xref: /dragonfly/sys/net/zlib.c (revision 6e285212)
1 /*
2  * This file is derived from various .h and .c files from the zlib-1.0.4
3  * distribution by Jean-loup Gailly and Mark Adler, with some additions
4  * by Paul Mackerras to aid in implementing Deflate compression and
5  * decompression for PPP packets.  See zlib.h for conditions of
6  * distribution and use.
7  *
8  * Changes that have been made include:
9  * - added Z_PACKET_FLUSH (see zlib.h for details)
10  * - added inflateIncomp and deflateOutputPending
11  * - allow strm->next_out to be NULL, meaning discard the output
12  *
13  * $FreeBSD: src/sys/net/zlib.c,v 1.10.2.3 2002/03/24 23:12:48 jedgar Exp $
14  * $DragonFly: src/sys/net/zlib.c,v 1.2 2003/06/17 04:28:48 dillon Exp $
15  */
16 
17 /*
18  *  ==FILEVERSION 971210==
19  *
20  * This marker is used by the Linux installation script to determine
21  * whether an up-to-date version of this file is already installed.
22  */
23 
24 #define NO_DUMMY_DECL
25 #define NO_ZCFUNCS
26 #define MY_ZCALLOC
27 
28 #if defined(__FreeBSD__) && defined(_KERNEL)
29 #define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
30 #endif
31 
32 
33 /* +++ zutil.h */
34 /* zutil.h -- internal interface and configuration of the compression library
35  * Copyright (C) 1995-1996 Jean-loup Gailly.
36  * For conditions of distribution and use, see copyright notice in zlib.h
37  */
38 
39 /* WARNING: this file should *not* be used by applications. It is
40    part of the implementation of the compression library and is
41    subject to change. Applications should only use zlib.h.
42  */
43 
44 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
45 
46 #ifndef _Z_UTIL_H
47 #define _Z_UTIL_H
48 
49 #ifdef _KERNEL
50 #include <net/zlib.h>
51 #else
52 #include "zlib.h"
53 #endif
54 
55 #ifdef _KERNEL
56 /* Assume this is a *BSD or SVR4 kernel */
57 #include <sys/types.h>
58 #include <sys/time.h>
59 #include <sys/systm.h>
60 #  define HAVE_MEMCPY
61 #  define memcpy(d, s, n)	bcopy((s), (d), (n))
62 #  define memset(d, v, n)	bzero((d), (n))
63 #  define memcmp		bcmp
64 
65 #else
66 #if defined(__KERNEL__)
67 /* Assume this is a Linux kernel */
68 #include <linux/string.h>
69 #define HAVE_MEMCPY
70 
71 #else /* not kernel */
72 
73 #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
74 #   include <stddef.h>
75 #   include <errno.h>
76 #else
77     extern int errno;
78 #endif
79 #ifdef STDC
80 #  include <string.h>
81 #  include <stdlib.h>
82 #endif
83 #endif /* __KERNEL__ */
84 #endif /* _KERNEL */
85 
86 #ifndef local
87 #  define local static
88 #endif
89 /* compile with -Dlocal if your debugger can't find static symbols */
90 
91 typedef unsigned char  uch;
92 typedef uch FAR uchf;
93 typedef unsigned short ush;
94 typedef ush FAR ushf;
95 typedef unsigned long  ulg;
96 
97 extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
98 /* (size given to avoid silly warnings with Visual C++) */
99 
100 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
101 
102 #define ERR_RETURN(strm,err) \
103   return (strm->msg = (const char*)ERR_MSG(err), (err))
104 /* To be used only when the state is known to be valid */
105 
106         /* common constants */
107 
108 #ifndef DEF_WBITS
109 #  define DEF_WBITS MAX_WBITS
110 #endif
111 /* default windowBits for decompression. MAX_WBITS is for compression only */
112 
113 #if MAX_MEM_LEVEL >= 8
114 #  define DEF_MEM_LEVEL 8
115 #else
116 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
117 #endif
118 /* default memLevel */
119 
120 #define STORED_BLOCK 0
121 #define STATIC_TREES 1
122 #define DYN_TREES    2
123 /* The three kinds of block type */
124 
125 #define MIN_MATCH  3
126 #define MAX_MATCH  258
127 /* The minimum and maximum match lengths */
128 
129 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
130 
131         /* target dependencies */
132 
133 #ifdef MSDOS
134 #  define OS_CODE  0x00
135 #  ifdef __TURBOC__
136 #    include <alloc.h>
137 #  else /* MSC or DJGPP */
138 #    include <malloc.h>
139 #  endif
140 #endif
141 
142 #ifdef OS2
143 #  define OS_CODE  0x06
144 #endif
145 
146 #ifdef WIN32 /* Window 95 & Windows NT */
147 #  define OS_CODE  0x0b
148 #endif
149 
150 #if defined(VAXC) || defined(VMS)
151 #  define OS_CODE  0x02
152 #  define FOPEN(name, mode) \
153      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
154 #endif
155 
156 #ifdef AMIGA
157 #  define OS_CODE  0x01
158 #endif
159 
160 #if defined(ATARI) || defined(atarist)
161 #  define OS_CODE  0x05
162 #endif
163 
164 #ifdef MACOS
165 #  define OS_CODE  0x07
166 #endif
167 
168 #ifdef __50SERIES /* Prime/PRIMOS */
169 #  define OS_CODE  0x0F
170 #endif
171 
172 #ifdef TOPS20
173 #  define OS_CODE  0x0a
174 #endif
175 
176 #if defined(_BEOS_) || defined(RISCOS)
177 #  define fdopen(fd,mode) NULL /* No fdopen() */
178 #endif
179 
180         /* Common defaults */
181 
182 #ifndef OS_CODE
183 #  define OS_CODE  0x03  /* assume Unix */
184 #endif
185 
186 #ifndef FOPEN
187 #  define FOPEN(name, mode) fopen((name), (mode))
188 #endif
189 
190          /* functions */
191 
192 #ifdef HAVE_STRERROR
193    extern char *strerror OF((int));
194 #  define zstrerror(errnum) strerror(errnum)
195 #else
196 #  define zstrerror(errnum) ""
197 #endif
198 
199 #if defined(pyr)
200 #  define NO_MEMCPY
201 #endif
202 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
203  /* Use our own functions for small and medium model with MSC <= 5.0.
204   * You may have to use the same strategy for Borland C (untested).
205   */
206 #  define NO_MEMCPY
207 #endif
208 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
209 #  define HAVE_MEMCPY
210 #endif
211 #ifdef HAVE_MEMCPY
212 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
213 #    define zmemcpy _fmemcpy
214 #    define zmemcmp _fmemcmp
215 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
216 #  else
217 #    define zmemcpy memcpy
218 #    define zmemcmp memcmp
219 #    define zmemzero(dest, len) memset(dest, 0, len)
220 #  endif
221 #else
222    extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
223    extern int  zmemcmp  OF((Bytef* s1,   Bytef* s2, uInt len));
224    extern void zmemzero OF((Bytef* dest, uInt len));
225 #endif
226 
227 /* Diagnostic functions */
228 #ifdef DEBUG_ZLIB
229 #  include <stdio.h>
230 #  ifndef verbose
231 #    define verbose 0
232 #  endif
233    extern void z_error    OF((char *m));
234 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
235 #  define Trace(x) fprintf x
236 #  define Tracev(x) {if (verbose) fprintf x ;}
237 #  define Tracevv(x) {if (verbose>1) fprintf x ;}
238 #  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
239 #  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
240 #else
241 #  define Assert(cond,msg)
242 #  define Trace(x)
243 #  define Tracev(x)
244 #  define Tracevv(x)
245 #  define Tracec(c,x)
246 #  define Tracecv(c,x)
247 #endif
248 
249 
250 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
251 
252 voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
253 void   zcfree  OF((voidpf opaque, voidpf ptr));
254 
255 #define ZALLOC(strm, items, size) \
256            (*((strm)->zalloc))((strm)->opaque, (items), (size))
257 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
258 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
259 
260 #endif /* _Z_UTIL_H */
261 /* --- zutil.h */
262 
263 /* +++ deflate.h */
264 /* deflate.h -- internal compression state
265  * Copyright (C) 1995-1996 Jean-loup Gailly
266  * For conditions of distribution and use, see copyright notice in zlib.h
267  */
268 
269 /* WARNING: this file should *not* be used by applications. It is
270    part of the implementation of the compression library and is
271    subject to change. Applications should only use zlib.h.
272  */
273 
274 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
275 
276 #ifndef _DEFLATE_H
277 #define _DEFLATE_H
278 
279 /* #include "zutil.h" */
280 
281 /* ===========================================================================
282  * Internal compression state.
283  */
284 
285 #define LENGTH_CODES 29
286 /* number of length codes, not counting the special END_BLOCK code */
287 
288 #define LITERALS  256
289 /* number of literal bytes 0..255 */
290 
291 #define L_CODES (LITERALS+1+LENGTH_CODES)
292 /* number of Literal or Length codes, including the END_BLOCK code */
293 
294 #define D_CODES   30
295 /* number of distance codes */
296 
297 #define BL_CODES  19
298 /* number of codes used to transfer the bit lengths */
299 
300 #define HEAP_SIZE (2*L_CODES+1)
301 /* maximum heap size */
302 
303 #define MAX_BITS 15
304 /* All codes must not exceed MAX_BITS bits */
305 
306 #define INIT_STATE    42
307 #define BUSY_STATE   113
308 #define FINISH_STATE 666
309 /* Stream status */
310 
311 
312 /* Data structure describing a single value and its code string. */
313 typedef struct ct_data_s {
314     union {
315         ush  freq;       /* frequency count */
316         ush  code;       /* bit string */
317     } fc;
318     union {
319         ush  dad;        /* father node in Huffman tree */
320         ush  len;        /* length of bit string */
321     } dl;
322 } FAR ct_data;
323 
324 #define Freq fc.freq
325 #define Code fc.code
326 #define Dad  dl.dad
327 #define Len  dl.len
328 
329 typedef struct static_tree_desc_s  static_tree_desc;
330 
331 typedef struct tree_desc_s {
332     ct_data *dyn_tree;           /* the dynamic tree */
333     int     max_code;            /* largest code with non zero frequency */
334     static_tree_desc *stat_desc; /* the corresponding static tree */
335 } FAR tree_desc;
336 
337 typedef ush Pos;
338 typedef Pos FAR Posf;
339 typedef unsigned IPos;
340 
341 /* A Pos is an index in the character window. We use short instead of int to
342  * save space in the various tables. IPos is used only for parameter passing.
343  */
344 
345 typedef struct deflate_state {
346     z_streamp strm;      /* pointer back to this zlib stream */
347     int   status;        /* as the name implies */
348     Bytef *pending_buf;  /* output still pending */
349     ulg   pending_buf_size; /* size of pending_buf */
350     Bytef *pending_out;  /* next pending byte to output to the stream */
351     int   pending;       /* nb of bytes in the pending buffer */
352     int   noheader;      /* suppress zlib header and adler32 */
353     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
354     Byte  method;        /* STORED (for zip only) or DEFLATED */
355     int   last_flush;    /* value of flush param for previous deflate call */
356 
357                 /* used by deflate.c: */
358 
359     uInt  w_size;        /* LZ77 window size (32K by default) */
360     uInt  w_bits;        /* log2(w_size)  (8..16) */
361     uInt  w_mask;        /* w_size - 1 */
362 
363     Bytef *window;
364     /* Sliding window. Input bytes are read into the second half of the window,
365      * and move to the first half later to keep a dictionary of at least wSize
366      * bytes. With this organization, matches are limited to a distance of
367      * wSize-MAX_MATCH bytes, but this ensures that IO is always
368      * performed with a length multiple of the block size. Also, it limits
369      * the window size to 64K, which is quite useful on MSDOS.
370      * To do: use the user input buffer as sliding window.
371      */
372 
373     ulg window_size;
374     /* Actual size of window: 2*wSize, except when the user input buffer
375      * is directly used as sliding window.
376      */
377 
378     Posf *prev;
379     /* Link to older string with same hash index. To limit the size of this
380      * array to 64K, this link is maintained only for the last 32K strings.
381      * An index in this array is thus a window index modulo 32K.
382      */
383 
384     Posf *head; /* Heads of the hash chains or NIL. */
385 
386     uInt  ins_h;          /* hash index of string to be inserted */
387     uInt  hash_size;      /* number of elements in hash table */
388     uInt  hash_bits;      /* log2(hash_size) */
389     uInt  hash_mask;      /* hash_size-1 */
390 
391     uInt  hash_shift;
392     /* Number of bits by which ins_h must be shifted at each input
393      * step. It must be such that after MIN_MATCH steps, the oldest
394      * byte no longer takes part in the hash key, that is:
395      *   hash_shift * MIN_MATCH >= hash_bits
396      */
397 
398     long block_start;
399     /* Window position at the beginning of the current output block. Gets
400      * negative when the window is moved backwards.
401      */
402 
403     uInt match_length;           /* length of best match */
404     IPos prev_match;             /* previous match */
405     int match_available;         /* set if previous match exists */
406     uInt strstart;               /* start of string to insert */
407     uInt match_start;            /* start of matching string */
408     uInt lookahead;              /* number of valid bytes ahead in window */
409 
410     uInt prev_length;
411     /* Length of the best match at previous step. Matches not greater than this
412      * are discarded. This is used in the lazy match evaluation.
413      */
414 
415     uInt max_chain_length;
416     /* To speed up deflation, hash chains are never searched beyond this
417      * length.  A higher limit improves compression ratio but degrades the
418      * speed.
419      */
420 
421     uInt max_lazy_match;
422     /* Attempt to find a better match only when the current match is strictly
423      * smaller than this value. This mechanism is used only for compression
424      * levels >= 4.
425      */
426 #   define max_insert_length  max_lazy_match
427     /* Insert new strings in the hash table only if the match length is not
428      * greater than this length. This saves time but degrades compression.
429      * max_insert_length is used only for compression levels <= 3.
430      */
431 
432     int level;    /* compression level (1..9) */
433     int strategy; /* favor or force Huffman coding*/
434 
435     uInt good_match;
436     /* Use a faster search when the previous match is longer than this */
437 
438     int nice_match; /* Stop searching when current match exceeds this */
439 
440                 /* used by trees.c: */
441     /* Didn't use ct_data typedef below to supress compiler warning */
442     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
443     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
444     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
445 
446     struct tree_desc_s l_desc;               /* desc. for literal tree */
447     struct tree_desc_s d_desc;               /* desc. for distance tree */
448     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
449 
450     ush bl_count[MAX_BITS+1];
451     /* number of codes at each bit length for an optimal tree */
452 
453     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
454     int heap_len;               /* number of elements in the heap */
455     int heap_max;               /* element of largest frequency */
456     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
457      * The same heap array is used to build all trees.
458      */
459 
460     uch depth[2*L_CODES+1];
461     /* Depth of each subtree used as tie breaker for trees of equal frequency
462      */
463 
464     uchf *l_buf;          /* buffer for literals or lengths */
465 
466     uInt  lit_bufsize;
467     /* Size of match buffer for literals/lengths.  There are 4 reasons for
468      * limiting lit_bufsize to 64K:
469      *   - frequencies can be kept in 16 bit counters
470      *   - if compression is not successful for the first block, all input
471      *     data is still in the window so we can still emit a stored block even
472      *     when input comes from standard input.  (This can also be done for
473      *     all blocks if lit_bufsize is not greater than 32K.)
474      *   - if compression is not successful for a file smaller than 64K, we can
475      *     even emit a stored file instead of a stored block (saving 5 bytes).
476      *     This is applicable only for zip (not gzip or zlib).
477      *   - creating new Huffman trees less frequently may not provide fast
478      *     adaptation to changes in the input data statistics. (Take for
479      *     example a binary file with poorly compressible code followed by
480      *     a highly compressible string table.) Smaller buffer sizes give
481      *     fast adaptation but have of course the overhead of transmitting
482      *     trees more frequently.
483      *   - I can't count above 4
484      */
485 
486     uInt last_lit;      /* running index in l_buf */
487 
488     ushf *d_buf;
489     /* Buffer for distances. To simplify the code, d_buf and l_buf have
490      * the same number of elements. To use different lengths, an extra flag
491      * array would be necessary.
492      */
493 
494     ulg opt_len;        /* bit length of current block with optimal trees */
495     ulg static_len;     /* bit length of current block with static trees */
496     ulg compressed_len; /* total bit length of compressed file */
497     uInt matches;       /* number of string matches in current block */
498     int last_eob_len;   /* bit length of EOB code for last block */
499 
500 #ifdef DEBUG_ZLIB
501     ulg bits_sent;      /* bit length of the compressed data */
502 #endif
503 
504     ush bi_buf;
505     /* Output buffer. bits are inserted starting at the bottom (least
506      * significant bits).
507      */
508     int bi_valid;
509     /* Number of valid bits in bi_buf.  All bits above the last valid bit
510      * are always zero.
511      */
512 
513 } FAR deflate_state;
514 
515 /* Output a byte on the stream.
516  * IN assertion: there is enough room in pending_buf.
517  */
518 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
519 
520 
521 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
522 /* Minimum amount of lookahead, except at the end of the input file.
523  * See deflate.c for comments about the MIN_MATCH+1.
524  */
525 
526 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
527 /* In order to simplify the code, particularly on 16 bit machines, match
528  * distances are limited to MAX_DIST instead of WSIZE.
529  */
530 
531         /* in trees.c */
532 void _tr_init         OF((deflate_state *s));
533 int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
534 ulg  _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
535 			  int eof));
536 void _tr_align        OF((deflate_state *s));
537 void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
538                           int eof));
539 void _tr_stored_type_only OF((deflate_state *));
540 
541 #endif
542 /* --- deflate.h */
543 
544 /* +++ deflate.c */
545 /* deflate.c -- compress data using the deflation algorithm
546  * Copyright (C) 1995-1996 Jean-loup Gailly.
547  * For conditions of distribution and use, see copyright notice in zlib.h
548  */
549 
550 /*
551  *  ALGORITHM
552  *
553  *      The "deflation" process depends on being able to identify portions
554  *      of the input text which are identical to earlier input (within a
555  *      sliding window trailing behind the input currently being processed).
556  *
557  *      The most straightforward technique turns out to be the fastest for
558  *      most input files: try all possible matches and select the longest.
559  *      The key feature of this algorithm is that insertions into the string
560  *      dictionary are very simple and thus fast, and deletions are avoided
561  *      completely. Insertions are performed at each input character, whereas
562  *      string matches are performed only when the previous match ends. So it
563  *      is preferable to spend more time in matches to allow very fast string
564  *      insertions and avoid deletions. The matching algorithm for small
565  *      strings is inspired from that of Rabin & Karp. A brute force approach
566  *      is used to find longer strings when a small match has been found.
567  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
568  *      (by Leonid Broukhis).
569  *         A previous version of this file used a more sophisticated algorithm
570  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
571  *      time, but has a larger average cost, uses more memory and is patented.
572  *      However the F&G algorithm may be faster for some highly redundant
573  *      files if the parameter max_chain_length (described below) is too large.
574  *
575  *  ACKNOWLEDGEMENTS
576  *
577  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
578  *      I found it in 'freeze' written by Leonid Broukhis.
579  *      Thanks to many people for bug reports and testing.
580  *
581  *  REFERENCES
582  *
583  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
584  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
585  *
586  *      A description of the Rabin and Karp algorithm is given in the book
587  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
588  *
589  *      Fiala,E.R., and Greene,D.H.
590  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
591  *
592  */
593 
594 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
595 
596 /* #include "deflate.h" */
597 
598 char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
599 /*
600   If you use the zlib library in a product, an acknowledgment is welcome
601   in the documentation of your product. If for some reason you cannot
602   include such an acknowledgment, I would appreciate that you keep this
603   copyright string in the executable of your product.
604  */
605 
606 /* ===========================================================================
607  *  Function prototypes.
608  */
609 typedef enum {
610     need_more,      /* block not completed, need more input or more output */
611     block_done,     /* block flush performed */
612     finish_started, /* finish started, need only more output at next deflate */
613     finish_done     /* finish done, accept no more input or output */
614 } block_state;
615 
616 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
617 /* Compression function. Returns the block state after the call. */
618 
619 local void fill_window    OF((deflate_state *s));
620 local block_state deflate_stored OF((deflate_state *s, int flush));
621 local block_state deflate_fast   OF((deflate_state *s, int flush));
622 local block_state deflate_slow   OF((deflate_state *s, int flush));
623 local void lm_init        OF((deflate_state *s));
624 local void putShortMSB    OF((deflate_state *s, uInt b));
625 local void flush_pending  OF((z_streamp strm));
626 local int read_buf        OF((z_streamp strm, charf *buf, unsigned size));
627 #ifdef ASMV
628       void match_init OF((void)); /* asm code initialization */
629       uInt longest_match  OF((deflate_state *s, IPos cur_match));
630 #else
631 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
632 #endif
633 
634 #ifdef DEBUG_ZLIB
635 local  void check_match OF((deflate_state *s, IPos start, IPos match,
636                             int length));
637 #endif
638 
639 /* ===========================================================================
640  * Local data
641  */
642 
643 #define NIL 0
644 /* Tail of hash chains */
645 
646 #ifndef TOO_FAR
647 #  define TOO_FAR 4096
648 #endif
649 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
650 
651 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
652 /* Minimum amount of lookahead, except at the end of the input file.
653  * See deflate.c for comments about the MIN_MATCH+1.
654  */
655 
656 /* Values for max_lazy_match, good_match and max_chain_length, depending on
657  * the desired pack level (0..9). The values given below have been tuned to
658  * exclude worst case performance for pathological files. Better values may be
659  * found for specific files.
660  */
661 typedef struct config_s {
662    ush good_length; /* reduce lazy search above this match length */
663    ush max_lazy;    /* do not perform lazy search above this match length */
664    ush nice_length; /* quit search above this match length */
665    ush max_chain;
666    compress_func func;
667 } config;
668 
669 local config configuration_table[10] = {
670 /*      good lazy nice chain */
671 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
672 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
673 /* 2 */ {4,    5, 16,    8, deflate_fast},
674 /* 3 */ {4,    6, 32,   32, deflate_fast},
675 
676 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
677 /* 5 */ {8,   16, 32,   32, deflate_slow},
678 /* 6 */ {8,   16, 128, 128, deflate_slow},
679 /* 7 */ {8,   32, 128, 256, deflate_slow},
680 /* 8 */ {32, 128, 258, 1024, deflate_slow},
681 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
682 
683 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
684  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
685  * meaning.
