xref: /dragonfly/sys/netinet/in_pcb.c (revision 606a6e92)
1 /*
2  * Copyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1991, 1993, 1995
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
84  * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.27 2004/01/02 04:06:42 ambrisko Exp $
85  * $DragonFly: src/sys/netinet/in_pcb.c,v 1.31 2004/12/30 05:14:30 hsu Exp $
86  */
87 
88 #include "opt_ipsec.h"
89 #include "opt_inet6.h"
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/malloc.h>
94 #include <sys/mbuf.h>
95 #include <sys/domain.h>
96 #include <sys/protosw.h>
97 #include <sys/socket.h>
98 #include <sys/socketvar.h>
99 #include <sys/proc.h>
100 #include <sys/jail.h>
101 #include <sys/kernel.h>
102 #include <sys/sysctl.h>
103 
104 #include <machine/limits.h>
105 
106 #include <vm/vm_zone.h>
107 
108 #include <net/if.h>
109 #include <net/if_types.h>
110 #include <net/route.h>
111 
112 #include <netinet/in.h>
113 #include <netinet/in_pcb.h>
114 #include <netinet/in_var.h>
115 #include <netinet/ip_var.h>
116 #ifdef INET6
117 #include <netinet/ip6.h>
118 #include <netinet6/ip6_var.h>
119 #endif /* INET6 */
120 
121 #ifdef IPSEC
122 #include <netinet6/ipsec.h>
123 #include <netproto/key/key.h>
124 #endif
125 
126 #ifdef FAST_IPSEC
127 #if defined(IPSEC) || defined(IPSEC_ESP)
128 #error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!"
129 #endif
130 
131 #include <netproto/ipsec/ipsec.h>
132 #include <netproto/ipsec/key.h>
133 #define	IPSEC
134 #endif /* FAST_IPSEC */
135 
136 struct in_addr zeroin_addr;
137 
138 /*
139  * These configure the range of local port addresses assigned to
140  * "unspecified" outgoing connections/packets/whatever.
141  */
142 int ipport_lowfirstauto = IPPORT_RESERVED - 1;	/* 1023 */
143 int ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
144 
145 int ipport_firstauto = IPPORT_RESERVED;		/* 1024 */
146 int ipport_lastauto = IPPORT_USERRESERVED;	/* 5000 */
147 
148 int ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
149 int ipport_hilastauto = IPPORT_HILASTAUTO;	/* 65535 */
150 
151 static __inline void
152 RANGECHK(int var, int min, int max)
153 {
154 	if (var < min)
155 		var = min;
156 	else if (var > max)
157 		var = max;
158 }
159 
160 static int
161 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
162 {
163 	int error;
164 
165 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
166 	if (!error) {
167 		RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
168 		RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
169 
170 		RANGECHK(ipport_firstauto, IPPORT_RESERVED, USHRT_MAX);
171 		RANGECHK(ipport_lastauto, IPPORT_RESERVED, USHRT_MAX);
172 
173 		RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, USHRT_MAX);
174 		RANGECHK(ipport_hilastauto, IPPORT_RESERVED, USHRT_MAX);
175 	}
176 	return (error);
177 }
178 
179 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
180 
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
182 	   &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
184 	   &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
186 	   &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
188 	   &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
189 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
190 	   &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
192 	   &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
193 
194 /*
195  * in_pcb.c: manage the Protocol Control Blocks.
196  *
197  * NOTE: It is assumed that most of these functions will be called at
198  * splnet(). XXX - There are, unfortunately, a few exceptions to this
199  * rule that should be fixed.
200  *
201  * NOTE: The caller should initialize the cpu field to the cpu running the
202  * protocol stack associated with this inpcbinfo.
203  */
204 
205 void
206 in_pcbinfo_init(struct inpcbinfo *pcbinfo)
207 {
208 	LIST_INIT(&pcbinfo->pcblisthead);
209 	pcbinfo->cpu = -1;
210 }
211 
212 /*
213  * Allocate a PCB and associate it with the socket.
214  */
215 int
216 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
217 {
218 	struct inpcb *inp;
219 #ifdef IPSEC
220 	int error;
221 #endif
222 
223 	inp = zalloc(pcbinfo->ipi_zone);
224 	if (inp == NULL)
225 		return (ENOBUFS);
226 	bzero(inp, sizeof *inp);
227 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
228 	inp->inp_pcbinfo = inp->inp_cpcbinfo = pcbinfo;
229 	inp->inp_socket = so;
230 #ifdef IPSEC
231 	error = ipsec_init_policy(so, &inp->inp_sp);
232 	if (error != 0) {
233 		zfree(pcbinfo->ipi_zone, inp);
234 		return (error);
235 	}
236 #endif
237 #ifdef INET6
238 	if (INP_SOCKAF(so) == AF_INET6 && ip6_v6only)
239 		inp->inp_flags |= IN6P_IPV6_V6ONLY;
240 	if (ip6_auto_flowlabel)
241 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
242 #endif
243 	so->so_pcb = inp;
244 	LIST_INSERT_HEAD(&pcbinfo->pcblisthead, inp, inp_list);
245 	pcbinfo->ipi_count++;
246 	return (0);
247 }
248 
249 int
250 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct thread *td)
251 {
252 	struct socket *so = inp->inp_socket;
253 	struct proc *p = td->td_proc;
254 	unsigned short *lastport;
255 	struct sockaddr_in *sin;
256 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
257 	u_short lport = 0;
258 	int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
259 	int error, prison = 0;
260 
261 	KKASSERT(p);
262 
263 	if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
264 		return (EADDRNOTAVAIL);
265 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
266 		return (EINVAL);	/* already bound */
267 	if (!(so->so_options & (SO_REUSEADDR|SO_REUSEPORT)))
268 		wild = 1;    /* neither SO_REUSEADDR nor SO_REUSEPORT is set */
269 	if (nam != NULL) {
270 		sin = (struct sockaddr_in *)nam;
271 		if (nam->sa_len != sizeof *sin)
272 			return (EINVAL);
273 #ifdef notdef
274 		/*
275 		 * We should check the family, but old programs
276 		 * incorrectly fail to initialize it.
