is you can have a shorter table that decodes the
4166    shorter, more probable codes, and then point to subsidiary tables for
4167    the longer codes.  The time it costs to decode the longer codes is
4168    then traded against the time it takes to make longer tables.
4169 
4170    This results of this trade are in the variables lbits and dbits
4171    below.  lbits is the number of bits the first level table for literal/
4172    length codes can decode in one step, and dbits is the same thing for
4173    the distance codes.  Subsequent tables are also less than or equal to
4174    those sizes.  These values may be adjusted either when all of the
4175    codes are shorter than that, in which case the longest code length in
4176    bits is used, or when the shortest code is *longer* than the requested
4177    table size, in which case the length of the shortest code in bits is
4178    used.
4179 
4180    There are two different values for the two tables, since they code a
4181    different number of possibilities each.  The literal/length table
4182    codes 286 possible values, or in a flat code, a little over eight
4183    bits.  The distance table codes 30 possible values, or a little less
4184    than five bits, flat.  The optimum values for speed end up being
4185    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4186    The optimum values may differ though from machine to machine, and
4187    possibly even between compilers.  Your mileage may vary.
4188  */
4189 
4190 
4191 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4192 #define BMAX 15         /* maximum bit length of any code */
4193 #define N_MAX 288       /* maximum number of codes in any set */
4194 
4195 #ifdef DEBUG_ZLIB
4196   uInt inflate_hufts;
4197 #endif
4198 
4199 /*
4200  * Parameters:
4201  *	b:	code lengths in bits (all assumed <= BMAX)
4202  *	n:	number of codes (assumed <= N_MAX)
4203  *	s:	number of simple-valued codes (0..s-1)
4204  *	d:	list of base values for non-simple codes
4205  *	e:	list of extra bits for non-simple codes
4206  *	t:	result: starting table
4207  *	m:	maximum lookup bits, returns actual
4208  *	zs:	for zalloc function
4209  *
4210  * Given a list of code lengths and a maximum table size, make a set of
4211  * tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
4212  * if the given code set is incomplete (the tables are still built in this
4213  * case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4214  * lengths), or Z_MEM_ERROR if not enough memory.
4215  */
4216 local int
4217 huft_build(uIntf *b, uInt n, uInt s, const uIntf *d, const uIntf *e,
4218 	   inflate_huft * FAR *t, uIntf *m, z_streamp zs)
4219 {
4220 
4221   uInt a;                       /* counter for codes of length k */
4222   uInt c[BMAX+1];               /* bit length count table */
4223   uInt f;                       /* i repeats in table every f entries */
4224   int g;                        /* maximum code length */
4225   int h;                        /* table level */
4226   uInt i;              /* counter, current code */
4227   uInt j;              /* counter */
4228   int k;               /* number of bits in current code */
4229   int l;                        /* bits per table (returned in m) */
4230   uIntf *p;            /* pointer into c[], b[], or v[] */
4231   inflate_huft *q;              /* points to current table */
4232   struct inflate_huft_s r;      /* table entry for structure assignment */
4233   inflate_huft *u[BMAX];        /* table stack */
4234   uInt v[N_MAX];                /* values in order of bit length */
4235   int w;               /* bits before this table == (l * h) */
4236   uInt x[BMAX+1];               /* bit offsets, then code stack */
4237   uIntf *xp;                    /* pointer into x */
4238   int y;                        /* number of dummy codes added */
4239   uInt z;                       /* number of entries in current table */
4240 
4241 
4242   /* Generate counts for each bit length */
4243   p = c;
4244 #define C0 *p++ = 0;
4245 #define C2 C0 C0 C0 C0
4246 #define C4 C2 C2 C2 C2
4247   C4                            /* clear c[]--assume BMAX+1 is 16 */
4248   p = b;  i = n;
4249   do {
4250     c[*p++]++;                  /* assume all entries <= BMAX */
4251   } while (--i);
4252   if (c[0] == n)                /* null input--all zero length codes */
4253   {
4254     *t = (inflate_huft *)Z_NULL;
4255     *m = 0;
4256     return Z_OK;
4257   }
4258 
4259 
4260   /* Find minimum and maximum length, bound *m by those */
4261   l = *m;
4262   for (j = 1; j <= BMAX; j++)
4263     if (c[j])
4264       break;
4265   k = j;                        /* minimum code length */
4266   if ((uInt)l < j)
4267     l = j;
4268   for (i = BMAX; i; i--)
4269     if (c[i])
4270       break;
4271   g = i;                        /* maximum code length */
4272   if ((uInt)l > i)
4273     l = i;
4274   *m = l;
4275 
4276 
