xref: /dragonfly/sys/netinet/in_pcb.c (revision 49781055)
1 /*
2  * cOPyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1991, 1993, 1995
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
84  * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.27 2004/01/02 04:06:42 ambrisko Exp $
85  * $DragonFly: src/sys/netinet/in_pcb.c,v 1.38 2006/01/31 19:05:40 dillon Exp $
86  */
87 
88 #include "opt_ipsec.h"
89 #include "opt_inet6.h"
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/malloc.h>
94 #include <sys/mbuf.h>
95 #include <sys/domain.h>
96 #include <sys/protosw.h>
97 #include <sys/socket.h>
98 #include <sys/socketvar.h>
99 #include <sys/proc.h>
100 #include <sys/jail.h>
101 #include <sys/kernel.h>
102 #include <sys/sysctl.h>
103 #include <sys/thread2.h>
104 
105 #include <machine/limits.h>
106 
107 #include <vm/vm_zone.h>
108 
109 #include <net/if.h>
110 #include <net/if_types.h>
111 #include <net/route.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_pcb.h>
115 #include <netinet/in_var.h>
116 #include <netinet/ip_var.h>
117 #ifdef INET6
118 #include <netinet/ip6.h>
119 #include <netinet6/ip6_var.h>
120 #endif /* INET6 */
121 
122 #ifdef IPSEC
123 #include <netinet6/ipsec.h>
124 #include <netproto/key/key.h>
125 #endif
126 
127 #ifdef FAST_IPSEC
128 #if defined(IPSEC) || defined(IPSEC_ESP)
129 #error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!"
130 #endif
131 
132 #include <netproto/ipsec/ipsec.h>
133 #include <netproto/ipsec/key.h>
134 #define	IPSEC
135 #endif /* FAST_IPSEC */
136 
137 struct in_addr zeroin_addr;
138 
139 /*
140  * These configure the range of local port addresses assigned to
141  * "unspecified" outgoing connections/packets/whatever.
142  */
143 int ipport_lowfirstauto = IPPORT_RESERVED - 1;	/* 1023 */
144 int ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
145 
146 int ipport_firstauto = IPPORT_RESERVED;		/* 1024 */
147 int ipport_lastauto = IPPORT_USERRESERVED;	/* 5000 */
148 
149 int ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
150 int ipport_hilastauto = IPPORT_HILASTAUTO;	/* 65535 */
151 
152 static __inline void
153 RANGECHK(int var, int min, int max)
154 {
155 	if (var < min)
156 		var = min;
157 	else if (var > max)
158 		var = max;
159 }
160 
161 static int
162 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
163 {
164 	int error;
165 
166 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
167 	if (!error) {
168 		RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
169 		RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
170 
171 		RANGECHK(ipport_firstauto, IPPORT_RESERVED, USHRT_MAX);
172 		RANGECHK(ipport_lastauto, IPPORT_RESERVED, USHRT_MAX);
173 
174 		RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, USHRT_MAX);
175 		RANGECHK(ipport_hilastauto, IPPORT_RESERVED, USHRT_MAX);
176 	}
177 	return (error);
178 }
179 
180 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
181 
182 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
183 	   &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
185 	   &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
186 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
187 	   &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
188 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
189 	   &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
191 	   &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
192 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
193 	   &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
194 
195 /*
196  * in_pcb.c: manage the Protocol Control Blocks.
197  *
198  * NOTE: It is assumed that most of these functions will be called from
199  * a critical section.  XXX - There are, unfortunately, a few exceptions
200  * to this rule that should be fixed.
201  *
202  * NOTE: The caller should initialize the cpu field to the cpu running the
203  * protocol stack associated with this inpcbinfo.
204  */
205 
206 void
207 in_pcbinfo_init(struct inpcbinfo *pcbinfo)
208 {
209 	LIST_INIT(&pcbinfo->pcblisthead);
210 	pcbinfo->cpu = -1;
211 }
212 
213 /*
214  * Allocate a PCB and associate it with the socket.
215  */
216 int
217 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
218 {
219 	struct inpcb *inp;
220 #ifdef IPSEC
221 	int error;
222 #endif
223 
224 	inp = zalloc(pcbinfo->ipi_zone);
225 	if (inp == NULL)
226 		return (ENOBUFS);
227 	bzero(inp, sizeof *inp);
228 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
229 	inp->inp_pcbinfo = inp->inp_cpcbinfo = pcbinfo;
230 	inp->inp_socket = so;
231 #ifdef IPSEC
232 	error = ipsec_init_policy(so, &inp->inp_sp);
233 	if (error != 0) {
234 		zfree(pcbinfo->ipi_zone, inp);
235 		return (error);
236 	}
237 #endif
238 #ifdef INET6
239 	if (INP_SOCKAF(so) == AF_INET6 && ip6_v6only)
240 		inp->inp_flags |= IN6P_IPV6_V6ONLY;
241 	if (ip6_auto_flowlabel)
242 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
243 #endif
244 	so->so_pcb = inp;
245 	LIST_INSERT_HEAD(&pcbinfo->pcblisthead, inp, inp_list);
246 	pcbinfo->ipi_count++;
247 	return (0);
248 }
249 
250 int
251 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct thread *td)
252 {
253 	struct socket *so = inp->inp_socket;
254 	struct proc *p = td->td_proc;
255 	unsigned short *lastport;
256 	struct sockaddr_in *sin;
257 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
258 	u_short lport = 0;
259 	int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
260 	int error, prison = 0;
261 
262 	KKASSERT(p);
263 
264 	if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
265 		return (EADDRNOTAVAIL);
266 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
267 		return (EINVAL);	/* already bound */
268 	if (!(so->so_options & (SO_REUSEADDR|SO_REUSEPORT)))
269 		wild = 1;    /* neither SO_REUSEADDR nor SO_REUSEPORT is set */
270 	if (nam != NULL) {
271 		sin = (struct sockaddr_in *)nam;
272 		if (nam->sa_len != sizeof *sin)
273 			return (EINVAL);
274 #ifdef notdef
275 		/*
276 		 * We should check the family, but old programs
277 		 * incorrectly fail to initialize it.