277 		 */
278 		if (sin->sin_family != AF_INET)
279 			return (EAFNOSUPPORT);
280 #endif
281 		if (sin->sin_addr.s_addr != INADDR_ANY &&
282 		    prison_ip(td, 0, &sin->sin_addr.s_addr))
283 				return (EINVAL);
284 		lport = sin->sin_port;
285 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
286 			/*
287 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
288 			 * allow complete duplication of binding if
289 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
290 			 * and a multicast address is bound on both
291 			 * new and duplicated sockets.
292 			 */
293 			if (so->so_options & SO_REUSEADDR)
294 				reuseport = SO_REUSEADDR | SO_REUSEPORT;
295 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
296 			sin->sin_port = 0;		/* yech... */
297 			bzero(&sin->sin_zero, sizeof sin->sin_zero);
298 			if (ifa_ifwithaddr((struct sockaddr *)sin) == NULL)
299 				return (EADDRNOTAVAIL);
300 		}
301 		if (lport != 0) {
302 			struct inpcb *t;
303 
304 			/* GROSS */
305 			if (ntohs(lport) < IPPORT_RESERVED &&
306 			    p && suser_cred(p->p_ucred, PRISON_ROOT))
307 				return (EACCES);
308 			if (p && p->p_ucred->cr_prison)
309 				prison = 1;
310 			if (so->so_cred->cr_uid != 0 &&
311 			    !IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
312 				t = in_pcblookup_local(inp->inp_pcbinfo,
313 				    sin->sin_addr, lport,
314 				    prison ? 0 : INPLOOKUP_WILDCARD);
315 				if (t &&
316 				    (!in_nullhost(sin->sin_addr) ||
317 				     !in_nullhost(t->inp_laddr) ||
318 				     (t->inp_socket->so_options &
319 					 SO_REUSEPORT) == 0) &&
320 				    (so->so_cred->cr_uid !=
321 				     t->inp_socket->so_cred->cr_uid)) {
322 #ifdef INET6
323 					if (!in_nullhost(sin->sin_addr) ||
324 					    !in_nullhost(t->inp_laddr) ||
325 					    INP_SOCKAF(so) ==
326 					    INP_SOCKAF(t->inp_socket))
327 #endif
328 					return (EADDRINUSE);
329 				}
330 			}
331 			if (prison && prison_ip(td, 0, &sin->sin_addr.s_addr))
332 				return (EADDRNOTAVAIL);
333 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
334 			    lport, prison ? 0 : wild);
335 			if (t && !(reuseport & t->inp_socket->so_options)) {
336 #ifdef INET6
337 				if (!in_nullhost(sin->sin_addr) ||
338 				    !in_nullhost(t->inp_laddr) ||
339 				    INP_SOCKAF(so) == INP_SOCKAF(t->inp_socket))
340 #endif
341 				return (EADDRINUSE);
342 			}
343 		}
344 		inp->inp_laddr = sin->sin_addr;
345 	}
346 	if (lport == 0) {
347 		ushort first, last;
348 		int count;
349 
350 		if (inp->inp_laddr.s_addr != INADDR_ANY &&
351 		    prison_ip(td, 0, &inp->inp_laddr.s_addr )) {
352 			inp->inp_laddr.s_addr = INADDR_ANY;
353 			return (EINVAL);
354 		}
355 		inp->inp_flags |= INP_ANONPORT;
356 
357 		if (inp->inp_flags & INP_HIGHPORT) {
358 			first = ipport_hifirstauto;	/* sysctl */
359 			last  = ipport_hilastauto;
360 			lastport = &pcbinfo->lasthi;
361 		} else if (inp->inp_flags & INP_LOWPORT) {
362 			if (p &&
363 			    (error = suser_cred(p->p_ucred, PRISON_ROOT))) {
364 				inp->inp_laddr.s_addr = INADDR_ANY;
365 				return (error);
366 			}
367 			first = ipport_lowfirstauto;	/* 1023 */
368 			last  = ipport_lowlastauto;	/* 600 */
369 			lastport = &pcbinfo->lastlow;
370 		} else {
371 			first = ipport_firstauto;	/* sysctl */
372 			last  = ipport_lastauto;
373 			lastport = &pcbinfo->lastport;
374 		}
375 		/*
376 		 * Simple check to ensure all ports are not used up causing
377 		 * a deadlock here.