4277   /* Adjust last length count to fill out codes, if needed */
4278   for (y = 1 << j; j < i; j++, y <<= 1)
4279     if ((y -= c[j]) < 0)
4280       return Z_DATA_ERROR;
4281   if ((y -= c[i]) < 0)
4282     return Z_DATA_ERROR;
4283   c[i] += y;
4284 
4285 
4286   /* Generate starting offsets into the value table for each length */
4287   x[1] = j = 0;
4288   p = c + 1;  xp = x + 2;
4289   while (--i) {                 /* note that i == g from above */
4290     *xp++ = (j += *p++);
4291   }
4292 
4293 
4294   /* Make a table of values in order of bit lengths */
4295   p = b;  i = 0;
4296   do {
4297     if ((j = *p++) != 0)
4298       v[x[j]++] = i;
4299   } while (++i < n);
4300   n = x[g];                   /* set n to length of v */
4301 
4302 
4303   /* Generate the Huffman codes and for each, make the table entries */
4304   x[0] = i = 0;                 /* first Huffman code is zero */
4305   p = v;                        /* grab values in bit order */
4306   h = -1;                       /* no tables yet--level -1 */
4307   w = -l;                       /* bits decoded == (l * h) */
4308   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
4309   q = (inflate_huft *)Z_NULL;   /* ditto */
4310   z = 0;                        /* ditto */
4311 
4312   /* go through the bit lengths (k already is bits in shortest code) */
4313   for (; k <= g; k++)
4314   {
4315     a = c[k];
4316     while (a--)
4317     {
4318       /* here i is the Huffman code of length k bits for value *p */
4319       /* make tables up to required level */
4320       while (k > w + l)
4321       {
4322         h++;
4323         w += l;                 /* previous table always l bits */
4324 
4325         /* compute minimum size table less than or equal to l bits */
4326         z = g - w;
4327         z = z > (uInt)l ? l : z;        /* table size upper limit */
4328         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
4329         {                       /* too few codes for k-w bit table */
4330           f -= a + 1;           /* deduct codes from patterns left */
4331           xp = c + k;
4332           if (j < z)
4333             while (++j < z)     /* try smaller tables up to z bits */
4334             {
4335               if ((f <<= 1) <= *++xp)
4336                 break;          /* enough codes to use up j bits */
4337               f -= *xp;         /* else deduct codes from patterns */
4338             }
4339         }
4340         z = 1 << j;             /* table entries for j-bit table */
4341 
4342         /* allocate and link in new table */
4343         if ((q = (inflate_huft *)ZALLOC
4344              (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4345         {
4346           if (h)
4347             inflate_trees_free(u[0], zs);
4348           return Z_MEM_ERROR;   /* not enough memory */
4349         }
4350 #ifdef DEBUG_ZLIB
4351         inflate_hufts += z + 1;
4352 #endif
4353         *t = q + 1;             /* link to list for huft_free() */
4354         *(t = &(q->next)) = Z_NULL;
4355         u[h] = ++q;             /* table starts after link */
4356 
4357         /* connect to last table, if there is one */
4358         if (h)
4359         {
4360           x[h] = i;             /* save pattern for backing up */
4361           r.bits = (Byte)l;     /* bits to dump before this table */
4362           r.exop = (Byte)j;     /* bits in this table */
4363           r.next = q;           /* pointer to this table */
4364           j = i >> (w - l);     /* (get around Turbo C bug) */
4365           u[h-1][j] = r;        /* connect to last table */
4366         }
4367       }
4368 
4369       /* set up table entry in r */
4370       r.bits = (Byte)(k - w);
4371       if (p >= v + n)
4372         r.exop = 128 + 64;      /* out of values--invalid code */
4373       else if (*p < s)
4374       {
4375         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
4376         r.base = *p++;          /* simple code is just the value */
4377       }
4378       else
4379       {
4380         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4381         r.base = d[*p++ - s];
4382       }
4383 
4384       /* fill code-like entries with r */
4385       f = 1 << (k - w);
4386       for (j = i >> w; j < z; j += f)
4387         q[j] = r;
4388 
4389       /* backwards increment the k-bit code i */
4390       for (j = 1 << (k - 1); i & j; j >>= 1)
4391         i ^= j;
4392       i ^= j;
4393 
4394       /* backup over finished tables */
4395       while ((i & ((1 << w) - 1)) != x[h])
4396       {
4397         h--;                    /* don't need to update q */
4398         w -= l;
4399       }
4400     }
4401   }
4402 
4403 
4404   /* Return Z_BUF_ERROR if we were given an incomplete table */
4405   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4406 }
4407 
4408 /*
4409  * Parameters:
4410  *	c:	19 code lengths
4411  *	bb:	bits tree desired/actual depth
