xref: /dragonfly/sys/netinet/in_pcb.c (revision 6bd457ed)
1 /*
2  * cOPyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1991, 1993, 1995
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
84  * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.27 2004/01/02 04:06:42 ambrisko Exp $
85  * $DragonFly: src/sys/netinet/in_pcb.c,v 1.36 2005/06/02 23:52:42 dillon Exp $
86  */
87 
88 #include "opt_ipsec.h"
89 #include "opt_inet6.h"
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/malloc.h>
94 #include <sys/mbuf.h>
95 #include <sys/domain.h>
96 #include <sys/protosw.h>
97 #include <sys/socket.h>
98 #include <sys/socketvar.h>
99 #include <sys/proc.h>
100 #include <sys/jail.h>
101 #include <sys/kernel.h>
102 #include <sys/sysctl.h>
103 #include <sys/thread2.h>
104 
105 #include <machine/limits.h>
106 
107 #include <vm/vm_zone.h>
108 
109 #include <net/if.h>
110 #include <net/if_types.h>
111 #include <net/route.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_pcb.h>
115 #include <netinet/in_var.h>
116 #include <netinet/ip_var.h>
117 #ifdef INET6
118 #include <netinet/ip6.h>
119 #include <netinet6/ip6_var.h>
120 #endif /* INET6 */
121 
122 #ifdef IPSEC
123 #include <netinet6/ipsec.h>
124 #include <netproto/key/key.h>
125 #endif
126 
127 #ifdef FAST_IPSEC
128 #if defined(IPSEC) || defined(IPSEC_ESP)
129 #error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!"
130 #endif
131 
132 #include <netproto/ipsec/ipsec.h>
133 #include <netproto/ipsec/key.h>
134 #define	IPSEC
135 #endif /* FAST_IPSEC */
136 
137 struct in_addr zeroin_addr;
138 
139 /*
140  * These configure the range of local port addresses assigned to
141  * "unspecified" outgoing connections/packets/whatever.
142  */
143 int ipport_lowfirstauto = IPPORT_RESERVED - 1;	/* 1023 */
144 int ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
145 
146 int ipport_firstauto = IPPORT_RESERVED;		/* 1024 */
147 int ipport_lastauto = IPPORT_USERRESERVED;	/* 5000 */
148 
149 int ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
150 int ipport_hilastauto = IPPORT_HILASTAUTO;	/* 65535 */
151 
152 static __inline void
153 RANGECHK(int var, int min, int max)
154 {
155 	if (var < min)
156 		var = min;
157 	else if (var > max)
158 		var = max;
159 }
160 
161 static int
162 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
163 {
164 	int error;
165 
166 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
167 	if (!error) {
168 		RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
169 		RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
170 
171 		RANGECHK(ipport_firstauto, IPPORT_RESERVED, USHRT_MAX);
172 		RANGECHK(ipport_lastauto, IPPORT_RESERVED, USHRT_MAX);
173 
174 		RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, USHRT_MAX);
175 		RANGECHK(ipport_hilastauto, IPPORT_RESERVED, USHRT_MAX);
176 	}
177 	return (error);
178 }
179 
180 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
181 
182 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
183 	   &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
185 	   &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
186 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
187 	   &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
188 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
189 	   &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
191 	   &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
192 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
193 	   &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
194 
195 /*
196  * in_pcb.c: manage the Protocol Control Blocks.
197  *
198  * NOTE: It is assumed that most of these functions will be called from
199  * a critical section.  XXX - There are, unfortunately, a few exceptions
200  * to this rule that should be fixed.
201  *
202  * NOTE: The caller should initialize the cpu field to the cpu running the
203  * protocol stack associated with this inpcbinfo.
204  */
205 
206 void
207 in_pcbinfo_init(struct inpcbinfo *pcbinfo)
208 {
209 	LIST_INIT(&pcbinfo->pcblisthead);
210 	pcbinfo->cpu = -1;
211 }
212 
213 /*
214  * Allocate a PCB and associate it with the socket.
215  */
216 int
217 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
218 {
219 	struct inpcb *inp;
220 #ifdef IPSEC
221 	int error;
222 #endif
223 
224 	inp = zalloc(pcbinfo->ipi_zone);
225 	if (inp == NULL)
226 		return (ENOBUFS);
227 	bzero(inp, sizeof *inp);
228 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
229 	inp->inp_pcbinfo = inp->inp_cpcbinfo = pcbinfo;
230 	inp->inp_socket = so;
231 #ifdef IPSEC
232 	error = ipsec_init_policy(so, &inp->inp_sp);
233 	if (error != 0) {
234 		zfree(pcbinfo->ipi_zone, inp);
235 		return (error);
236 	}
237 #endif
238 #ifdef INET6
239 	if (INP_SOCKAF(so) == AF_INET6 && ip6_v6only)
240 		inp->inp_flags |= IN6P_IPV6_V6ONLY;
241 	if (ip6_auto_flowlabel)
242 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
243 #endif
244 	so->so_pcb = inp;
245 	LIST_INSERT_HEAD(&pcbinfo->pcblisthead, inp, inp_list);
246 	pcbinfo->ipi_count++;
247 	return (0);
248 }
249 
250 int
251 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct thread *td)
252 {
253 	struct socket *so = inp->inp_socket;
254 	struct proc *p = td->td_proc;
255 	unsigned short *lastport;
256 	struct sockaddr_in *sin;
257 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
258 	u_short lport = 0;
259 	int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
260 	int error, prison = 0;
261 
262 	KKASSERT(p);
263 
264 	if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
265 		return (EADDRNOTAVAIL);
266 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
267 		return (EINVAL);	/* already bound */
268 	if (!(so->so_options & (SO_REUSEADDR|SO_REUSEPORT)))
269 		wild = 1;    /* neither SO_REUSEADDR nor SO_REUSEPORT is set */
270 	if (nam != NULL) {
271 		sin = (struct sockaddr_in *)nam;
272 		if (nam->sa_len != sizeof *sin)
273 			return (EINVAL);
274 #ifdef notdef
275 		/*
276 		 * We should check the family, but old programs
277 		 * incorrectly fail to initialize it.