378 		 *
379 		 * We split the two cases (up and down) so that the direction
380 		 * is not being tested on each round of the loop.
381 		 */
382 		if (first > last) {
383 			/*
384 			 * counting down
385 			 */
386 			count = first - last;
387 
388 			do {
389 				if (count-- < 0) {	/* completely used? */
390 					inp->inp_laddr.s_addr = INADDR_ANY;
391 					return (EADDRNOTAVAIL);
392 				}
393 				--*lastport;
394 				if (*lastport > first || *lastport < last)
395 					*lastport = first;
396 				lport = htons(*lastport);
397 			} while (in_pcblookup_local(pcbinfo,
398 				 inp->inp_laddr, lport, wild));
399 		} else {
400 			/*
401 			 * counting up
402 			 */
403 			count = last - first;
404 
405 			do {
406 				if (count-- < 0) {	/* completely used? */
407 					inp->inp_laddr.s_addr = INADDR_ANY;
408 					return (EADDRNOTAVAIL);
409 				}
410 				++*lastport;
411 				if (*lastport < first || *lastport > last)
412 					*lastport = first;
413 				lport = htons(*lastport);
414 			} while (in_pcblookup_local(pcbinfo,
415 				 inp->inp_laddr, lport, wild));
416 		}
417 	}
418 	inp->inp_lport = lport;
419 	if (prison_ip(td, 0, &inp->inp_laddr.s_addr)) {
420 		inp->inp_laddr.s_addr = INADDR_ANY;
421 		inp->inp_lport = 0;
422 		return (EINVAL);
423 	}
424 	if (in_pcbinsporthash(inp) != 0) {
425 		inp->inp_laddr.s_addr = INADDR_ANY;
426 		inp->inp_lport = 0;
427 		return (EAGAIN);
428 	}
429 	return (0);
430 }
431 
432 /*
433  *   Transform old in_pcbconnect() into an inner subroutine for new
434  *   in_pcbconnect(): Do some validity-checking on the remote
435  *   address (in mbuf 'nam') and then determine local host address
436  *   (i.e., which interface) to use to access that remote host.
437  *
438  *   This preserves definition of in_pcbconnect(), while supporting a
439  *   slightly different version for T/TCP.  (This is more than
440  *   a bit of a kludge, but cleaning up the internal interfaces would
441  *   have forced minor changes in every protocol).
442  */
443 int
444 in_pcbladdr(inp, nam, plocal_sin)
445 	struct inpcb *inp;
446 	struct sockaddr *nam;
447 	struct sockaddr_in **plocal_sin;
448 {
449 	struct in_ifaddr *ia;
450 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
451 
452 	if (nam->sa_len != sizeof *sin)
453 		return (EINVAL);
454 	if (sin->sin_family != AF_INET)
455 		return (EAFNOSUPPORT);
456 	if (sin->sin_port == 0)
457 		return (EADDRNOTAVAIL);
458 	if (!TAILQ_EMPTY(&in_ifaddrhead)) {
459 		ia = TAILQ_FIRST(&in_ifaddrhead);
460 		/*
461 		 * If the destination address is INADDR_ANY,
462 		 * use the primary local address.
463 		 * If the supplied address is INADDR_BROADCAST,
464 		 * and the primary interface supports broadcast,
465 		 * choose the broadcast address for that interface.
466 		 */
467 		if (sin->sin_addr.s_addr == INADDR_ANY)
468 			sin->sin_addr = IA_SIN(ia)->sin_addr;
469 		else if (sin->sin_addr.s_addr == (u_long)INADDR_BROADCAST &&
470 		    (ia->ia_ifp->if_flags & IFF_BROADCAST))
471 			sin->sin_addr = satosin(&ia->ia_broadaddr)->sin_addr;
472 	}
473 	if (inp->inp_laddr.s_addr == INADDR_ANY) {
474 		struct route *ro;
475 
476 		ia = (struct in_ifaddr *)NULL;
477 		/*
478 		 * If route is known or can be allocated now,
479 		 * our src addr is taken from the i/f, else punt.
480 		 * Note that we should check the address family of the cached
481 		 * destination, in case of sharing the cache with IPv6.
482 		 */
483 		ro = &inp->inp_route;
484 		if (ro->ro_rt &&
485 		    (!(ro->ro_rt->rt_flags & RTF_UP) ||
486 		     ro->ro_dst.sa_family != AF_INET ||
487 		     satosin(&ro->ro_dst)->sin_addr.s_addr !=
488 				      sin->sin_addr.s_addr ||
489 		     inp->inp_socket->so_options & SO_DONTROUTE)) {
490 			RTFREE(ro->ro_rt);
491 			ro->ro_rt = (struct rtentry *)NULL;
492 		}
493 		if (!(inp->inp_socket->so_options & SO_DONTROUTE) && /*XXX*/
494 		    (ro->ro_rt == (struct rtentry *)NULL ||
495 		    ro->ro_rt->rt_ifp == (struct ifnet *)NULL)) {
496 			/* No route yet, so try to acquire one */
497 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
498 			ro->ro_dst.sa_family = AF_INET;
499 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
500 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
501 				sin->sin_addr;
502 			rtalloc(ro);
503 		}
504 		/*
505 		 * If we found a route, use the address
506 		 * corresponding to the outgoing interface
507 		 * unless it is the loopback (in case a route
508 		 * to our address on another net goes to loopback).