278 		 */
279 		if (sin->sin_family != AF_INET)
280 			return (EAFNOSUPPORT);
281 #endif
282 		if (sin->sin_addr.s_addr != INADDR_ANY &&
283 		    prison_ip(td, 0, &sin->sin_addr.s_addr))
284 				return (EINVAL);
285 		lport = sin->sin_port;
286 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
287 			/*
288 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
289 			 * allow complete duplication of binding if
290 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
291 			 * and a multicast address is bound on both
292 			 * new and duplicated sockets.
293 			 */
294 			if (so->so_options & SO_REUSEADDR)
295 				reuseport = SO_REUSEADDR | SO_REUSEPORT;
296 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
297 			sin->sin_port = 0;		/* yech... */
298 			bzero(&sin->sin_zero, sizeof sin->sin_zero);
299 			if (ifa_ifwithaddr((struct sockaddr *)sin) == NULL)
300 				return (EADDRNOTAVAIL);
301 		}
302 		if (lport != 0) {
303 			struct inpcb *t;
304 
305 			/* GROSS */
306 			if (ntohs(lport) < IPPORT_RESERVED &&
307 			    p && suser_cred(p->p_ucred, PRISON_ROOT))
308 				return (EACCES);
309 			if (p && p->p_ucred->cr_prison)
310 				prison = 1;
311 			if (so->so_cred->cr_uid != 0 &&
312 			    !IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
313 				t = in_pcblookup_local(inp->inp_pcbinfo,
314 				    sin->sin_addr, lport,
315 				    prison ? 0 : INPLOOKUP_WILDCARD);
316 				if (t &&
317 				    (!in_nullhost(sin->sin_addr) ||
318 				     !in_nullhost(t->inp_laddr) ||
319 				     (t->inp_socket->so_options &
320 					 SO_REUSEPORT) == 0) &&
321 				    (so->so_cred->cr_uid !=
322 				     t->inp_socket->so_cred->cr_uid)) {
323 #ifdef INET6
324 					if (!in_nullhost(sin->sin_addr) ||
325 					    !in_nullhost(t->inp_laddr) ||
326 					    INP_SOCKAF(so) ==
327 					    INP_SOCKAF(t->inp_socket))
328 #endif
329 					return (EADDRINUSE);
330 				}
331 			}
332 			if (prison && prison_ip(td, 0, &sin->sin_addr.s_addr))
333 				return (EADDRNOTAVAIL);
334 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
335 			    lport, prison ? 0 : wild);
336 			if (t && !(reuseport & t->inp_socket->so_options)) {
337 #ifdef INET6
338 				if (!in_nullhost(sin->sin_addr) ||
339 				    !in_nullhost(t->inp_laddr) ||
340 				    INP_SOCKAF(so) == INP_SOCKAF(t->inp_socket))
341 #endif
342 				return (EADDRINUSE);
343 			}
344 		}
345 		inp->inp_laddr = sin->sin_addr;
346 	}
347 	if (lport == 0) {
348 		ushort first, last;
349 		int count;
350 
351 		if (inp->inp_laddr.s_addr != INADDR_ANY &&
352 		    prison_ip(td, 0, &inp->inp_laddr.s_addr )) {
353 			inp->inp_laddr.s_addr = INADDR_ANY;
354 			return (EINVAL);
355 		}
356 		inp->inp_flags |= INP_ANONPORT;
357 
358 		if (inp->inp_flags & INP_HIGHPORT) {
359 			first = ipport_hifirstauto;	/* sysctl */
360 			last  = ipport_hilastauto;
361 			lastport = &pcbinfo->lasthi;
362 		} else if (inp->inp_flags & INP_LOWPORT) {
363 			if (p &&
364 			    (error = suser_cred(p->p_ucred, PRISON_ROOT))) {
365 				inp->inp_laddr.s_addr = INADDR_ANY;
366 				return (error);
367 			}
368 			first = ipport_lowfirstauto;	/* 1023 */
369 			last  = ipport_lowlastauto;	/* 600 */
370 			lastport = &pcbinfo->lastlow;
371 		} else {
372 			first = ipport_firstauto;	/* sysctl */
373 			last  = ipport_lastauto;
374 			lastport = &pcbinfo->lastport;
375 		}
376 		/*
377 		 * Simple check to ensure all ports are not used up causing
378 		 * a deadlock here.