278 		 */
279 		if (sin->sin_family != AF_INET)
280 			return (EAFNOSUPPORT);
281 #endif
282 		if (sin->sin_addr.s_addr != INADDR_ANY &&
283 		    prison_ip(td, 0, &sin->sin_addr.s_addr))
284 				return (EINVAL);
285 		lport = sin->sin_port;
286 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
287 			/*
288 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
289 			 * allow complete duplication of binding if
290 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
291 			 * and a multicast address is bound on both
292 			 * new and duplicated sockets.
293 			 */
294 			if (so->so_options & SO_REUSEADDR)
295 				reuseport = SO_REUSEADDR | SO_REUSEPORT;
296 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
297 			sin->sin_port = 0;		/* yech... */
298 			bzero(&sin->sin_zero, sizeof sin->sin_zero);
299 			if (ifa_ifwithaddr((struct sockaddr *)sin) == NULL)
300 				return (EADDRNOTAVAIL);
301 		}
302 		if (lport != 0) {
303 			struct inpcb *t;
304 
305 			/* GROSS */
306 			if (ntohs(lport) < IPPORT_RESERVED &&
307 			    p && suser_cred(p->p_ucred, PRISON_ROOT))
308 				return (EACCES);
309 			if (p && p->p_ucred->cr_prison)
310 				prison = 1;
311 			if (so->so_cred->cr_uid != 0 &&
312 			    !IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
313 				t = in_pcblookup_local(inp->inp_pcbinfo,
314 				    sin->sin_addr, lport,
315 				    prison ? 0 : INPLOOKUP_WILDCARD);
316 				if (t &&
317 				    (!in_nullhost(sin->sin_addr) ||
318 				     !in_nullhost(t->inp_laddr) ||
319 				     (t->inp_socket->so_options &
320 					 SO_REUSEPORT) == 0) &&
321 				    (so->so_cred->cr_uid !=
322 				     t->inp_socket->so_cred->cr_uid)) {
323 #ifdef INET6
324 					if (!in_nullhost(sin->sin_addr) ||
325 					    !in_nullhost(t->inp_laddr) ||
326 					    INP_SOCKAF(so) ==
327 					    INP_SOCKAF(t->inp_socket))
328 #endif
329 					return (EADDRINUSE);
330 				}
331 			}
332 			if (prison && prison_ip(td, 0, &sin->sin_addr.s_addr))
333 				return (EADDRNOTAVAIL);
334 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
335 			    lport, prison ? 0 : wild);
336 			if (t && !(reuseport & t->inp_socket->so_options)) {
337 #ifdef INET6
338 				if (!in_nullhost(sin->sin_addr) ||
339 				    !in_nullhost(t->inp_laddr) ||
340 				    INP_SOCKAF(so) == INP_SOCKAF(t->inp_socket))
341 #endif
342 				return (EADDRINUSE);
343 			}
344 		}
345 		inp->inp_laddr = sin->sin_addr;
346 	}
347 	if (lport == 0) {
348 		ushort first, last;
349 		int count;
350 
351 		if (inp->inp_laddr.s_addr != INADDR_ANY &&
352 		    prison_ip(td, 0, &inp->inp_laddr.s_addr )) {
353 			inp->inp_laddr.s_addr = INADDR_ANY;
354 			return (EINVAL);
355 		}
356 		inp->inp_flags |= INP_ANONPORT;
357 
358 		if (inp->inp_flags & INP_HIGHPORT) {
359 			first = ipport_hifirstauto;	/* sysctl */
360 			last  = ipport_hilastauto;
361 			lastport = &pcbinfo->lasthi;
362 		} else if (inp->inp_flags & INP_LOWPORT) {
363 			if (p &&
364 			    (error = suser_cred(p->p_ucred, PRISON_ROOT))) {
365 				inp->inp_laddr.s_addr = INADDR_ANY;
366 				return (error);
367 			}
368 			first = ipport_lowfirstauto;	/* 1023 */
369 			last  = ipport_lowlastauto;	/* 600 */
370 			lastport = &pcbinfo->lastlow;
371 		} else {
372 			first = ipport_firstauto;	/* sysctl */
373 			last  = ipport_lastauto;
374 			lastport = &pcbinfo->lastport;
375 		}
376 		/*
377 		 * Simple check to ensure all ports are not used up causing
378 		 * a deadlock here.