509 		 */
510 		if (ro->ro_rt && !(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK))
511 			ia = ifatoia(ro->ro_rt->rt_ifa);
512 		if (ia == NULL) {
513 			u_short fport = sin->sin_port;
514 
515 			sin->sin_port = 0;
516 			ia = ifatoia(ifa_ifwithdstaddr(sintosa(sin)));
517 			if (ia == NULL)
518 				ia = ifatoia(ifa_ifwithnet(sintosa(sin)));
519 			sin->sin_port = fport;
520 			if (ia == NULL)
521 				ia = TAILQ_FIRST(&in_ifaddrhead);
522 			if (ia == NULL)
523 				return (EADDRNOTAVAIL);
524 		}
525 		/*
526 		 * If the destination address is multicast and an outgoing
527 		 * interface has been set as a multicast option, use the
528 		 * address of that interface as our source address.
529 		 */
530 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
531 		    inp->inp_moptions != NULL) {
532 			struct ip_moptions *imo;
533 			struct ifnet *ifp;
534 
535 			imo = inp->inp_moptions;
536 			if (imo->imo_multicast_ifp != NULL) {
537 				ifp = imo->imo_multicast_ifp;
538 				TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
539 					if (ia->ia_ifp == ifp)
540 						break;
541 				if (ia == NULL)
542 					return (EADDRNOTAVAIL);
543 			}
544 		}
545 		/*
546 		 * Don't do pcblookup call here; return interface in plocal_sin
547 		 * and exit to caller, that will do the lookup.
548 		 */
549 		*plocal_sin = &ia->ia_addr;
550 
551 	}
552 	return (0);
553 }
554 
555 /*
556  * Outer subroutine:
557  * Connect from a socket to a specified address.
558  * Both address and port must be specified in argument sin.
559  * If don't have a local address for this socket yet,
560  * then pick one.
561  */
562 int
563 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct thread *td)
564 {
565 	struct sockaddr_in *if_sin;
566 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
567 	struct sockaddr_in sa;
568 	struct ucred *cr = td->td_proc ? td->td_proc->p_ucred : NULL;
569 	int error;
570 
571 	if (cr && cr->cr_prison != NULL && in_nullhost(inp->inp_laddr)) {
572 		bzero(&sa, sizeof sa);
573 		sa.sin_addr.s_addr = htonl(cr->cr_prison->pr_ip);
574 		sa.sin_len = sizeof sa;
575 		sa.sin_family = AF_INET;
576 		error = in_pcbbind(inp, (struct sockaddr *)&sa, td);
577 		if (error)
578 			return (error);
579 	}
580 
581 	/* Call inner routine to assign local interface address. */
582 	if ((error = in_pcbladdr(inp, nam, &if_sin)) != 0)
583 		return (error);
584 
585 	if (in_pcblookup_hash(inp->inp_cpcbinfo, sin->sin_addr, sin->sin_port,
586 	    inp->inp_laddr.s_addr ? inp->inp_laddr : if_sin->sin_addr,
587 	    inp->inp_lport, FALSE, NULL) != NULL) {
588 		return (EADDRINUSE);
589 	}
590 	if (inp->inp_laddr.s_addr == INADDR_ANY) {
591 		if (inp->inp_lport == 0) {
592 			error = in_pcbbind(inp, (struct sockaddr *)NULL, td);
593 			if (error)
594 				return (error);
595 		}
596 		inp->inp_laddr = if_sin->sin_addr;
597 	}
598 	inp->inp_faddr = sin->sin_addr;
599 	inp->inp_fport = sin->sin_port;
600 	in_pcbinsconnhash(inp);
601 	return (0);
602 }
603 
604 void
605 in_pcbdisconnect(inp)
606 	struct inpcb *inp;
607 {
608 
609 	inp->inp_faddr.s_addr = INADDR_ANY;
610 	inp->inp_fport = 0;
611 	in_pcbremconnhash(inp);
612 	if (inp->inp_socket->so_state & SS_NOFDREF)
613 		in_pcbdetach(inp);
614 }
615 
616 void
617 in_pcbdetach(inp)
618 	struct inpcb *inp;
619 {
620 	struct socket *so = inp->inp_socket;
621 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
622 
623 #ifdef IPSEC
624 	ipsec4_delete_pcbpolicy(inp);
625 #endif /*IPSEC*/
626 	inp->inp_gencnt = ++ipi->ipi_gencnt;
627 	in_pcbremlists(inp);
628 	so->so_pcb = 0;
629 	sofree(so);
630 	if (inp->inp_options)
631 		m_free(inp->inp_options);
632 	if (inp->inp_route.ro_rt)
633 		rtfree(inp->inp_route.ro_rt);
634 	ip_freemoptions(inp->inp_moptions);
635 	inp->inp_vflag = 0;
636 	zfree(ipi->ipi_zone, inp);
637 }
638 
639 /*
640  * The calling convention of in_setsockaddr() and in_setpeeraddr() was
641  * modified to match the pru_sockaddr() and pru_peeraddr() entry points
642  * in struct pr_usrreqs, so that protocols can just reference then directly
643  * without the need for a wrapper function.  The socket must have a valid
644  * (i.e., non-nil) PCB, but it should be impossible to get an invalid one
645  * except through a kernel programming error, so it is acceptable to panic
646  * (or in this case trap) if the PCB is invalid.  (Actually, we don't trap
647  * because there actually /is/ a programming error somewhere... XXX)
648  */
649 int
650 in_setsockaddr(so, nam)
651 	struct socket *so;
652 	struct sockaddr **nam;
653 {
654 	int s;
655 	struct inpcb *inp;
656 	struct sockaddr_in *sin;
657 
658 	/*
659 	 * Do the malloc first in case it blocks.