686  */
687 
688 #define EQUAL 0
689 /* result of memcmp for equal strings */
690 
691 #ifndef NO_DUMMY_DECL
692 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
693 #endif
694 
695 /* ===========================================================================
696  * Update a hash value with the given input byte
697  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
698  *    input characters, so that a running hash key can be computed from the
699  *    previous key instead of complete recalculation each time.
700  */
701 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
702 
703 
704 /* ===========================================================================
705  * Insert string str in the dictionary and set match_head to the previous head
706  * of the hash chain (the most recent string with same hash key). Return
707  * the previous length of the hash chain.
708  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
709  *    input characters and the first MIN_MATCH bytes of str are valid
710  *    (except for the last MIN_MATCH-1 bytes of the input file).
711  */
712 #define INSERT_STRING(s, str, match_head) \
713    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
714     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
715     s->head[s->ins_h] = (Pos)(str))
716 
717 /* ===========================================================================
718  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
719  * prev[] will be initialized on the fly.
720  */
721 #define CLEAR_HASH(s) \
722     s->head[s->hash_size-1] = NIL; \
723     zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
724 
725 /* ========================================================================= */
726 int deflateInit_(strm, level, version, stream_size)
727     z_streamp strm;
728     int level;
729     const char *version;
730     int stream_size;
731 {
732     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
733 			 Z_DEFAULT_STRATEGY, version, stream_size);
734     /* To do: ignore strm->next_in if we use it as window */
735 }
736 
737 /* ========================================================================= */
738 int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
739 		  version, stream_size)
740     z_streamp strm;
741     int  level;
742     int  method;
743     int  windowBits;
744     int  memLevel;
745     int  strategy;
746     const char *version;
747     int stream_size;
748 {
749     deflate_state *s;
750     int noheader = 0;
751     static char* my_version = ZLIB_VERSION;
752 
753     ushf *overlay;
754     /* We overlay pending_buf and d_buf+l_buf. This works since the average
755      * output size for (length,distance) codes is <= 24 bits.
756      */
757 
758     if (version == Z_NULL || version[0] != my_version[0] ||
759         stream_size != sizeof(z_stream)) {
760 	return Z_VERSION_ERROR;
761     }
762     if (strm == Z_NULL) return Z_STREAM_ERROR;
763 
764     strm->msg = Z_NULL;
765 #ifndef NO_ZCFUNCS
766     if (strm->zalloc == Z_NULL) {
767 	strm->zalloc = zcalloc;
768 	strm->opaque = (voidpf)0;
769     }
770     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
771 #endif
772 
773     if (level == Z_DEFAULT_COMPRESSION) level = 6;
774 
775     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
776         noheader = 1;
777         windowBits = -windowBits;
778     }
779     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
780         windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
781 	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
782         return Z_STREAM_ERROR;
783     }
784     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
785     if (s == Z_NULL) return Z_MEM_ERROR;
786     strm->state = (struct internal_state FAR *)s;
787     s->strm = strm;
788 
789     s->noheader = noheader;
790     s->w_bits = windowBits;
791     s->w_size = 1 << s->w_bits;
792     s->w_mask = s->w_size - 1;
793 
794     s->hash_bits = memLevel + 7;
795     s->hash_size = 1 << s->hash_bits;
796     s->hash_mask = s->hash_size - 1;
797     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
798 
799     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
800     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
801     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
802 
803     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
804 
805     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
806     s->pending_buf = (uchf *) overlay;
807     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
808 
809     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
810         s->pending_buf == Z_NULL) {
811         strm->msg = (const char*)ERR_MSG(Z_MEM_ERROR);
812         deflateEnd (strm);
813         return Z_MEM_ERROR;
814     }
815     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
816     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
817 
818     s->level = level;
819     s->strategy = strategy;
820     s->method = (Byte)method;
821 
822     return deflateReset(strm);
823 }
824 
825 /* ========================================================================= */
826 int deflateSetDictionary (strm, dictionary, dictLength)
827     z_streamp strm;
828     const Bytef *dictionary;
829     uInt  dictLength;
830 {
831     deflate_state *s;
832     uInt length = dictLength;
833     uInt n;
834     IPos hash_head = 0;
835 
836     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
837 	return Z_STREAM_ERROR;
838 
839     s = (deflate_state *) strm->state;
840     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
841 
842     strm->adler = adler32(strm->adler, dictionary, dictLength);
843 
844     if (length < MIN_MATCH) return Z_OK;
845     if (length > MAX_DIST(s)) {
846 	length = MAX_DIST(s);
847 #ifndef USE_DICT_HEAD
848 	dictionary += dictLength - length; /* use the tail of the dictionary */
849 #endif
850     }
851     zmemcpy((charf *)s->window, dictionary, length);
852     s->strstart = length;
853     s->block_start = (long)length;
854 
855     /* Insert all strings in the hash table (except for the last two bytes).
856      * s->lookahead stays null, so s->ins_h will be recomputed at the next
857      * call of fill_window.
858      */
859     s->ins_h = s->window[0];
860     UPDATE_HASH(s, s->ins_h, s->window[1]);
861     for (n = 0; n <= length - MIN_MATCH; n++) {
862 	INSERT_STRING(s, n, hash_head);
863     }
864     if (hash_head) hash_head = 0;  /* to make compiler happy */
865     return Z_OK;
866 }
867 
868 /* ========================================================================= */
869 int deflateReset (strm)
870     z_streamp strm;
871 {
872     deflate_state *s;
873 
874     if (strm == Z_NULL || strm->state == Z_NULL ||
875         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
876 
877     strm->total_in = strm->total_out = 0;
878     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
879     strm->data_type = Z_UNKNOWN;
880 
881     s = (deflate_state *)strm->state;
882     s->pending = 0;
883     s->pending_out = s->pending_buf;
884 
885     if (s->noheader < 0) {
886         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
887     }
888     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
889     strm->adler = 1;
890     s->last_flush = Z_NO_FLUSH;
891 
892     _tr_init(s);
893     lm_init(s);
894 
895     return Z_OK;
896 }
897 
898 /* ========================================================================= */
899 int deflateParams(strm, level, strategy)
900     z_streamp strm;
901     int level;
902     int strategy;
903 {
904     deflate_state *s;
905     compress_func func;
906     int err = Z_OK;
907 
908     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
909     s = (deflate_state *) strm->state;
910 
911     if (level == Z_DEFAULT_COMPRESSION) {
912 	level = 6;
913     }
914     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
915 	return Z_STREAM_ERROR;
916     }
917     func = configuration_table[s->level].func;
918 
919     if (func != configuration_table[level].func && strm->total_in != 0) {
920 	/* Flush the last buffer: */
921 	err = deflate(strm, Z_PARTIAL_FLUSH);
922     }
923     if (s->level != level) {
924 	s->level = level;
925 	s->max_lazy_match   = configuration_table[level].max_lazy;
926 	s->good_match       = configuration_table[level].good_length;
927 	s->nice_match       = configuration_table[level].nice_length;
928 	s->max_chain_length = configuration_table[level].max_chain;
929     }
930     s->strategy = strategy;
931     return err;
932 }
933 
934 /* =========================================================================
935  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
936  * IN assertion: the stream state is correct and there is enough room in
937  * pending_buf.
938  */
939 local void putShortMSB (s, b)
940     deflate_state *s;
941     uInt b;
942 {
943     put_byte(s, (Byte)(b >> 8));
944     put_byte(s, (Byte)(b & 0xff));
945 }
946 
947 /* =========================================================================
948  * Flush as much pending output as possible. All deflate() output goes
949  * through this function so some applications may wish to modify it
950  * to avoid allocating a large strm->next_out buffer and copying into it.
951  * (See also read_buf()).
952  */
953 local void flush_pending(strm)
954     z_streamp strm;
955 {
956     deflate_state *s = (deflate_state *) strm->state;
957     unsigned len = s->pending;
958 
959     if (len > strm->avail_out) len = strm->avail_out;
960     if (len == 0) return;
961 
962     if (strm->next_out != Z_NULL) {
963 	zmemcpy(strm->next_out, s->pending_out, len);
964 	strm->next_out += len;
965     }
966     s->pending_out += len;
967     strm->total_out += len;
968     strm->avail_out  -= len;
969     s->pending -= len;
970     if (s->pending == 0) {
971         s->pending_out = s->pending_buf;
972     }
973 }
974 
975 /* ========================================================================= */
976 int deflate (strm, flush)
977     z_streamp strm;
978     int flush;
979 {
980     int old_flush; /* value of flush param for previous deflate call */
981     deflate_state *s;
982 
983     if (strm == Z_NULL || strm->state == Z_NULL ||
984 	flush > Z_FINISH || flush < 0) {
985         return Z_STREAM_ERROR;
986     }
987     s = (deflate_state *) strm->state;
988 
989     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
990 	(s->status == FINISH_STATE && flush != Z_FINISH)) {
991         ERR_RETURN(strm, Z_STREAM_ERROR);
992     }
993     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
994 
995     s->strm = strm; /* just in case */
996     old_flush = s->last_flush;
997     s->last_flush = flush;
998 
999     /* Write the zlib header */
1000     if (s->status == INIT_STATE) {
1001 
1002         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1003         uInt level_flags = (s->level-1) >> 1;
1004 
1005         if (level_flags > 3) level_flags = 3;
1006         header |= (level_flags << 6);
1007 	if (s->strstart != 0) header |= PRESET_DICT;
1008         header += 31 - (header % 31);
1009 
1010         s->status = BUSY_STATE;
1011         putShortMSB(s, header);
1012 
1013 	/* Save the adler32 of the preset dictionary: */
1014 	if (s->strstart != 0) {
1015 	    putShortMSB(s, (uInt)(strm->adler >> 16));
1016 	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1017 	}
1018 	strm->adler = 1L;
1019     }
1020 
1021     /* Flush as much pending output as possible */
1022     if (s->pending != 0) {
1023         flush_pending(strm);
1024         if (strm->avail_out == 0) {
1025 	    /* Since avail_out is 0, deflate will be called again with
1026 	     * more output space, but possibly with both pending and
1027 	     * avail_in equal to zero. There won't be anything to do,
1028 	     * but this is not an error situation so make sure we
1029 	     * return OK instead of BUF_ERROR at next call of deflate:
1030              */
1031 	    s->last_flush = -1;
1032 	    return Z_OK;
1033 	}
1034 
1035     /* Make sure there is something to do and avoid duplicate consecutive
1036      * flushes. For repeated and useless calls with Z_FINISH, we keep
1037      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1038      */
1039     } else if (strm->avail_in == 0 && flush <= old_flush &&
1040 	       flush != Z_FINISH) {
1041         ERR_RETURN(strm, Z_BUF_ERROR);
1042     }
1043 
1044     /* User must not provide more input after the first FINISH: */
1045     if (s->status == FINISH_STATE && strm->avail_in != 0) {
1046         ERR_RETURN(strm, Z_BUF_ERROR);
1047     }
1048 
1049     /* Start a new block or continue the current one.
1050      */
1051     if (strm->avail_in != 0 || s->lookahead != 0 ||
1052         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1053         block_state bstate;
1054 
1055 	bstate = (*(configuration_table[s->level].func))(s, flush);
1056 
1057         if (bstate == finish_started || bstate == finish_done) {
1058             s->status = FINISH_STATE;
1059         }
1060         if (bstate == need_more || bstate == finish_started) {
1061 	    if (strm->avail_out == 0) {
1062 	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1063 	    }
1064 	    return Z_OK;
1065 	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1066 	     * of deflate should use the same flush parameter to make sure
1067 	     * that the flush is complete. So we don't have to output an
1068 	     * empty block here, this will be done at next call. This also
1069 	     * ensures that for a very small output buffer, we emit at most
1070 	     * one empty block.
1071 	     */
1072 	}
1073         if (bstate == block_done) {
1074             if (flush == Z_PARTIAL_FLUSH) {
1075                 _tr_align(s);
1076 	    } else if (flush == Z_PACKET_FLUSH) {
1077 		/* Output just the 3-bit `stored' block type value,
1078 		   but not a zero length. */
1079 		_tr_stored_type_only(s);
1080             } else { /* FULL_FLUSH or SYNC_FLUSH */
1081                 _tr_stored_block(s, (char*)0, 0L, 0);
1082                 /* For a full flush, this empty block will be recognized
1083                  * as a special marker by inflate_sync().
1084                  */
1085                 if (flush == Z_FULL_FLUSH) {
1086                     CLEAR_HASH(s);             /* forget history */
1087                 }
1088             }
1089             flush_pending(strm);
1090 	    if (strm->avail_out == 0) {
1091 	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1092 	      return Z_OK;
1093 	    }
1094         }
1095     }
1096     Assert(strm->avail_out > 0, "bug2");
1097 
1098     if (flush != Z_FINISH) return Z_OK;
1099     if (s->noheader) return Z_STREAM_END;
1100 
1101     /* Write the zlib trailer (adler32) */
1102     putShortMSB(s, (uInt)(strm->adler >> 16));
1103     putShortMSB(s, (uInt)(strm->adler & 0xffff));
1104     flush_pending(strm);
1105     /* If avail_out is zero, the application will call deflate again
1106      * to flush the rest.
1107      */
1108     s->noheader = -1; /* write the trailer only once! */
1109     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1110 }
1111 
1112 /* ========================================================================= */
1113 int deflateEnd (strm)
1114     z_streamp strm;
1115 {
1116     int status;
1117     deflate_state *s;
1118 
1119     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1120     s = (deflate_state *) strm->state;
1121 
1122     status = s->status;
1123     if (status != INIT_STATE && status != BUSY_STATE &&
1124 	status != FINISH_STATE) {
1125       return Z_STREAM_ERROR;
1126     }
1127 
1128     /* Deallocate in reverse order of allocations: */
1129     TRY_FREE(strm, s->pending_buf);
1130     TRY_FREE(strm, s->head);
1131     TRY_FREE(strm, s->prev);
1132     TRY_FREE(strm, s->window);
1133 
1134     ZFREE(strm, s);
1135     strm->state = Z_NULL;
1136 
1137     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1138 }
1139 
1140 /* =========================================================================
1141  * Copy the source state to the destination state.
1142  */
1143 int deflateCopy (dest, source)
1144     z_streamp dest;
1145     z_streamp source;
1146 {
1147     deflate_state *ds;
1148     deflate_state *ss;
1149     ushf *overlay;
1150 
1151     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1152         return Z_STREAM_ERROR;
1153     ss = (deflate_state *) source->state;
1154 
1155     zmemcpy(dest, source, sizeof(*dest));
1156 
1157     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1158     if (ds == Z_NULL) return Z_MEM_ERROR;
1159     dest->state = (struct internal_state FAR *) ds;
1160     zmemcpy(ds, ss, sizeof(*ds));
1161     ds->strm = dest;
1162 
1163     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1164     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1165     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1166     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1167     ds->pending_buf = (uchf *) overlay;
1168 
1169     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1170         ds->pending_buf == Z_NULL) {
1171         deflateEnd (dest);
1172         return Z_MEM_ERROR;
1173     }
1174     /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1175     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1176     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1177     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1178     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1179 
1180     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1181     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1182     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1183 
1184     ds->l_desc.dyn_tree = ds->dyn_ltree;
1185     ds->d_desc.dyn_tree = ds->dyn_dtree;
1186     ds->bl_desc.dyn_tree = ds->bl_tree;
1187 
1188     return Z_OK;
1189 }
1190 
1191 /* ===========================================================================
1192  * Return the number of bytes of output which are immediately available
1193  * for output from the decompressor.
1194  */
1195 int deflateOutputPending (strm)
1196     z_streamp strm;
1197 {
1198     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1199 
1200     return ((deflate_state *)(strm->state))->pending;
1201 }
1202 
1203 /* ===========================================================================
1204  * Read a new buffer from the current input stream, update the adler32
1205  * and total number of bytes read.  All deflate() input goes through
1206  * this function so some applications may wish to modify it to avoid
1207  * allocating a large strm->next_in buffer and copying from it.
1208  * (See also flush_pending()).
1209  */
1210 local int read_buf(strm, buf, size)
1211     z_streamp strm;
1212     charf *buf;
1213     unsigned size;
1214 {
1215     unsigned len = strm->avail_in;
1216 
1217     if (len > size) len = size;
1218     if (len == 0) return 0;
1219 
1220     strm->avail_in  -= len;
1221 
1222     if (!((deflate_state *)(strm->state))->noheader) {
1223         strm->adler = adler32(strm->adler, strm->next_in, len);
1224     }
1225     zmemcpy(buf, strm->next_in, len);
1226     strm->next_in  += len;
1227     strm->total_in += len;
1228 
1229     return (int)len;
1230 }
1231 
1232 /* ===========================================================================
1233  * Initialize the "longest match" routines for a new zlib stream
1234  */
1235 local void lm_init (s)
1236     deflate_state *s;
1237 {
1238     s->window_size = (ulg)2L*s->w_size;
1239 
1240     CLEAR_HASH(s);
1241 
1242     /* Set the default configuration parameters:
1243      */
1244     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1245     s->good_match       = configuration_table[s->level].good_length;
1246     s->nice_match       = configuration_table[s->level].nice_length;
1247     s->max_chain_length = configuration_table[s->level].max_chain;
1248 
1249     s->strstart = 0;
1250     s->block_start = 0L;
1251     s->lookahead = 0;
1252     s->match_length = s->prev_length = MIN_MATCH-1;
1253     s->match_available = 0;
1254     s->ins_h = 0;
1255 #ifdef ASMV
1256     match_init(); /* initialize the asm code */
1257 #endif
1258 }
1259 
1260 /* ===========================================================================
1261  * Set match_start to the longest match starting at the given string and
1262  * return its length. Matches shorter or equal to prev_length are discarded,
1263  * in which case the result is equal to prev_length and match_start is
1264  * garbage.
1265  * IN assertions: cur_match is the head of the hash chain for the current
1266  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1267  * OUT assertion: the match length is not greater than s->lookahead.
1268  */
1269 #ifndef ASMV
1270 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1271  * match.S. The code will be functionally equivalent.
1272  */
1273 local uInt longest_match(s, cur_match)
1274     deflate_state *s;
1275     IPos cur_match;                             /* current match */
1276 {
1277     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1278     register Bytef *scan = s->window + s->strstart; /* current string */
1279     register Bytef *match;                       /* matched string */
1280     register int len;                           /* length of current match */
1281     int best_len = s->prev_length;              /* best match length so far */
1282     int nice_match = s->nice_match;             /* stop if match long enough */
1283     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1284         s->strstart - (IPos)MAX_DIST(s) : NIL;
1285     /* Stop when cur_match becomes <= limit. To simplify the code,
1286      * we prevent matches with the string of window index 0.
1287      */
1288     Posf *prev = s->prev;
1289     uInt wmask = s->w_mask;
1290 
1291 #ifdef UNALIGNED_OK
1292     /* Compare two bytes at a time. Note: this is not always beneficial.
1293      * Try with and without -DUNALIGNED_OK to check.
1294      */
1295     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1296     register ush scan_start = *(ushf*)scan;
1297     register ush scan_end   = *(ushf*)(scan+best_len-1);
1298 #else
1299     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1300     register Byte scan_end1  = scan[best_len-1];
1301     register Byte scan_end   = scan[best_len];
1302 #endif
1303 
1304     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1305      * It is easy to get rid of this optimization if necessary.
1306      */
1307     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1308 
1309     /* Do not waste too much time if we already have a good match: */
1310     if (s->prev_length >= s->good_match) {
1311         chain_length >>= 2;
1312     }
1313     /* Do not look for matches beyond the end of the input. This is necessary
1314      * to make deflate deterministic.
1315      */
1316     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1317 
1318     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1319 
1320     do {
1321         Assert(cur_match < s->strstart, "no future");
1322         match = s->window + cur_match;
1323 
1324         /* Skip to next match if the match length cannot increase
1325          * or if the match length is less than 2:
1326          */
1327 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1328         /* This code assumes sizeof(unsigned short) == 2. Do not use
1329          * UNALIGNED_OK if your compiler uses a different size.
1330          */
1331         if (*(ushf*)(match+best_len-1) != scan_end ||
1332             *(ushf*)match != scan_start) continue;
1333 
1334         /* It is not necessary to compare scan[2] and match[2] since they are
1335          * always equal when the other bytes match, given that the hash keys
1336          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1337          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1338          * lookahead only every 4th comparison; the 128th check will be made
1339          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1340          * necessary to put more guard bytes at the end of the window, or
1341          * to check more often for insufficient lookahead.
1342          */
1343         Assert(scan[2] == match[2], "scan[2]?");
1344         scan++, match++;
1345         do {
1346         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1347                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1348                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1349                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1350                  scan < strend);
1351         /* The funny "do {}" generates better code on most compilers */
1352 
1353         /* Here, scan <= window+strstart+257 */
1354         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1355         if (*scan == *match) scan++;
1356 
1357         len = (MAX_MATCH - 1) - (int)(strend-scan);
1358         scan = strend - (MAX_MATCH-1);
1359 
1360 #else /* UNALIGNED_OK */
1361 
1362         if (match[best_len]   != scan_end  ||
1363             match[best_len-1] != scan_end1 ||
1364             *match            != *scan     ||
1365             *++match          != scan[1])      continue;
1366 
1367         /* The check at best_len-1 can be removed because it will be made
1368          * again later. (This heuristic is not always a win.)
1369          * It is not necessary to compare scan[2] and match[2] since they
1370          * are always equal when the other bytes match, given that
1371          * the hash keys are equal and that HASH_BITS >= 8.
1372          */
1373         scan += 2, match++;
1374         Assert(*scan == *match, "match[2]?");
1375 
1376         /* We check for insufficient lookahead only every 8th comparison;
1377          * the 256th check will be made at strstart+258.
1378          */
1379         do {
1380         } while (*++scan == *++match && *++scan == *++match &&
1381                  *++scan == *++match && *++scan == *++match &&
1382                  *++scan == *++match && *++scan == *++match &&
1383                  *++scan == *++match && *++scan == *++match &&
1384                  scan < strend);
1385 
1386         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1387 
1388         len = MAX_MATCH - (int)(strend - scan);
1389         scan = strend - MAX_MATCH;
1390 
1391 #endif /* UNALIGNED_OK */
1392 
1393         if (len > best_len) {
1394             s->match_start = cur_match;
1395             best_len = len;
1396             if (len >= nice_match) break;
1397 #ifdef UNALIGNED_OK
1398             scan_end = *(ushf*)(scan+best_len-1);
1399 #else
1400             scan_end1  = scan[best_len-1];
1401             scan_end   = scan[best_len];
1402 #endif
1403         }
1404     } while ((cur_match = prev[cur_match & wmask]) > limit
1405              && --chain_length != 0);
1406 
1407     if ((uInt)best_len <= s->lookahead) return best_len;
1408     return s->lookahead;
1409 }
1410 #endif /* ASMV */
1411 
1412 #ifdef DEBUG_ZLIB
1413 /* ===========================================================================
1414  * Check that the match at match_start is indeed a match.