4412  *	tb:	bits tree result
4413  *	z:	for zfree function
4414  */
4415 int
4416 inflate_trees_bits(uIntf *c, uIntf *bb, inflate_huft * FAR *tb, z_streamp z)
4417 {
4418   int r;
4419 
4420   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4421   if (r == Z_DATA_ERROR)
4422     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4423   else if (r == Z_BUF_ERROR || *bb == 0)
4424   {
4425     inflate_trees_free(*tb, z);
4426     z->msg = (char*)"incomplete dynamic bit lengths tree";
4427     r = Z_DATA_ERROR;
4428   }
4429   return r;
4430 }
4431 
4432 /*
4433  * Parameters:
4434  *	nl:	number of literal/length codes
4435  *	nd:	number of distance codes
4436  *	c:	that many (total) code lengths
4437  *	bl:	literal desired/actual bit depth
4438  *	bd:	distance desired/actual bit depth
4439  *	tl:	literal/length tree result
4440  *	td:	distance tree result
4441  *	z:	for zfree function
4442  */
4443 int
4444 inflate_trees_dynamic(uInt nl, uInt nd, uIntf *c, uIntf *bl, uIntf *bd,
4445 		      inflate_huft * FAR *tl, inflate_huft * FAR *td,
4446 		      z_streamp z)
4447 {
4448   int r;
4449 
4450   /* build literal/length tree */
4451   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4452   if (r != Z_OK || *bl == 0)
4453   {
4454     if (r == Z_DATA_ERROR)
4455       z->msg = (char*)"oversubscribed literal/length tree";
4456     else if (r != Z_MEM_ERROR)
4457     {
4458       inflate_trees_free(*tl, z);
4459       z->msg = (char*)"incomplete literal/length tree";
4460       r = Z_DATA_ERROR;
4461     }
4462     return r;
4463   }
4464 
4465   /* build distance tree */
4466   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4467   if (r != Z_OK || (*bd == 0 && nl > 257))
4468   {
4469     if (r == Z_DATA_ERROR)
4470       z->msg = (char*)"oversubscribed distance tree";
4471     else if (r == Z_BUF_ERROR) {
4472 #ifdef PKZIP_BUG_WORKAROUND
4473       r = Z_OK;
4474     }
4475 #else
4476       inflate_trees_free(*td, z);
4477       z->msg = (char*)"incomplete distance tree";
4478       r = Z_DATA_ERROR;
4479     }
4480     else if (r != Z_MEM_ERROR)
4481     {
4482       z->msg = (char*)"empty distance tree with lengths";
4483       r = Z_DATA_ERROR;
4484     }
4485     inflate_trees_free(*tl, z);
4486     return r;
4487 #endif
4488   }
4489 
4490   /* done */
4491   return Z_OK;
4492 }
4493 
4494 
4495 /* build fixed tables only once--keep them here */
4496 local int fixed_built = 0;
4497 #define FIXEDH 530      /* number of hufts used by fixed tables */
4498 local inflate_huft fixed_mem[FIXEDH];
4499 local uInt fixed_bl;
4500 local uInt fixed_bd;
4501 local inflate_huft *fixed_tl;
4502 local inflate_huft *fixed_td;
4503 
4504 /*
4505  * Parameters:
4506  *	q:	opaque pointer
4507  *	n:	number of items
4508  *	s:	size of item
4509  */
4510 local voidpf
4511 zfalloc(voidpf q, uInt n, uInt s)
4512 {
4513   Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4514          "inflate_trees zfalloc overflow");
4515   *(intf *)q -= n+s-s; /* s-s to avoid warning */
4516   return (voidpf)(fixed_mem + *(intf *)q);
4517 }
4518 
4519 /*
4520  * Parameters:
4521  *	bl:	literal desired/actual bit depth
4522  *	bd:	distance desired/actual bit depth
4523  *	tl:	literal/length tree result
4524  *	td:	distance tree result
4525  */
4526 int
4527 inflate_trees_fixed(uIntf *bl, uIntf *bd, inflate_huft * FAR *tl,
4528 		    inflate_huft * FAR *td)
4529 {
4530   /* build fixed tables if not already (multiple overlapped executions ok) */
4531   if (!fixed_built)
4532   {
4533     int k;              /* temporary variable */
4534     unsigned c[288];    /* length list for huft_build */
4535     z_stream z;         /* for zfalloc function */
4536     int f = FIXEDH;     /* number of hufts left in fixed_mem */
4537 
4538     /* set up fake z_stream for memory routines */
4539     z.zalloc = zfalloc;
4540     z.zfree = Z_NULL;
4541     z.opaque = (voidpf)&f;
4542 
4543     /* literal table */
4544     for (k = 0; k < 144; k++)
4545       c[k] = 8;
4546     for (; k < 256; k++)
4547       c[k] = 9;
4548     for (; k < 280; k++)
4549       c[k] = 7;
4550     for (; k < 288; k++)
4551       c[k] = 8;
4552     fixed_bl = 7;
4553     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4554 
4555     /* distance table */
4556     for (k = 0; k < 30; k++)
4557       c[k] = 5;
4558     fixed_bd = 5;
4559     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4560 
4561     /* done */
4562     Assert(f == 0, "invalid build of fixed tables");
4563     fixed_built = 1;
4564   }
4565   *bl = fixed_bl;
4566   *bd = fixed_bd;
4567   *tl = fixed_tl;
4568   *td = fixed_td;
4569   return Z_OK;
4570 }
4571 
4572 /*
4573  * Parameters:
4574  *	t:	table to free
4575  *	z:	for zfree function
4576  * Free the malloc'ed tables built by huft_build(), which makes a linked
4577  * list of the tables it made, with the links in a dummy first entry of
4578  * each table.