660 	 */
661 	MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
662 		M_WAITOK | M_ZERO);
663 	sin->sin_family = AF_INET;
664 	sin->sin_len = sizeof *sin;
665 
666 	s = splnet();
667 	inp = sotoinpcb(so);
668 	if (!inp) {
669 		splx(s);
670 		free(sin, M_SONAME);
671 		return (ECONNRESET);
672 	}
673 	sin->sin_port = inp->inp_lport;
674 	sin->sin_addr = inp->inp_laddr;
675 	splx(s);
676 
677 	*nam = (struct sockaddr *)sin;
678 	return (0);
679 }
680 
681 int
682 in_setpeeraddr(so, nam)
683 	struct socket *so;
684 	struct sockaddr **nam;
685 {
686 	int s;
687 	struct inpcb *inp;
688 	struct sockaddr_in *sin;
689 
690 	/*
691 	 * Do the malloc first in case it blocks.
692 	 */
693 	MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
694 		M_WAITOK | M_ZERO);
695 	sin->sin_family = AF_INET;
696 	sin->sin_len = sizeof *sin;
697 
698 	s = splnet();
699 	inp = sotoinpcb(so);
700 	if (!inp) {
701 		splx(s);
702 		free(sin, M_SONAME);
703 		return (ECONNRESET);
704 	}
705 	sin->sin_port = inp->inp_fport;
706 	sin->sin_addr = inp->inp_faddr;
707 	splx(s);
708 
709 	*nam = (struct sockaddr *)sin;
710 	return (0);
711 }
712 
713 void
714 in_pcbnotifyall(head, faddr, errno, notify)
715 	struct inpcbhead *head;
716 	struct in_addr faddr;
717 	void (*notify) (struct inpcb *, int);
718 {
719 	struct inpcb *inp, *ninp;
720 	int s;
721 
722 	/*
723 	 * note: if INP_PLACEMARKER is set we must ignore the rest of
724 	 * the structure and skip it.
725 	 */
726 	s = splnet();
727 	for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) {
728 		ninp = LIST_NEXT(inp, inp_list);
729 		if (inp->inp_flags & INP_PLACEMARKER)
730 			continue;
731 #ifdef INET6
732 		if (!(inp->inp_vflag & INP_IPV4))
733 			continue;
734 #endif
735 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
736 		    inp->inp_socket == NULL)
737 			continue;
738 		(*notify)(inp, errno);
739 	}
740 	splx(s);
741 }
742 
743 void
744 in_pcbpurgeif0(head, ifp)
745 	struct inpcb *head;
746 	struct ifnet *ifp;
747 {
748 	struct inpcb *inp;
749 	struct ip_moptions *imo;
750 	int i, gap;
751 
752 	for (inp = head; inp != NULL; inp = LIST_NEXT(inp, inp_list)) {
753 		if (inp->inp_flags & INP_PLACEMARKER)
754 			continue;
755 		imo = inp->inp_moptions;
756 		if ((inp->inp_vflag & INP_IPV4) && imo != NULL) {
757 			/*
758 			 * Unselect the outgoing interface if it is being
759 			 * detached.
760 			 */
761 			if (imo->imo_multicast_ifp == ifp)
762 				imo->imo_multicast_ifp = NULL;
763 
764 			/*
765 			 * Drop multicast group membership if we joined
766 			 * through the interface being detached.
767 			 */
768 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
769 			    i++) {
770 				if (imo->imo_membership[i]->inm_ifp == ifp) {
771 					in_delmulti(imo->imo_membership[i]);
772 					gap++;
773 				} else if (gap != 0)
774 					imo->imo_membership[i - gap] =
775 					    imo->imo_membership[i];
776 			}
777 			imo->imo_num_memberships -= gap;
778 		}
779 	}
780 }
781 
782 /*
783  * Check for alternatives when higher level complains
784  * about service problems.  For now, invalidate cached
785  * routing information.  If the route was created dynamically
786  * (by a redirect), time to try a default gateway again.