1415  */
1416 local void check_match(s, start, match, length)
1417     deflate_state *s;
1418     IPos start, match;
1419     int length;
1420 {
1421     /* check that the match is indeed a match */
1422     if (zmemcmp((charf *)s->window + match,
1423                 (charf *)s->window + start, length) != EQUAL) {
1424         fprintf(stderr, " start %u, match %u, length %d\n",
1425 		start, match, length);
1426         do {
1427 	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1428 	} while (--length != 0);
1429         z_error("invalid match");
1430     }
1431     if (z_verbose > 1) {
1432         fprintf(stderr,"\\[%d,%d]", start-match, length);
1433         do { putc(s->window[start++], stderr); } while (--length != 0);
1434     }
1435 }
1436 #else
1437 #  define check_match(s, start, match, length)
1438 #endif
1439 
1440 /* ===========================================================================
1441  * Fill the window when the lookahead becomes insufficient.
1442  * Updates strstart and lookahead.
1443  *
1444  * IN assertion: lookahead < MIN_LOOKAHEAD
1445  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1446  *    At least one byte has been read, or avail_in == 0; reads are
1447  *    performed for at least two bytes (required for the zip translate_eol
1448  *    option -- not supported here).
1449  */
1450 local void fill_window(s)
1451     deflate_state *s;
1452 {
1453     register unsigned n, m;
1454     register Posf *p;
1455     unsigned more;    /* Amount of free space at the end of the window. */
1456     uInt wsize = s->w_size;
1457 
1458     do {
1459         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1460 
1461         /* Deal with !@#$% 64K limit: */
1462         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1463             more = wsize;
1464 
1465         } else if (more == (unsigned)(-1)) {
1466             /* Very unlikely, but possible on 16 bit machine if strstart == 0
1467              * and lookahead == 1 (input done one byte at time)
1468              */
1469             more--;
1470 
1471         /* If the window is almost full and there is insufficient lookahead,
1472          * move the upper half to the lower one to make room in the upper half.
1473          */
1474         } else if (s->strstart >= wsize+MAX_DIST(s)) {
1475 
1476             zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1477                    (unsigned)wsize);
1478             s->match_start -= wsize;
1479             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1480             s->block_start -= (long) wsize;
1481 
1482             /* Slide the hash table (could be avoided with 32 bit values
1483                at the expense of memory usage). We slide even when level == 0
1484                to keep the hash table consistent if we switch back to level > 0
1485                later. (Using level 0 permanently is not an optimal usage of
1486                zlib, so we don't care about this pathological case.)
1487              */
1488             n = s->hash_size;
1489             p = &s->head[n];
1490             do {
1491                 m = *--p;
1492                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1493             } while (--n);
1494 
1495             n = wsize;
1496             p = &s->prev[n];
1497             do {
1498                 m = *--p;
1499                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1500                 /* If n is not on any hash chain, prev[n] is garbage but
1501                  * its value will never be used.
1502                  */
1503             } while (--n);
1504             more += wsize;
1505         }
1506         if (s->strm->avail_in == 0) return;
1507 
1508         /* If there was no sliding:
1509          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1510          *    more == window_size - lookahead - strstart
1511          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1512          * => more >= window_size - 2*WSIZE + 2
1513          * In the BIG_MEM or MMAP case (not yet supported),
1514          *   window_size == input_size + MIN_LOOKAHEAD  &&
1515          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1516          * Otherwise, window_size == 2*WSIZE so more >= 2.
1517          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1518          */
1519         Assert(more >= 2, "more < 2");
1520 
1521         n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1522                      more);
1523         s->lookahead += n;
1524 
1525         /* Initialize the hash value now that we have some input: */
1526         if (s->lookahead >= MIN_MATCH) {
1527             s->ins_h = s->window[s->strstart];
1528             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1529 #if MIN_MATCH != 3
1530             Call UPDATE_HASH() MIN_MATCH-3 more times
1531 #endif
1532         }
1533         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1534          * but this is not important since only literal bytes will be emitted.
1535          */
1536 
1537     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1538 }
1539 
1540 /* ===========================================================================
1541  * Flush the current block, with given end-of-file flag.
1542  * IN assertion: strstart is set to the end of the current match.
1543  */
1544 #define FLUSH_BLOCK_ONLY(s, eof) { \
1545    _tr_flush_block(s, (s->block_start >= 0L ? \
1546                    (charf *)&s->window[(unsigned)s->block_start] : \
1547                    (charf *)Z_NULL), \
1548 		(ulg)((long)s->strstart - s->block_start), \
1549 		(eof)); \
1550    s->block_start = s->strstart; \
1551    flush_pending(s->strm); \
1552    Tracev((stderr,"[FLUSH]")); \
1553 }
1554 
1555 /* Same but force premature exit if necessary. */
1556 #define FLUSH_BLOCK(s, eof) { \
1557    FLUSH_BLOCK_ONLY(s, eof); \
1558    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1559 }
1560 
1561 /* ===========================================================================
1562  * Copy without compression as much as possible from the input stream, return
1563  * the current block state.
1564  * This function does not insert new strings in the dictionary since
1565  * uncompressible data is probably not useful. This function is used
1566  * only for the level=0 compression option.
1567  * NOTE: this function should be optimized to avoid extra copying from
1568  * window to pending_buf.
1569  */
1570 local block_state deflate_stored(s, flush)
1571     deflate_state *s;
1572     int flush;
1573 {
1574     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1575      * to pending_buf_size, and each stored block has a 5 byte header:
1576      */
1577     ulg max_block_size = 0xffff;
1578     ulg max_start;
1579 
1580     if (max_block_size > s->pending_buf_size - 5) {
1581         max_block_size = s->pending_buf_size - 5;
1582     }
1583 
1584     /* Copy as much as possible from input to output: */
1585     for (;;) {
1586         /* Fill the window as much as possible: */
1587         if (s->lookahead <= 1) {
1588 
1589             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1590 		   s->block_start >= (long)s->w_size, "slide too late");
1591 
1592             fill_window(s);
1593             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1594 
1595             if (s->lookahead == 0) break; /* flush the current block */
1596         }
1597 	Assert(s->block_start >= 0L, "block gone");
1598 
1599 	s->strstart += s->lookahead;
1600 	s->lookahead = 0;
1601 
1602 	/* Emit a stored block if pending_buf will be full: */
1603  	max_start = s->block_start + max_block_size;
1604         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1605 	    /* strstart == 0 is possible when wraparound on 16-bit machine */
1606 	    s->lookahead = (uInt)(s->strstart - max_start);
1607 	    s->strstart = (uInt)max_start;
1608             FLUSH_BLOCK(s, 0);
1609 	}
1610 	/* Flush if we may have to slide, otherwise block_start may become
1611          * negative and the data will be gone:
1612          */
1613         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1614             FLUSH_BLOCK(s, 0);
1615 	}
1616     }
1617     FLUSH_BLOCK(s, flush == Z_FINISH);
1618     return flush == Z_FINISH ? finish_done : block_done;
1619 }
1620 
1621 /* ===========================================================================
1622  * Compress as much as possible from the input stream, return the current
1623  * block state.
1624  * This function does not perform lazy evaluation of matches and inserts
1625  * new strings in the dictionary only for unmatched strings or for short
1626  * matches. It is used only for the fast compression options.
1627  */
1628 local block_state deflate_fast(s, flush)
1629     deflate_state *s;
1630     int flush;
1631 {
1632     IPos hash_head = NIL; /* head of the hash chain */
1633     int bflush;           /* set if current block must be flushed */
1634 
1635     for (;;) {
1636         /* Make sure that we always have enough lookahead, except
1637          * at the end of the input file. We need MAX_MATCH bytes
1638          * for the next match, plus MIN_MATCH bytes to insert the
1639          * string following the next match.
1640          */
1641         if (s->lookahead < MIN_LOOKAHEAD) {
1642             fill_window(s);
1643             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1644 	        return need_more;
1645 	    }
1646             if (s->lookahead == 0) break; /* flush the current block */
1647         }
1648 
1649         /* Insert the string window[strstart .. strstart+2] in the
1650          * dictionary, and set hash_head to the head of the hash chain:
1651          */
1652         if (s->lookahead >= MIN_MATCH) {
1653             INSERT_STRING(s, s->strstart, hash_head);
1654         }
1655 
1656         /* Find the longest match, discarding those <= prev_length.
1657          * At this point we have always match_length < MIN_MATCH
1658          */
1659         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1660             /* To simplify the code, we prevent matches with the string
1661              * of window index 0 (in particular we have to avoid a match
1662              * of the string with itself at the start of the input file).
1663              */
1664             if (s->strategy != Z_HUFFMAN_ONLY) {
1665                 s->match_length = longest_match (s, hash_head);
1666             }
1667             /* longest_match() sets match_start */
1668         }
1669         if (s->match_length >= MIN_MATCH) {
1670             check_match(s, s->strstart, s->match_start, s->match_length);
1671 
1672             bflush = _tr_tally(s, s->strstart - s->match_start,
1673                                s->match_length - MIN_MATCH);
1674 
1675             s->lookahead -= s->match_length;
1676 
1677             /* Insert new strings in the hash table only if the match length
1678              * is not too large. This saves time but degrades compression.
1679              */
1680             if (s->match_length <= s->max_insert_length &&
1681                 s->lookahead >= MIN_MATCH) {
1682                 s->match_length--; /* string at strstart already in hash table */
1683                 do {
1684                     s->strstart++;
1685                     INSERT_STRING(s, s->strstart, hash_head);
1686                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1687                      * always MIN_MATCH bytes ahead.
1688                      */
1689                 } while (--s->match_length != 0);
1690                 s->strstart++;
1691             } else {
1692                 s->strstart += s->match_length;
1693                 s->match_length = 0;
1694                 s->ins_h = s->window[s->strstart];
1695                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1696 #if MIN_MATCH != 3
1697                 Call UPDATE_HASH() MIN_MATCH-3 more times
1698 #endif
1699                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1700                  * matter since it will be recomputed at next deflate call.
1701                  */
1702             }
1703         } else {
1704             /* No match, output a literal byte */
1705             Tracevv((stderr,"%c", s->window[s->strstart]));
1706             bflush = _tr_tally (s, 0, s->window[s->strstart]);
1707             s->lookahead--;
1708             s->strstart++;
1709         }
1710         if (bflush) FLUSH_BLOCK(s, 0);
1711     }
1712     FLUSH_BLOCK(s, flush == Z_FINISH);
1713     return flush == Z_FINISH ? finish_done : block_done;
1714 }
1715 
1716 /* ===========================================================================
1717  * Same as above, but achieves better compression. We use a lazy
1718  * evaluation for matches: a match is finally adopted only if there is
1719  * no better match at the next window position.
1720  */
1721 local block_state deflate_slow(s, flush)
1722     deflate_state *s;
1723     int flush;
1724 {
1725     IPos hash_head = NIL;    /* head of hash chain */
1726     int bflush;              /* set if current block must be flushed */
1727 
1728     /* Process the input block. */
1729     for (;;) {
1730         /* Make sure that we always have enough lookahead, except
1731          * at the end of the input file. We need MAX_MATCH bytes
1732          * for the next match, plus MIN_MATCH bytes to insert the
1733          * string following the next match.
1734          */
1735         if (s->lookahead < MIN_LOOKAHEAD) {
1736             fill_window(s);
1737             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1738 	        return need_more;
1739 	    }
1740             if (s->lookahead == 0) break; /* flush the current block */
1741         }
1742 
1743         /* Insert the string window[strstart .. strstart+2] in the
1744          * dictionary, and set hash_head to the head of the hash chain:
1745          */
1746         if (s->lookahead >= MIN_MATCH) {
1747             INSERT_STRING(s, s->strstart, hash_head);
1748         }
1749 
1750         /* Find the longest match, discarding those <= prev_length.
1751          */
1752         s->prev_length = s->match_length, s->prev_match = s->match_start;
1753         s->match_length = MIN_MATCH-1;
1754 
1755         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1756             s->strstart - hash_head <= MAX_DIST(s)) {
1757             /* To simplify the code, we prevent matches with the string
1758              * of window index 0 (in particular we have to avoid a match
1759              * of the string with itself at the start of the input file).
1760              */
1761             if (s->strategy != Z_HUFFMAN_ONLY) {
1762                 s->match_length = longest_match (s, hash_head);
1763             }
1764             /* longest_match() sets match_start */
1765 
1766             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1767                  (s->match_length == MIN_MATCH &&
1768                   s->strstart - s->match_start > TOO_FAR))) {
1769 
1770                 /* If prev_match is also MIN_MATCH, match_start is garbage
1771                  * but we will ignore the current match anyway.
1772                  */
1773                 s->match_length = MIN_MATCH-1;
1774             }
1775         }
1776         /* If there was a match at the previous step and the current
1777          * match is not better, output the previous match:
1778          */
1779         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1780             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1781             /* Do not insert strings in hash table beyond this. */
1782 
1783             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1784 
1785             bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1786                                s->prev_length - MIN_MATCH);
1787 
1788             /* Insert in hash table all strings up to the end of the match.
1789              * strstart-1 and strstart are already inserted. If there is not
1790              * enough lookahead, the last two strings are not inserted in
1791              * the hash table.
1792              */
1793             s->lookahead -= s->prev_length-1;
1794             s->prev_length -= 2;
1795             do {
1796                 if (++s->strstart <= max_insert) {
1797                     INSERT_STRING(s, s->strstart, hash_head);
1798                 }
1799             } while (--s->prev_length != 0);
1800             s->match_available = 0;
1801             s->match_length = MIN_MATCH-1;
1802             s->strstart++;
1803 
1804             if (bflush) FLUSH_BLOCK(s, 0);
1805 
1806         } else if (s->match_available) {
1807             /* If there was no match at the previous position, output a
1808              * single literal. If there was a match but the current match
1809              * is longer, truncate the previous match to a single literal.
1810              */
1811             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1812             if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1813                 FLUSH_BLOCK_ONLY(s, 0);
1814             }
1815             s->strstart++;
1816             s->lookahead--;
1817             if (s->strm->avail_out == 0) return need_more;
1818         } else {
1819             /* There is no previous match to compare with, wait for
1820              * the next step to decide.
1821              */
1822             s->match_available = 1;
1823             s->strstart++;
1824             s->lookahead--;
1825         }
1826     }
1827     Assert (flush != Z_NO_FLUSH, "no flush?");
1828     if (s->match_available) {
1829         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1830         _tr_tally (s, 0, s->window[s->strstart-1]);
1831         s->match_available = 0;
1832     }
1833     FLUSH_BLOCK(s, flush == Z_FINISH);
1834     return flush == Z_FINISH ? finish_done : block_done;
1835 }
1836 /* --- deflate.c */
1837 
1838 /* +++ trees.c */
1839 /* trees.c -- output deflated data using Huffman coding
1840  * Copyright (C) 1995-1996 Jean-loup Gailly
1841  * For conditions of distribution and use, see copyright notice in zlib.h
1842  */
1843 
1844 /*
1845  *  ALGORITHM
1846  *
1847  *      The "deflation" process uses several Huffman trees. The more
1848  *      common source values are represented by shorter bit sequences.
1849  *
1850  *      Each code tree is stored in a compressed form which is itself
1851  * a Huffman encoding of the lengths of all the code strings (in
1852  * ascending order by source values).  The actual code strings are
1853  * reconstructed from the lengths in the inflate process, as described
1854  * in the deflate specification.
1855  *
1856  *  REFERENCES
1857  *
1858  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1859  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1860  *
1861  *      Storer, James A.
1862  *          Data Compression:  Methods and Theory, pp. 49-50.
1863  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1864  *
1865  *      Sedgewick, R.
1866  *          Algorithms, p290.
1867  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1868  */
1869 
1870 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1871 
1872 /* #include "deflate.h" */
1873 
1874 #ifdef DEBUG_ZLIB
1875 #  include <ctype.h>
1876 #endif
1877 
1878 /* ===========================================================================
1879  * Constants
1880  */
1881 
1882 #define MAX_BL_BITS 7
1883 /* Bit length codes must not exceed MAX_BL_BITS bits */
1884 
1885 #define END_BLOCK 256
1886 /* end of block literal code */
1887 
1888 #define REP_3_6      16
1889 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1890 
1891 #define REPZ_3_10    17
1892 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
1893 
1894 #define REPZ_11_138  18
1895 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
1896 
1897 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1898    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1899 
1900 local int extra_dbits[D_CODES] /* extra bits for each distance code */
1901    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1902 
1903 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1904    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1905 
1906 local uch bl_order[BL_CODES]
1907    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1908 /* The lengths of the bit length codes are sent in order of decreasing
1909  * probability, to avoid transmitting the lengths for unused bit length codes.
1910  */
1911 
1912 #define Buf_size (8 * 2*sizeof(char))
1913 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1914  * more than 16 bits on some systems.)
1915  */
1916 
1917 /* ===========================================================================
1918  * Local data. These are initialized only once.
1919  */
1920 
1921 local ct_data static_ltree[L_CODES+2];
1922 /* The static literal tree. Since the bit lengths are imposed, there is no
1923  * need for the L_CODES extra codes used during heap construction. However
1924  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1925  * below).
1926  */
1927 
1928 local ct_data static_dtree[D_CODES];
1929 /* The static distance tree. (Actually a trivial tree since all codes use
1930  * 5 bits.)
1931  */
1932 
1933 local uch dist_code[512];
1934 /* distance codes. The first 256 values correspond to the distances
1935  * 3 .. 258, the last 256 values correspond to the top 8 bits of
1936  * the 15 bit distances.
1937  */
1938 
1939 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1940 /* length code for each normalized match length (0 == MIN_MATCH) */
1941 
1942 local int base_length[LENGTH_CODES];
1943 /* First normalized length for each code (0 = MIN_MATCH) */
1944 
1945 local int base_dist[D_CODES];
1946 /* First normalized distance for each code (0 = distance of 1) */
1947 
1948 struct static_tree_desc_s {
1949     ct_data *static_tree;        /* static tree or NULL */
1950     intf    *extra_bits;         /* extra bits for each code or NULL */
1951     int     extra_base;          /* base index for extra_bits */
1952     int     elems;               /* max number of elements in the tree */
1953     int     max_length;          /* max bit length for the codes */
1954 };
1955 
1956 local static_tree_desc  static_l_desc =
1957 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1958 
1959 local static_tree_desc  static_d_desc =
1960 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1961 
1962 local static_tree_desc  static_bl_desc =
1963 {(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1964 
1965 /* ===========================================================================
1966  * Local (static) routines in this file.
1967  */
1968 
1969 local void tr_static_init OF((void));
1970 local void init_block     OF((deflate_state *s));
1971 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1972 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1973 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1974 local void build_tree     OF((deflate_state *s, tree_desc *desc));
1975 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1976 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1977 local int  build_bl_tree  OF((deflate_state *s));
1978 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1979                               int blcodes));
1980 local void compress_block OF((deflate_state *s, ct_data *ltree,
1981                               ct_data *dtree));
1982 local void set_data_type  OF((deflate_state *s));
1983 local unsigned bi_reverse OF((unsigned value, int length));
1984 local void bi_windup      OF((deflate_state *s));
1985 local void bi_flush       OF((deflate_state *s));
1986 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1987                               int header));
1988 
1989 #ifndef DEBUG_ZLIB
1990 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1991    /* Send a code of the given tree. c and tree must not have side effects */
1992 
1993 #else /* DEBUG_ZLIB */
1994 #  define send_code(s, c, tree) \
1995      { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1996        send_bits(s, tree[c].Code, tree[c].Len); }
1997 #endif
1998 
1999 #define d_code(dist) \
2000    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
2001 /* Mapping from a distance to a distance code. dist is the distance - 1 and
2002  * must not have side effects. dist_code[256] and dist_code[257] are never
2003  * used.
2004  */
2005 
2006 /* ===========================================================================
2007  * Output a short LSB first on the stream.
2008  * IN assertion: there is enough room in pendingBuf.
2009  */
2010 #define put_short(s, w) { \
2011     put_byte(s, (uch)((w) & 0xff)); \
2012     put_byte(s, (uch)((ush)(w) >> 8)); \
2013 }
2014 
2015 /* ===========================================================================
2016  * Send a value on a given number of bits.
2017  * IN assertion: length <= 16 and value fits in length bits.
2018  */
2019 #ifdef DEBUG_ZLIB
2020 local void send_bits      OF((deflate_state *s, int value, int length));
2021 
2022 local void send_bits(s, value, length)
2023     deflate_state *s;
2024     int value;  /* value to send */
2025     int length; /* number of bits */
2026 {
2027     Tracevv((stderr," l %2d v %4x ", length, value));
2028     Assert(length > 0 && length <= 15, "invalid length");
2029     s->bits_sent += (ulg)length;
2030 
2031     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2032      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2033      * unused bits in value.
2034      */
2035     if (s->bi_valid > (int)Buf_size - length) {
2036         s->bi_buf |= (value << s->bi_valid);
2037         put_short(s, s->bi_buf);
2038         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2039         s->bi_valid += length - Buf_size;
2040     } else {
2041         s->bi_buf |= value << s->bi_valid;
2042         s->bi_valid += length;
2043     }
2044 }
2045 #else /* !DEBUG_ZLIB */
2046 
2047 #define send_bits(s, value, length) \
2048 { int len = length;\
2049   if (s->bi_valid > (int)Buf_size - len) {\
2050     int val = value;\
2051     s->bi_buf |= (val << s->bi_valid);\
2052     put_short(s, s->bi_buf);\
2053     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2054     s->bi_valid += len - Buf_size;\
2055   } else {\
2056     s->bi_buf |= (value) << s->bi_valid;\
2057     s->bi_valid += len;\
2058   }\
2059 }
2060 #endif /* DEBUG_ZLIB */
2061 
2062 
2063 #define MAX(a,b) (a >= b ? a : b)
2064 /* the arguments must not have side effects */
2065 
2066 /* ===========================================================================
2067  * Initialize the various 'constant' tables. In a multi-threaded environment,
2068  * this function may be called by two threads concurrently, but this is
2069  * harmless since both invocations do exactly the same thing.