379 		 *
380 		 * We split the two cases (up and down) so that the direction
381 		 * is not being tested on each round of the loop.
382 		 */
383 		if (first > last) {
384 			/*
385 			 * counting down
386 			 */
387 			count = first - last;
388 
389 			do {
390 				if (count-- < 0) {	/* completely used? */
391 					inp->inp_laddr.s_addr = INADDR_ANY;
392 					return (EADDRNOTAVAIL);
393 				}
394 				--*lastport;
395 				if (*lastport > first || *lastport < last)
396 					*lastport = first;
397 				lport = htons(*lastport);
398 			} while (in_pcblookup_local(pcbinfo,
399 				 inp->inp_laddr, lport, wild));
400 		} else {
401 			/*
402 			 * counting up
403 			 */
404 			count = last - first;
405 
406 			do {
407 				if (count-- < 0) {	/* completely used? */
408 					inp->inp_laddr.s_addr = INADDR_ANY;
409 					return (EADDRNOTAVAIL);
410 				}
411 				++*lastport;
412 				if (*lastport < first || *lastport > last)
413 					*lastport = first;
414 				lport = htons(*lastport);
415 			} while (in_pcblookup_local(pcbinfo,
416 				 inp->inp_laddr, lport, wild));
417 		}
418 	}
419 	inp->inp_lport = lport;
420 	if (prison_ip(td, 0, &inp->inp_laddr.s_addr)) {
421 		inp->inp_laddr.s_addr = INADDR_ANY;
422 		inp->inp_lport = 0;
423 		return (EINVAL);
424 	}
425 	if (in_pcbinsporthash(inp) != 0) {
426 		inp->inp_laddr.s_addr = INADDR_ANY;
427 		inp->inp_lport = 0;
428 		return (EAGAIN);
429 	}
430 	return (0);
431 }
432 
433 /*
434  *   Transform old in_pcbconnect() into an inner subroutine for new
435  *   in_pcbconnect(): Do some validity-checking on the remote
436  *   address (in mbuf 'nam') and then determine local host address
437  *   (i.e., which interface) to use to access that remote host.
438  *
439  *   This preserves definition of in_pcbconnect(), while supporting a
440  *   slightly different version for T/TCP.  (This is more than
441  *   a bit of a kludge, but cleaning up the internal interfaces would
442  *   have forced minor changes in every protocol).
443  */
444 int
445 in_pcbladdr(struct inpcb *inp, struct sockaddr *nam, struct sockaddr_in **plocal_sin)
446 {
447 	struct in_ifaddr *ia;
448 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
449 
450 	if (nam->sa_len != sizeof *sin)
451 		return (EINVAL);
452 	if (sin->sin_family != AF_INET)
453 		return (EAFNOSUPPORT);
454 	if (sin->sin_port == 0)
455 		return (EADDRNOTAVAIL);
456 	if (!TAILQ_EMPTY(&in_ifaddrhead)) {
457 		ia = TAILQ_FIRST(&in_ifaddrhead);
458 		/*
459 		 * If the destination address is INADDR_ANY,
460 		 * use the primary local address.
461 		 * If the supplied address is INADDR_BROADCAST,
462 		 * and the primary interface supports broadcast,
463 		 * choose the broadcast address for that interface.
464 		 */
465 		if (sin->sin_addr.s_addr == INADDR_ANY)
466 			sin->sin_addr = IA_SIN(ia)->sin_addr;
467 		else if (sin->sin_addr.s_addr == (u_long)INADDR_BROADCAST &&
468 		    (ia->ia_ifp->if_flags & IFF_BROADCAST))
469 			sin->sin_addr = satosin(&ia->ia_broadaddr)->sin_addr;
470 	}
471 	if (inp->inp_laddr.s_addr == INADDR_ANY) {
472 		struct route *ro;
473 
474 		ia = (struct in_ifaddr *)NULL;
475 		/*
476 		 * If route is known or can be allocated now,
477 		 * our src addr is taken from the i/f, else punt.
478 		 * Note that we should check the address family of the cached
479 		 * destination, in case of sharing the cache with IPv6.
480 		 */
481 		ro = &inp->inp_route;
482 		if (ro->ro_rt &&
483 		    (!(ro->ro_rt->rt_flags & RTF_UP) ||
484 		     ro->ro_dst.sa_family != AF_INET ||
485 		     satosin(&ro->ro_dst)->sin_addr.s_addr !=
486 				      sin->sin_addr.s_addr ||
487 		     inp->inp_socket->so_options & SO_DONTROUTE)) {
488 			RTFREE(ro->ro_rt);
489 			ro->ro_rt = (struct rtentry *)NULL;
490 		}
491 		if (!(inp->inp_socket->so_options & SO_DONTROUTE) && /*XXX*/
492 		    (ro->ro_rt == (struct rtentry *)NULL ||
493 		    ro->ro_rt->rt_ifp == (struct ifnet *)NULL)) {
494 			/* No route yet, so try to acquire one */
495 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
496 			ro->ro_dst.sa_family = AF_INET;
497 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
498 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
499 				sin->sin_addr;
500 			rtalloc(ro);
501 		}
502 		/*
503 		 * If we found a route, use the address
504 		 * corresponding to the outgoing interface
505 		 * unless it is the loopback (in case a route
506 		 * to our address on another net goes to loopback).