787  */
788 void
789 in_losing(inp)
790 	struct inpcb *inp;
791 {
792 	struct rtentry *rt;
793 	struct rt_addrinfo info;
794 
795 	if ((rt = inp->inp_route.ro_rt)) {
796 		bzero(&info, sizeof info);
797 		info.rti_flags = rt->rt_flags;
798 		info.rti_info[RTAX_DST] = rt_key(rt);
799 		info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
800 		info.rti_info[RTAX_NETMASK] = rt_mask(rt);
801 		rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0);
802 		if (rt->rt_flags & RTF_DYNAMIC)
803 			rtrequest1(RTM_DELETE, &info, NULL);
804 		inp->inp_route.ro_rt = NULL;
805 		rtfree(rt);
806 		/*
807 		 * A new route can be allocated
808 		 * the next time output is attempted.
809 		 */
810 	}
811 }
812 
813 /*
814  * After a routing change, flush old routing
815  * and allocate a (hopefully) better one.
816  */
817 void
818 in_rtchange(inp, errno)
819 	struct inpcb *inp;
820 	int errno;
821 {
822 	if (inp->inp_route.ro_rt) {
823 		rtfree(inp->inp_route.ro_rt);
824 		inp->inp_route.ro_rt = 0;
825 		/*
826 		 * A new route can be allocated the next time
827 		 * output is attempted.
828 		 */
829 	}
830 }
831 
832 /*
833  * Lookup a PCB based on the local address and port.
834  */
835 struct inpcb *
836 in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay)
837 	struct inpcbinfo *pcbinfo;
838 	struct in_addr laddr;
839 	u_int lport_arg;
840 	int wild_okay;
841 {
842 	struct inpcb *inp;
843 	int matchwild = 3, wildcard;
844 	u_short lport = lport_arg;
845 
846 	struct inpcbporthead *porthash;
847 	struct inpcbport *phd;
848 	struct inpcb *match = NULL;
849 
850 	/*
851 	 * Best fit PCB lookup.
852 	 *
853 	 * First see if this local port is in use by looking on the
854 	 * port hash list.
855 	 */
856 	porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport,
857 	    pcbinfo->porthashmask)];
858 	LIST_FOREACH(phd, porthash, phd_hash) {
859 		if (phd->phd_port == lport)
860 			break;
861 	}
862 	if (phd != NULL) {
863 		/*
864 		 * Port is in use by one or more PCBs. Look for best
865 		 * fit.
866 		 */
867 		LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
868 			wildcard = 0;
869 #ifdef INET6
870 			if ((inp->inp_vflag & INP_IPV4) == 0)
871 				continue;
872 #endif
873 			if (inp->inp_faddr.s_addr != INADDR_ANY)
874 				wildcard++;
875 			if (inp->inp_laddr.s_addr != INADDR_ANY) {
876 				if (laddr.s_addr == INADDR_ANY)
877 					wildcard++;
878 				else if (inp->inp_laddr.s_addr != laddr.s_addr)
879 					continue;
880 			} else {
881 				if (laddr.s_addr != INADDR_ANY)
882 					wildcard++;
883 			}
884 			if (wildcard && !wild_okay)
885 				continue;
886 			if (wildcard < matchwild) {
887 				match = inp;
888 				matchwild = wildcard;
889 				if (matchwild == 0) {
890 					break;
891 				}
892 			}
893 		}
894 	}
895 	return (match);
896 }
897 
898 /*
899  * Lookup PCB in hash list.
900  */
901 struct inpcb *
902 in_pcblookup_hash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard, ifp)
903 	struct inpcbinfo *pcbinfo;
904 	struct in_addr faddr, laddr;
905 	u_int fport_arg, lport_arg;
906 	boolean_t wildcard;
907 	struct ifnet *ifp;
908 {
909 	struct inpcbhead *head;
910 	struct inpcb *inp;
911 	u_short fport = fport_arg, lport = lport_arg;
912 
913 	/*
914 	 * First look for an exact match.
915 	 */
916 	head = &pcbinfo->hashbase[INP_PCBCONNHASH(faddr.s_addr, fport,
917 	    laddr.s_addr, lport, pcbinfo->hashmask)];
918 	LIST_FOREACH(inp, head, inp_hash) {
919 #ifdef INET6
920 		if (!(inp->inp_vflag & INP_IPV4))
921 			continue;
922 #endif
923 		if (in_hosteq(inp->inp_faddr, faddr) &&
924 		    in_hosteq(inp->inp_laddr, laddr) &&
925 		    inp->inp_fport == fport && inp->inp_lport == lport) {
926 			/* found */
927 			return (inp);
928 		}
929 	}
930 
931 	if (wildcard) {
932 		struct inpcb *local_wild = NULL;
933 #ifdef INET6
934 		struct inpcb *local_wild_mapped = NULL;
935 #endif
936 		struct inpcontainer *ic;
937 		struct inpcontainerhead *chead;
938 
939 		chead = &pcbinfo->wildcardhashbase[
940 		    INP_PCBWILDCARDHASH(lport, pcbinfo->wildcardhashmask)];
941 		LIST_FOREACH(ic, chead, ic_list) {
942 			inp = ic->ic_inp;
943 #ifdef INET6
944 			if (!(inp->inp_vflag & INP_IPV4))
945 				continue;
946 #endif
947 			if (inp->inp_lport == lport) {
948 				if (ifp && ifp->if_type == IFT_FAITH &&
949 				    !(inp->inp_flags & INP_FAITH))
950 					continue;
951 				if (inp->inp_laddr.s_addr == laddr.s_addr)
952 					return (inp);
953 				if (inp->inp_laddr.s_addr == INADDR_ANY) {
954 #ifdef INET6
955 					if (INP_CHECK_SOCKAF(inp->inp_socket,
956 							     AF_INET6))
957 						local_wild_mapped = inp;
958 					else
959 #endif
960 						local_wild = inp;
961 				}
962 			}
963 		}
964 #ifdef INET6
965 		if (local_wild == NULL)
966 			return (local_wild_mapped);
967 #endif
968 		return (local_wild);
969 	}
970 
971 	/*
972 	 * Not found.