2070  */
2071 local void tr_static_init()
2072 {
2073     static int static_init_done = 0;
2074     int n;        /* iterates over tree elements */
2075     int bits;     /* bit counter */
2076     int length;   /* length value */
2077     int code;     /* code value */
2078     int dist;     /* distance index */
2079     ush bl_count[MAX_BITS+1];
2080     /* number of codes at each bit length for an optimal tree */
2081 
2082     if (static_init_done) return;
2083 
2084     /* Initialize the mapping length (0..255) -> length code (0..28) */
2085     length = 0;
2086     for (code = 0; code < LENGTH_CODES-1; code++) {
2087         base_length[code] = length;
2088         for (n = 0; n < (1<<extra_lbits[code]); n++) {
2089             length_code[length++] = (uch)code;
2090         }
2091     }
2092     Assert (length == 256, "tr_static_init: length != 256");
2093     /* Note that the length 255 (match length 258) can be represented
2094      * in two different ways: code 284 + 5 bits or code 285, so we
2095      * overwrite length_code[255] to use the best encoding:
2096      */
2097     length_code[length-1] = (uch)code;
2098 
2099     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2100     dist = 0;
2101     for (code = 0 ; code < 16; code++) {
2102         base_dist[code] = dist;
2103         for (n = 0; n < (1<<extra_dbits[code]); n++) {
2104             dist_code[dist++] = (uch)code;
2105         }
2106     }
2107     Assert (dist == 256, "tr_static_init: dist != 256");
2108     dist >>= 7; /* from now on, all distances are divided by 128 */
2109     for ( ; code < D_CODES; code++) {
2110         base_dist[code] = dist << 7;
2111         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2112             dist_code[256 + dist++] = (uch)code;
2113         }
2114     }
2115     Assert (dist == 256, "tr_static_init: 256+dist != 512");
2116 
2117     /* Construct the codes of the static literal tree */
2118     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2119     n = 0;
2120     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2121     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2122     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2123     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2124     /* Codes 286 and 287 do not exist, but we must include them in the
2125      * tree construction to get a canonical Huffman tree (longest code
2126      * all ones)
2127      */
2128     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2129 
2130     /* The static distance tree is trivial: */
2131     for (n = 0; n < D_CODES; n++) {
2132         static_dtree[n].Len = 5;
2133         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2134     }
2135     static_init_done = 1;
2136 }
2137 
2138 /* ===========================================================================
2139  * Initialize the tree data structures for a new zlib stream.
2140  */
2141 void _tr_init(s)
2142     deflate_state *s;
2143 {
2144     tr_static_init();
2145 
2146     s->compressed_len = 0L;
2147 
2148     s->l_desc.dyn_tree = s->dyn_ltree;
2149     s->l_desc.stat_desc = &static_l_desc;
2150 
2151     s->d_desc.dyn_tree = s->dyn_dtree;
2152     s->d_desc.stat_desc = &static_d_desc;
2153 
2154     s->bl_desc.dyn_tree = s->bl_tree;
2155     s->bl_desc.stat_desc = &static_bl_desc;
2156 
2157     s->bi_buf = 0;
2158     s->bi_valid = 0;
2159     s->last_eob_len = 8; /* enough lookahead for inflate */
2160 #ifdef DEBUG_ZLIB
2161     s->bits_sent = 0L;
2162 #endif
2163 
2164     /* Initialize the first block of the first file: */
2165     init_block(s);
2166 }
2167 
2168 /* ===========================================================================
2169  * Initialize a new block.
2170  */
2171 local void init_block(s)
2172     deflate_state *s;
2173 {
2174     int n; /* iterates over tree elements */
2175 
2176     /* Initialize the trees. */
2177     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2178     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2179     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2180 
2181     s->dyn_ltree[END_BLOCK].Freq = 1;
2182     s->opt_len = s->static_len = 0L;
2183     s->last_lit = s->matches = 0;
2184 }
2185 
2186 #define SMALLEST 1
2187 /* Index within the heap array of least frequent node in the Huffman tree */
2188 
2189 
2190 /* ===========================================================================
2191  * Remove the smallest element from the heap and recreate the heap with
2192  * one less element. Updates heap and heap_len.
2193  */
2194 #define pqremove(s, tree, top) \
2195 {\
2196     top = s->heap[SMALLEST]; \
2197     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2198     pqdownheap(s, tree, SMALLEST); \
2199 }
2200 
2201 /* ===========================================================================
2202  * Compares to subtrees, using the tree depth as tie breaker when
2203  * the subtrees have equal frequency. This minimizes the worst case length.
2204  */
2205 #define smaller(tree, n, m, depth) \
2206    (tree[n].Freq < tree[m].Freq || \
2207    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2208 
2209 /* ===========================================================================
2210  * Restore the heap property by moving down the tree starting at node k,
2211  * exchanging a node with the smallest of its two sons if necessary, stopping
2212  * when the heap property is re-established (each father smaller than its
2213  * two sons).
2214  */
2215 local void pqdownheap(s, tree, k)
2216     deflate_state *s;
2217     ct_data *tree;  /* the tree to restore */
2218     int k;               /* node to move down */
2219 {
2220     int v = s->heap[k];
2221     int j = k << 1;  /* left son of k */
2222     while (j <= s->heap_len) {
2223         /* Set j to the smallest of the two sons: */
2224         if (j < s->heap_len &&
2225             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2226             j++;
2227         }
2228         /* Exit if v is smaller than both sons */
2229         if (smaller(tree, v, s->heap[j], s->depth)) break;
2230 
2231         /* Exchange v with the smallest son */
2232         s->heap[k] = s->heap[j];  k = j;
2233 
2234         /* And continue down the tree, setting j to the left son of k */
2235         j <<= 1;
2236     }
2237     s->heap[k] = v;
2238 }
2239 
2240 /* ===========================================================================
2241  * Compute the optimal bit lengths for a tree and update the total bit length
2242  * for the current block.
2243  * IN assertion: the fields freq and dad are set, heap[heap_max] and
2244  *    above are the tree nodes sorted by increasing frequency.
2245  * OUT assertions: the field len is set to the optimal bit length, the
2246  *     array bl_count contains the frequencies for each bit length.
2247  *     The length opt_len is updated; static_len is also updated if stree is
2248  *     not null.
2249  */
2250 local void gen_bitlen(s, desc)
2251     deflate_state *s;
2252     tree_desc *desc;    /* the tree descriptor */
2253 {
2254     ct_data *tree  = desc->dyn_tree;
2255     int max_code   = desc->max_code;
2256     ct_data *stree = desc->stat_desc->static_tree;
2257     intf *extra    = desc->stat_desc->extra_bits;
2258     int base       = desc->stat_desc->extra_base;
2259     int max_length = desc->stat_desc->max_length;
2260     int h;              /* heap index */
2261     int n, m;           /* iterate over the tree elements */
2262     int bits;           /* bit length */
2263     int xbits;          /* extra bits */
2264     ush f;              /* frequency */
2265     int overflow = 0;   /* number of elements with bit length too large */
2266 
2267     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2268 
2269     /* In a first pass, compute the optimal bit lengths (which may
2270      * overflow in the case of the bit length tree).
2271      */
2272     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2273 
2274     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2275         n = s->heap[h];
2276         bits = tree[tree[n].Dad].Len + 1;
2277         if (bits > max_length) bits = max_length, overflow++;
2278         tree[n].Len = (ush)bits;
2279         /* We overwrite tree[n].Dad which is no longer needed */
2280 
2281         if (n > max_code) continue; /* not a leaf node */
2282 
2283         s->bl_count[bits]++;
2284         xbits = 0;
2285         if (n >= base) xbits = extra[n-base];
2286         f = tree[n].Freq;
2287         s->opt_len += (ulg)f * (bits + xbits);
2288         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2289     }
2290     if (overflow == 0) return;
2291 
2292     Trace((stderr,"\nbit length overflow\n"));
2293     /* This happens for example on obj2 and pic of the Calgary corpus */
2294 
2295     /* Find the first bit length which could increase: */
2296     do {
2297         bits = max_length-1;
2298         while (s->bl_count[bits] == 0) bits--;
2299         s->bl_count[bits]--;      /* move one leaf down the tree */
2300         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2301         s->bl_count[max_length]--;
2302         /* The brother of the overflow item also moves one step up,
2303          * but this does not affect bl_count[max_length]
2304          */
2305         overflow -= 2;
2306     } while (overflow > 0);
2307 
2308     /* Now recompute all bit lengths, scanning in increasing frequency.
2309      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2310      * lengths instead of fixing only the wrong ones. This idea is taken
2311      * from 'ar' written by Haruhiko Okumura.)
2312      */
2313     for (bits = max_length; bits != 0; bits--) {
2314         n = s->bl_count[bits];
2315         while (n != 0) {
2316             m = s->heap[--h];
2317             if (m > max_code) continue;
2318             if (tree[m].Len != (unsigned) bits) {
2319                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2320                 s->opt_len += ((long)bits - (long)tree[m].Len)
2321                               *(long)tree[m].Freq;
2322                 tree[m].Len = (ush)bits;
2323             }
2324             n--;
2325         }
2326     }
2327 }
2328 
2329 /* ===========================================================================
2330  * Generate the codes for a given tree and bit counts (which need not be
2331  * optimal).
2332  * IN assertion: the array bl_count contains the bit length statistics for
2333  * the given tree and the field len is set for all tree elements.
2334  * OUT assertion: the field code is set for all tree elements of non
2335  *     zero code length.
2336  */
2337 local void gen_codes (tree, max_code, bl_count)
2338     ct_data *tree;             /* the tree to decorate */
2339     int max_code;              /* largest code with non zero frequency */
2340     ushf *bl_count;            /* number of codes at each bit length */
2341 {
2342     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2343     ush code = 0;              /* running code value */
2344     int bits;                  /* bit index */
2345     int n;                     /* code index */
2346 
2347     /* The distribution counts are first used to generate the code values
2348      * without bit reversal.
2349      */
2350     for (bits = 1; bits <= MAX_BITS; bits++) {
2351         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2352     }
2353     /* Check that the bit counts in bl_count are consistent. The last code
2354      * must be all ones.
2355      */
2356     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2357             "inconsistent bit counts");
2358     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2359 
2360     for (n = 0;  n <= max_code; n++) {
2361         int len = tree[n].Len;
2362         if (len == 0) continue;
2363         /* Now reverse the bits */
2364         tree[n].Code = bi_reverse(next_code[len]++, len);
2365 
2366         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2367              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2368     }
2369 }
2370 
2371 /* ===========================================================================
2372  * Construct one Huffman tree and assigns the code bit strings and lengths.
2373  * Update the total bit length for the current block.
2374  * IN assertion: the field freq is set for all tree elements.
2375  * OUT assertions: the fields len and code are set to the optimal bit length
2376  *     and corresponding code. The length opt_len is updated; static_len is
2377  *     also updated if stree is not null. The field max_code is set.
2378  */
2379 local void build_tree(s, desc)
2380     deflate_state *s;
2381     tree_desc *desc; /* the tree descriptor */
2382 {
2383     ct_data *tree   = desc->dyn_tree;
2384     ct_data *stree  = desc->stat_desc->static_tree;
2385     int elems       = desc->stat_desc->elems;
2386     int n, m;          /* iterate over heap elements */
2387     int max_code = -1; /* largest code with non zero frequency */
2388     int node;          /* new node being created */
2389 
2390     /* Construct the initial heap, with least frequent element in
2391      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2392      * heap[0] is not used.
2393      */
2394     s->heap_len = 0, s->heap_max = HEAP_SIZE;
2395 
2396     for (n = 0; n < elems; n++) {
2397         if (tree[n].Freq != 0) {
2398             s->heap[++(s->heap_len)] = max_code = n;
2399             s->depth[n] = 0;
2400         } else {
2401             tree[n].Len = 0;
2402         }
2403     }
2404 
2405     /* The pkzip format requires that at least one distance code exists,
2406      * and that at least one bit should be sent even if there is only one
2407      * possible code. So to avoid special checks later on we force at least
2408      * two codes of non zero frequency.
2409      */
2410     while (s->heap_len < 2) {
2411         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2412         tree[node].Freq = 1;
2413         s->depth[node] = 0;
2414         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2415         /* node is 0 or 1 so it does not have extra bits */
2416     }
2417     desc->max_code = max_code;
2418 
2419     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2420      * establish sub-heaps of increasing lengths:
2421      */
2422     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2423 
2424     /* Construct the Huffman tree by repeatedly combining the least two
2425      * frequent nodes.
2426      */
2427     node = elems;              /* next internal node of the tree */
2428     do {
2429         pqremove(s, tree, n);  /* n = node of least frequency */
2430         m = s->heap[SMALLEST]; /* m = node of next least frequency */
2431 
2432         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2433         s->heap[--(s->heap_max)] = m;
2434 
2435         /* Create a new node father of n and m */
2436         tree[node].Freq = tree[n].Freq + tree[m].Freq;
2437         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2438         tree[n].Dad = tree[m].Dad = (ush)node;
2439 #ifdef DUMP_BL_TREE
2440         if (tree == s->bl_tree) {
2441             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2442                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2443         }
2444 #endif
2445         /* and insert the new node in the heap */
2446         s->heap[SMALLEST] = node++;
2447         pqdownheap(s, tree, SMALLEST);
2448 
2449     } while (s->heap_len >= 2);
2450 
2451     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2452 
2453     /* At this point, the fields freq and dad are set. We can now
2454      * generate the bit lengths.
2455      */
2456     gen_bitlen(s, (tree_desc *)desc);
2457 
2458     /* The field len is now set, we can generate the bit codes */
2459     gen_codes ((ct_data *)tree, max_code, s->bl_count);
2460 }
2461 
2462 /* ===========================================================================
2463  * Scan a literal or distance tree to determine the frequencies of the codes
2464  * in the bit length tree.
2465  */
2466 local void scan_tree (s, tree, max_code)
2467     deflate_state *s;
2468     ct_data *tree;   /* the tree to be scanned */
2469     int max_code;    /* and its largest code of non zero frequency */
2470 {
2471     int n;                     /* iterates over all tree elements */
2472     int prevlen = -1;          /* last emitted length */
2473     int curlen;                /* length of current code */
2474     int nextlen = tree[0].Len; /* length of next code */
2475     int count = 0;             /* repeat count of the current code */
2476     int max_count = 7;         /* max repeat count */
2477     int min_count = 4;         /* min repeat count */
2478 
2479     if (nextlen == 0) max_count = 138, min_count = 3;
2480     tree[max_code+1].Len = (ush)0xffff; /* guard */
2481 
2482     for (n = 0; n <= max_code; n++) {
2483         curlen = nextlen; nextlen = tree[n+1].Len;
2484         if (++count < max_count && curlen == nextlen) {
2485             continue;
2486         } else if (count < min_count) {
2487             s->bl_tree[curlen].Freq += count;
2488         } else if (curlen != 0) {
2489             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2490             s->bl_tree[REP_3_6].Freq++;
2491         } else if (count <= 10) {
2492             s->bl_tree[REPZ_3_10].Freq++;
2493         } else {
2494             s->bl_tree[REPZ_11_138].Freq++;
2495         }
2496         count = 0; prevlen = curlen;
2497         if (nextlen == 0) {
2498             max_count = 138, min_count = 3;
2499         } else if (curlen == nextlen) {
2500             max_count = 6, min_count = 3;
2501         } else {
2502             max_count = 7, min_count = 4;
2503         }
2504     }
2505 }
2506 
2507 /* ===========================================================================
2508  * Send a literal or distance tree in compressed form, using the codes in
2509  * bl_tree.
2510  */
2511 local void send_tree (s, tree, max_code)
2512     deflate_state *s;
2513     ct_data *tree; /* the tree to be scanned */
2514     int max_code;       /* and its largest code of non zero frequency */
2515 {
2516     int n;                     /* iterates over all tree elements */
2517     int prevlen = -1;          /* last emitted length */
2518     int curlen;                /* length of current code */
2519     int nextlen = tree[0].Len; /* length of next code */
2520     int count = 0;             /* repeat count of the current code */
2521     int max_count = 7;         /* max repeat count */
2522     int min_count = 4;         /* min repeat count */
2523 
2524     /* tree[max_code+1].Len = -1; */  /* guard already set */
2525     if (nextlen == 0) max_count = 138, min_count = 3;
2526 
2527     for (n = 0; n <= max_code; n++) {
2528         curlen = nextlen; nextlen = tree[n+1].Len;
2529         if (++count < max_count && curlen == nextlen) {
2530             continue;
2531         } else if (count < min_count) {
2532             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2533 
2534         } else if (curlen != 0) {
2535             if (curlen != prevlen) {
2536                 send_code(s, curlen, s->bl_tree); count--;
2537             }
2538             Assert(count >= 3 && count <= 6, " 3_6?");
2539             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2540 
2541         } else if (count <= 10) {
2542             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2543 
2544         } else {
2545             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2546         }
2547         count = 0; prevlen = curlen;
2548         if (nextlen == 0) {
2549             max_count = 138, min_count = 3;
2550         } else if (curlen == nextlen) {
2551             max_count = 6, min_count = 3;
2552         } else {
2553             max_count = 7, min_count = 4;
2554         }
2555     }
2556 }
2557 
2558 /* ===========================================================================
2559  * Construct the Huffman tree for the bit lengths and return the index in
2560  * bl_order of the last bit length code to send.
2561  */
2562 local int build_bl_tree(s)
2563     deflate_state *s;
2564 {
2565     int max_blindex;  /* index of last bit length code of non zero freq */
2566 
2567     /* Determine the bit length frequencies for literal and distance trees */
2568     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2569     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2570 
2571     /* Build the bit length tree: */
2572     build_tree(s, (tree_desc *)(&(s->bl_desc)));
2573     /* opt_len now includes the length of the tree representations, except
2574      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2575      */
2576 
2577     /* Determine the number of bit length codes to send. The pkzip format
2578      * requires that at least 4 bit length codes be sent. (appnote.txt says
2579      * 3 but the actual value used is 4.)
2580      */
2581     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2582         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2583     }
2584     /* Update opt_len to include the bit length tree and counts */
2585     s->opt_len += 3*(max_blindex+1) + 5+5+4;
2586     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2587             s->opt_len, s->static_len));
2588 
2589     return max_blindex;
2590 }
2591 
2592 /* ===========================================================================
2593  * Send the header for a block using dynamic Huffman trees: the counts, the
2594  * lengths of the bit length codes, the literal tree and the distance tree.
2595  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2596  */
2597 local void send_all_trees(s, lcodes, dcodes, blcodes)
2598     deflate_state *s;
2599     int lcodes, dcodes, blcodes; /* number of codes for each tree */
2600 {
2601     int rank;                    /* index in bl_order */
2602 
2603     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2604     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2605             "too many codes");
2606     Tracev((stderr, "\nbl counts: "));
2607     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2608     send_bits(s, dcodes-1,   5);
2609     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2610     for (rank = 0; rank < blcodes; rank++) {
2611         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2612         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2613     }
2614     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2615 
2616     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2617     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2618 
2619     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2620     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2621 }
2622 
2623 /* ===========================================================================
2624  * Send a stored block
2625  */
2626 void _tr_stored_block(s, buf, stored_len, eof)
2627     deflate_state *s;
2628     charf *buf;       /* input block */
2629     ulg stored_len;   /* length of input block */
2630     int eof;          /* true if this is the last block for a file */
2631 {
2632     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2633     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2634     s->compressed_len += (stored_len + 4) << 3;
2635 
2636     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2637 }
2638 
2639 /* Send just the `stored block' type code without any length bytes or data.
2640  */
2641 void _tr_stored_type_only(s)
2642     deflate_state *s;
2643 {
2644     send_bits(s, (STORED_BLOCK << 1), 3);
2645     bi_windup(s);
2646     s->compressed_len = (s->compressed_len + 3) & ~7L;
2647 }
2648 
2649 
2650 /* ===========================================================================
2651  * Send one empty static block to give enough lookahead for inflate.
2652  * This takes 10 bits, of which 7 may remain in the bit buffer.
2653  * The current inflate code requires 9 bits of lookahead. If the
2654  * last two codes for the previous block (real code plus EOB) were coded
2655  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2656  * the last real code. In this case we send two empty static blocks instead
2657  * of one. (There are no problems if the previous block is stored or fixed.)
2658  * To simplify the code, we assume the worst case of last real code encoded
2659  * on one bit only.
2660  */
2661 void _tr_align(s)
2662     deflate_state *s;
2663 {
2664     send_bits(s, STATIC_TREES<<1, 3);
2665     send_code(s, END_BLOCK, static_ltree);
2666     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2667     bi_flush(s);
2668     /* Of the 10 bits for the empty block, we have already sent
2669      * (10 - bi_valid) bits. The lookahead for the last real code (before
2670      * the EOB of the previous block) was thus at least one plus the length
2671      * of the EOB plus what we have just sent of the empty static block.
2672      */
2673     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2674         send_bits(s, STATIC_TREES<<1, 3);
2675         send_code(s, END_BLOCK, static_ltree);
2676         s->compressed_len += 10L;
2677         bi_flush(s);
2678     }
2679     s->last_eob_len = 7;
2680 }
2681 
2682 /* ===========================================================================
2683  * Determine the best encoding for the current block: dynamic trees, static
2684  * trees or store, and output the encoded block to the zip file. This function
2685  * returns the total compressed length for the file so far.
2686  */
2687 ulg _tr_flush_block(s, buf, stored_len, eof)
2688     deflate_state *s;
2689     charf *buf;       /* input block, or NULL if too old */
2690     ulg stored_len;   /* length of input block */
2691     int eof;          /* true if this is the last block for a file */
2692 {
2693     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2694     int max_blindex = 0;  /* index of last bit length code of non zero freq */
2695 
2696     /* Build the Huffman trees unless a stored block is forced */
2697     if (s->level > 0) {
2698 
2699 	 /* Check if the file is ascii or binary */
2700 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
2701 
2702 	/* Construct the literal and distance trees */
2703 	build_tree(s, (tree_desc *)(&(s->l_desc)));
2704 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2705 		s->static_len));
2706 
2707 	build_tree(s, (tree_desc *)(&(s->d_desc)));
2708 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2709 		s->static_len));
2710 	/* At this point, opt_len and static_len are the total bit lengths of
2711 	 * the compressed block data, excluding the tree representations.