4579  */
4580 int
4581 inflate_trees_free(inflate_huft *t, z_streamp z)
4582 {
4583   inflate_huft *p, *q, *r;
4584 
4585   /* Reverse linked list */
4586   p = Z_NULL;
4587   q = t;
4588   while (q != Z_NULL)
4589   {
4590     r = (q - 1)->next;
4591     (q - 1)->next = p;
4592     p = q;
4593     q = r;
4594   }
4595   /* Go through linked list, freeing from the malloced (t[-1]) address. */
4596   while (p != Z_NULL)
4597   {
4598     q = (--p)->next;
4599     ZFREE(z,p);
4600     p = q;
4601   }
4602   return Z_OK;
4603 }
4604 /* --- inftrees.c */
4605 
4606 /* +++ infcodes.c */
4607 /* infcodes.c -- process literals and length/distance pairs
4608  * Copyright (C) 1995-1996 Mark Adler
4609  * For conditions of distribution and use, see copyright notice in zlib.h
4610  */
4611 
4612 /* #include "zutil.h" */
4613 /* #include "inftrees.h" */
4614 /* #include "infblock.h" */
4615 /* #include "infcodes.h" */
4616 /* #include "infutil.h" */
4617 
4618 /* +++ inffast.h */
4619 /* inffast.h -- header to use inffast.c
4620  * Copyright (C) 1995-1996 Mark Adler
4621  * For conditions of distribution and use, see copyright notice in zlib.h
4622  */
4623 
4624 /* WARNING: this file should *not* be used by applications. It is
4625    part of the implementation of the compression library and is
4626    subject to change. Applications should only use zlib.h.
4627  */
4628 
4629 extern int inflate_fast OF((
4630     uInt,
4631     uInt,
4632     inflate_huft *,
4633     inflate_huft *,
4634     inflate_blocks_statef *,
4635     z_streamp ));
4636 /* --- inffast.h */
4637 
4638 /* simplify the use of the inflate_huft type with some defines */
4639 #define base more.Base
4640 #define next more.Next
4641 #define exop word.what.Exop
4642 #define bits word.what.Bits
4643 
4644 /* inflate codes private state */
4645 struct inflate_codes_state {
4646 
4647   /* mode */
4648   enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4649       START,    /* x: set up for LEN */
4650       LEN,      /* i: get length/literal/eob next */
4651       LENEXT,   /* i: getting length extra (have base) */
4652       DIST,     /* i: get distance next */
4653       DISTEXT,  /* i: getting distance extra */
4654       COPY,     /* o: copying bytes in window, waiting for space */
4655       LIT,      /* o: got literal, waiting for output space */
4656       WASH,     /* o: got eob, possibly still output waiting */
4657       END,      /* x: got eob and all data flushed */
4658       BADCODE}  /* x: got error */
4659     mode;               /* current inflate_codes mode */
4660 
4661   /* mode dependent information */
4662   uInt len;
4663   union {
4664     struct {
4665       inflate_huft *tree;       /* pointer into tree */
4666       uInt need;                /* bits needed */
4667     } code;             /* if LEN or DIST, where in tree */
4668     uInt lit;           /* if LIT, literal */
4669     struct {
4670       uInt get;                 /* bits to get for extra */
4671       uInt dist;                /* distance back to copy from */
4672     } copy;             /* if EXT or COPY, where and how much */
4673   } sub;                /* submode */
4674 
4675   /* mode independent information */
4676   Byte lbits;           /* ltree bits decoded per branch */
4677   Byte dbits;           /* dtree bits decoder per branch */
4678   inflate_huft *ltree;          /* literal/length/eob tree */
4679   inflate_huft *dtree;          /* distance tree */
4680 
4681 };
4682 
4683 /*
4684  * Parameters:
4685  *	td:	need separate declaration for Borland C++
4686  */
4687 inflate_codes_statef *
4688 inflate_codes_new(uInt bl, uInt bd, inflate_huft *tl, inflate_huft *td,
4689 		  z_streamp z)
4690 {
4691   inflate_codes_statef *c;
4692 
4693   if ((c = (inflate_codes_statef *)
4694        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4695   {
4696     c->mode = START;
4697     c->lbits = (Byte)bl;
4698     c->dbits = (Byte)bd;
4699     c->ltree = tl;
4700     c->dtree = td;
4701     Tracev((stderr, "inflate:       codes new\n"));
4702   }
4703   return c;
4704 }
4705 
4706 
4707 int
4708 inflate_codes(inflate_blocks_statef *s, z_streamp z, int r)
4709 {
4710   uInt j;               /* temporary storage */
4711   inflate_huft *t;      /* temporary pointer */
4712   uInt e;               /* extra bits or operation */
4713   uLong b;              /* bit buffer */
4714   uInt k;               /* bits in bit buffer */
4715   Bytef *p;             /* input data pointer */
4716   uInt n;               /* bytes available there */
4717   Bytef *q;             /* output window write pointer */
4718   uInt m;               /* bytes to end of window or read pointer */
4719   Bytef *f;             /* pointer to copy strings from */
4720   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
4721 
4722   /* copy input/output information to locals (UPDATE macro restores) */
4723   LOAD
4724 
4725   /* process input and output based on current state */
4726   while (1) switch (c->mode)
4727   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4728     case START:         /* x: set up for LEN */
4729 #ifndef SLOW
4730       if (m >= 258 && n >= 10)
4731       {
4732         UPDATE