973 	 */
974 	return (NULL);
975 }
976 
977 /*
978  * Insert PCB into connection hash table.
979  */
980 void
981 in_pcbinsconnhash(struct inpcb *inp)
982 {
983 	struct inpcbinfo *pcbinfo = inp->inp_cpcbinfo;
984 	struct inpcbhead *bucket;
985 	u_int32_t hashkey_faddr, hashkey_laddr;
986 
987 #ifdef INET6
988 	if (inp->inp_vflag & INP_IPV6) {
989 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX JH */;
990 		hashkey_laddr = inp->in6p_laddr.s6_addr32[3] /* XXX JH */;
991 	} else {
992 #endif
993 		hashkey_faddr = inp->inp_faddr.s_addr;
994 		hashkey_laddr = inp->inp_laddr.s_addr;
995 #ifdef INET6
996 	}
997 #endif
998 
999 	KASSERT(!(inp->inp_flags & INP_CONNECTED), ("already on hash list"));
1000 	inp->inp_flags |= INP_CONNECTED;
1001 
1002 	/*
1003 	 * Insert into the connection hash table.
1004 	 */
1005 	bucket = &pcbinfo->hashbase[INP_PCBCONNHASH(hashkey_faddr,
1006 	    inp->inp_fport, hashkey_laddr, inp->inp_lport, pcbinfo->hashmask)];
1007 	LIST_INSERT_HEAD(bucket, inp, inp_hash);
1008 }
1009 
1010 /*
1011  * Remove PCB from connection hash table.
1012  */
1013 void
1014 in_pcbremconnhash(struct inpcb *inp)
1015 {
1016 	KASSERT(inp->inp_flags & INP_CONNECTED, ("inp not connected"));
1017 	LIST_REMOVE(inp, inp_hash);
1018 	inp->inp_flags &= ~INP_CONNECTED;
1019 }
1020 
1021 /*
1022  * Insert PCB into port hash table.
1023  */
1024 int
1025 in_pcbinsporthash(struct inpcb *inp)
1026 {
1027 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1028 	struct inpcbporthead *pcbporthash;
1029 	struct inpcbport *phd;
1030 
1031 	/*
1032 	 * Insert into the port hash table.
1033 	 */
1034 	pcbporthash = &pcbinfo->porthashbase[
1035 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->porthashmask)];
1036 
1037 	/* Go through port list and look for a head for this lport. */
1038 	LIST_FOREACH(phd, pcbporthash, phd_hash)
1039 		if (phd->phd_port == inp->inp_lport)
1040 			break;
1041 
1042 	/* If none exists, malloc one and tack it on. */
1043 	if (phd == NULL) {
1044 		MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport),
1045 		    M_PCB, M_INTWAIT | M_NULLOK);
1046 		if (phd == NULL)
1047 			return (ENOBUFS); /* XXX */
1048 		phd->phd_port = inp->inp_lport;
1049 		LIST_INIT(&phd->phd_pcblist);
1050 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1051 	}
1052 
1053 	inp->inp_phd = phd;
1054 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1055 
1056 	return (0);
1057 }
1058 
1059 void
1060 in_pcbinswildcardhash_oncpu(struct inpcb *inp, struct inpcbinfo *pcbinfo)
1061 {
1062 	struct inpcontainer *ic;
1063 	struct inpcontainerhead *bucket;
1064 
1065 	bucket = &pcbinfo->wildcardhashbase[
1066 	    INP_PCBWILDCARDHASH(inp->inp_lport, pcbinfo->wildcardhashmask)];
1067 
1068 	ic = malloc(sizeof(struct inpcontainer), M_TEMP, M_INTWAIT);
1069 	ic->ic_inp = inp;
1070 	LIST_INSERT_HEAD(bucket, ic, ic_list);
1071 }
1072 
1073 /*
1074  * Insert PCB into wildcard hash table.