2712 	 */
2713 
2714 	/* Build the bit length tree for the above two trees, and get the index
2715 	 * in bl_order of the last bit length code to send.
2716 	 */
2717 	max_blindex = build_bl_tree(s);
2718 
2719 	/* Determine the best encoding. Compute first the block length in bytes*/
2720 	opt_lenb = (s->opt_len+3+7)>>3;
2721 	static_lenb = (s->static_len+3+7)>>3;
2722 
2723 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2724 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2725 		s->last_lit));
2726 
2727 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2728 
2729     } else {
2730         Assert(buf != (char*)0, "lost buf");
2731 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2732     }
2733 
2734     /* If compression failed and this is the first and last block,
2735      * and if the .zip file can be seeked (to rewrite the local header),
2736      * the whole file is transformed into a stored file:
2737      */
2738 #ifdef STORED_FILE_OK
2739 #  ifdef FORCE_STORED_FILE
2740     if (eof && s->compressed_len == 0L) { /* force stored file */
2741 #  else
2742     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2743 #  endif
2744         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2745         if (buf == (charf*)0) error ("block vanished");
2746 
2747         copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2748         s->compressed_len = stored_len << 3;
2749         s->method = STORED;
2750     } else
2751 #endif /* STORED_FILE_OK */
2752 
2753 #ifdef FORCE_STORED
2754     if (buf != (char*)0) { /* force stored block */
2755 #else
2756     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2757                        /* 4: two words for the lengths */
2758 #endif
2759         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2760          * Otherwise we can't have processed more than WSIZE input bytes since
2761          * the last block flush, because compression would have been
2762          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2763          * transform a block into a stored block.
2764          */
2765         _tr_stored_block(s, buf, stored_len, eof);
2766 
2767 #ifdef FORCE_STATIC
2768     } else if (static_lenb >= 0) { /* force static trees */
2769 #else
2770     } else if (static_lenb == opt_lenb) {
2771 #endif
2772         send_bits(s, (STATIC_TREES<<1)+eof, 3);
2773         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2774         s->compressed_len += 3 + s->static_len;
2775     } else {
2776         send_bits(s, (DYN_TREES<<1)+eof, 3);
2777         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2778                        max_blindex+1);
2779         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2780         s->compressed_len += 3 + s->opt_len;
2781     }
2782     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2783     init_block(s);
2784 
2785     if (eof) {
2786         bi_windup(s);
2787         s->compressed_len += 7;  /* align on byte boundary */
2788     }
2789     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2790            s->compressed_len-7*eof));
2791 
2792     return s->compressed_len >> 3;
2793 }
2794 
2795 /* ===========================================================================
2796  * Save the match info and tally the frequency counts. Return true if
2797  * the current block must be flushed.
2798  */
2799 int _tr_tally (s, dist, lc)
2800     deflate_state *s;
2801     unsigned dist;  /* distance of matched string */
2802     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
2803 {
2804     s->d_buf[s->last_lit] = (ush)dist;
2805     s->l_buf[s->last_lit++] = (uch)lc;
2806     if (dist == 0) {
2807         /* lc is the unmatched char */
2808         s->dyn_ltree[lc].Freq++;
2809     } else {
2810         s->matches++;
2811         /* Here, lc is the match length - MIN_MATCH */
2812         dist--;             /* dist = match distance - 1 */
2813         Assert((ush)dist < (ush)MAX_DIST(s) &&
2814                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2815                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
2816 
2817         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2818         s->dyn_dtree[d_code(dist)].Freq++;
2819     }
2820 
2821     /* Try to guess if it is profitable to stop the current block here */
2822     if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2823         /* Compute an upper bound for the compressed length */
2824         ulg out_length = (ulg)s->last_lit*8L;
2825         ulg in_length = (ulg)((long)s->strstart - s->block_start);
2826         int dcode;
2827         for (dcode = 0; dcode < D_CODES; dcode++) {
2828             out_length += (ulg)s->dyn_dtree[dcode].Freq *
2829                 (5L+extra_dbits[dcode]);
2830         }
2831         out_length >>= 3;
2832         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2833                s->last_lit, in_length, out_length,
2834                100L - out_length*100L/in_length));
2835         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2836     }
2837     return (s->last_lit == s->lit_bufsize-1);
2838     /* We avoid equality with lit_bufsize because of wraparound at 64K
2839      * on 16 bit machines and because stored blocks are restricted to
2840      * 64K-1 bytes.
2841      */
2842 }
2843 
2844 /* ===========================================================================
2845  * Send the block data compressed using the given Huffman trees
2846  */
2847 local void compress_block(s, ltree, dtree)
2848     deflate_state *s;
2849     ct_data *ltree; /* literal tree */
2850     ct_data *dtree; /* distance tree */
2851 {
2852     unsigned dist;      /* distance of matched string */
2853     int lc;             /* match length or unmatched char (if dist == 0) */
2854     unsigned lx = 0;    /* running index in l_buf */
2855     unsigned code;      /* the code to send */
2856     int extra;          /* number of extra bits to send */
2857 
2858     if (s->last_lit != 0) do {
2859         dist = s->d_buf[lx];
2860         lc = s->l_buf[lx++];
2861         if (dist == 0) {
2862             send_code(s, lc, ltree); /* send a literal byte */
2863             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2864         } else {
2865             /* Here, lc is the match length - MIN_MATCH */
2866             code = length_code[lc];
2867             send_code(s, code+LITERALS+1, ltree); /* send the length code */
2868             extra = extra_lbits[code];
2869             if (extra != 0) {
2870                 lc -= base_length[code];
2871                 send_bits(s, lc, extra);       /* send the extra length bits */
2872             }
2873             dist--; /* dist is now the match distance - 1 */
2874             code = d_code(dist);
2875             Assert (code < D_CODES, "bad d_code");
2876 
2877             send_code(s, code, dtree);       /* send the distance code */
2878             extra = extra_dbits[code];
2879             if (extra != 0) {
2880                 dist -= base_dist[code];
2881                 send_bits(s, dist, extra);   /* send the extra distance bits */
2882             }
2883         } /* literal or match pair ? */
2884 
2885         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2886         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2887 
2888     } while (lx < s->last_lit);
2889 
2890     send_code(s, END_BLOCK, ltree);
2891     s->last_eob_len = ltree[END_BLOCK].Len;
2892 }
2893 
2894 /* ===========================================================================
2895  * Set the data type to ASCII or BINARY, using a crude approximation:
2896  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2897  * IN assertion: the fields freq of dyn_ltree are set and the total of all
2898  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2899  */
2900 local void set_data_type(s)
2901     deflate_state *s;
2902 {
2903     int n = 0;
2904     unsigned ascii_freq = 0;
2905     unsigned bin_freq = 0;
2906     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2907     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2908     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2909     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2910 }
2911 
2912 /* ===========================================================================
2913  * Reverse the first len bits of a code, using straightforward code (a faster
2914  * method would use a table)
2915  * IN assertion: 1 <= len <= 15
2916  */
2917 local unsigned bi_reverse(code, len)
2918     unsigned code; /* the value to invert */
2919     int len;       /* its bit length */
2920 {
2921     register unsigned res = 0;
2922     do {
2923         res |= code & 1;
2924         code >>= 1, res <<= 1;
2925     } while (--len > 0);
2926     return res >> 1;
2927 }
2928 
2929 /* ===========================================================================
2930  * Flush the bit buffer, keeping at most 7 bits in it.
2931  */
2932 local void bi_flush(s)
2933     deflate_state *s;
2934 {
2935     if (s->bi_valid == 16) {
2936         put_short(s, s->bi_buf);
2937         s->bi_buf = 0;
2938         s->bi_valid = 0;
2939     } else if (s->bi_valid >= 8) {
2940         put_byte(s, (Byte)s->bi_buf);
2941         s->bi_buf >>= 8;
2942         s->bi_valid -= 8;
2943     }
2944 }
2945 
2946 /* ===========================================================================
2947  * Flush the bit buffer and align the output on a byte boundary
2948  */
2949 local void bi_windup(s)
2950     deflate_state *s;
2951 {
2952     if (s->bi_valid > 8) {
2953         put_short(s, s->bi_buf);
2954     } else if (s->bi_valid > 0) {
2955         put_byte(s, (Byte)s->bi_buf);
2956     }
2957     s->bi_buf = 0;
2958     s->bi_valid = 0;
2959 #ifdef DEBUG_ZLIB
2960     s->bits_sent = (s->bits_sent+7) & ~7;
2961 #endif
2962 }
2963 
2964 /* ===========================================================================
2965  * Copy a stored block, storing first the length and its
2966  * one's complement if requested.
2967  */
2968 local void copy_block(s, buf, len, header)
2969     deflate_state *s;
2970     charf    *buf;    /* the input data */
2971     unsigned len;     /* its length */
2972     int      header;  /* true if block header must be written */
2973 {
2974     bi_windup(s);        /* align on byte boundary */
2975     s->last_eob_len = 8; /* enough lookahead for inflate */
2976 
2977     if (header) {
2978         put_short(s, (ush)len);
2979         put_short(s, (ush)~len);
2980 #ifdef DEBUG_ZLIB
2981         s->bits_sent += 2*16;
2982 #endif
2983     }
2984 #ifdef DEBUG_ZLIB
2985     s->bits_sent += (ulg)len<<3;
2986 #endif
2987     /* bundle up the put_byte(s, *buf++) calls */
2988     zmemcpy(&s->pending_buf[s->pending], buf, len);
2989     s->pending += len;
2990 }
2991 /* --- trees.c */
2992 
2993 /* +++ inflate.c */
2994 /* inflate.c -- zlib interface to inflate modules
2995  * Copyright (C) 1995-1996 Mark Adler
2996  * For conditions of distribution and use, see copyright notice in zlib.h
2997  */
2998 
2999 /* #include "zutil.h" */
3000 
3001 /* +++ infblock.h */
3002 /* infblock.h -- header to use infblock.c
3003  * Copyright (C) 1995-1996 Mark Adler
3004  * For conditions of distribution and use, see copyright notice in zlib.h
3005  */
3006 
3007 /* WARNING: this file should *not* be used by applications. It is
3008    part of the implementation of the compression library and is
3009    subject to change. Applications should only use zlib.h.
3010  */
3011 
3012 struct inflate_blocks_state;
3013 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3014 
3015 extern inflate_blocks_statef * inflate_blocks_new OF((
3016     z_streamp z,
3017     check_func c,               /* check function */
3018     uInt w));                   /* window size */
3019 
3020 extern int inflate_blocks OF((
3021     inflate_blocks_statef *,
3022     z_streamp ,
3023     int));                      /* initial return code */
3024 
3025 extern void inflate_blocks_reset OF((
3026     inflate_blocks_statef *,
3027     z_streamp ,
3028     uLongf *));                  /* check value on output */
3029 
3030 extern int inflate_blocks_free OF((
3031     inflate_blocks_statef *,
3032     z_streamp ,
3033     uLongf *));                  /* check value on output */
3034 
3035 extern void inflate_set_dictionary OF((
3036     inflate_blocks_statef *s,
3037     const Bytef *d,  /* dictionary */
3038     uInt  n));       /* dictionary length */
3039 
3040 extern int inflate_addhistory OF((
3041     inflate_blocks_statef *,
3042     z_streamp));
3043 
3044 extern int inflate_packet_flush OF((
3045     inflate_blocks_statef *));
3046 /* --- infblock.h */
3047 
3048 #ifndef NO_DUMMY_DECL
3049 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3050 #endif
3051 
3052 /* inflate private state */
3053 struct internal_state {
3054 
3055   /* mode */
3056   enum {
3057       METHOD,   /* waiting for method byte */
3058       FLAG,     /* waiting for flag byte */
3059       DICT4,    /* four dictionary check bytes to go */
3060       DICT3,    /* three dictionary check bytes to go */
3061       DICT2,    /* two dictionary check bytes to go */
3062       DICT1,    /* one dictionary check byte to go */
3063       DICT0,    /* waiting for inflateSetDictionary */
3064       BLOCKS,   /* decompressing blocks */
3065       CHECK4,   /* four check bytes to go */
3066       CHECK3,   /* three check bytes to go */
3067       CHECK2,   /* two check bytes to go */
3068       CHECK1,   /* one check byte to go */
3069       DONE,     /* finished check, done */
3070       BAD}      /* got an error--stay here */
3071     mode;               /* current inflate mode */
3072 
3073   /* mode dependent information */
3074   union {
3075     uInt method;        /* if FLAGS, method byte */
3076     struct {
3077       uLong was;                /* computed check value */
3078       uLong need;               /* stream check value */
3079     } check;            /* if CHECK, check values to compare */
3080     uInt marker;        /* if BAD, inflateSync's marker bytes count */
3081   } sub;        /* submode */
3082 
3083   /* mode independent information */
3084   int  nowrap;          /* flag for no wrapper */
3085   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
3086   inflate_blocks_statef
3087     *blocks;            /* current inflate_blocks state */
3088 
3089 };
3090 
3091 
3092 int inflateReset(z)
3093 z_streamp z;
3094 {
3095   uLong c;
3096 
3097   if (z == Z_NULL || z->state == Z_NULL)
3098     return Z_STREAM_ERROR;
3099   z->total_in = z->total_out = 0;
3100   z->msg = Z_NULL;
3101   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3102   inflate_blocks_reset(z->state->blocks, z, &c);
3103   Trace((stderr, "inflate: reset\n"));
3104   return Z_OK;
3105 }
3106 
3107 
3108 int inflateEnd(z)
3109 z_streamp z;
3110 {
3111   uLong c;
3112 
3113   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3114     return Z_STREAM_ERROR;
3115   if (z->state->blocks != Z_NULL)
3116     inflate_blocks_free(z->state->blocks, z, &c);
3117   ZFREE(z, z->state);
3118   z->state = Z_NULL;
3119   Trace((stderr, "inflate: end\n"));
3120   return Z_OK;
3121 }
3122 
3123 
3124 int inflateInit2_(z, w, version, stream_size)
3125 z_streamp z;
3126 int w;
3127 const char *version;
3128 int stream_size;
3129 {
3130   if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3131       stream_size != sizeof(z_stream))
3132       return Z_VERSION_ERROR;
3133 
3134   /* initialize state */
3135   if (z == Z_NULL)
3136     return Z_STREAM_ERROR;
3137   z->msg = Z_NULL;
3138 #ifndef NO_ZCFUNCS
3139   if (z->zalloc == Z_NULL)
3140   {
3141     z->zalloc = zcalloc;
3142     z->opaque = (voidpf)0;
3143   }
3144   if (z->zfree == Z_NULL) z->zfree = zcfree;
3145 #endif
3146   if ((z->state = (struct internal_state FAR *)
3147        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3148     return Z_MEM_ERROR;
3149   z->state->blocks = Z_NULL;
3150 
3151   /* handle undocumented nowrap option (no zlib header or check) */
3152   z->state->nowrap = 0;
3153   if (w < 0)
3154   {
3155     w = - w;
3156     z->state->nowrap = 1;
3157   }
3158 
3159   /* set window size */
3160   if (w < 8 || w > 15)
3161   {
3162     inflateEnd(z);
3163     return Z_STREAM_ERROR;
3164   }
3165   z->state->wbits = (uInt)w;
3166 
3167   /* create inflate_blocks state */
3168   if ((z->state->blocks =
3169       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3170       == Z_NULL)
3171   {
3172     inflateEnd(z);
3173     return Z_MEM_ERROR;
3174   }
3175   Trace((stderr, "inflate: allocated\n"));
3176 
3177   /* reset state */
3178   inflateReset(z);
3179   return Z_OK;
3180 }
3181 
3182 
3183 int inflateInit_(z, version, stream_size)
3184 z_streamp z;
3185 const char *version;
3186 int stream_size;
3187 {
3188   return inflateInit2_(z, DEF_WBITS, version, stream_size);
3189 }
3190 
3191 
3192 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3193 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3194 
3195 int inflate(z, f)
3196 z_streamp z;
3197 int f;
3198 {
3199   int r;
3200   uInt b;
3201 
3202   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3203     return Z_STREAM_ERROR;
3204   r = Z_BUF_ERROR;
3205   while (1) switch (z->state->mode)
3206   {
3207     case METHOD:
3208       NEEDBYTE
3209       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3210       {
3211         z->state->mode = BAD;
3212         z->msg = (char*)"unknown compression method";
3213         z->state->sub.marker = 5;       /* can't try inflateSync */
3214         break;
3215       }
3216       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3217       {
3218         z->state->mode = BAD;
3219         z->msg = (char*)"invalid window size";
3220         z->state->sub.marker = 5;       /* can't try inflateSync */
3221         break;
3222       }
3223       z->state->mode = FLAG;
3224     case FLAG:
3225       NEEDBYTE
3226       b = NEXTBYTE;
3227       if (((z->state->sub.method << 8) + b) % 31)
3228       {
3229         z->state->mode = BAD;
3230         z->msg = (char*)"incorrect header check";
3231         z->state->sub.marker = 5;       /* can't try inflateSync */
3232         break;
3233       }
3234       Trace((stderr, "inflate: zlib header ok\n"));
3235       if (!(b & PRESET_DICT))
3236       {
3237         z->state->mode = BLOCKS;
3238 	break;
3239       }
3240       z->state->mode = DICT4;
3241     case DICT4:
3242       NEEDBYTE
3243       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3244       z->state->mode = DICT3;
3245     case DICT3:
3246       NEEDBYTE
3247       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3248       z->state->mode = DICT2;
3249     case DICT2:
3250       NEEDBYTE
3251       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3252       z->state->mode = DICT1;
3253     case DICT1:
3254       NEEDBYTE
3255       z->state->sub.check.need += (uLong)NEXTBYTE;
3256       z->adler = z->state->sub.check.need;
3257       z->state->mode = DICT0;
3258       return Z_NEED_DICT;
3259     case DICT0:
3260       z->state->mode = BAD;
3261       z->msg = (char*)"need dictionary";
3262       z->state->sub.marker = 0;       /* can try inflateSync */
3263       return Z_STREAM_ERROR;
3264     case BLOCKS:
3265       r = inflate_blocks(z->state->blocks, z, r);
3266       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3267 	  r = inflate_packet_flush(z->state->blocks);
3268       if (r == Z_DATA_ERROR)
3269       {
3270         z->state->mode = BAD;
3271         z->state->sub.marker = 0;       /* can try inflateSync */
3272         break;
3273       }
3274       if (r != Z_STREAM_END)
3275         return r;
3276       r = Z_OK;
3277       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3278       if (z->state->nowrap)
3279       {
3280         z->state->mode = DONE;
3281         break;
3282       }
3283       z->state->mode = CHECK4;
3284     case CHECK4:
3285       NEEDBYTE
3286       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3287       z->state->mode = CHECK3;
3288     case CHECK3:
3289       NEEDBYTE
3290       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3291       z->state->mode = CHECK2;
3292     case CHECK2:
3293       NEEDBYTE
3294       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3295       z->state->mode = CHECK1;
3296     case CHECK1:
3297       NEEDBYTE
3298       z->state->sub.check.need += (uLong)NEXTBYTE;
3299 
3300       if (z->state->sub.check.was != z->state->sub.check.need)
3301       {
3302         z->state->mode = BAD;
3303         z->msg = (char*)"incorrect data check";
3304         z->state->sub.marker = 5;       /* can't try inflateSync */
3305         break;
3306       }
3307       Trace((stderr, "inflate: zlib check ok\n"));
3308       z->state->mode = DONE;
3309     case DONE:
3310       return Z_STREAM_END;
3311     case BAD:
3312       return Z_DATA_ERROR;
3313     default:
3314       return Z_STREAM_ERROR;
3315   }
3316 
3317  empty:
3318   if (f != Z_PACKET_FLUSH)
3319     return r;
3320   z->state->mode = BAD;
3321   z->msg = (char *)"need more for packet flush";
3322   z->state->sub.marker = 0;       /* can try inflateSync */
3323   return Z_DATA_ERROR;
3324 }
3325 
3326 
3327 int inflateSetDictionary(z, dictionary, dictLength)
3328 z_streamp z;
3329 const Bytef *dictionary;
3330 uInt  dictLength;
3331 {
3332   uInt length = dictLength;
3333 
3334   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3335     return Z_STREAM_ERROR;
3336 
3337   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3338   z->adler = 1L;
3339 
3340   if (length >= ((uInt)1<<z->state->wbits))
3341   {
3342     length = (1<<z->state->wbits)-1;
3343     dictionary += dictLength - length;
3344   }
3345   inflate_set_dictionary(z->state->blocks, dictionary, length);
3346   z->state->mode = BLOCKS;
3347   return Z_OK;
3348 }
3349 
3350 /*
3351  * This subroutine adds the data at next_in/avail_in to the output history
3352  * without performing any output.  The output buffer must be "caught up";
3353  * i.e. no pending output (hence s->read equals s->write), and the state must
3354  * be BLOCKS (i.e. we should be willing to see the start of a series of
3355  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3356  * will have been updated if need be.
3357  */
3358 
3359 int inflateIncomp(z)
3360 z_stream *z;
3361 {
3362     if (z->state->mode != BLOCKS)
3363 	return Z_DATA_ERROR;
3364     return inflate_addhistory(z->state->blocks, z);
3365 }
3366 
3367 
3368 int inflateSync(z)
3369 z_streamp z;
3370 {
3371   uInt n;       /* number of bytes to look at */
3372   Bytef *p;     /* pointer to bytes */
3373   uInt m;       /* number of marker bytes found in a row */
3374   uLong r, w;   /* temporaries to save total_in and total_out */
3375 
3376   /* set up */
3377   if (z == Z_NULL || z->state == Z_NULL)
3378     return Z_STREAM_ERROR;
3379   if (z->state->mode != BAD)
3380   {
3381     z->state->mode = BAD;
3382     z->state->sub.marker = 0;
3383   }
3384   if ((n = z->avail_in) == 0)
3385     return Z_BUF_ERROR;
3386   p = z->next_in;
3387   m = z->state->sub.marker;
3388 
3389   /* search */
3390   while (n && m < 4)
3391   {
3392     if (*p == (Byte)(m < 2 ? 0 : 0xff))
3393       m++;
3394     else if (*p)
3395       m = 0;
3396     else
3397       m = 4 - m;
3398     p++, n--;
3399   }
3400 
3401   /* restore */
3402   z->total_in += p - z->next_in;
3403   z->next_in = p;
3404   z->avail_in = n;
3405   z->state->sub.marker = m;
3406 
3407   /* return no joy or set up to restart on a new block */
3408   if (m != 4)
3409     return Z_DATA_ERROR;
3410   r = z->total_in;  w = z->total_out;
3411   inflateReset(z);
3412   z->total_in = r;  z->total_out = w;
3413   z->state->mode = BLOCKS;
3414   return Z_OK;
3415 }
3416 
3417 #undef NEEDBYTE
3418 #undef NEXTBYTE
3419 /* --- inflate.c */
3420 
3421 /* +++ infblock.c */
3422 /* infblock.c -- interpret and process block types to last block
3423  * Copyright (C) 1995-1996 Mark Adler
3424  * For conditions of distribution and use, see copyright notice in zlib.h
3425  */
3426 
3427 /* #include "zutil.h" */
3428 /* #include "infblock.h" */
3429 
3430 /* +++ inftrees.h */
3431 /* inftrees.h -- header to use inftrees.c
3432  * Copyright (C) 1995-1996 Mark Adler
3433  * For conditions of distribution and use, see copyright notice in zlib.h
3434  */
3435 
3436 /* WARNING: this file should *not* be used by applications. It is
3437    part of the implementation of the compression library and is
3438    subject to change. Applications should only use zlib.h.