507 		 */
508 		if (ro->ro_rt && !(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK))
509 			ia = ifatoia(ro->ro_rt->rt_ifa);
510 		if (ia == NULL) {
511 			u_short fport = sin->sin_port;
512 
513 			sin->sin_port = 0;
514 			ia = ifatoia(ifa_ifwithdstaddr(sintosa(sin)));
515 			if (ia == NULL)
516 				ia = ifatoia(ifa_ifwithnet(sintosa(sin)));
517 			sin->sin_port = fport;
518 			if (ia == NULL)
519 				ia = TAILQ_FIRST(&in_ifaddrhead);
520 			if (ia == NULL)
521 				return (EADDRNOTAVAIL);
522 		}
523 		/*
524 		 * If the destination address is multicast and an outgoing
525 		 * interface has been set as a multicast option, use the
526 		 * address of that interface as our source address.
527 		 */
528 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
529 		    inp->inp_moptions != NULL) {
530 			struct ip_moptions *imo;
531 			struct ifnet *ifp;
532 
533 			imo = inp->inp_moptions;
534 			if (imo->imo_multicast_ifp != NULL) {
535 				ifp = imo->imo_multicast_ifp;
536 				TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
537 					if (ia->ia_ifp == ifp)
538 						break;
539 				if (ia == NULL)
540 					return (EADDRNOTAVAIL);
541 			}
542 		}
543 		/*
544 		 * Don't do pcblookup call here; return interface in plocal_sin
545 		 * and exit to caller, that will do the lookup.
546 		 */
547 		*plocal_sin = &ia->ia_addr;
548 
549 	}
550 	return (0);
551 }
552 
553 /*
554  * Outer subroutine:
555  * Connect from a socket to a specified address.
556  * Both address and port must be specified in argument sin.
557  * If don't have a local address for this socket yet,
558  * then pick one.
559  */
560 int
561 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct thread *td)
562 {
563 	struct sockaddr_in *if_sin;
564 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
565 	struct sockaddr_in sa;
566 	struct ucred *cr = td->td_proc ? td->td_proc->p_ucred : NULL;
567 	int error;
568 
569 	if (cr && cr->cr_prison != NULL && in_nullhost(inp->inp_laddr)) {
570 		bzero(&sa, sizeof sa);
571 		sa.sin_addr.s_addr = htonl(cr->cr_prison->pr_ip);
572 		sa.sin_len = sizeof sa;
573 		sa.sin_family = AF_INET;
574 		error = in_pcbbind(inp, (struct sockaddr *)&sa, td);
575 		if (error)
576 			return (error);
577 	}
578 
579 	/* Call inner routine to assign local interface address. */
580 	if ((error = in_pcbladdr(inp, nam, &if_sin)) != 0)
581 		return (error);
582 
583 	if (in_pcblookup_hash(inp->inp_cpcbinfo, sin->sin_addr, sin->sin_port,
584 	    inp->inp_laddr.s_addr ? inp->inp_laddr : if_sin->sin_addr,
585 	    inp->inp_lport, FALSE, NULL) != NULL) {
586 		return (EADDRINUSE);
587 	}
588 	if (inp->inp_laddr.s_addr == INADDR_ANY) {
589 		if (inp->inp_lport == 0) {
590 			error = in_pcbbind(inp, (struct sockaddr *)NULL, td);
591 			if (error)
592 				return (error);
593 		}
594 		inp->inp_laddr = if_sin->sin_addr;
595 	}
596 	inp->inp_faddr = sin->sin_addr;
597 	inp->inp_fport = sin->sin_port;
598 	in_pcbinsconnhash(inp);
599 	return (0);
600 }
601 
602 void
603 in_pcbdisconnect(struct inpcb *inp)
604 {
605 
606 	inp->inp_faddr.s_addr = INADDR_ANY;
607 	inp->inp_fport = 0;
608 	in_pcbremconnhash(inp);
609 	if (inp->inp_socket->so_state & SS_NOFDREF)
610 		in_pcbdetach(inp);
611 }
612 
613 void
614 in_pcbdetach(struct inpcb *inp)
615 {
616 	struct socket *so = inp->inp_socket;
617 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
618 
619 #ifdef IPSEC
620 	ipsec4_delete_pcbpolicy(inp);
621 #endif /*IPSEC*/
622 	inp->inp_gencnt = ++ipi->ipi_gencnt;
623 	in_pcbremlists(inp);
624 	so->so_pcb = 0;
625 	sofree(so);
626 	if (inp->inp_options)
627 		m_free(inp->inp_options);
628 	if (inp->inp_route.ro_rt)
629 		rtfree(inp->inp_route.ro_rt);
630 	ip_freemoptions(inp->inp_moptions);
631 	inp->inp_vflag = 0;
632 	zfree(ipi->ipi_zone, inp);
633 }
634 
635 /*
636  * The calling convention of in_setsockaddr() and in_setpeeraddr() was
637  * modified to match the pru_sockaddr() and pru_peeraddr() entry points
638  * in struct pr_usrreqs, so that protocols can just reference then directly
639  * without the need for a wrapper function.  The socket must have a valid
640  * (i.e., non-nil) PCB, but it should be impossible to get an invalid one
641  * except through a kernel programming error, so it is acceptable to panic
642  * (or in this case trap) if the PCB is invalid.  (Actually, we don't trap
643  * because there actually /is/ a programming error somewhere... XXX)
644  */
645 int
646 in_setsockaddr(struct socket *so, struct sockaddr **nam)
647 {
648 	struct inpcb *inp;
649 	struct sockaddr_in *sin;
650 
651 	/*
652 	 * Do the malloc first in case it blocks.