379 		 *
380 		 * We split the two cases (up and down) so that the direction
381 		 * is not being tested on each round of the loop.
382 		 */
383 		if (first > last) {
384 			/*
385 			 * counting down
386 			 */
387 			count = first - last;
388 
389 			do {
390 				if (count-- < 0) {	/* completely used? */
391 					inp->inp_laddr.s_addr = INADDR_ANY;
392 					return (EADDRNOTAVAIL);
393 				}
394 				--*lastport;
395 				if (*lastport > first || *lastport < last)
396 					*lastport = first;
397 				lport = htons(*lastport);
398 			} while (in_pcblookup_local(pcbinfo,
399 				 inp->inp_laddr, lport, wild));
400 		} else {
401 			/*
402 			 * counting up
403 			 */
404 			count = last - first;
405 
406 			do {
407 				if (count-- < 0) {	/* completely used? */
408 					inp->inp_laddr.s_addr = INADDR_ANY;
409 					return (EADDRNOTAVAIL);
410 				}
411 				++*lastport;
412 				if (*lastport < first || *lastport > last)
413 					*lastport = first;
414 				lport = htons(*lastport);
415 			} while (in_pcblookup_local(pcbinfo,
416 				 inp->inp_laddr, lport, wild));
417 		}
418 	}
419 	inp->inp_lport = lport;
420 	if (prison_ip(td, 0, &inp->inp_laddr.s_addr)) {
421 		inp->inp_laddr.s_addr = INADDR_ANY;
422 		inp->inp_lport = 0;
423 		return (EINVAL);
424 	}
425 	if (in_pcbinsporthash(inp) != 0) {
426 		inp->inp_laddr.s_addr = INADDR_ANY;
427 		inp->inp_lport = 0;
428 		return (EAGAIN);
429 	}
430 	return (0);
431 }
432 
433 /*
434  *   Transform old in_pcbconnect() into an inner subroutine for new
435  *   in_pcbconnect(): Do some validity-checking on the remote
436  *   address (in mbuf 'nam') and then determine local host address
437  *   (i.e., which interface) to use to access that remote host.
438  *
439  *   This preserves definition of in_pcbconnect(), while supporting a
440  *   slightly different version for T/TCP.  (This is more than
441  *   a bit of a kludge, but cleaning up the internal interfaces would
442  *   have forced minor changes in every protocol).
443  */
444 int
445 in_pcbladdr(inp, nam, plocal_sin)
446 	struct inpcb *inp;
447 	struct sockaddr *nam;
448 	struct sockaddr_in **plocal_sin;
449 {
450 	struct in_ifaddr *ia;
451 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
452 
453 	if (nam->sa_len != sizeof *sin)
454 		return (EINVAL);
455 	if (sin->sin_family != AF_INET)
456 		return (EAFNOSUPPORT);
457 	if (sin->sin_port == 0)
458 		return (EADDRNOTAVAIL);
459 	if (!TAILQ_EMPTY(&in_ifaddrhead)) {
460 		ia = TAILQ_FIRST(&in_ifaddrhead);
461 		/*
462 		 * If the destination address is INADDR_ANY,
463 		 * use the primary local address.
464 		 * If the supplied address is INADDR_BROADCAST,
465 		 * and the primary interface supports broadcast,
466 		 * choose the broadcast address for that interface.
467 		 */
468 		if (sin->sin_addr.s_addr == INADDR_ANY)
469 			sin->sin_addr = IA_SIN(ia)->sin_addr;
470 		else if (sin->sin_addr.s_addr == (u_long)INADDR_BROADCAST &&
471 		    (ia->ia_ifp->if_flags & IFF_BROADCAST))
472 			sin->sin_addr = satosin(&ia->ia_broadaddr)->sin_addr;
473 	}
474 	if (inp->inp_laddr.s_addr == INADDR_ANY) {
475 		struct route *ro;
476 
477 		ia = (struct in_ifaddr *)NULL;
478 		/*
479 		 * If route is known or can be allocated now,
480 		 * our src addr is taken from the i/f, else punt.
481 		 * Note that we should check the address family of the cached
482 		 * destination, in case of sharing the cache with IPv6.
483 		 */
484 		ro = &inp->inp_route;
485 		if (ro->ro_rt &&
486 		    (!(ro->ro_rt->rt_flags & RTF_UP) ||
487 		     ro->ro_dst.sa_family != AF_INET ||
488 		     satosin(&ro->ro_dst)->sin_addr.s_addr !=
489 				      sin->sin_addr.s_addr ||
490 		     inp->inp_socket->so_options & SO_DONTROUTE)) {
491 			RTFREE(ro->ro_rt);
492 			ro->ro_rt = (struct rtentry *)NULL;
493 		}
494 		if (!(inp->inp_socket->so_options & SO_DONTROUTE) && /*XXX*/
495 		    (ro->ro_rt == (struct rtentry *)NULL ||
496 		    ro->ro_rt->rt_ifp == (struct ifnet *)NULL)) {
497 			/* No route yet, so try to acquire one */
498 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
499 			ro->ro_dst.sa_family = AF_INET;
500 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
501 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
502 				sin->sin_addr;
503 			rtalloc(ro);
504 		}
505 		/*
506 		 * If we found a route, use the address
507 		 * corresponding to the outgoing interface
508 		 * unless it is the loopback (in case a route
509 		 * to our address on another net goes to loopback).