3439  */
3440 
3441 /* Huffman code lookup table entry--this entry is four bytes for machines
3442    that have 16-bit pointers (e.g. PC's in the small or medium model). */
3443 
3444 typedef struct inflate_huft_s FAR inflate_huft;
3445 
3446 struct inflate_huft_s {
3447   union {
3448     struct {
3449       Byte Exop;        /* number of extra bits or operation */
3450       Byte Bits;        /* number of bits in this code or subcode */
3451     } what;
3452     Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
3453   } word;               /*  16-bit, 8 bytes for 32-bit machines) */
3454   union {
3455     uInt Base;          /* literal, length base, or distance base */
3456     inflate_huft *Next; /* pointer to next level of table */
3457   } more;
3458 };
3459 
3460 #ifdef DEBUG_ZLIB
3461   extern uInt inflate_hufts;
3462 #endif
3463 
3464 extern int inflate_trees_bits OF((
3465     uIntf *,                    /* 19 code lengths */
3466     uIntf *,                    /* bits tree desired/actual depth */
3467     inflate_huft * FAR *,       /* bits tree result */
3468     z_streamp ));               /* for zalloc, zfree functions */
3469 
3470 extern int inflate_trees_dynamic OF((
3471     uInt,                       /* number of literal/length codes */
3472     uInt,                       /* number of distance codes */
3473     uIntf *,                    /* that many (total) code lengths */
3474     uIntf *,                    /* literal desired/actual bit depth */
3475     uIntf *,                    /* distance desired/actual bit depth */
3476     inflate_huft * FAR *,       /* literal/length tree result */
3477     inflate_huft * FAR *,       /* distance tree result */
3478     z_streamp ));               /* for zalloc, zfree functions */
3479 
3480 extern int inflate_trees_fixed OF((
3481     uIntf *,                    /* literal desired/actual bit depth */
3482     uIntf *,                    /* distance desired/actual bit depth */
3483     inflate_huft * FAR *,       /* literal/length tree result */
3484     inflate_huft * FAR *));     /* distance tree result */
3485 
3486 extern int inflate_trees_free OF((
3487     inflate_huft *,             /* tables to free */
3488     z_streamp ));               /* for zfree function */
3489 
3490 /* --- inftrees.h */
3491 
3492 /* +++ infcodes.h */
3493 /* infcodes.h -- header to use infcodes.c
3494  * Copyright (C) 1995-1996 Mark Adler
3495  * For conditions of distribution and use, see copyright notice in zlib.h
3496  */
3497 
3498 /* WARNING: this file should *not* be used by applications. It is
3499    part of the implementation of the compression library and is
3500    subject to change. Applications should only use zlib.h.
3501  */
3502 
3503 struct inflate_codes_state;
3504 typedef struct inflate_codes_state FAR inflate_codes_statef;
3505 
3506 extern inflate_codes_statef *inflate_codes_new OF((
3507     uInt, uInt,
3508     inflate_huft *, inflate_huft *,
3509     z_streamp ));
3510 
3511 extern int inflate_codes OF((
3512     inflate_blocks_statef *,
3513     z_streamp ,
3514     int));
3515 
3516 extern void inflate_codes_free OF((
3517     inflate_codes_statef *,
3518     z_streamp ));
3519 
3520 /* --- infcodes.h */
3521 
3522 /* +++ infutil.h */
3523 /* infutil.h -- types and macros common to blocks and codes
3524  * Copyright (C) 1995-1996 Mark Adler
3525  * For conditions of distribution and use, see copyright notice in zlib.h
3526  */
3527 
3528 /* WARNING: this file should *not* be used by applications. It is
3529    part of the implementation of the compression library and is
3530    subject to change. Applications should only use zlib.h.
3531  */
3532 
3533 #ifndef _INFUTIL_H
3534 #define _INFUTIL_H
3535 
3536 typedef enum {
3537       TYPE,     /* get type bits (3, including end bit) */
3538       LENS,     /* get lengths for stored */
3539       STORED,   /* processing stored block */
3540       TABLE,    /* get table lengths */
3541       BTREE,    /* get bit lengths tree for a dynamic block */
3542       DTREE,    /* get length, distance trees for a dynamic block */
3543       CODES,    /* processing fixed or dynamic block */
3544       DRY,      /* output remaining window bytes */
3545       DONEB,    /* finished last block, done */
3546       BADB}     /* got a data error--stuck here */
3547 inflate_block_mode;
3548 
3549 /* inflate blocks semi-private state */
3550 struct inflate_blocks_state {
3551 
3552   /* mode */
3553   inflate_block_mode  mode;     /* current inflate_block mode */
3554 
3555   /* mode dependent information */
3556   union {
3557     uInt left;          /* if STORED, bytes left to copy */
3558     struct {
3559       uInt table;               /* table lengths (14 bits) */
3560       uInt index;               /* index into blens (or border) */
3561       uIntf *blens;             /* bit lengths of codes */
3562       uInt bb;                  /* bit length tree depth */
3563       inflate_huft *tb;         /* bit length decoding tree */
3564     } trees;            /* if DTREE, decoding info for trees */
3565     struct {
3566       inflate_huft *tl;
3567       inflate_huft *td;         /* trees to free */
3568       inflate_codes_statef
3569          *codes;
3570     } decode;           /* if CODES, current state */
3571   } sub;                /* submode */
3572   uInt last;            /* true if this block is the last block */
3573 
3574   /* mode independent information */
3575   uInt bitk;            /* bits in bit buffer */
3576   uLong bitb;           /* bit buffer */
3577   Bytef *window;        /* sliding window */
3578   Bytef *end;           /* one byte after sliding window */
3579   Bytef *read;          /* window read pointer */
3580   Bytef *write;         /* window write pointer */
3581   check_func checkfn;   /* check function */
3582   uLong check;          /* check on output */
3583 
3584 };
3585 
3586 
3587 /* defines for inflate input/output */
3588 /*   update pointers and return */
3589 #define UPDBITS {s->bitb=b;s->bitk=k;}
3590 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3591 #define UPDOUT {s->write=q;}
3592 #define UPDATE {UPDBITS UPDIN UPDOUT}
3593 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3594 /*   get bytes and bits */
3595 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3596 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3597 #define NEXTBYTE (n--,*p++)
3598 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3599 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3600 /*   output bytes */
3601 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3602 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3603 #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3604 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3605 #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3606 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3607 /*   load local pointers */
3608 #define LOAD {LOADIN LOADOUT}
3609 
3610 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3611 extern uInt inflate_mask[17];
3612 
3613 /* copy as much as possible from the sliding window to the output area */
3614 extern int inflate_flush OF((
3615     inflate_blocks_statef *,
3616     z_streamp ,
3617     int));
3618 
3619 #ifndef NO_DUMMY_DECL
3620 struct internal_state      {int dummy;}; /* for buggy compilers */
3621 #endif
3622 
3623 #endif
3624 /* --- infutil.h */
3625 
3626 #ifndef NO_DUMMY_DECL
3627 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3628 #endif
3629 
3630 /* Table for deflate from PKZIP's appnote.txt. */
3631 local const uInt border[] = { /* Order of the bit length code lengths */
3632         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3633 
3634 /*
3635    Notes beyond the 1.93a appnote.txt:
3636 
3637    1. Distance pointers never point before the beginning of the output
3638       stream.
3639    2. Distance pointers can point back across blocks, up to 32k away.
3640    3. There is an implied maximum of 7 bits for the bit length table and
3641       15 bits for the actual data.
3642    4. If only one code exists, then it is encoded using one bit.  (Zero
3643       would be more efficient, but perhaps a little confusing.)  If two
3644       codes exist, they are coded using one bit each (0 and 1).
3645    5. There is no way of sending zero distance codes--a dummy must be
3646       sent if there are none.  (History: a pre 2.0 version of PKZIP would
3647       store blocks with no distance codes, but this was discovered to be
3648       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3649       zero distance codes, which is sent as one code of zero bits in
3650       length.
3651    6. There are up to 286 literal/length codes.  Code 256 represents the
3652       end-of-block.  Note however that the static length tree defines
3653       288 codes just to fill out the Huffman codes.  Codes 286 and 287
3654       cannot be used though, since there is no length base or extra bits
3655       defined for them.  Similarily, there are up to 30 distance codes.
3656       However, static trees define 32 codes (all 5 bits) to fill out the
3657       Huffman codes, but the last two had better not show up in the data.
3658    7. Unzip can check dynamic Huffman blocks for complete code sets.
3659       The exception is that a single code would not be complete (see #4).
3660    8. The five bits following the block type is really the number of
3661       literal codes sent minus 257.
3662    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3663       (1+6+6).  Therefore, to output three times the length, you output
3664       three codes (1+1+1), whereas to output four times the same length,
3665       you only need two codes (1+3).  Hmm.
3666   10. In the tree reconstruction algorithm, Code = Code + Increment
3667       only if BitLength(i) is not zero.  (Pretty obvious.)
3668   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3669   12. Note: length code 284 can represent 227-258, but length code 285
3670       really is 258.  The last length deserves its own, short code
3671       since it gets used a lot in very redundant files.  The length
3672       258 is special since 258 - 3 (the min match length) is 255.
3673   13. The literal/length and distance code bit lengths are read as a
3674       single stream of lengths.  It is possible (and advantageous) for
3675       a repeat code (16, 17, or 18) to go across the boundary between
3676       the two sets of lengths.
3677  */
3678 
3679 
3680 void inflate_blocks_reset(s, z, c)
3681 inflate_blocks_statef *s;
3682 z_streamp z;
3683 uLongf *c;
3684 {
3685   if (s->checkfn != Z_NULL)
3686     *c = s->check;
3687   if (s->mode == BTREE || s->mode == DTREE)
3688     ZFREE(z, s->sub.trees.blens);
3689   if (s->mode == CODES)
3690   {
3691     inflate_codes_free(s->sub.decode.codes, z);
3692     inflate_trees_free(s->sub.decode.td, z);
3693     inflate_trees_free(s->sub.decode.tl, z);
3694   }
3695   s->mode = TYPE;
3696   s->bitk = 0;
3697   s->bitb = 0;
3698   s->read = s->write = s->window;
3699   if (s->checkfn != Z_NULL)
3700     z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3701   Trace((stderr, "inflate:   blocks reset\n"));
3702 }
3703 
3704 
3705 inflate_blocks_statef *inflate_blocks_new(z, c, w)
3706 z_streamp z;
3707 check_func c;
3708 uInt w;
3709 {
3710   inflate_blocks_statef *s;
3711 
3712   if ((s = (inflate_blocks_statef *)ZALLOC
3713        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3714     return s;
3715   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3716   {
3717     ZFREE(z, s);
3718     return Z_NULL;
3719   }
3720   s->end = s->window + w;
3721   s->checkfn = c;
3722   s->mode = TYPE;
3723   Trace((stderr, "inflate:   blocks allocated\n"));
3724   inflate_blocks_reset(s, z, &s->check);
3725   return s;
3726 }
3727 
3728 
3729 #ifdef DEBUG_ZLIB
3730   extern uInt inflate_hufts;
3731 #endif
3732 int inflate_blocks(s, z, r)
3733 inflate_blocks_statef *s;
3734 z_streamp z;
3735 int r;
3736 {
3737   uInt t;               /* temporary storage */
3738   uLong b;              /* bit buffer */
3739   uInt k;               /* bits in bit buffer */
3740   Bytef *p;             /* input data pointer */
3741   uInt n;               /* bytes available there */
3742   Bytef *q;             /* output window write pointer */
3743   uInt m;               /* bytes to end of window or read pointer */
3744 
3745   /* copy input/output information to locals (UPDATE macro restores) */
3746   LOAD
3747 
3748   /* process input based on current state */
3749   while (1) switch (s->mode)
3750   {
3751     case TYPE:
3752       NEEDBITS(3)
3753       t = (uInt)b & 7;
3754       s->last = t & 1;
3755       switch (t >> 1)
3756       {
3757         case 0:                         /* stored */
3758           Trace((stderr, "inflate:     stored block%s\n",
3759                  s->last ? " (last)" : ""));
3760           DUMPBITS(3)
3761           t = k & 7;                    /* go to byte boundary */
3762           DUMPBITS(t)
3763           s->mode = LENS;               /* get length of stored block */
3764           break;
3765         case 1:                         /* fixed */
3766           Trace((stderr, "inflate:     fixed codes block%s\n",
3767                  s->last ? " (last)" : ""));
3768           {
3769             uInt bl, bd;
3770             inflate_huft *tl, *td;
3771 
3772             inflate_trees_fixed(&bl, &bd, &tl, &td);
3773             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3774             if (s->sub.decode.codes == Z_NULL)
3775             {
3776               r = Z_MEM_ERROR;
3777               LEAVE
3778             }
3779             s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3780             s->sub.decode.td = Z_NULL;
3781           }
3782           DUMPBITS(3)
3783           s->mode = CODES;
3784           break;
3785         case 2:                         /* dynamic */
3786           Trace((stderr, "inflate:     dynamic codes block%s\n",
3787                  s->last ? " (last)" : ""));
3788           DUMPBITS(3)
3789           s->mode = TABLE;
3790           break;
3791         case 3:                         /* illegal */
3792           DUMPBITS(3)
3793           s->mode = BADB;
3794           z->msg = (char*)"invalid block type";
3795           r = Z_DATA_ERROR;
3796           LEAVE
3797       }
3798       break;
3799     case LENS:
3800       NEEDBITS(32)
3801       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3802       {
3803         s->mode = BADB;
3804         z->msg = (char*)"invalid stored block lengths";
3805         r = Z_DATA_ERROR;
3806         LEAVE
3807       }
3808       s->sub.left = (uInt)b & 0xffff;
3809       b = k = 0;                      /* dump bits */
3810       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3811       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3812       break;
3813     case STORED:
3814       if (n == 0)
3815         LEAVE
3816       NEEDOUT
3817       t = s->sub.left;
3818       if (t > n) t = n;
3819       if (t > m) t = m;
3820       zmemcpy(q, p, t);
3821       p += t;  n -= t;
3822       q += t;  m -= t;
3823       if ((s->sub.left -= t) != 0)
3824         break;
3825       Tracev((stderr, "inflate:       stored end, %lu total out\n",
3826               z->total_out + (q >= s->read ? q - s->read :
3827               (s->end - s->read) + (q - s->window))));
3828       s->mode = s->last ? DRY : TYPE;
3829       break;
3830     case TABLE:
3831       NEEDBITS(14)
3832       s->sub.trees.table = t = (uInt)b & 0x3fff;
3833 #ifndef PKZIP_BUG_WORKAROUND
3834       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3835       {
3836         s->mode = BADB;
3837         z->msg = (char*)"too many length or distance symbols";
3838         r = Z_DATA_ERROR;
3839         LEAVE
3840       }
3841 #endif
3842       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3843       if (t < 19)
3844         t = 19;
3845       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3846       {
3847         r = Z_MEM_ERROR;
3848         LEAVE
3849       }
3850       DUMPBITS(14)
3851       s->sub.trees.index = 0;
3852       Tracev((stderr, "inflate:       table sizes ok\n"));
3853       s->mode = BTREE;
3854     case BTREE:
3855       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3856       {
3857         NEEDBITS(3)
3858         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3859         DUMPBITS(3)
3860       }
3861       while (s->sub.trees.index < 19)
3862         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3863       s->sub.trees.bb = 7;
3864       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3865                              &s->sub.trees.tb, z);
3866       if (t != Z_OK)
3867       {
3868         r = t;
3869         if (r == Z_DATA_ERROR) {
3870           ZFREE(z, s->sub.trees.blens);
3871           s->mode = BADB;
3872         }
3873         LEAVE
3874       }
3875       s->sub.trees.index = 0;
3876       Tracev((stderr, "inflate:       bits tree ok\n"));
3877       s->mode = DTREE;
3878     case DTREE:
3879       while (t = s->sub.trees.table,
3880              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3881       {
3882         inflate_huft *h;
3883         uInt i, j, c;
3884 
3885         t = s->sub.trees.bb;
3886         NEEDBITS(t)
3887         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3888         t = h->word.what.Bits;
3889         c = h->more.Base;
3890         if (c < 16)
3891         {
3892           DUMPBITS(t)
3893           s->sub.trees.blens[s->sub.trees.index++] = c;
3894         }
3895         else /* c == 16..18 */
3896         {
3897           i = c == 18 ? 7 : c - 14;
3898           j = c == 18 ? 11 : 3;
3899           NEEDBITS(t + i)
3900           DUMPBITS(t)
3901           j += (uInt)b & inflate_mask[i];
3902           DUMPBITS(i)
3903           i = s->sub.trees.index;
3904           t = s->sub.trees.table;
3905           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3906               (c == 16 && i < 1))
3907           {
3908             inflate_trees_free(s->sub.trees.tb, z);
3909             ZFREE(z, s->sub.trees.blens);
3910             s->mode = BADB;
3911             z->msg = (char*)"invalid bit length repeat";
3912             r = Z_DATA_ERROR;
3913             LEAVE
3914           }
3915           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3916           do {
3917             s->sub.trees.blens[i++] = c;
3918           } while (--j);
3919           s->sub.trees.index = i;
3920         }
3921       }
3922       inflate_trees_free(s->sub.trees.tb, z);
3923       s->sub.trees.tb = Z_NULL;
3924       {
3925         uInt bl, bd;
3926         inflate_huft *tl, *td;
3927         inflate_codes_statef *c;
3928 
3929         bl = 9;         /* must be <= 9 for lookahead assumptions */
3930         bd = 6;         /* must be <= 9 for lookahead assumptions */
3931         t = s->sub.trees.table;
3932 #ifdef DEBUG_ZLIB
3933       inflate_hufts = 0;
3934 #endif
3935         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3936                                   s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3937         if (t != Z_OK)
3938         {
3939           if (t == (uInt)Z_DATA_ERROR) {
3940             ZFREE(z, s->sub.trees.blens);
3941             s->mode = BADB;
3942           }
3943           r = t;
3944           LEAVE
3945         }
3946         Tracev((stderr, "inflate:       trees ok, %d * %d bytes used\n",
3947               inflate_hufts, sizeof(inflate_huft)));
3948         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3949         {
3950           inflate_trees_free(td, z);
3951           inflate_trees_free(tl, z);
3952           r = Z_MEM_ERROR;
3953           LEAVE
3954         }
3955 	/*
3956 	 * this ZFREE must occur *BEFORE* we mess with sub.decode, because
3957 	 * sub.trees is union'd with sub.decode.
3958 	 */
3959         ZFREE(z, s->sub.trees.blens);
3960         s->sub.decode.codes = c;
3961         s->sub.decode.tl = tl;
3962         s->sub.decode.td = td;
3963       }
3964       s->mode = CODES;
3965     case CODES:
3966       UPDATE
3967       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3968         return inflate_flush(s, z, r);
3969       r = Z_OK;
3970       inflate_codes_free(s->sub.decode.codes, z);
3971       inflate_trees_free(s->sub.decode.td, z);
3972       inflate_trees_free(s->sub.decode.tl, z);
3973       LOAD
3974       Tracev((stderr, "inflate:       codes end, %lu total out\n",
3975               z->total_out + (q >= s->read ? q - s->read :
3976               (s->end - s->read) + (q - s->window))));
3977       if (!s->last)
3978       {
3979         s->mode = TYPE;
3980         break;
3981       }
3982       if (k > 7)              /* return unused byte, if any */
3983       {
3984         Assert(k < 16, "inflate_codes grabbed too many bytes")
3985         k -= 8;
3986         n++;
3987         p--;                    /* can always return one */
3988       }
3989       s->mode = DRY;
3990     case DRY:
3991       FLUSH
3992       if (s->read != s->write)
3993         LEAVE
3994       s->mode = DONEB;
3995     case DONEB:
3996       r = Z_STREAM_END;
3997       LEAVE
3998     case BADB:
3999       r = Z_DATA_ERROR;
4000       LEAVE
4001     default:
4002       r = Z_STREAM_ERROR;
4003       LEAVE
4004   }
4005 }
4006 
4007 
4008 int inflate_blocks_free(s, z, c)
4009 inflate_blocks_statef *s;
4010 z_streamp z;
4011 uLongf *c;
4012 {
4013   inflate_blocks_reset(s, z, c);
4014   ZFREE(z, s->window);
4015   ZFREE(z, s);
4016   Trace((stderr, "inflate:   blocks freed\n"));
4017   return Z_OK;
4018 }
4019 
4020 
4021 void inflate_set_dictionary(s, d, n)
4022 inflate_blocks_statef *s;
4023 const Bytef *d;
4024 uInt  n;
4025 {
4026   zmemcpy((charf *)s->window, d, n);
4027   s->read = s->write = s->window + n;
4028 }
4029 
4030 /*
4031  * This subroutine adds the data at next_in/avail_in to the output history
4032  * without performing any output.  The output buffer must be "caught up";
4033  * i.e. no pending output (hence s->read equals s->write), and the state must
4034  * be BLOCKS (i.e. we should be willing to see the start of a series of
4035  * BLOCKS).  On exit, the output will also be caught up, and the checksum
4036  * will have been updated if need be.