653 	 */
654 	MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
655 		M_WAITOK | M_ZERO);
656 	sin->sin_family = AF_INET;
657 	sin->sin_len = sizeof *sin;
658 
659 	crit_enter();
660 	inp = so->so_pcb;
661 	if (!inp) {
662 		crit_exit();
663 		free(sin, M_SONAME);
664 		return (ECONNRESET);
665 	}
666 	sin->sin_port = inp->inp_lport;
667 	sin->sin_addr = inp->inp_laddr;
668 	crit_exit();
669 
670 	*nam = (struct sockaddr *)sin;
671 	return (0);
672 }
673 
674 int
675 in_setpeeraddr(struct socket *so, struct sockaddr **nam)
676 {
677 	struct inpcb *inp;
678 	struct sockaddr_in *sin;
679 
680 	/*
681 	 * Do the malloc first in case it blocks.
682 	 */
683 	MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
684 		M_WAITOK | M_ZERO);
685 	sin->sin_family = AF_INET;
686 	sin->sin_len = sizeof *sin;
687 
688 	crit_enter();
689 	inp = so->so_pcb;
690 	if (!inp) {
691 		crit_exit();
692 		free(sin, M_SONAME);
693 		return (ECONNRESET);
694 	}
695 	sin->sin_port = inp->inp_fport;
696 	sin->sin_addr = inp->inp_faddr;
697 	crit_exit();
698 
699 	*nam = (struct sockaddr *)sin;
700 	return (0);
701 }
702 
703 void
704 in_pcbnotifyall(struct inpcbhead *head, struct in_addr faddr, int errno,
705 		void (*notify)(struct inpcb *, int))
706 {
707 	struct inpcb *inp, *ninp;
708 
709 	/*
710 	 * note: if INP_PLACEMARKER is set we must ignore the rest of
711 	 * the structure and skip it.
712 	 */
713 	crit_enter();
714 	LIST_FOREACH_MUTABLE(inp, head, inp_list, ninp) {
715 		if (inp->inp_flags & INP_PLACEMARKER)
716 			continue;
717 #ifdef INET6
718 		if (!(inp->inp_vflag & INP_IPV4))
719 			continue;
720 #endif
721 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
722 		    inp->inp_socket == NULL)
723 			continue;
724 		(*notify)(inp, errno);		/* can remove inp from list! */
725 	}
726 	crit_exit();
727 }
728 
729 void
730 in_pcbpurgeif0(struct inpcb *head, struct ifnet *ifp)
731 {
732 	struct inpcb *inp;
733 	struct ip_moptions *imo;
734 	int i, gap;
735 
736 	for (inp = head; inp != NULL; inp = LIST_NEXT(inp, inp_list)) {
737 		if (inp->inp_flags & INP_PLACEMARKER)
738 			continue;
739 		imo = inp->inp_moptions;
740 		if ((inp->inp_vflag & INP_IPV4) && imo != NULL) {
741 			/*
742 			 * Unselect the outgoing interface if it is being
743 			 * detached.
744 			 */
745 			if (imo->imo_multicast_ifp == ifp)
746 				imo->imo_multicast_ifp = NULL;
747 
748 			/*
749 			 * Drop multicast group membership if we joined
750 			 * through the interface being detached.
751 			 */
752 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
753 			    i++) {
754 				if (imo->imo_membership[i]->inm_ifp == ifp) {
755 					in_delmulti(imo->imo_membership[i]);
756 					gap++;
757 				} else if (gap != 0)
758 					imo->imo_membership[i - gap] =
759 					    imo->imo_membership[i];
760 			}
761 			imo->imo_num_memberships -= gap;
762 		}
763 	}
764 }
765 
766 /*
767  * Check for alternatives when higher level complains
768  * about service problems.  For now, invalidate cached
769  * routing information.  If the route was created dynamically
770  * (by a redirect), time to try a default gateway again.