510 		 */
511 		if (ro->ro_rt && !(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK))
512 			ia = ifatoia(ro->ro_rt->rt_ifa);
513 		if (ia == NULL) {
514 			u_short fport = sin->sin_port;
515 
516 			sin->sin_port = 0;
517 			ia = ifatoia(ifa_ifwithdstaddr(sintosa(sin)));
518 			if (ia == NULL)
519 				ia = ifatoia(ifa_ifwithnet(sintosa(sin)));
520 			sin->sin_port = fport;
521 			if (ia == NULL)
522 				ia = TAILQ_FIRST(&in_ifaddrhead);
523 			if (ia == NULL)
524 				return (EADDRNOTAVAIL);
525 		}
526 		/*
527 		 * If the destination address is multicast and an outgoing
528 		 * interface has been set as a multicast option, use the
529 		 * address of that interface as our source address.
530 		 */
531 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
532 		    inp->inp_moptions != NULL) {
533 			struct ip_moptions *imo;
534 			struct ifnet *ifp;
535 
536 			imo = inp->inp_moptions;
537 			if (imo->imo_multicast_ifp != NULL) {
538 				ifp = imo->imo_multicast_ifp;
539 				TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
540 					if (ia->ia_ifp == ifp)
541 						break;
542 				if (ia == NULL)
543 					return (EADDRNOTAVAIL);
544 			}
545 		}
546 		/*
547 		 * Don't do pcblookup call here; return interface in plocal_sin
548 		 * and exit to caller, that will do the lookup.
549 		 */
550 		*plocal_sin = &ia->ia_addr;
551 
552 	}
553 	return (0);
554 }
555 
556 /*
557  * Outer subroutine:
558  * Connect from a socket to a specified address.
559  * Both address and port must be specified in argument sin.
560  * If don't have a local address for this socket yet,
561  * then pick one.
562  */
563 int
564 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct thread *td)
565 {
566 	struct sockaddr_in *if_sin;
567 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
568 	struct sockaddr_in sa;
569 	struct ucred *cr = td->td_proc ? td->td_proc->p_ucred : NULL;
570 	int error;
571 
572 	if (cr && cr->cr_prison != NULL && in_nullhost(inp->inp_laddr)) {
573 		bzero(&sa, sizeof sa);
574 		sa.sin_addr.s_addr = htonl(cr->cr_prison->pr_ip);
575 		sa.sin_len = sizeof sa;
576 		sa.sin_family = AF_INET;
577 		error = in_pcbbind(inp, (struct sockaddr *)&sa, td);
578 		if (error)
579 			return (error);
580 	}
581 
582 	/* Call inner routine to assign local interface address. */
583 	if ((error = in_pcbladdr(inp, nam, &if_sin)) != 0)
584 		return (error);
585 
586 	if (in_pcblookup_hash(inp->inp_cpcbinfo, sin->sin_addr, sin->sin_port,
587 	    inp->inp_laddr.s_addr ? inp->inp_laddr : if_sin->sin_addr,
588 	    inp->inp_lport, FALSE, NULL) != NULL) {
589 		return (EADDRINUSE);
590 	}
591 	if (inp->inp_laddr.s_addr == INADDR_ANY) {
592 		if (inp->inp_lport == 0) {
593 			error = in_pcbbind(inp, (struct sockaddr *)NULL, td);
594 			if (error)
595 				return (error);
596 		}
597 		inp->inp_laddr = if_sin->sin_addr;
598 	}
599 	inp->inp_faddr = sin->sin_addr;
600 	inp->inp_fport = sin->sin_port;
601 	in_pcbinsconnhash(inp);
602 	return (0);
603 }
604 
605 void
606 in_pcbdisconnect(inp)
607 	struct inpcb *inp;
608 {
609 
610 	inp->inp_faddr.s_addr = INADDR_ANY;
611 	inp->inp_fport = 0;
612 	in_pcbremconnhash(inp);
613 	if (inp->inp_socket->so_state & SS_NOFDREF)
614 		in_pcbdetach(inp);
615 }
616 
617 void
618 in_pcbdetach(inp)
619 	struct inpcb *inp;
620 {
621 	struct socket *so = inp->inp_socket;
622 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
623 
624 #ifdef IPSEC
625 	ipsec4_delete_pcbpolicy(inp);
626 #endif /*IPSEC*/
627 	inp->inp_gencnt = ++ipi->ipi_gencnt;
628 	in_pcbremlists(inp);
629 	so->so_pcb = 0;
630 	sofree(so);
631 	if (inp->inp_options)
632 		m_free(inp->inp_options);
633 	if (inp->inp_route.ro_rt)
634 		rtfree(inp->inp_route.ro_rt);
635 	ip_freemoptions(inp->inp_moptions);
636 	inp->inp_vflag = 0;
637 	zfree(ipi->ipi_zone, inp);
638 }
639 
640 /*
641  * The calling convention of in_setsockaddr() and in_setpeeraddr() was
642  * modified to match the pru_sockaddr() and pru_peeraddr() entry points
643  * in struct pr_usrreqs, so that protocols can just reference then directly
644  * without the need for a wrapper function.  The socket must have a valid
645  * (i.e., non-nil) PCB, but it should be impossible to get an invalid one
646  * except through a kernel programming error, so it is acceptable to panic
647  * (or in this case trap) if the PCB is invalid.  (Actually, we don't trap
648  * because there actually /is/ a programming error somewhere... XXX)
649  */
650 int
651 in_setsockaddr(so, nam)
652 	struct socket *so;
653 	struct sockaddr **nam;
654 {
655 	struct inpcb *inp;
656 	struct sockaddr_in *sin;
657 
658 	/*
659 	 * Do the malloc first in case it blocks.