4037  */
4038 int inflate_addhistory(s, z)
4039 inflate_blocks_statef *s;
4040 z_stream *z;
4041 {
4042     uLong b;              /* bit buffer */  /* NOT USED HERE */
4043     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
4044     uInt t;               /* temporary storage */
4045     Bytef *p;             /* input data pointer */
4046     uInt n;               /* bytes available there */
4047     Bytef *q;             /* output window write pointer */
4048     uInt m;               /* bytes to end of window or read pointer */
4049 
4050     if (s->read != s->write)
4051 	return Z_STREAM_ERROR;
4052     if (s->mode != TYPE)
4053 	return Z_DATA_ERROR;
4054 
4055     /* we're ready to rock */
4056     LOAD
4057     /* while there is input ready, copy to output buffer, moving
4058      * pointers as needed.
4059      */
4060     while (n) {
4061 	t = n;  /* how many to do */
4062 	/* is there room until end of buffer? */
4063 	if (t > m) t = m;
4064 	/* update check information */
4065 	if (s->checkfn != Z_NULL)
4066 	    s->check = (*s->checkfn)(s->check, q, t);
4067 	zmemcpy(q, p, t);
4068 	q += t;
4069 	p += t;
4070 	n -= t;
4071 	z->total_out += t;
4072 	s->read = q;    /* drag read pointer forward */
4073 /*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
4074 	if (q == s->end) {
4075 	    s->read = q = s->window;
4076 	    m = WAVAIL;
4077 	}
4078     }
4079     UPDATE
4080     return Z_OK;
4081 }
4082 
4083 
4084 /*
4085  * At the end of a Deflate-compressed PPP packet, we expect to have seen
4086  * a `stored' block type value but not the (zero) length bytes.
4087  */
4088 int inflate_packet_flush(s)
4089     inflate_blocks_statef *s;
4090 {
4091     if (s->mode != LENS)
4092 	return Z_DATA_ERROR;
4093     s->mode = TYPE;
4094     return Z_OK;
4095 }
4096 /* --- infblock.c */
4097 
4098 /* +++ inftrees.c */
4099 /* inftrees.c -- generate Huffman trees for efficient decoding
4100  * Copyright (C) 1995-1996 Mark Adler
4101  * For conditions of distribution and use, see copyright notice in zlib.h
4102  */
4103 
4104 /* #include "zutil.h" */
4105 /* #include "inftrees.h" */
4106 
4107 char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4108 /*
4109   If you use the zlib library in a product, an acknowledgment is welcome
4110   in the documentation of your product. If for some reason you cannot
4111   include such an acknowledgment, I would appreciate that you keep this
4112   copyright string in the executable of your product.
4113  */
4114 
4115 #ifndef NO_DUMMY_DECL
4116 struct internal_state  {int dummy;}; /* for buggy compilers */
4117 #endif
4118 
4119 /* simplify the use of the inflate_huft type with some defines */
4120 #define base more.Base
4121 #define next more.Next
4122 #define exop word.what.Exop
4123 #define bits word.what.Bits
4124 
4125 
4126 local int huft_build OF((
4127     uIntf *,            /* code lengths in bits */
4128     uInt,               /* number of codes */
4129     uInt,               /* number of "simple" codes */
4130     const uIntf *,      /* list of base values for non-simple codes */
4131     const uIntf *,      /* list of extra bits for non-simple codes */
4132     inflate_huft * FAR*,/* result: starting table */
4133     uIntf *,            /* maximum lookup bits (returns actual) */
4134     z_streamp ));       /* for zalloc function */
4135 
4136 local voidpf falloc OF((
4137     voidpf,             /* opaque pointer (not used) */
4138     uInt,               /* number of items */
4139     uInt));             /* size of item */
4140 
4141 /* Tables for deflate from PKZIP's appnote.txt. */
4142 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4143         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4144         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4145         /* see note #13 above about 258 */
4146 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4147         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4148         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4149 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4150         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4151         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4152         8193, 12289, 16385, 24577};
4153 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4154         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4155         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4156         12, 12, 13, 13};
4157 
4158 /*
4159    Huffman code decoding is performed using a multi-level table lookup.
4160    The fastest way to decode is to simply build a lookup table whose
4161    size is determined by the longest code.  However, the time it takes
4162    to build this table can also be a factor if the data being decoded
4163    is not very long.  The most common codes are necessarily the
4164    shortest codes, so those codes dominate the decoding time, and hence
4165    the speed.  The idea is you can have a shorter table that decodes the
4166    shorter, more probable codes, and then point to subsidiary tables for
4167    the longer codes.  The time it costs to decode the longer codes is
4168    then traded against the time it takes to make longer tables.
4169 
4170    This results of this trade are in the variables lbits and dbits
4171    below.  lbits is the number of bits the first level table for literal/
4172    length codes can decode in one step, and dbits is the same thing for
4173    the distance codes.  Subsequent tables are also less than or equal to
4174    those sizes.  These values may be adjusted either when all of the
4175    codes are shorter than that, in which case the longest code length in
4176    bits is used, or when the shortest code is *longer* than the requested
4177    table size, in which case the length of the shortest code in bits is
4178    used.
4179 
4180    There are two different values for the two tables, since they code a
4181    different number of possibilities each.  The literal/length table
4182    codes 286 possible values, or in a flat code, a little over eight
4183    bits.  The distance table codes 30 possible values, or a little less
4184    than five bits, flat.  The optimum values for speed end up being
4185    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4186    The optimum values may differ though from machine to machine, and
4187    possibly even between compilers.  Your mileage may vary.
4188  */
4189 
4190 
4191 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4192 #define BMAX 15         /* maximum bit length of any code */
4193 #define N_MAX 288       /* maximum number of codes in any set */
4194 
4195 #ifdef DEBUG_ZLIB
4196   uInt inflate_hufts;
4197 #endif
4198 
4199 local int huft_build(b, n, s, d, e, t, m, zs)
4200 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
4201 uInt n;                 /* number of codes (assumed <= N_MAX) */
4202 uInt s;                 /* number of simple-valued codes (0..s-1) */
4203 const uIntf *d;         /* list of base values for non-simple codes */
4204 const uIntf *e;         /* list of extra bits for non-simple codes */
4205 inflate_huft * FAR *t;  /* result: starting table */
4206 uIntf *m;               /* maximum lookup bits, returns actual */
4207 z_streamp zs;           /* for zalloc function */
4208 /* Given a list of code lengths and a maximum table size, make a set of
4209    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
4210    if the given code set is incomplete (the tables are still built in this
4211    case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4212    lengths), or Z_MEM_ERROR if not enough memory. */
4213 {
4214 
4215   uInt a;                       /* counter for codes of length k */
4216   uInt c[BMAX+1];               /* bit length count table */
4217   uInt f;                       /* i repeats in table every f entries */
4218   int g;                        /* maximum code length */
4219   int h;                        /* table level */
4220   register uInt i;              /* counter, current code */
4221   register uInt j;              /* counter */
4222   register int k;               /* number of bits in current code */
4223   int l;                        /* bits per table (returned in m) */
4224   register uIntf *p;            /* pointer into c[], b[], or v[] */
4225   inflate_huft *q;              /* points to current table */
4226   struct inflate_huft_s r;      /* table entry for structure assignment */
4227   inflate_huft *u[BMAX];        /* table stack */
4228   uInt v[N_MAX];                /* values in order of bit length */
4229   register int w;               /* bits before this table == (l * h) */
4230   uInt x[BMAX+1];               /* bit offsets, then code stack */
4231   uIntf *xp;                    /* pointer into x */
4232   int y;                        /* number of dummy codes added */
4233   uInt z;                       /* number of entries in current table */
4234 
4235 
4236   /* Generate counts for each bit length */
4237   p = c;
4238 #define C0 *p++ = 0;
4239 #define C2 C0 C0 C0 C0
4240 #define C4 C2 C2 C2 C2
4241   C4                            /* clear c[]--assume BMAX+1 is 16 */
4242   p = b;  i = n;
4243   do {
4244     c[*p++]++;                  /* assume all entries <= BMAX */
4245   } while (--i);
4246   if (c[0] == n)                /* null input--all zero length codes */
4247   {
4248     *t = (inflate_huft *)Z_NULL;
4249     *m = 0;
4250     return Z_OK;
4251   }
4252 
4253 
4254   /* Find minimum and maximum length, bound *m by those */
4255   l = *m;
4256   for (j = 1; j <= BMAX; j++)
4257     if (c[j])
4258       break;
4259   k = j;                        /* minimum code length */
4260   if ((uInt)l < j)
4261     l = j;
4262   for (i = BMAX; i; i--)
4263     if (c[i])
4264       break;
4265   g = i;                        /* maximum code length */
4266   if ((uInt)l > i)
4267     l = i;
4268   *m = l;
4269 
4270 
4271   /* Adjust last length count to fill out codes, if needed */
4272   for (y = 1 << j; j < i; j++, y <<= 1)
4273     if ((y -= c[j]) < 0)
4274       return Z_DATA_ERROR;
4275   if ((y -= c[i]) < 0)
4276     return Z_DATA_ERROR;
4277   c[i] += y;
4278 
4279 
4280   /* Generate starting offsets into the value table for each length */
4281   x[1] = j = 0;
4282   p = c + 1;  xp = x + 2;
4283   while (--i) {                 /* note that i == g from above */
4284     *xp++ = (j += *p++);
4285   }
4286 
4287 
4288   /* Make a table of values in order of bit lengths */
4289   p = b;  i = 0;
4290   do {
4291     if ((j = *p++) != 0)
4292       v[x[j]++] = i;
4293   } while (++i < n);
4294   n = x[g];                   /* set n to length of v */
4295 
4296 
4297   /* Generate the Huffman codes and for each, make the table entries */
4298   x[0] = i = 0;                 /* first Huffman code is zero */
4299   p = v;                        /* grab values in bit order */
4300   h = -1;                       /* no tables yet--level -1 */
4301   w = -l;                       /* bits decoded == (l * h) */
4302   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
4303   q = (inflate_huft *)Z_NULL;   /* ditto */
4304   z = 0;                        /* ditto */
4305 
4306   /* go through the bit lengths (k already is bits in shortest code) */
4307   for (; k <= g; k++)
4308   {
4309     a = c[k];
4310     while (a--)
4311     {
4312       /* here i is the Huffman code of length k bits for value *p */
4313       /* make tables up to required level */
4314       while (k > w + l)
4315       {
4316         h++;
4317         w += l;                 /* previous table always l bits */
4318 
4319         /* compute minimum size table less than or equal to l bits */
4320         z = g - w;
4321         z = z > (uInt)l ? l : z;        /* table size upper limit */
4322         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
4323         {                       /* too few codes for k-w bit table */
4324           f -= a + 1;           /* deduct codes from patterns left */
4325           xp = c + k;
4326           if (j < z)
4327             while (++j < z)     /* try smaller tables up to z bits */
4328             {
4329               if ((f <<= 1) <= *++xp)
4330                 break;          /* enough codes to use up j bits */
4331               f -= *xp;         /* else deduct codes from patterns */
4332             }
4333         }
4334         z = 1 << j;             /* table entries for j-bit table */
4335 
4336         /* allocate and link in new table */
4337         if ((q = (inflate_huft *)ZALLOC
4338              (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4339         {
4340           if (h)
4341             inflate_trees_free(u[0], zs);
4342           return Z_MEM_ERROR;   /* not enough memory */
4343         }
4344 #ifdef DEBUG_ZLIB
4345         inflate_hufts += z + 1;
4346 #endif
4347         *t = q + 1;             /* link to list for huft_free() */
4348         *(t = &(q->next)) = Z_NULL;
4349         u[h] = ++q;             /* table starts after link */
4350 
4351         /* connect to last table, if there is one */
4352         if (h)
4353         {
4354           x[h] = i;             /* save pattern for backing up */
4355           r.bits = (Byte)l;     /* bits to dump before this table */
4356           r.exop = (Byte)j;     /* bits in this table */
4357           r.next = q;           /* pointer to this table */
4358           j = i >> (w - l);     /* (get around Turbo C bug) */
4359           u[h-1][j] = r;        /* connect to last table */
4360         }
4361       }
4362 
4363       /* set up table entry in r */
4364       r.bits = (Byte)(k - w);
4365       if (p >= v + n)
4366         r.exop = 128 + 64;      /* out of values--invalid code */
4367       else if (*p < s)
4368       {
4369         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
4370         r.base = *p++;          /* simple code is just the value */
4371       }
4372       else
4373       {
4374         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4375         r.base = d[*p++ - s];
4376       }
4377 
4378       /* fill code-like entries with r */
4379       f = 1 << (k - w);
4380       for (j = i >> w; j < z; j += f)
4381         q[j] = r;
4382 
4383       /* backwards increment the k-bit code i */
4384       for (j = 1 << (k - 1); i & j; j >>= 1)
4385         i ^= j;
4386       i ^= j;
4387 
4388       /* backup over finished tables */
4389       while ((i & ((1 << w) - 1)) != x[h])
4390       {
4391         h--;                    /* don't need to update q */
4392         w -= l;
4393       }
4394     }
4395   }
4396 
4397 
4398   /* Return Z_BUF_ERROR if we were given an incomplete table */
4399   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4400 }
4401 
4402 
4403 int inflate_trees_bits(c, bb, tb, z)
4404 uIntf *c;               /* 19 code lengths */
4405 uIntf *bb;              /* bits tree desired/actual depth */
4406 inflate_huft * FAR *tb; /* bits tree result */
4407 z_streamp z;            /* for zfree function */
4408 {
4409   int r;
4410 
4411   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4412   if (r == Z_DATA_ERROR)
4413     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4414   else if (r == Z_BUF_ERROR || *bb == 0)
4415   {
4416     inflate_trees_free(*tb, z);
4417     z->msg = (char*)"incomplete dynamic bit lengths tree";
4418     r = Z_DATA_ERROR;
4419   }
4420   return r;
4421 }
4422 
4423 
4424 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4425 uInt nl;                /* number of literal/length codes */
4426 uInt nd;                /* number of distance codes */
4427 uIntf *c;               /* that many (total) code lengths */
4428 uIntf *bl;              /* literal desired/actual bit depth */
4429 uIntf *bd;              /* distance desired/actual bit depth */
4430 inflate_huft * FAR *tl; /* literal/length tree result */
4431 inflate_huft * FAR *td; /* distance tree result */
4432 z_streamp z;            /* for zfree function */
4433 {
4434   int r;
4435 
4436   /* build literal/length tree */
4437   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4438   if (r != Z_OK || *bl == 0)
4439   {
4440     if (r == Z_DATA_ERROR)
4441       z->msg = (char*)"oversubscribed literal/length tree";
4442     else if (r != Z_MEM_ERROR)
4443     {
4444       inflate_trees_free(*tl, z);
4445       z->msg = (char*)"incomplete literal/length tree";
4446       r = Z_DATA_ERROR;
4447     }
4448     return r;
4449   }
4450 
4451   /* build distance tree */
4452   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4453   if (r != Z_OK || (*bd == 0 && nl > 257))
4454   {
4455     if (r == Z_DATA_ERROR)
4456       z->msg = (char*)"oversubscribed distance tree";
4457     else if (r == Z_BUF_ERROR) {
4458 #ifdef PKZIP_BUG_WORKAROUND
4459       r = Z_OK;
4460     }
4461 #else
4462       inflate_trees_free(*td, z);
4463       z->msg = (char*)"incomplete distance tree";
4464       r = Z_DATA_ERROR;
4465     }
4466     else if (r != Z_MEM_ERROR)
4467     {
4468       z->msg = (char*)"empty distance tree with lengths";
4469       r = Z_DATA_ERROR;
4470     }
4471     inflate_trees_free(*tl, z);
4472     return r;
4473 #endif
4474   }
4475 
4476   /* done */
4477   return Z_OK;
4478 }
4479 
4480 
4481 /* build fixed tables only once--keep them here */
4482 local int fixed_built = 0;
4483 #define FIXEDH 530      /* number of hufts used by fixed tables */
4484 local inflate_huft fixed_mem[FIXEDH];
4485 local uInt fixed_bl;
4486 local uInt fixed_bd;
4487 local inflate_huft *fixed_tl;
4488 local inflate_huft *fixed_td;
4489 
4490 
4491 local voidpf falloc(q, n, s)
4492 voidpf q;       /* opaque pointer */
4493 uInt n;         /* number of items */
4494 uInt s;         /* size of item */
4495 {
4496   Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4497          "inflate_trees falloc overflow");
4498   *(intf *)q -= n+s-s; /* s-s to avoid warning */
4499   return (voidpf)(fixed_mem + *(intf *)q);
4500 }
4501 
4502 
4503 int inflate_trees_fixed(bl, bd, tl, td)
4504 uIntf *bl;               /* literal desired/actual bit depth */
4505 uIntf *bd;               /* distance desired/actual bit depth */
4506 inflate_huft * FAR *tl;  /* literal/length tree result */
4507 inflate_huft * FAR *td;  /* distance tree result */
4508 {
4509   /* build fixed tables if not already (multiple overlapped executions ok) */
4510   if (!fixed_built)
4511   {
4512     int k;              /* temporary variable */
4513     unsigned c[288];    /* length list for huft_build */
4514     z_stream z;         /* for falloc function */
4515     int f = FIXEDH;     /* number of hufts left in fixed_mem */
4516 
4517     /* set up fake z_stream for memory routines */
4518     z.zalloc = falloc;
4519     z.zfree = Z_NULL;
4520     z.opaque = (voidpf)&f;
4521 
4522     /* literal table */
4523     for (k = 0; k < 144; k++)
4524       c[k] = 8;
4525     for (; k < 256; k++)
4526       c[k] = 9;
4527     for (; k < 280; k++)
4528       c[k] = 7;
4529     for (; k < 288; k++)
4530       c[k] = 8;
4531     fixed_bl = 7;
4532     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4533 
4534     /* distance table */
4535     for (k = 0; k < 30; k++)
4536       c[k] = 5;
4537     fixed_bd = 5;
4538     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4539 
4540     /* done */
4541     Assert(f == 0, "invalid build of fixed tables");
4542     fixed_built = 1;
4543   }
4544   *bl = fixed_bl;
4545   *bd = fixed_bd;
4546   *tl = fixed_tl;
4547   *td = fixed_td;
4548   return Z_OK;
4549 }
4550 
4551 
4552 int inflate_trees_free(t, z)
4553 inflate_huft *t;        /* table to free */
4554 z_streamp z;            /* for zfree function */
4555 /* Free the malloc'ed tables built by huft_build(), which makes a linked
4556    list of the tables it made, with the links in a dummy first entry of
4557    each table. */
4558 {
4559   register inflate_huft *p, *q, *r;
4560 
4561   /* Reverse linked list */
4562   p = Z_NULL;
4563   q = t;
4564   while (q != Z_NULL)
4565   {
4566     r = (q - 1)->next;
4567     (q - 1)->next = p;
4568     p = q;
4569     q = r;
4570   }
4571   /* Go through linked list, freeing from the malloced (t[-1]) address. */
4572   while (p != Z_NULL)
4573   {
4574     q = (--p)->next;
4575     ZFREE(z,p);
4576     p = q;
4577   }
4578   return Z_OK;
4579 }
4580 /* --- inftrees.c */
4581 
4582 /* +++ infcodes.c */
4583 /* infcodes.c -- process literals and length/distance pairs
4584  * Copyright (C) 1995-1996 Mark Adler
4585  * For conditions of distribution and use, see copyright notice in zlib.h
4586  */
4587 
4588 /* #include "zutil.h" */
4589 /* #include "inftrees.h" */
4590 /* #include "infblock.h" */
4591 /* #include "infcodes.h" */
4592 /* #include "infutil.h" */
4593 
4594 /* +++ inffast.h */
4595 /* inffast.h -- header to use inffast.c
4596  * Copyright (C) 1995-1996 Mark Adler
4597  * For conditions of distribution and use, see copyright notice in zlib.h
4598  */
4599 
4600 /* WARNING: this file should *not* be used by applications. It is
4601    part of the implementation of the compression library and is
4602    subject to change. Applications should only use zlib.h.