4733         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4734         LOAD
4735         if (r != Z_OK)
4736         {
4737           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4738           break;
4739         }
4740       }
4741 #endif /* !SLOW */
4742       c->sub.code.need = c->lbits;
4743       c->sub.code.tree = c->ltree;
4744       c->mode = LEN;
4745     case LEN:           /* i: get length/literal/eob next */
4746       j = c->sub.code.need;
4747       NEEDBITS(j)
4748       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4749       DUMPBITS(t->bits)
4750       e = (uInt)(t->exop);
4751       if (e == 0)               /* literal */
4752       {
4753         c->sub.lit = t->base;
4754         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4755                  "inflate:         literal '%c'\n" :
4756                  "inflate:         literal 0x%02x\n", t->base));
4757         c->mode = LIT;
4758         break;
4759       }
4760       if (e & 16)               /* length */
4761       {
4762         c->sub.copy.get = e & 15;
4763         c->len = t->base;
4764         c->mode = LENEXT;
4765         break;
4766       }
4767       if ((e & 64) == 0)        /* next table */
4768       {
4769         c->sub.code.need = e;
4770         c->sub.code.tree = t->next;
4771         break;
4772       }
4773       if (e & 32)               /* end of block */
4774       {
4775         Tracevv((stderr, "inflate:         end of block\n"));
4776         c->mode = WASH;
4777         break;
4778       }
4779       c->mode = BADCODE;        /* invalid code */
4780       z->msg = (char*)"invalid literal/length code";
4781       r = Z_DATA_ERROR;
4782       LEAVE
4783     case LENEXT:        /* i: getting length extra (have base) */
4784       j = c->sub.copy.get;
4785       NEEDBITS(j)
4786       c->len += (uInt)b & inflate_mask[j];
4787       DUMPBITS(j)
4788       c->sub.code.need = c->dbits;
4789       c->sub.code.tree = c->dtree;
4790       Tracevv((stderr, "inflate:         length %u\n", c->len));
4791       c->mode = DIST;
4792     case DIST:          /* i: get distance next */
4793       j = c->sub.code.need;
4794       NEEDBITS(j)
4795       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4796       DUMPBITS(t->bits)
4797       e = (uInt)(t->exop);
4798       if (e & 16)               /* distance */
4799       {
4800         c->sub.copy.get = e & 15;
4801         c->sub.copy.dist = t->base;
4802         c->mode = DISTEXT;
4803         break;
4804       }
4805       if ((e & 64) == 0)        /* next table */
4806       {
4807         c->sub.code.need = e;
4808         c->sub.code.tree = t->next;
4809         break;
4810       }
4811       c->mode = BADCODE;        /* invalid code */
4812       z->msg = (char*)"invalid distance code";
4813       r = Z_DATA_ERROR;
4814       LEAVE
4815     case DISTEXT:       /* i: getting distance extra */
4816       j = c->sub.copy.get;
4817       NEEDBITS(j)
4818       c->sub.copy.dist += (uInt)b & inflate_mask[j];
4819       DUMPBITS(j)
4820       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
4821       c->mode = COPY;
4822     case COPY:          /* o: copying bytes in window, waiting for space */
4823 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4824       f = (uInt)(q - s->window) < c->sub.copy.dist ?
4825           s->end - (c->sub.copy.dist - (q - s->window)) :
4826           q - c->sub.copy.dist;
4827 #else
4828       f = q - c->sub.copy.dist;
4829       if ((uInt)(q - s->window) < c->sub.copy.dist)
4830         f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4831 #endif
4832       while (c->len)
4833       {
4834         NEEDOUT
4835         OUTBYTE(*f++)
4836         if (f == s->end)
4837           f = s->window;
4838         c->len--;
4839       }
4840       c->mode = START;
4841       break;
4842     case LIT:           /* o: got literal, waiting for output space */
4843       NEEDOUT
4844       OUTBYTE(c->sub.lit)
4845       c->mode = START;
4846       break;
4847     case WASH:          /* o: got eob, possibly more output */
4848       FLUSH
4849       if (s->read != s->write)
4850         LEAVE
4851       c->mode = END;
4852     case END:
4853       r = Z_STREAM_END;
4854       LEAVE
4855     case BADCODE:       /* x: got error */
4856       r = Z_DATA_ERROR;
4857       LEAVE
4858     default:
4859       r = Z_STREAM_ERROR;
4860       LEAVE
4861   }
4862 }
4863 
4864 
4865 void
4866 inflate_codes_free(inflate_codes_statef *c, z_streamp z)
4867 {
4868   ZFREE(z, c);
4869   Tracev((stderr, "inflate:       codes free\n"));
4870 }
4871 /* --- infcodes.c */
4872 
4873 /* +++ infutil.c */
4874 /* inflate_util.c -- data and routines common to blocks and codes
4875  * Copyright (C) 1995-1996 Mark Adler
4876  * For conditions of distribution and use, see copyright notice in zlib.h
4877  */
4878 
4879 /* #include "zutil.h" */
4880 /* #include "infblock.h" */
4881 /* #include "inftrees.h" */
4882 /* #include "infcodes.h" */
4883 /* #include "infutil.h" */
4884 
4885 #ifndef NO_DUMMY_DECL
4886 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4887 #endif
4888 
4889 /* And'ing with mask[n] masks the lower n bits */
4890 uInt inflate_mask[17] = {
4891     0x0000,