660 	 */
661 	MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
662 		M_WAITOK | M_ZERO);
663 	sin->sin_family = AF_INET;
664 	sin->sin_len = sizeof *sin;
665 
666 	crit_enter();
667 	inp = so->so_pcb;
668 	if (!inp) {
669 		crit_exit();
670 		free(sin, M_SONAME);
671 		return (ECONNRESET);
672 	}
673 	sin->sin_port = inp->inp_lport;
674 	sin->sin_addr = inp->inp_laddr;
675 	crit_exit();
676 
677 	*nam = (struct sockaddr *)sin;
678 	return (0);
679 }
680 
681 int
682 in_setpeeraddr(so, nam)
683 	struct socket *so;
684 	struct sockaddr **nam;
685 {
686 	struct inpcb *inp;
687 	struct sockaddr_in *sin;
688 
689 	/*
690 	 * Do the malloc first in case it blocks.
691 	 */
692 	MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
693 		M_WAITOK | M_ZERO);
694 	sin->sin_family = AF_INET;
695 	sin->sin_len = sizeof *sin;
696 
697 	crit_enter();
698 	inp = so->so_pcb;
699 	if (!inp) {
700 		crit_exit();
701 		free(sin, M_SONAME);
702 		return (ECONNRESET);
703 	}
704 	sin->sin_port = inp->inp_fport;
705 	sin->sin_addr = inp->inp_faddr;
706 	crit_exit();
707 
708 	*nam = (struct sockaddr *)sin;
709 	return (0);
710 }
711 
712 void
713 in_pcbnotifyall(head, faddr, errno, notify)
714 	struct inpcbhead *head;
715 	struct in_addr faddr;
716 	void (*notify) (struct inpcb *, int);
717 {
718 	struct inpcb *inp, *ninp;
719 
720 	/*
721 	 * note: if INP_PLACEMARKER is set we must ignore the rest of
722 	 * the structure and skip it.
723 	 */
724 	crit_enter();
725 	LIST_FOREACH_MUTABLE(inp, head, inp_list, ninp) {
726 		if (inp->inp_flags & INP_PLACEMARKER)
727 			continue;
728 #ifdef INET6
729 		if (!(inp->inp_vflag & INP_IPV4))
730 			continue;
731 #endif
732 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
733 		    inp->inp_socket == NULL)
734 			continue;
735 		(*notify)(inp, errno);		/* can remove inp from list! */
736 	}
737 	crit_exit();
738 }
739 
740 void
741 in_pcbpurgeif0(head, ifp)
742 	struct inpcb *head;
743 	struct ifnet *ifp;
744 {
745 	struct inpcb *inp;
746 	struct ip_moptions *imo;
747 	int i, gap;
748 
749 	for (inp = head; inp != NULL; inp = LIST_NEXT(inp, inp_list)) {
750 		if (inp->inp_flags & INP_PLACEMARKER)
751 			continue;
752 		imo = inp->inp_moptions;
753 		if ((inp->inp_vflag & INP_IPV4) && imo != NULL) {
754 			/*
755 			 * Unselect the outgoing interface if it is being
756 			 * detached.
757 			 */
758 			if (imo->imo_multicast_ifp == ifp)
759 				imo->imo_multicast_ifp = NULL;
760 
761 			/*
762 			 * Drop multicast group membership if we joined
763 			 * through the interface being detached.
764 			 */
765 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
766 			    i++) {
767 				if (imo->imo_membership[i]->inm_ifp == ifp) {
768 					in_delmulti(imo->imo_membership[i]);
769 					gap++;
770 				} else if (gap != 0)
771 					imo->imo_membership[i - gap] =
772 					    imo->imo_membership[i];
773 			}
774 			imo->imo_num_memberships -= gap;
775 		}
776 	}
777 }
778 
779 /*
780  * Check for alternatives when higher level complains
781  * about service problems.  For now, invalidate cached
782  * routing information.  If the route was created dynamically
783  * (by a redirect), time to try a default gateway again.