771  */
772 void
773 in_losing(struct inpcb *inp)
774 {
775 	struct rtentry *rt;
776 	struct rt_addrinfo rtinfo;
777 
778 	if ((rt = inp->inp_route.ro_rt)) {
779 		bzero(&rtinfo, sizeof(struct rt_addrinfo));
780 		rtinfo.rti_info[RTAX_DST] = rt_key(rt);
781 		rtinfo.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
782 		rtinfo.rti_info[RTAX_NETMASK] = rt_mask(rt);
783 		rtinfo.rti_flags = rt->rt_flags;
784 		rt_missmsg(RTM_LOSING, &rtinfo, rt->rt_flags, 0);
785 		if (rt->rt_flags & RTF_DYNAMIC)
786 			rtrequest1_global(RTM_DELETE, &rtinfo, NULL, NULL);
787 		inp->inp_route.ro_rt = NULL;
788 		rtfree(rt);
789 		/*
790 		 * A new route can be allocated
791 		 * the next time output is attempted.
792 		 */
793 	}
794 }
795 
796 /*
797  * After a routing change, flush old routing
798  * and allocate a (hopefully) better one.
799  */
800 void
801 in_rtchange(struct inpcb *inp, int errno)
802 {
803 	if (inp->inp_route.ro_rt) {
804 		rtfree(inp->inp_route.ro_rt);
805 		inp->inp_route.ro_rt = NULL;
806 		/*
807 		 * A new route can be allocated the next time
808 		 * output is attempted.
809 		 */
810 	}
811 }
812 
813 /*
814  * Lookup a PCB based on the local address and port.
815  */
816 struct inpcb *
817 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, u_int lport_arg,
818 		   int wild_okay)
819 {
820 	struct inpcb *inp;
821 	int matchwild = 3, wildcard;
822 	u_short lport = lport_arg;
823 
824 	struct inpcbporthead *porthash;
825 	struct inpcbport *phd;
826 	struct inpcb *match = NULL;
827 
828 	/*
829 	 * Best fit PCB lookup.
830 	 *
831 	 * First see if this local port is in use by looking on the
832 	 * port hash list.
833 	 */
834 	porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport,
835 	    pcbinfo->porthashmask)];
836 	LIST_FOREACH(phd, porthash, phd_hash) {
837 		if (phd->phd_port == lport)
838 			break;
839 	}
840 	if (phd != NULL) {
841 		/*
842 		 * Port is in use by one or more PCBs. Look for best
843 		 * fit.
844 		 */
845 		LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
846 			wildcard = 0;
847 #ifdef INET6
848 			if ((inp->inp_vflag & INP_IPV4) == 0)
849 				continue;
850 #endif
851 			if (inp->inp_faddr.s_addr != INADDR_ANY)
852 				wildcard++;
853 			if (inp->inp_laddr.s_addr != INADDR_ANY) {
854 				if (laddr.s_addr == INADDR_ANY)
855 					wildcard++;
856 				else if (inp->inp_laddr.s_addr != laddr.s_addr)
857 					continue;
858 			} else {
859 				if (laddr.s_addr != INADDR_ANY)
860 					wildcard++;
861 			}
862 			if (wildcard && !wild_okay)
863 				continue;
864 			if (wildcard < matchwild) {
865 				match = inp;
866 				matchwild = wildcard;
867 				if (matchwild == 0) {
868 					break;
869 				}
870 			}
871 		}
872 	}
873 	return (match);
874 }
875 
876 /*
877  * Lookup PCB in hash list.
878  */
879 struct inpcb *
880 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg,
881 		  struct in_addr laddr, u_int lport_arg, boolean_t wildcard,
882 		  struct ifnet *ifp)
883 {
884 	struct inpcbhead *head;
885 	struct inpcb *inp;
886 	u_short fport = fport_arg, lport = lport_arg;
887 
888 	/*
889 	 * First look for an exact match.
890 	 */
891 	head = &pcbinfo->hashbase[INP_PCBCONNHASH(faddr.s_addr, fport,
892 	    laddr.s_addr, lport, pcbinfo->hashmask)];
893 	LIST_FOREACH(inp, head, inp_hash) {
894 #ifdef INET6
895 		if (!(inp->inp_vflag & INP_IPV4))
896 			continue;
897 #endif
898 		if (in_hosteq(inp->inp_faddr, faddr) &&
899 		    in_hosteq(inp->inp_laddr, laddr) &&
900 		    inp->inp_fport == fport && inp->inp_lport == lport) {
901 			/* found */
902 			return (inp);
903 		}
904 	}
905 
906 	if (wildcard) {
907 		struct inpcb *local_wild = NULL;
908 #ifdef INET6
909 		struct inpcb *local_wild_mapped = NULL;
910 #endif
911 		struct inpcontainer *ic;
912 		struct inpcontainerhead *chead;
913 
914 		chead = &pcbinfo->wildcardhashbase[
915 		    INP_PCBWILDCARDHASH(lport, pcbinfo->wildcardhashmask)];
916 		LIST_FOREACH(ic, chead, ic_list) {
917 			inp = ic->ic_inp;
918 #ifdef INET6
919 			if (!(inp->inp_vflag & INP_IPV4))
920 				continue;
921 #endif
922 			if (inp->inp_lport == lport) {
923 				if (ifp && ifp->if_type == IFT_FAITH &&
924 				    !(inp->inp_flags & INP_FAITH))
925 					continue;
926 				if (inp->inp_laddr.s_addr == laddr.s_addr)
927 					return (inp);
928 				if (inp->inp_laddr.s_addr == INADDR_ANY) {
929 #ifdef INET6
930 					if (INP_CHECK_SOCKAF(inp->inp_socket,
931 							     AF_INET6))
932 						local_wild_mapped = inp;
933 					else
934 #endif
935 						local_wild = inp;
936 				}
937 			}
938 		}
939 #ifdef INET6
940 		if (local_wild == NULL)
941 			return (local_wild_mapped);
942 #endif
943 		return (local_wild);
944 	}
945 
946 	/*
947 	 * Not found.