1075  */
1076 void
1077 in_pcbinswildcardhash(struct inpcb *inp)
1078 {
1079 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1080 
1081 	KKASSERT(pcbinfo != NULL);
1082 
1083 	in_pcbinswildcardhash_oncpu(inp, pcbinfo);
1084 	inp->inp_flags |= INP_WILDCARD;
1085 }
1086 
1087 void
1088 in_pcbremwildcardhash_oncpu(struct inpcb *inp, struct inpcbinfo *pcbinfo)
1089 {
1090 	struct inpcontainer *ic;
1091 	struct inpcontainerhead *head;
1092 
1093 	/* find bucket */
1094 	head = &pcbinfo->wildcardhashbase[
1095 	    INP_PCBWILDCARDHASH(inp->inp_lport, pcbinfo->wildcardhashmask)];
1096 
1097 	LIST_FOREACH(ic, head, ic_list) {
1098 		if (ic->ic_inp == inp)
1099 			goto found;
1100 	}
1101 	return;			/* not found! */
1102 
1103 found:
1104 	LIST_REMOVE(ic, ic_list);	/* remove container from bucket chain */
1105 	free(ic, M_TEMP);		/* deallocate container */
1106 }
1107 
1108 /*
1109  * Remove PCB from wildcard hash table.
1110  */
1111 void
1112 in_pcbremwildcardhash(struct inpcb *inp)
1113 {
1114 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1115 
1116 	KASSERT(inp->inp_flags & INP_WILDCARD, ("inp not wildcard"));
1117 	in_pcbremwildcardhash_oncpu(inp, pcbinfo);
1118 	inp->inp_flags &= ~INP_WILDCARD;
1119 }
1120 
1121 /*
1122  * Remove PCB from various lists.
1123  */
1124 void
1125 in_pcbremlists(inp)
1126 	struct inpcb *inp;
1127 {
1128 	if (inp->inp_lport) {
1129 		struct inpcbport *phd = inp->inp_phd;
1130 
1131 		LIST_REMOVE(inp, inp_portlist);
1132 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1133 			LIST_REMOVE(phd, phd_hash);
1134 			free(phd, M_PCB);
1135 		}
1136 	}
1137 	if (inp->inp_flags & INP_WILDCARD) {
1138 		in_pcbremwildcardhash(inp);
1139 	} else if (inp->inp_flags & INP_CONNECTED) {
1140 		in_pcbremconnhash(inp);
1141 	}
1142 	LIST_REMOVE(inp, inp_list);
1143 	inp->inp_pcbinfo->ipi_count--;
1144 }
1145 
1146 int
1147 prison_xinpcb(struct thread *td, struct inpcb *inp)
1148 {
1149 	struct ucred *cr;
1150 
1151 	if (td->td_proc == NULL)
1152 		return (0);
1153 	cr = td->td_proc->p_ucred;
1154 	if (cr->cr_prison == NULL)
1155 		return (0);
1156 	if (ntohl(inp->inp_laddr.s_addr) == cr->cr_prison->pr_ip)
1157 		return (0);
1158 	return (1);
1159 }
1160 
1161 int
1162 in_pcblist_global(SYSCTL_HANDLER_ARGS)
1163 {
1164 	struct inpcbinfo *pcbinfo = arg1;
1165 	struct inpcb *inp, *marker;
1166 	struct xinpcb xi;
1167 	int error, i, n;
1168 	inp_gen_t gencnt;
1169 
1170 	/*
1171 	 * The process of preparing the TCB list is too time-consuming and
1172 	 * resource-intensive to repeat twice on every request.
1173 	 */
1174 	if (req->oldptr == NULL) {
1175 		n = pcbinfo->ipi_count;
1176 		req->oldidx = (n + n/8 + 10) * sizeof(struct xinpcb);
1177 		return 0;
1178 	}
1179 
1180 	if (req->newptr != NULL)
1181 		return EPERM;
1182 
1183 	/*
1184 	 * OK, now we're committed to doing something.  Re-fetch ipi_count
1185 	 * after obtaining the generation count.
1186 	 */
1187 	gencnt = pcbinfo->ipi_gencnt;
1188 	n = pcbinfo->ipi_count;
1189 
1190 	marker = malloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1191 	marker->inp_flags |= INP_PLACEMARKER;
1192 	LIST_INSERT_HEAD(&pcbinfo->pcblisthead, marker, inp_list);
1193 
1194 	i = 0;
1195 	error = 0;
1196 
1197 	while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1198 		LIST_REMOVE(marker, inp_list);
1199 		LIST_INSERT_AFTER(inp, marker, inp_list);
1200 
1201 		if (inp->inp_flags & INP_PLACEMARKER)
1202 			continue;
1203 		if (inp->inp_gencnt > gencnt)
1204 			continue;
1205 		if (prison_xinpcb(req->td, inp))
1206 			continue;
1207 		xi.xi_len = sizeof xi;
1208 		bcopy(inp, &xi.xi_inp, sizeof *inp);
1209 		if (inp->inp_socket)
1210 			sotoxsocket(inp->inp_socket, &xi.xi_socket);
1211 		if ((error = SYSCTL_OUT(req, &xi, sizeof xi)) != 0)
1212 			break;
1213 		++i;
1214 	}
1215 	LIST_REMOVE(marker, inp_list);
1216 	if (error == 0 && i < n) {
1217 		bzero(&xi, sizeof(xi));
1218 		xi.xi_len = sizeof(xi);
1219 		while (i < n) {
1220 			error = SYSCTL_OUT(req, &xi, sizeof xi);
1221 			++i;
1222 		}
1223 	}
1224 	free(marker, M_TEMP);
1225 	return(error);
1226 }
1227