784  */
785 void
786 in_losing(struct inpcb *inp)
787 {
788 	struct rtentry *rt;
789 	struct rt_addrinfo rtinfo;
790 
791 	if ((rt = inp->inp_route.ro_rt)) {
792 		bzero(&rtinfo, sizeof(struct rt_addrinfo));
793 		rtinfo.rti_info[RTAX_DST] = rt_key(rt);
794 		rtinfo.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
795 		rtinfo.rti_info[RTAX_NETMASK] = rt_mask(rt);
796 		rtinfo.rti_flags = rt->rt_flags;
797 		rt_missmsg(RTM_LOSING, &rtinfo, rt->rt_flags, 0);
798 		if (rt->rt_flags & RTF_DYNAMIC)
799 			rtrequest1(RTM_DELETE, &rtinfo, NULL);
800 		inp->inp_route.ro_rt = NULL;
801 		rtfree(rt);
802 		/*
803 		 * A new route can be allocated
804 		 * the next time output is attempted.
805 		 */
806 	}
807 }
808 
809 /*
810  * After a routing change, flush old routing
811  * and allocate a (hopefully) better one.
812  */
813 void
814 in_rtchange(inp, errno)
815 	struct inpcb *inp;
816 	int errno;
817 {
818 	if (inp->inp_route.ro_rt) {
819 		rtfree(inp->inp_route.ro_rt);
820 		inp->inp_route.ro_rt = NULL;
821 		/*
822 		 * A new route can be allocated the next time
823 		 * output is attempted.
824 		 */
825 	}
826 }
827 
828 /*
829  * Lookup a PCB based on the local address and port.
830  */
831 struct inpcb *
832 in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay)
833 	struct inpcbinfo *pcbinfo;
834 	struct in_addr laddr;
835 	u_int lport_arg;
836 	int wild_okay;
837 {
838 	struct inpcb *inp;
839 	int matchwild = 3, wildcard;
840 	u_short lport = lport_arg;
841 
842 	struct inpcbporthead *porthash;
843 	struct inpcbport *phd;
844 	struct inpcb *match = NULL;
845 
846 	/*
847 	 * Best fit PCB lookup.
848 	 *
849 	 * First see if this local port is in use by looking on the
850 	 * port hash list.
851 	 */
852 	porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport,
853 	    pcbinfo->porthashmask)];
854 	LIST_FOREACH(phd, porthash, phd_hash) {
855 		if (phd->phd_port == lport)
856 			break;
857 	}
858 	if (phd != NULL) {
859 		/*
860 		 * Port is in use by one or more PCBs. Look for best
861 		 * fit.
862 		 */
863 		LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
864 			wildcard = 0;
865 #ifdef INET6
866 			if ((inp->inp_vflag & INP_IPV4) == 0)
867 				continue;
868 #endif
869 			if (inp->inp_faddr.s_addr != INADDR_ANY)
870 				wildcard++;
871 			if (inp->inp_laddr.s_addr != INADDR_ANY) {
872 				if (laddr.s_addr == INADDR_ANY)
873 					wildcard++;
874 				else if (inp->inp_laddr.s_addr != laddr.s_addr)
875 					continue;
876 			} else {
877 				if (laddr.s_addr != INADDR_ANY)
878 					wildcard++;
879 			}
880 			if (wildcard && !wild_okay)
881 				continue;
882 			if (wildcard < matchwild) {
883 				match = inp;
884 				matchwild = wildcard;
885 				if (matchwild == 0) {
886 					break;
887 				}
888 			}
889 		}
890 	}
891 	return (match);
892 }
893 
894 /*
895  * Lookup PCB in hash list.
896  */
897 struct inpcb *
898 in_pcblookup_hash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard, ifp)
899 	struct inpcbinfo *pcbinfo;
900 	struct in_addr faddr, laddr;
901 	u_int fport_arg, lport_arg;
902 	boolean_t wildcard;
903 	struct ifnet *ifp;
904 {
905 	struct inpcbhead *head;
906 	struct inpcb *inp;
907 	u_short fport = fport_arg, lport = lport_arg;
908 
909 	/*
910 	 * First look for an exact match.
911 	 */
912 	head = &pcbinfo->hashbase[INP_PCBCONNHASH(faddr.s_addr, fport,
913 	    laddr.s_addr, lport, pcbinfo->hashmask)];
914 	LIST_FOREACH(inp, head, inp_hash) {
915 #ifdef INET6
916 		if (!(inp->inp_vflag & INP_IPV4))
917 			continue;
918 #endif
919 		if (in_hosteq(inp->inp_faddr, faddr) &&
920 		    in_hosteq(inp->inp_laddr, laddr) &&
921 		    inp->inp_fport == fport && inp->inp_lport == lport) {
922 			/* found */
923 			return (inp);
924 		}
925 	}
926 
927 	if (wildcard) {
928 		struct inpcb *local_wild = NULL;
929 #ifdef INET6
930 		struct inpcb *local_wild_mapped = NULL;
931 #endif
932 		struct inpcontainer *ic;
933 		struct inpcontainerhead *chead;
934 
935 		chead = &pcbinfo->wildcardhashbase[
936 		    INP_PCBWILDCARDHASH(lport, pcbinfo->wildcardhashmask)];
937 		LIST_FOREACH(ic, chead, ic_list) {
938 			inp = ic->ic_inp;
939 #ifdef INET6
940 			if (!(inp->inp_vflag & INP_IPV4))
941 				continue;
942 #endif
943 			if (inp->inp_lport == lport) {
944 				if (ifp && ifp->if_type == IFT_FAITH &&
945 				    !(inp->inp_flags & INP_FAITH))
946 					continue;
947 				if (inp->inp_laddr.s_addr == laddr.s_addr)
948 					return (inp);
949 				if (inp->inp_laddr.s_addr == INADDR_ANY) {
950 #ifdef INET6
951 					if (INP_CHECK_SOCKAF(inp->inp_socket,
952 							     AF_INET6))
953 						local_wild_mapped = inp;
954 					else
955 #endif
956 						local_wild = inp;
957 				}
958 			}
959 		}
960 #ifdef INET6
961 		if (local_wild == NULL)
962 			return (local_wild_mapped);
963 #endif
964 		return (local_wild);
965 	}
966 
967 	/*
968 	 * Not found.