948 	 */
949 	return (NULL);
950 }
951 
952 /*
953  * Insert PCB into connection hash table.
954  */
955 void
956 in_pcbinsconnhash(struct inpcb *inp)
957 {
958 	struct inpcbinfo *pcbinfo = inp->inp_cpcbinfo;
959 	struct inpcbhead *bucket;
960 	u_int32_t hashkey_faddr, hashkey_laddr;
961 
962 #ifdef INET6
963 	if (inp->inp_vflag & INP_IPV6) {
964 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX JH */;
965 		hashkey_laddr = inp->in6p_laddr.s6_addr32[3] /* XXX JH */;
966 	} else {
967 #endif
968 		hashkey_faddr = inp->inp_faddr.s_addr;
969 		hashkey_laddr = inp->inp_laddr.s_addr;
970 #ifdef INET6
971 	}
972 #endif
973 
974 	KASSERT(!(inp->inp_flags & INP_CONNECTED), ("already on hash list"));
975 	inp->inp_flags |= INP_CONNECTED;
976 
977 	/*
978 	 * Insert into the connection hash table.
979 	 */
980 	bucket = &pcbinfo->hashbase[INP_PCBCONNHASH(hashkey_faddr,
981 	    inp->inp_fport, hashkey_laddr, inp->inp_lport, pcbinfo->hashmask)];
982 	LIST_INSERT_HEAD(bucket, inp, inp_hash);
983 }
984 
985 /*
986  * Remove PCB from connection hash table.
987  */
988 void
989 in_pcbremconnhash(struct inpcb *inp)
990 {
991 	KASSERT(inp->inp_flags & INP_CONNECTED, ("inp not connected"));
992 	LIST_REMOVE(inp, inp_hash);
993 	inp->inp_flags &= ~INP_CONNECTED;
994 }
995 
996 /*
997  * Insert PCB into port hash table.
998  */
999 int
1000 in_pcbinsporthash(struct inpcb *inp)
1001 {
1002 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1003 	struct inpcbporthead *pcbporthash;
1004 	struct inpcbport *phd;
1005 
1006 	/*
1007 	 * Insert into the port hash table.
1008 	 */
1009 	pcbporthash = &pcbinfo->porthashbase[
1010 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->porthashmask)];
1011 
1012 	/* Go through port list and look for a head for this lport. */
1013 	LIST_FOREACH(phd, pcbporthash, phd_hash)
1014 		if (phd->phd_port == inp->inp_lport)
1015 			break;
1016 
1017 	/* If none exists, malloc one and tack it on. */
1018 	if (phd == NULL) {
1019 		MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport),
1020 		    M_PCB, M_INTWAIT | M_NULLOK);
1021 		if (phd == NULL)
1022 			return (ENOBUFS); /* XXX */
1023 		phd->phd_port = inp->inp_lport;
1024 		LIST_INIT(&phd->phd_pcblist);
1025 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1026 	}
1027 
1028 	inp->inp_phd = phd;
1029 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1030 
1031 	return (0);
1032 }
1033 
1034 void
1035 in_pcbinswildcardhash_oncpu(struct inpcb *inp, struct inpcbinfo *pcbinfo)
1036 {
1037 	struct inpcontainer *ic;
1038 	struct inpcontainerhead *bucket;
1039 
1040 	bucket = &pcbinfo->wildcardhashbase[
1041 	    INP_PCBWILDCARDHASH(inp->inp_lport, pcbinfo->wildcardhashmask)];
1042 
1043 	ic = malloc(sizeof(struct inpcontainer), M_TEMP, M_INTWAIT);
1044 	ic->ic_inp = inp;
1045 	LIST_INSERT_HEAD(bucket, ic, ic_list);
1046 }
1047 
1048 /*
1049  * Insert PCB into wildcard hash table.