4603  */
4604 
4605 extern int inflate_fast OF((
4606     uInt,
4607     uInt,
4608     inflate_huft *,
4609     inflate_huft *,
4610     inflate_blocks_statef *,
4611     z_streamp ));
4612 /* --- inffast.h */
4613 
4614 /* simplify the use of the inflate_huft type with some defines */
4615 #define base more.Base
4616 #define next more.Next
4617 #define exop word.what.Exop
4618 #define bits word.what.Bits
4619 
4620 /* inflate codes private state */
4621 struct inflate_codes_state {
4622 
4623   /* mode */
4624   enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4625       START,    /* x: set up for LEN */
4626       LEN,      /* i: get length/literal/eob next */
4627       LENEXT,   /* i: getting length extra (have base) */
4628       DIST,     /* i: get distance next */
4629       DISTEXT,  /* i: getting distance extra */
4630       COPY,     /* o: copying bytes in window, waiting for space */
4631       LIT,      /* o: got literal, waiting for output space */
4632       WASH,     /* o: got eob, possibly still output waiting */
4633       END,      /* x: got eob and all data flushed */
4634       BADCODE}  /* x: got error */
4635     mode;               /* current inflate_codes mode */
4636 
4637   /* mode dependent information */
4638   uInt len;
4639   union {
4640     struct {
4641       inflate_huft *tree;       /* pointer into tree */
4642       uInt need;                /* bits needed */
4643     } code;             /* if LEN or DIST, where in tree */
4644     uInt lit;           /* if LIT, literal */
4645     struct {
4646       uInt get;                 /* bits to get for extra */
4647       uInt dist;                /* distance back to copy from */
4648     } copy;             /* if EXT or COPY, where and how much */
4649   } sub;                /* submode */
4650 
4651   /* mode independent information */
4652   Byte lbits;           /* ltree bits decoded per branch */
4653   Byte dbits;           /* dtree bits decoder per branch */
4654   inflate_huft *ltree;          /* literal/length/eob tree */
4655   inflate_huft *dtree;          /* distance tree */
4656 
4657 };
4658 
4659 
4660 inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4661 uInt bl, bd;
4662 inflate_huft *tl;
4663 inflate_huft *td; /* need separate declaration for Borland C++ */
4664 z_streamp z;
4665 {
4666   inflate_codes_statef *c;
4667 
4668   if ((c = (inflate_codes_statef *)
4669        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4670   {
4671     c->mode = START;
4672     c->lbits = (Byte)bl;
4673     c->dbits = (Byte)bd;
4674     c->ltree = tl;
4675     c->dtree = td;
4676     Tracev((stderr, "inflate:       codes new\n"));
4677   }
4678   return c;
4679 }
4680 
4681 
4682 int inflate_codes(s, z, r)
4683 inflate_blocks_statef *s;
4684 z_streamp z;
4685 int r;
4686 {
4687   uInt j;               /* temporary storage */
4688   inflate_huft *t;      /* temporary pointer */
4689   uInt e;               /* extra bits or operation */
4690   uLong b;              /* bit buffer */
4691   uInt k;               /* bits in bit buffer */
4692   Bytef *p;             /* input data pointer */
4693   uInt n;               /* bytes available there */
4694   Bytef *q;             /* output window write pointer */
4695   uInt m;               /* bytes to end of window or read pointer */
4696   Bytef *f;             /* pointer to copy strings from */
4697   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
4698 
4699   /* copy input/output information to locals (UPDATE macro restores) */
4700   LOAD
4701 
4702   /* process input and output based on current state */
4703   while (1) switch (c->mode)
4704   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4705     case START:         /* x: set up for LEN */
4706 #ifndef SLOW
4707       if (m >= 258 && n >= 10)
4708       {
4709         UPDATE
4710         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4711         LOAD
4712         if (r != Z_OK)
4713         {
4714           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4715           break;
4716         }
4717       }
4718 #endif /* !SLOW */
4719       c->sub.code.need = c->lbits;
4720       c->sub.code.tree = c->ltree;
4721       c->mode = LEN;
4722     case LEN:           /* i: get length/literal/eob next */
4723       j = c->sub.code.need;
4724       NEEDBITS(j)
4725       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4726       DUMPBITS(t->bits)
4727       e = (uInt)(t->exop);
4728       if (e == 0)               /* literal */
4729       {
4730         c->sub.lit = t->base;
4731         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4732                  "inflate:         literal '%c'\n" :
4733                  "inflate:         literal 0x%02x\n", t->base));
4734         c->mode = LIT;
4735         break;
4736       }
4737       if (e & 16)               /* length */
4738       {
4739         c->sub.copy.get = e & 15;
4740         c->len = t->base;
4741         c->mode = LENEXT;
4742         break;
4743       }
4744       if ((e & 64) == 0)        /* next table */
4745       {
4746         c->sub.code.need = e;
4747         c->sub.code.tree = t->next;
4748         break;
4749       }
4750       if (e & 32)               /* end of block */
4751       {
4752         Tracevv((stderr, "inflate:         end of block\n"));
4753         c->mode = WASH;
4754         break;
4755       }
4756       c->mode = BADCODE;        /* invalid code */
4757       z->msg = (char*)"invalid literal/length code";
4758       r = Z_DATA_ERROR;
4759       LEAVE
4760     case LENEXT:        /* i: getting length extra (have base) */
4761       j = c->sub.copy.get;
4762       NEEDBITS(j)
4763       c->len += (uInt)b & inflate_mask[j];
4764       DUMPBITS(j)
4765       c->sub.code.need = c->dbits;
4766       c->sub.code.tree = c->dtree;
4767       Tracevv((stderr, "inflate:         length %u\n", c->len));
4768       c->mode = DIST;
4769     case DIST:          /* i: get distance next */
4770       j = c->sub.code.need;
4771       NEEDBITS(j)
4772       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4773       DUMPBITS(t->bits)
4774       e = (uInt)(t->exop);
4775       if (e & 16)               /* distance */
4776       {
4777         c->sub.copy.get = e & 15;
4778         c->sub.copy.dist = t->base;
4779         c->mode = DISTEXT;
4780         break;
4781       }
4782       if ((e & 64) == 0)        /* next table */
4783       {
4784         c->sub.code.need = e;
4785         c->sub.code.tree = t->next;
4786         break;
4787       }
4788       c->mode = BADCODE;        /* invalid code */
4789       z->msg = (char*)"invalid distance code";
4790       r = Z_DATA_ERROR;
4791       LEAVE
4792     case DISTEXT:       /* i: getting distance extra */
4793       j = c->sub.copy.get;
4794       NEEDBITS(j)
4795       c->sub.copy.dist += (uInt)b & inflate_mask[j];
4796       DUMPBITS(j)
4797       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
4798       c->mode = COPY;
4799     case COPY:          /* o: copying bytes in window, waiting for space */
4800 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4801       f = (uInt)(q - s->window) < c->sub.copy.dist ?
4802           s->end - (c->sub.copy.dist - (q - s->window)) :
4803           q - c->sub.copy.dist;
4804 #else
4805       f = q - c->sub.copy.dist;
4806       if ((uInt)(q - s->window) < c->sub.copy.dist)
4807         f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4808 #endif
4809       while (c->len)
4810       {
4811         NEEDOUT
4812         OUTBYTE(*f++)
4813         if (f == s->end)
4814           f = s->window;
4815         c->len--;
4816       }
4817       c->mode = START;
4818       break;
4819     case LIT:           /* o: got literal, waiting for output space */
4820       NEEDOUT
4821       OUTBYTE(c->sub.lit)
4822       c->mode = START;
4823       break;
4824     case WASH:          /* o: got eob, possibly more output */
4825       FLUSH
4826       if (s->read != s->write)
4827         LEAVE
4828       c->mode = END;
4829     case END:
4830       r = Z_STREAM_END;
4831       LEAVE
4832     case BADCODE:       /* x: got error */
4833       r = Z_DATA_ERROR;
4834       LEAVE
4835     default:
4836       r = Z_STREAM_ERROR;
4837       LEAVE
4838   }
4839 }
4840 
4841 
4842 void inflate_codes_free(c, z)
4843 inflate_codes_statef *c;
4844 z_streamp z;
4845 {
4846   ZFREE(z, c);
4847   Tracev((stderr, "inflate:       codes free\n"));
4848 }
4849 /* --- infcodes.c */
4850 
4851 /* +++ infutil.c */
4852 /* inflate_util.c -- data and routines common to blocks and codes
4853  * Copyright (C) 1995-1996 Mark Adler
4854  * For conditions of distribution and use, see copyright notice in zlib.h
4855  */
4856 
4857 /* #include "zutil.h" */
4858 /* #include "infblock.h" */
4859 /* #include "inftrees.h" */
4860 /* #include "infcodes.h" */
4861 /* #include "infutil.h" */
4862 
4863 #ifndef NO_DUMMY_DECL
4864 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4865 #endif
4866 
4867 /* And'ing with mask[n] masks the lower n bits */
4868 uInt inflate_mask[17] = {
4869     0x0000,
4870     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4871     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4872 };
4873 
4874 
4875 /* copy as much as possible from the sliding window to the output area */
4876 int inflate_flush(s, z, r)
4877 inflate_blocks_statef *s;
4878 z_streamp z;
4879 int r;
4880 {
4881   uInt n;
4882   Bytef *p;
4883   Bytef *q;
4884 
4885   /* local copies of source and destination pointers */
4886   p = z->next_out;
4887   q = s->read;
4888 
4889   /* compute number of bytes to copy as far as end of window */
4890   n = (uInt)((q <= s->write ? s->write : s->end) - q);
4891   if (n > z->avail_out) n = z->avail_out;
4892   if (n && r == Z_BUF_ERROR) r = Z_OK;
4893 
4894   /* update counters */
4895   z->avail_out -= n;
4896   z->total_out += n;
4897 
4898   /* update check information */
4899   if (s->checkfn != Z_NULL)
4900     z->adler = s->check = (*s->checkfn)(s->check, q, n);
4901 
4902   /* copy as far as end of window */
4903   if (p != Z_NULL) {
4904     zmemcpy(p, q, n);
4905     p += n;
4906   }
4907   q += n;
4908 
4909   /* see if more to copy at beginning of window */
4910   if (q == s->end)
4911   {
4912     /* wrap pointers */
4913     q = s->window;
4914     if (s->write == s->end)
4915       s->write = s->window;
4916 
4917     /* compute bytes to copy */
4918     n = (uInt)(s->write - q);
4919     if (n > z->avail_out) n = z->avail_out;
4920     if (n && r == Z_BUF_ERROR) r = Z_OK;
4921 
4922     /* update counters */
4923     z->avail_out -= n;
4924     z->total_out += n;
4925 
4926     /* update check information */
4927     if (s->checkfn != Z_NULL)
4928       z->adler = s->check = (*s->checkfn)(s->check, q, n);
4929 
4930     /* copy */
4931     if (p != Z_NULL) {
4932       zmemcpy(p, q, n);
4933       p += n;
4934     }
4935     q += n;
4936   }
4937 
4938   /* update pointers */
4939   z->next_out = p;
4940   s->read = q;
4941 
4942   /* done */
4943   return r;
4944 }
4945 /* --- infutil.c */
4946 
4947 /* +++ inffast.c */
4948 /* inffast.c -- process literals and length/distance pairs fast
4949  * Copyright (C) 1995-1996 Mark Adler
4950  * For conditions of distribution and use, see copyright notice in zlib.h
4951  */
4952 
4953 /* #include "zutil.h" */
4954 /* #include "inftrees.h" */
4955 /* #include "infblock.h" */
4956 /* #include "infcodes.h" */
4957 /* #include "infutil.h" */
4958 /* #include "inffast.h" */
4959 
4960 #ifndef NO_DUMMY_DECL
4961 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4962 #endif
4963 
4964 /* simplify the use of the inflate_huft type with some defines */
4965 #define base more.Base
4966 #define next more.Next
4967 #define exop word.what.Exop
4968 #define bits word.what.Bits
4969 
4970 /* macros for bit input with no checking and for returning unused bytes */
4971 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4972 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4973 
4974 /* Called with number of bytes left to write in window at least 258
4975    (the maximum string length) and number of input bytes available
4976    at least ten.  The ten bytes are six bytes for the longest length/
4977    distance pair plus four bytes for overloading the bit buffer. */
4978 
4979 int inflate_fast(bl, bd, tl, td, s, z)
4980 uInt bl, bd;
4981 inflate_huft *tl;
4982 inflate_huft *td; /* need separate declaration for Borland C++ */
4983 inflate_blocks_statef *s;
4984 z_streamp z;
4985 {
4986   inflate_huft *t;      /* temporary pointer */
4987   uInt e;               /* extra bits or operation */
4988   uLong b;              /* bit buffer */
4989   uInt k;               /* bits in bit buffer */
4990   Bytef *p;             /* input data pointer */
4991   uInt n;               /* bytes available there */
4992   Bytef *q;             /* output window write pointer */
4993   uInt m;               /* bytes to end of window or read pointer */
4994   uInt ml;              /* mask for literal/length tree */
4995   uInt md;              /* mask for distance tree */
4996   uInt c;               /* bytes to copy */
4997   uInt d;               /* distance back to copy from */
4998   Bytef *r;             /* copy source pointer */
4999 
5000   /* load input, output, bit values */
5001   LOAD
5002 
5003   /* initialize masks */
5004   ml = inflate_mask[bl];
5005   md = inflate_mask[bd];
5006 
5007   /* do until not enough input or output space for fast loop */
5008   do {                          /* assume called with m >= 258 && n >= 10 */
5009     /* get literal/length code */
5010     GRABBITS(20)                /* max bits for literal/length code */
5011     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5012     {
5013       DUMPBITS(t->bits)
5014       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5015                 "inflate:         * literal '%c'\n" :
5016                 "inflate:         * literal 0x%02x\n", t->base));
5017       *q++ = (Byte)t->base;
5018       m--;
5019       continue;
5020     }
5021     do {
5022       DUMPBITS(t->bits)
5023       if (e & 16)
5024       {
5025         /* get extra bits for length */
5026         e &= 15;
5027         c = t->base + ((uInt)b & inflate_mask[e]);
5028         DUMPBITS(e)
5029         Tracevv((stderr, "inflate:         * length %u\n", c));
5030 
5031         /* decode distance base of block to copy */
5032         GRABBITS(15);           /* max bits for distance code */
5033         e = (t = td + ((uInt)b & md))->exop;
5034         do {
5035           DUMPBITS(t->bits)
5036           if (e & 16)
5037           {
5038             /* get extra bits to add to distance base */
5039             e &= 15;
5040             GRABBITS(e)         /* get extra bits (up to 13) */
5041             d = t->base + ((uInt)b & inflate_mask[e]);
5042             DUMPBITS(e)
5043             Tracevv((stderr, "inflate:         * distance %u\n", d));
5044 
5045             /* do the copy */
5046             m -= c;
5047             if ((uInt)(q - s->window) >= d)     /* offset before dest */
5048             {                                   /*  just copy */
5049               r = q - d;
5050               *q++ = *r++;  c--;        /* minimum count is three, */
5051               *q++ = *r++;  c--;        /*  so unroll loop a little */
5052             }
5053             else                        /* else offset after destination */
5054             {
5055               e = d - (uInt)(q - s->window); /* bytes from offset to end */
5056               r = s->end - e;           /* pointer to offset */
5057               if (c > e)                /* if source crosses, */
5058               {
5059                 c -= e;                 /* copy to end of window */
5060                 do {
5061                   *q++ = *r++;
5062                 } while (--e);
5063                 r = s->window;          /* copy rest from start of window */
5064               }
5065             }
5066             do {                        /* copy all or what's left */
5067               *q++ = *r++;
5068             } while (--c);
5069             break;
5070           }
5071           else if ((e & 64) == 0)
5072             e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5073           else
5074           {
5075             z->msg = (char*)"invalid distance code";
5076             UNGRAB
5077             UPDATE
5078             return Z_DATA_ERROR;
5079           }
5080         } while (1);
5081         break;
5082       }
5083       if ((e & 64) == 0)
5084       {
5085         if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5086         {
5087           DUMPBITS(t->bits)
5088           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5089                     "inflate:         * literal '%c'\n" :
5090                     "inflate:         * literal 0x%02x\n", t->base));
5091           *q++ = (Byte)t->base;
5092           m--;
5093           break;
5094         }
5095       }
5096       else if (e & 32)
5097       {
5098         Tracevv((stderr, "inflate:         * end of block\n"));
5099         UNGRAB
5100         UPDATE
5101         return Z_STREAM_END;
5102       }
5103       else
5104       {
5105         z->msg = (char*)"invalid literal/length code";
5106         UNGRAB
5107         UPDATE
5108         return Z_DATA_ERROR;
5109       }
5110     } while (1);
5111   } while (m >= 258 && n >= 10);
5112 
5113   /* not enough input or output--restore pointers and return */
5114   UNGRAB
5115   UPDATE
5116   return Z_OK;
5117 }
5118 /* --- inffast.c */
5119 
5120 /* +++ zutil.c */
5121 /* zutil.c -- target dependent utility functions for the compression library
5122  * Copyright (C) 1995-1996 Jean-loup Gailly.
5123  * For conditions of distribution and use, see copyright notice in zlib.h
5124  */
5125 
5126 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5127 
5128 #ifdef DEBUG_ZLIB
5129 #include <stdio.h>
5130 #endif
5131 
5132 /* #include "zutil.h" */
5133 
5134 #ifndef NO_DUMMY_DECL
5135 struct internal_state      {int dummy;}; /* for buggy compilers */
5136 #endif
5137 
5138 #ifndef STDC
5139 extern void exit OF((int));
5140 #endif
5141 
5142 static const char *z_errmsg[10] = {
5143 "need dictionary",     /* Z_NEED_DICT       2  */
5144 "stream end",          /* Z_STREAM_END      1  */
5145 "",                    /* Z_OK              0  */
5146 "file error",          /* Z_ERRNO         (-1) */
5147 "stream error",        /* Z_STREAM_ERROR  (-2) */
5148 "data error",          /* Z_DATA_ERROR    (-3) */
5149 "insufficient memory", /* Z_MEM_ERROR     (-4) */
5150 "buffer error",        /* Z_BUF_ERROR     (-5) */
5151 "incompatible version",/* Z_VERSION_ERROR (-6) */
5152 ""};
5153 
5154 
5155 const char *zlibVersion()
5156 {
5157     return ZLIB_VERSION;
5158 }
5159 
5160 #ifdef DEBUG_ZLIB
5161 void z_error (m)
5162     char *m;
5163 {
5164     fprintf(stderr, "%s\n", m);
5165     exit(1);
5166 }
5167 #endif
5168 
5169 #ifndef HAVE_MEMCPY
5170 
5171 void zmemcpy(dest, source, len)
5172     Bytef* dest;
5173     Bytef* source;
5174     uInt  len;
5175 {
5176     if (len == 0) return;
5177     do {
5178         *dest++ = *source++; /* ??? to be unrolled */
5179     } while (--len != 0);
5180 }
5181 
5182 int zmemcmp(s1, s2, len)
5183     Bytef* s1;
5184     Bytef* s2;
5185     uInt  len;
5186 {
5187     uInt j;
5188 
5189     for (j = 0; j < len; j++) {
5190         if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5191     }
5192     return 0;
5193 }
5194 
5195 void zmemzero(dest, len)
5196     Bytef* dest;
5197     uInt  len;
5198 {
5199     if (len == 0) return;
5200     do {
5201         *dest++ = 0;  /* ??? to be unrolled */
5202     } while (--len != 0);
5203 }
5204 #endif
5205 
5206 #ifdef __TURBOC__
5207 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5208 /* Small and medium model in Turbo C are for now limited to near allocation
5209  * with reduced MAX_WBITS and MAX_MEM_LEVEL
5210  */
5211 #  define MY_ZCALLOC
5212 
5213 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5214  * and farmalloc(64K) returns a pointer with an offset of 8, so we
5215  * must fix the pointer. Warning: the pointer must be put back to its
5216  * original form in order to free it, use zcfree().
5217  */
5218 
5219 #define MAX_PTR 10
5220 /* 10*64K = 640K */
5221 
5222 local int next_ptr = 0;
5223 
5224 typedef struct ptr_table_s {
5225     voidpf org_ptr;
5226     voidpf new_ptr;
5227 } ptr_table;
5228 
5229 local ptr_table table[MAX_PTR];
5230 /* This table is used to remember the original form of pointers
5231  * to large buffers (64K). Such pointers are normalized with a zero offset.
5232  * Since MSDOS is not a preemptive multitasking OS, this table is not
5233  * protected from concurrent access. This hack doesn't work anyway on
5234  * a protected system like OS/2. Use Microsoft C instead.
5235  */
5236 
5237 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5238 {
5239     voidpf buf = opaque; /* just to make some compilers happy */
5240     ulg bsize = (ulg)items*size;
5241 
5242     /* If we allocate less than 65520 bytes, we assume that farmalloc
5243      * will return a usable pointer which doesn't have to be normalized.
5244      */
5245     if (bsize < 65520L) {
5246         buf = farmalloc(bsize);
5247         if (*(ush*)&buf != 0) return buf;
5248     } else {
5249         buf = farmalloc(bsize + 16L);
5250     }
5251     if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5252     table[next_ptr].org_ptr = buf;
5253 
5254     /* Normalize the pointer to seg:0 */
5255     *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5256     *(ush*)&buf = 0;
5257     table[next_ptr++].new_ptr = buf;
5258     return buf;
5259 }
5260 
5261 void  zcfree (voidpf opaque, voidpf ptr)
5262 {
5263     int n;
5264     if (*(ush*)&ptr != 0) { /* object < 64K */
5265         farfree(ptr);
5266         return;
5267     }
5268     /* Find the original pointer */
5269     for (n = 0; n < next_ptr; n++) {
5270         if (ptr != table[n].new_ptr) continue;
5271 
5272         farfree(table[n].org_ptr);
5273         while (++n < next_ptr) {
5274             table[n-1] = table[n];
5275         }
5276         next_ptr--;
5277         return;
5278     }
5279     ptr = opaque; /* just to make some compilers happy */
5280     Assert(0, "zcfree: ptr not found");
5281 }
5282 #endif
5283 #endif /* __TURBOC__ */
5284 
5285 
5286 #if defined(M_I86) && !defined(__32BIT__)
5287 /* Microsoft C in 16-bit mode */
5288 
5289 #  define MY_ZCALLOC
5290 
5291 #if (!defined(_MSC_VER) || (_MSC_VER < 600))
5292 #  define _halloc  halloc
5293 #  define _hfree   hfree
5294 #endif
5295 
5296 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5297 {
5298     if (opaque) opaque = 0; /* to make compiler happy */
5299     return _halloc((long)items, size);
5300 }
5301 
5302 void  zcfree (voidpf opaque, voidpf ptr)
5303 {
5304     if (opaque) opaque = 0; /* to make compiler happy */
5305     _hfree(ptr);
5306 }
5307 
5308 #endif /* MSC */
5309 
5310 
5311 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5312 
5313 #ifndef STDC
5314 extern voidp  calloc OF((uInt items, uInt size));
5315 extern void   free   OF((voidpf ptr));
5316 #endif
5317 
5318 voidpf zcalloc (opaque, items, size)
5319     voidpf opaque;
5320     unsigned items;
5321     unsigned size;
5322 {
5323     if (opaque) items += size - size; /* make compiler happy */
5324     return (voidpf)calloc(items, size);
5325 }
5326 
5327 void  zcfree (opaque, ptr)
5328     voidpf opaque;
5329     voidpf ptr;
5330 {
5331     free(ptr);
5332     if (opaque) return; /* make compiler happy */
5333 }
5334 
5335 #endif /* MY_ZCALLOC */
5336 /* --- zutil.c */
5337 
5338 /* +++ adler32.c */
5339 /* adler32.c -- compute the Adler-32 checksum of a data stream
5340  * Copyright (C) 1995-1996 Mark Adler
5341  * For conditions of distribution and use, see copyright notice in zlib.h
5342  */
5343 
5344 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5345 
5346 /* #include "zlib.h" */
5347 
5348 #define BASE 65521L /* largest prime smaller than 65536 */
5349 #define NMAX 5552
5350 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5351 
5352 #define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
5353 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
5354 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
5355 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
5356 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
5357 
5358 /* ========================================================================= */
5359 uLong adler32(adler, buf, len)
5360     uLong adler;
5361     const Bytef *buf;
5362     uInt len;
5363 {
5364     unsigned long s1 = adler & 0xffff;
5365     unsigned long s2 = (adler >> 16) & 0xffff;
5366     int k;
5367 
5368     if (buf == Z_NULL) return 1L;
5369 
5370     while (len > 0) {
5371         k = len < NMAX ? len : NMAX;
5372         len -= k;
5373         while (k >= 16) {
5374             DO16(buf);
5375 	    buf += 16;
5376             k -= 16;
5377         }
5378         if (k != 0) do {
5379             s1 += *buf++;
5380 	    s2 += s1;
5381         } while (--k);
5382         s1 %= BASE;
5383         s2 %= BASE;
5384     }
5385     return (s2 << 16) | s1;
5386 }
5387 /* --- adler32.c */
5388