969 	 */
970 	return (NULL);
971 }
972 
973 /*
974  * Insert PCB into connection hash table.
975  */
976 void
977 in_pcbinsconnhash(struct inpcb *inp)
978 {
979 	struct inpcbinfo *pcbinfo = inp->inp_cpcbinfo;
980 	struct inpcbhead *bucket;
981 	u_int32_t hashkey_faddr, hashkey_laddr;
982 
983 #ifdef INET6
984 	if (inp->inp_vflag & INP_IPV6) {
985 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX JH */;
986 		hashkey_laddr = inp->in6p_laddr.s6_addr32[3] /* XXX JH */;
987 	} else {
988 #endif
989 		hashkey_faddr = inp->inp_faddr.s_addr;
990 		hashkey_laddr = inp->inp_laddr.s_addr;
991 #ifdef INET6
992 	}
993 #endif
994 
995 	KASSERT(!(inp->inp_flags & INP_CONNECTED), ("already on hash list"));
996 	inp->inp_flags |= INP_CONNECTED;
997 
998 	/*
999 	 * Insert into the connection hash table.
1000 	 */
1001 	bucket = &pcbinfo->hashbase[INP_PCBCONNHASH(hashkey_faddr,
1002 	    inp->inp_fport, hashkey_laddr, inp->inp_lport, pcbinfo->hashmask)];
1003 	LIST_INSERT_HEAD(bucket, inp, inp_hash);
1004 }
1005 
1006 /*
1007  * Remove PCB from connection hash table.
1008  */
1009 void
1010 in_pcbremconnhash(struct inpcb *inp)
1011 {
1012 	KASSERT(inp->inp_flags & INP_CONNECTED, ("inp not connected"));
1013 	LIST_REMOVE(inp, inp_hash);
1014 	inp->inp_flags &= ~INP_CONNECTED;
1015 }
1016 
1017 /*
1018  * Insert PCB into port hash table.
1019  */
1020 int
1021 in_pcbinsporthash(struct inpcb *inp)
1022 {
1023 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1024 	struct inpcbporthead *pcbporthash;
1025 	struct inpcbport *phd;
1026 
1027 	/*
1028 	 * Insert into the port hash table.
1029 	 */
1030 	pcbporthash = &pcbinfo->porthashbase[
1031 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->porthashmask)];
1032 
1033 	/* Go through port list and look for a head for this lport. */
1034 	LIST_FOREACH(phd, pcbporthash, phd_hash)
1035 		if (phd->phd_port == inp->inp_lport)
1036 			break;
1037 
1038 	/* If none exists, malloc one and tack it on. */
1039 	if (phd == NULL) {
1040 		MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport),
1041 		    M_PCB, M_INTWAIT | M_NULLOK);
1042 		if (phd == NULL)
1043 			return (ENOBUFS); /* XXX */
1044 		phd->phd_port = inp->inp_lport;
1045 		LIST_INIT(&phd->phd_pcblist);
1046 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1047 	}
1048 
1049 	inp->inp_phd = phd;
1050 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1051 
1052 	return (0);
1053 }
1054 
1055 void
1056 in_pcbinswildcardhash_oncpu(struct inpcb *inp, struct inpcbinfo *pcbinfo)
1057 {
1058 	struct inpcontainer *ic;
1059 	struct inpcontainerhead *bucket;
1060 
1061 	bucket = &pcbinfo->wildcardhashbase[
1062 	    INP_PCBWILDCARDHASH(inp->inp_lport, pcbinfo->wildcardhashmask)];
1063 
1064 	ic = malloc(sizeof(struct inpcontainer), M_TEMP, M_INTWAIT);
1065 	ic->ic_inp = inp;
1066 	LIST_INSERT_HEAD(bucket, ic, ic_list);
1067 }
1068 
1069 /*
1070  * Insert PCB into wildcard hash table.