4892     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4893     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4894 };
4895 
4896 
4897 /* copy as much as possible from the sliding window to the output area */
4898 int
4899 inflate_flush(inflate_blocks_statef *s, z_streamp z, int r)
4900 {
4901   uInt n;
4902   Bytef *p;
4903   Bytef *q;
4904 
4905   /* local copies of source and destination pointers */
4906   p = z->next_out;
4907   q = s->read;
4908 
4909   /* compute number of bytes to copy as far as end of window */
4910   n = (uInt)((q <= s->write ? s->write : s->end) - q);
4911   if (n > z->avail_out) n = z->avail_out;
4912   if (n && r == Z_BUF_ERROR) r = Z_OK;
4913 
4914   /* update counters */
4915   z->avail_out -= n;
4916   z->total_out += n;
4917 
4918   /* update check information */
4919   if (s->checkfn != Z_NULL)
4920     z->adler = s->check = (*s->checkfn)(s->check, q, n);
4921 
4922   /* copy as far as end of window */
4923   if (p != Z_NULL) {
4924     zmemcpy(p, q, n);
4925     p += n;
4926   }
4927   q += n;
4928 
4929   /* see if more to copy at beginning of window */
4930   if (q == s->end)
4931   {
4932     /* wrap pointers */
4933     q = s->window;
4934     if (s->write == s->end)
4935       s->write = s->window;
4936 
4937     /* compute bytes to copy */
4938     n = (uInt)(s->write - q);
4939     if (n > z->avail_out) n = z->avail_out;
4940     if (n && r == Z_BUF_ERROR) r = Z_OK;
4941 
4942     /* update counters */
4943     z->avail_out -= n;
4944     z->total_out += n;
4945 
4946     /* update check information */
4947     if (s->checkfn != Z_NULL)
4948       z->adler = s->check = (*s->checkfn)(s->check, q, n);
4949 
4950     /* copy */
4951     if (p != Z_NULL) {
4952       zmemcpy(p, q, n);
4953       p += n;
4954     }
4955     q += n;
4956   }
4957 
4958   /* update pointers */
4959   z->next_out = p;
4960   s->read = q;
4961 
4962   /* done */
4963   return r;
4964 }
4965 /* --- infutil.c */
4966 
4967 /* +++ inffast.c */
4968 /* inffast.c -- process literals and length/distance pairs fast
4969  * Copyright (C) 1995-1996 Mark Adler
4970  * For conditions of distribution and use, see copyright notice in zlib.h
4971  */
4972 
4973 /* #include "zutil.h" */
4974 /* #include "inftrees.h" */
4975 /* #include "infblock.h" */
4976 /* #include "infcodes.h" */
4977 /* #include "infutil.h" */
4978 /* #include "inffast.h" */
4979 
4980 #ifndef NO_DUMMY_DECL
4981 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4982 #endif
4983 
4984 /* simplify the use of the inflate_huft type with some defines */
4985 #define base more.Base
4986 #define next more.Next
4987 #define exop word.what.Exop
4988 #define bits word.what.Bits
4989 
4990 /* macros for bit input with no checking and for returning unused bytes */
4991 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4992 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4993 
4994 /*  Called with number of bytes left to write in window at least 258
4995  *  (the maximum string length) and number of input bytes available
4996  *  at least ten.  The ten bytes are six bytes for the longest length/
4997  *  distance pair plus four bytes for overloading the bit buffer.
4998  *
4999  * Parameters:
5000  *	td:	need separate declaration for Borland C++
5001  */
5002 int
5003 inflate_fast(uInt bl, uInt bd, inflate_huft *tl, inflate_huft *td,
5004 	     inflate_blocks_statef *s, z_streamp z)
5005 {
5006   inflate_huft *t;      /* temporary pointer */
5007   uInt e;               /* extra bits or operation */
5008   uLong b;              /* bit buffer */
5009   uInt k;               /* bits in bit buffer */
5010   Bytef *p;             /* input data pointer */
5011   uInt n;               /* bytes available there */
5012   Bytef *q;             /* output window write pointer */
5013   uInt m;               /* bytes to end of window or read pointer */
5014   uInt ml;              /* mask for literal/length tree */
5015   uInt md;              /* mask for distance tree */
5016   uInt c;               /* bytes to copy */
5017   uInt d;               /* distance back to copy from */
5018   Bytef *r;             /* copy source pointer */
5019 
5020   /* load input, output, bit values */
5021   LOAD
5022 
5023   /* initialize masks */
5024   ml = inflate_mask[bl];
5025   md = inflate_mask[bd];
5026 
5027   /* do until not enough input or output space for fast loop */
5028   do {                          /* assume called with m >= 258 && n >= 10 */
5029     /* get literal/length code */
5030     GRABBITS(20)                /* max bits for literal/length code */
5031     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5032     {
5033       DUMPBITS(t->bits)
5034       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5035                 "inflate:         * literal '%c'\n" :
5036                 "inflate:         * literal 0x%02x\n", t->base));
5037       *q++ = (Byte)t->base;
5038       m--;
5039       continue;
5040     }
5041     do {
5042       DUMPBITS(t->bits)
5043       if (e & 16)
5044       {
5045         /* get extra bits for length */
5046         e &= 15;
5047         c = t->base + ((uInt)b & inflate_mask[e]);
5048         DUMPBITS(e)
5049         Tracevv((stderr, "inflate:         * length %u\n", c));
5050 