1050  */
1051 void
1052 in_pcbinswildcardhash(struct inpcb *inp)
1053 {
1054 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1055 
1056 	KKASSERT(pcbinfo != NULL);
1057 
1058 	in_pcbinswildcardhash_oncpu(inp, pcbinfo);
1059 	inp->inp_flags |= INP_WILDCARD;
1060 }
1061 
1062 void
1063 in_pcbremwildcardhash_oncpu(struct inpcb *inp, struct inpcbinfo *pcbinfo)
1064 {
1065 	struct inpcontainer *ic;
1066 	struct inpcontainerhead *head;
1067 
1068 	/* find bucket */
1069 	head = &pcbinfo->wildcardhashbase[
1070 	    INP_PCBWILDCARDHASH(inp->inp_lport, pcbinfo->wildcardhashmask)];
1071 
1072 	LIST_FOREACH(ic, head, ic_list) {
1073 		if (ic->ic_inp == inp)
1074 			goto found;
1075 	}
1076 	return;			/* not found! */
1077 
1078 found:
1079 	LIST_REMOVE(ic, ic_list);	/* remove container from bucket chain */
1080 	free(ic, M_TEMP);		/* deallocate container */
1081 }
1082 
1083 /*
1084  * Remove PCB from wildcard hash table.
1085  */
1086 void
1087 in_pcbremwildcardhash(struct inpcb *inp)
1088 {
1089 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1090 
1091 	KASSERT(inp->inp_flags & INP_WILDCARD, ("inp not wildcard"));
1092 	in_pcbremwildcardhash_oncpu(inp, pcbinfo);
1093 	inp->inp_flags &= ~INP_WILDCARD;
1094 }
1095 
1096 /*
1097  * Remove PCB from various lists.
1098  */
1099 void
1100 in_pcbremlists(struct inpcb *inp)
1101 {
1102 	if (inp->inp_lport) {
1103 		struct inpcbport *phd = inp->inp_phd;
1104 
1105 		LIST_REMOVE(inp, inp_portlist);
1106 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1107 			LIST_REMOVE(phd, phd_hash);
1108 			free(phd, M_PCB);
1109 		}
1110 	}
1111 	if (inp->inp_flags & INP_WILDCARD) {
1112 		in_pcbremwildcardhash(inp);
1113 	} else if (inp->inp_flags & INP_CONNECTED) {
1114 		in_pcbremconnhash(inp);
1115 	}
1116 	LIST_REMOVE(inp, inp_list);
1117 	inp->inp_pcbinfo->ipi_count--;
1118 }
1119 
1120 int
1121 prison_xinpcb(struct thread *td, struct inpcb *inp)
1122 {
1123 	struct ucred *cr;
1124 
1125 	if (td->td_proc == NULL)
1126 		return (0);
1127 	cr = td->td_proc->p_ucred;
1128 	if (cr->cr_prison == NULL)
1129 		return (0);
1130 	if (ntohl(inp->inp_laddr.s_addr) == cr->cr_prison->pr_ip)
1131 		return (0);
1132 	return (1);
1133 }
1134 
1135 int
1136 in_pcblist_global(SYSCTL_HANDLER_ARGS)
1137 {
1138 	struct inpcbinfo *pcbinfo = arg1;
1139 	struct inpcb *inp, *marker;
1140 	struct xinpcb xi;
1141 	int error, i, n;
1142 	inp_gen_t gencnt;
1143 
1144 	/*
1145 	 * The process of preparing the TCB list is too time-consuming and
1146 	 * resource-intensive to repeat twice on every request.
1147 	 */
1148 	if (req->oldptr == NULL) {
1149 		n = pcbinfo->ipi_count;
1150 		req->oldidx = (n + n/8 + 10) * sizeof(struct xinpcb);
1151 		return 0;
1152 	}
1153 
1154 	if (req->newptr != NULL)
1155 		return EPERM;
1156 
1157 	/*
1158 	 * OK, now we're committed to doing something.  Re-fetch ipi_count
1159 	 * after obtaining the generation count.
1160 	 */
1161 	gencnt = pcbinfo->ipi_gencnt;
1162 	n = pcbinfo->ipi_count;
1163 
1164 	marker = malloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1165 	marker->inp_flags |= INP_PLACEMARKER;
1166 	LIST_INSERT_HEAD(&pcbinfo->pcblisthead, marker, inp_list);
1167 
1168 	i = 0;
1169 	error = 0;
1170 
1171 	while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1172 		LIST_REMOVE(marker, inp_list);
1173 		LIST_INSERT_AFTER(inp, marker, inp_list);
1174 
1175 		if (inp->inp_flags & INP_PLACEMARKER)
1176 			continue;
1177 		if (inp->inp_gencnt > gencnt)
1178 			continue;
1179 		if (prison_xinpcb(req->td, inp))
1180 			continue;
1181 		bzero(&xi, sizeof xi);
1182 		xi.xi_len = sizeof xi;
1183 		bcopy(inp, &xi.xi_inp, sizeof *inp);
1184 		if (inp->inp_socket)
1185 			sotoxsocket(inp->inp_socket, &xi.xi_socket);
1186 		if ((error = SYSCTL_OUT(req, &xi, sizeof xi)) != 0)
1187 			break;
1188 		++i;
1189 	}
1190 	LIST_REMOVE(marker, inp_list);
1191 	if (error == 0 && i < n) {
1192 		bzero(&xi, sizeof xi);
1193 		xi.xi_len = sizeof xi;
1194 		while (i < n) {
1195 			error = SYSCTL_OUT(req, &xi, sizeof xi);
1196 			++i;
1197 		}
1198 	}
1199 	free(marker, M_TEMP);
1200 	return(error);
1201 }
1202