1071  */
1072 void
1073 in_pcbinswildcardhash(struct inpcb *inp)
1074 {
1075 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1076 
1077 	KKASSERT(pcbinfo != NULL);
1078 
1079 	in_pcbinswildcardhash_oncpu(inp, pcbinfo);
1080 	inp->inp_flags |= INP_WILDCARD;
1081 }
1082 
1083 void
1084 in_pcbremwildcardhash_oncpu(struct inpcb *inp, struct inpcbinfo *pcbinfo)
1085 {
1086 	struct inpcontainer *ic;
1087 	struct inpcontainerhead *head;
1088 
1089 	/* find bucket */
1090 	head = &pcbinfo->wildcardhashbase[
1091 	    INP_PCBWILDCARDHASH(inp->inp_lport, pcbinfo->wildcardhashmask)];
1092 
1093 	LIST_FOREACH(ic, head, ic_list) {
1094 		if (ic->ic_inp == inp)
1095 			goto found;
1096 	}
1097 	return;			/* not found! */
1098 
1099 found:
1100 	LIST_REMOVE(ic, ic_list);	/* remove container from bucket chain */
1101 	free(ic, M_TEMP);		/* deallocate container */
1102 }
1103 
1104 /*
1105  * Remove PCB from wildcard hash table.
1106  */
1107 void
1108 in_pcbremwildcardhash(struct inpcb *inp)
1109 {
1110 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1111 
1112 	KASSERT(inp->inp_flags & INP_WILDCARD, ("inp not wildcard"));
1113 	in_pcbremwildcardhash_oncpu(inp, pcbinfo);
1114 	inp->inp_flags &= ~INP_WILDCARD;
1115 }
1116 
1117 /*
1118  * Remove PCB from various lists.
1119  */
1120 void
1121 in_pcbremlists(inp)
1122 	struct inpcb *inp;
1123 {
1124 	if (inp->inp_lport) {
1125 		struct inpcbport *phd = inp->inp_phd;
1126 
1127 		LIST_REMOVE(inp, inp_portlist);
1128 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1129 			LIST_REMOVE(phd, phd_hash);
1130 			free(phd, M_PCB);
1131 		}
1132 	}
1133 	if (inp->inp_flags & INP_WILDCARD) {
1134 		in_pcbremwildcardhash(inp);
1135 	} else if (inp->inp_flags & INP_CONNECTED) {
1136 		in_pcbremconnhash(inp);
1137 	}
1138 	LIST_REMOVE(inp, inp_list);
1139 	inp->inp_pcbinfo->ipi_count--;
1140 }
1141 
1142 int
1143 prison_xinpcb(struct thread *td, struct inpcb *inp)
1144 {
1145 	struct ucred *cr;
1146 
1147 	if (td->td_proc == NULL)
1148 		return (0);
1149 	cr = td->td_proc->p_ucred;
1150 	if (cr->cr_prison == NULL)
1151 		return (0);
1152 	if (ntohl(inp->inp_laddr.s_addr) == cr->cr_prison->pr_ip)
1153 		return (0);
1154 	return (1);
1155 }
1156 
1157 int
1158 in_pcblist_global(SYSCTL_HANDLER_ARGS)
1159 {
1160 	struct inpcbinfo *pcbinfo = arg1;
1161 	struct inpcb *inp, *marker;
1162 	struct xinpcb xi;
1163 	int error, i, n;
1164 	inp_gen_t gencnt;
1165 
1166 	/*
1167 	 * The process of preparing the TCB list is too time-consuming and
1168 	 * resource-intensive to repeat twice on every request.
1169 	 */
1170 	if (req->oldptr == NULL) {
1171 		n = pcbinfo->ipi_count;
1172 		req->oldidx = (n + n/8 + 10) * sizeof(struct xinpcb);
1173 		return 0;
1174 	}
1175 
1176 	if (req->newptr != NULL)
1177 		return EPERM;
1178 
1179 	/*
1180 	 * OK, now we're committed to doing something.  Re-fetch ipi_count
1181 	 * after obtaining the generation count.
1182 	 */
1183 	gencnt = pcbinfo->ipi_gencnt;
1184 	n = pcbinfo->ipi_count;
1185 
1186 	marker = malloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1187 	marker->inp_flags |= INP_PLACEMARKER;
1188 	LIST_INSERT_HEAD(&pcbinfo->pcblisthead, marker, inp_list);
1189 
1190 	i = 0;
1191 	error = 0;
1192 
1193 	while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1194 		LIST_REMOVE(marker, inp_list);
1195 		LIST_INSERT_AFTER(inp, marker, inp_list);
1196 
1197 		if (inp->inp_flags & INP_PLACEMARKER)
1198 			continue;
1199 		if (inp->inp_gencnt > gencnt)
1200 			continue;
1201 		if (prison_xinpcb(req->td, inp))
1202 			continue;
1203 		bzero(&xi, sizeof xi);
1204 		xi.xi_len = sizeof xi;
1205 		bcopy(inp, &xi.xi_inp, sizeof *inp);
1206 		if (inp->inp_socket)
1207 			sotoxsocket(inp->inp_socket, &xi.xi_socket);
1208 		if ((error = SYSCTL_OUT(req, &xi, sizeof xi)) != 0)
1209 			break;
1210 		++i;
1211 	}
1212 	LIST_REMOVE(marker, inp_list);
1213 	if (error == 0 && i < n) {
1214 		bzero(&xi, sizeof xi);
1215 		xi.xi_len = sizeof xi;
1216 		while (i < n) {
1217 			error = SYSCTL_OUT(req, &xi, sizeof xi);
1218 			++i;
1219 		}
1220 	}
1221 	free(marker, M_TEMP);
1222 	return(error);
1223 }
1224