5051         /* decode distance base of block to copy */
5052         GRABBITS(15);           /* max bits for distance code */
5053         e = (t = td + ((uInt)b & md))->exop;
5054         do {
5055           DUMPBITS(t->bits)
5056           if (e & 16)
5057           {
5058             /* get extra bits to add to distance base */
5059             e &= 15;
5060             GRABBITS(e)         /* get extra bits (up to 13) */
5061             d = t->base + ((uInt)b & inflate_mask[e]);
5062             DUMPBITS(e)
5063             Tracevv((stderr, "inflate:         * distance %u\n", d));
5064 
5065             /* do the copy */
5066             m -= c;
5067             if ((uInt)(q - s->window) >= d)     /* offset before dest */
5068             {                                   /*  just copy */
5069               r = q - d;
5070               *q++ = *r++;  c--;        /* minimum count is three, */
5071               *q++ = *r++;  c--;        /*  so unroll loop a little */
5072             }
5073             else                        /* else offset after destination */
5074             {
5075               e = d - (uInt)(q - s->window); /* bytes from offset to end */
5076               r = s->end - e;           /* pointer to offset */
5077               if (c > e)                /* if source crosses, */
5078               {
5079                 c -= e;                 /* copy to end of window */
5080                 do {
5081                   *q++ = *r++;
5082                 } while (--e);
5083                 r = s->window;          /* copy rest from start of window */
5084               }
5085             }
5086             do {                        /* copy all or what's left */
5087               *q++ = *r++;
5088             } while (--c);
5089             break;
5090           }
5091           else if ((e & 64) == 0)
5092             e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5093           else
5094           {
5095             z->msg = (char*)"invalid distance code";
5096             UNGRAB
5097             UPDATE
5098             return Z_DATA_ERROR;
5099           }
5100         } while (1);
5101         break;
5102       }
5103       if ((e & 64) == 0)
5104       {
5105         if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5106         {
5107           DUMPBITS(t->bits)
5108           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5109                     "inflate:         * literal '%c'\n" :
5110                     "inflate:         * literal 0x%02x\n", t->base));
5111           *q++ = (Byte)t->base;
5112           m--;
5113           break;
5114         }
5115       }
5116       else if (e & 32)
5117       {
5118         Tracevv((stderr, "inflate:         * end of block\n"));
5119         UNGRAB
5120         UPDATE
5121         return Z_STREAM_END;
5122       }
5123       else
5124       {
5125         z->msg = (char*)"invalid literal/length code";
5126         UNGRAB
5127         UPDATE
5128         return Z_DATA_ERROR;
5129       }
5130     } while (1);
5131   } while (m >= 258 && n >= 10);
5132 
5133   /* not enough input or output--restore pointers and return */
5134   UNGRAB
5135   UPDATE
5136   return Z_OK;
5137 }
5138 /* --- inffast.c */
5139 
5140 /* +++ zutil.c */
5141 /* zutil.c -- target dependent utility functions for the compression library
5142  * Copyright (C) 1995-1996 Jean-loup Gailly.
5143  * For conditions of distribution and use, see copyright notice in zlib.h
5144  */
5145 
5146 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5147 
5148 #ifdef DEBUG_ZLIB
5149 #include <stdio.h>
5150 #endif
5151 
5152 /* #include "zutil.h" */
5153 
5154 #ifndef NO_DUMMY_DECL
5155 struct internal_state      {int dummy;}; /* for buggy compilers */
5156 #endif
5157 
5158 #ifndef STDC
5159 extern void exit OF((int));
5160 #endif
5161 
5162 const char
5163 *zlibVersion(void)
5164 {
5165     return ZLIB_VERSION;
5166 }
5167 
5168 #ifdef DEBUG_ZLIB
5169 void
5170 z_error(char *m)
5171 {
5172     fprintf(stderr, "%s\n", m);
5173     exit(1);
5174 }
5175 #endif
5176 
5177 #ifndef HAVE_MEMCPY
5178 
5179 void
5180 zmemcpy(Bytef *dest, Bytef *source, uInt len)
5181 {
5182     if (len == 0) return;
5183     do {
5184         *dest++ = *source++; /* ??? to be unrolled */
5185     } while (--len != 0);
5186 }
5187 
5188 int
5189 zmemcmp(Bytef *s1, Bytef *s2, uInt len)
5190 {
5191     uInt j;
5192 
5193     for (j = 0; j < len; j++) {
5194         if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5195     }
5196     return 0;
5197 }
5198 
5199 void
5200 zmemzero(Bytef *dest, uInt len)
5201 {
5202     if (len == 0) return;
5203     do {
5204         *dest++ = 0;  /* ??? to be unrolled */
5205     } while (--len != 0);
5206 }
5207 #endif
5208 
5209 #ifdef __TURBOC__
5210 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5211 /* Small and medium model in Turbo C are for now limited to near allocation
5212  * with reduced MAX_WBITS and MAX_MEM_LEVEL
5213  */
5214 #  define MY_ZCALLOC
5215 
5216 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5217  * and farmalloc(64K) returns a pointer with an offset of 8, so we
5218  * must fix the pointer. Warning: the pointer must be put back to its
5219  * original form in order to free it, use zcfree().
5220  */
5221 
5222 #define MAX_PTR 10
5223 /* 10*64K = 640K */
5224 
5225 local int next_ptr = 0;
5226 
5227 typedef struct ptr_table_s {
5228     voidpf org_ptr;
5229     voidpf new_ptr;
5230 } ptr_table;
5231 
5232 local ptr_table table[MAX_PTR];
5233 /* This table is used to remember the original form of pointers
5234  * to large buffers (64K). Such pointers are normalized with a zero offset.
5235  * Since MSDOS is not a preemptive multitasking OS, this table is not
5236  * protected from concurrent access. This hack doesn't work anyway on
5237  * a protected system like OS/2. Use Microsoft C instead.
5238  */
5239 
5240 voidpf
5241 zcalloc(voidpf opaque, unsigned items, unsigned size)
5242 {
5243     voidpf buf = opaque; /* just to make some compilers happy */
5244     ulg bsize = (ulg)items*size;
5245 
5246     /* If we allocate less than 65520 bytes, we assume that farmalloc
5247      * will return a usable pointer which doesn't have to be normalized.
5248      */
5249     if (bsize < 65520L) {
5250         buf = farmalloc(bsize);
5251         if (*(ush*)&buf != 0) return buf;
5252     } else {
5253         buf = farmalloc(bsize + 16L);
5254     }
5255     if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5256     table[next_ptr].org_ptr = buf;
5257 
5258     /* Normalize the pointer to seg:0 */
5259     *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5260     *(ush*)&buf = 0;
5261     table[next_ptr++].new_ptr = buf;
5262     return buf;
5263 }
5264 
5265 void
5266 zcfree(voidpf opaque, voidpf ptr)
5267 {
5268     int n;
5269     if (*(ush*)&ptr != 0) { /* object < 64K */
5270         farfree(ptr);
5271         return;
5272     }
5273     /* Find the original pointer */
5274     for (n = 0; n < next_ptr; n++) {
5275         if (ptr != table[n].new_ptr) continue;
5276 
5277         farfree(table[n].org_ptr);
5278         while (++n < next_ptr) {
5279             table[n-1] = table[n];
5280         }
5281         next_ptr--;
5282         return;
5283     }
5284     ptr = opaque; /* just to make some compilers happy */
5285     Assert(0, "zcfree: ptr not found");
5286 }
5287 #endif
5288 #endif /* __TURBOC__ */
5289 
5290 
5291 #if defined(M_I86) && !defined(__32BIT__)
5292 /* Microsoft C in 16-bit mode */
5293 
5294 #  define MY_ZCALLOC
5295 
5296 #if (!defined(_MSC_VER) || (_MSC_VER < 600))
5297 #  define _halloc  halloc
5298 #  define _hfree   hfree
5299 #endif
5300 
5301 voidpf
5302 zcalloc(voidpf opaque, unsigned items, unsigned size)
5303 {
5304     if (opaque) opaque = 0; /* to make compiler happy */
5305     return _halloc((long)items, size);
5306 }
5307 
5308 void
5309 zcfree(voidpf opaque, voidpf ptr)
5310 {
5311     if (opaque) opaque = 0; /* to make compiler happy */
5312     _hfree(ptr);
5313 }
5314 
5315 #endif /* MSC */
5316 
5317 
5318 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5319 
5320 #ifndef STDC
5321 extern voidp  calloc OF((uInt items, uInt size));
5322 extern void   free   OF((voidpf ptr));
5323 #endif
5324 
5325 voidpf
5326 zcalloc(voidpf opaque, unsigned items, unsigned size)
5327 {
5328     if (opaque) items += size - size; /* make compiler happy */
5329     return (voidpf)calloc(items, size);
5330 }
5331 
5332 void
5333 zcfree(voidpf opaque, voidpf ptr)
5334 {
5335     free(ptr);
5336     if (opaque) return; /* make compiler happy */
5337 }
5338 
5339 #endif /* MY_ZCALLOC */
5340 /* --- zutil.c */
5341 
5342 /* +++ adler32.c */
5343 /* adler32.c -- compute the Adler-32 checksum of a data stream
5344  * Copyright (C) 1995-1996 Mark Adler
5345  * For conditions of distribution and use, see copyright notice in zlib.h
5346  */
5347 
5348 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5349 
5350 /* #include "zlib.h" */
5351 
5352 #define BASE 65521L /* largest prime smaller than 65536 */
5353 #define NMAX 5552
5354 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5355 
5356 #define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
5357 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
5358 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
5359 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
5360 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
5361 
5362 /* ========================================================================= */
5363 uLong
5364 adler32(uLong adler, const Bytef *buf, uInt len)
5365 {
5366     unsigned long s1 = adler & 0xffff;
5367     unsigned long s2 = (adler >> 16) & 0xffff;
5368     int k;
5369 
5370     if (buf == Z_NULL) return 1L;
5371 
5372     while (len > 0) {
5373         k = len < NMAX ? len : NMAX;
5374         len -= k;
5375         while (k >= 16) {
5376             DO16(buf);
5377 	    buf += 16;
5378             k -= 16;
5379         }
5380         if (k != 0) do {
5381             s1 += *buf++;
5382 	    s2 += s1;
5383         } while (--k);
5384         s1 %= BASE;
5385         s2 %= BASE;
5386     }
5387     return (s2 << 16) | s1;
5388 }
5389 /* --- adler32.c */
5390 
5391 MODULE_VERSION(zlib, 1);
5392