xref: /dragonfly/sys/netinet/in_rmx.c (revision 0dace59e)
1 /*
2  * Copyright 1994, 1995 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/netinet/in_rmx.c,v 1.37.2.3 2002/08/09 14:49:23 ru Exp $
30  * $DragonFly: src/sys/netinet/in_rmx.c,v 1.14 2006/04/11 06:59:34 dillon Exp $
31  */
32 
33 /*
34  * This code does two things necessary for the enhanced TCP metrics to
35  * function in a useful manner:
36  *  1) It marks all non-host routes as `cloning', thus ensuring that
37  *     every actual reference to such a route actually gets turned
38  *     into a reference to a host route to the specific destination
39  *     requested.
40  *  2) When such routes lose all their references, it arranges for them
41  *     to be deleted in some random collection of circumstances, so that
42  *     a large quantity of stale routing data is not kept in kernel memory
43  *     indefinitely.  See in_rtqtimo() below for the exact mechanism.
44  */
45 
46 #include "opt_carp.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/sysctl.h>
52 #include <sys/socket.h>
53 #include <sys/mbuf.h>
54 #include <sys/syslog.h>
55 #include <sys/globaldata.h>
56 #include <sys/thread2.h>
57 
58 #include <net/if.h>
59 #include <net/route.h>
60 #include <net/if_var.h>
61 #ifdef CARP
62 #include <net/if_types.h>
63 #endif
64 #include <net/netmsg2.h>
65 #include <net/netisr2.h>
66 #include <netinet/in.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip_var.h>
69 #include <netinet/ip_flow.h>
70 
71 #define RTPRF_EXPIRING	RTF_PROTO3	/* set on routes we manage */
72 
73 struct in_rtqtimo_ctx {
74 	struct callout		timo_ch;
75 	struct netmsg_base	timo_nmsg;
76 	struct radix_node_head	*timo_rnh;
77 } __cachealign;
78 
79 static void	in_rtqtimo(void *);
80 
81 static struct in_rtqtimo_ctx in_rtqtimo_context[MAXCPU];
82 
83 /*
84  * Do what we need to do when inserting a route.
85  */
86 static struct radix_node *
87 in_addroute(char *key, char *mask, struct radix_node_head *head,
88 	    struct radix_node *treenodes)
89 {
90 	struct rtentry *rt = (struct rtentry *)treenodes;
91 	struct sockaddr_in *sin = (struct sockaddr_in *)rt_key(rt);
92 	struct radix_node *ret;
93 	struct in_ifaddr_container *iac;
94 	struct in_ifaddr *ia;
95 
96 	/*
97 	 * For IP, mark routes to multicast addresses as such, because
98 	 * it's easy to do and might be useful (but this is much more
99 	 * dubious since it's so easy to inspect the address).
100 	 *
101 	 * For IP, all unicast non-host routes are automatically cloning.
102 	 */
103 	if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
104 		rt->rt_flags |= RTF_MULTICAST;
105 
106 	if (!(rt->rt_flags & (RTF_HOST | RTF_CLONING | RTF_MULTICAST)))
107 		rt->rt_flags |= RTF_PRCLONING;
108 
109 	/*
110 	 *   For host routes, we make sure that RTF_BROADCAST
111 	 *   is set for anything that looks like a broadcast address.
112 	 *   This way, we can avoid an expensive call to in_broadcast()
113 	 *   in ip_output() most of the time (because the route passed
114 	 *   to ip_output() is almost always a host route).
115 	 *
116 	 *   For local routes we set RTF_LOCAL allowing various shortcuts.
117 	 *
118 	 *   A cloned network route will point to one of several possible
119 	 *   addresses if an interface has aliases and must be repointed
120 	 *   back to the correct address or arp_rtrequest() will not properly
121 	 *   detect the local ip.
122 	 */
123 	if (rt->rt_flags & RTF_HOST) {
124 		if (in_broadcast(sin->sin_addr, rt->rt_ifp)) {
125 			rt->rt_flags |= RTF_BROADCAST;
126 		} else if (satosin(rt->rt_ifa->ifa_addr)->sin_addr.s_addr ==
127 			   sin->sin_addr.s_addr) {
128 			rt->rt_flags |= RTF_LOCAL;
129 		} else {
130 			LIST_FOREACH(iac, INADDR_HASH(sin->sin_addr.s_addr),
131 				     ia_hash) {
132 				ia = iac->ia;
133 				if (sin->sin_addr.s_addr ==
134 				    ia->ia_addr.sin_addr.s_addr) {
135 					rt->rt_flags |= RTF_LOCAL;
136 					IFAREF(&ia->ia_ifa);
137 					IFAFREE(rt->rt_ifa);
138 					rt->rt_ifa = &ia->ia_ifa;
139 					rt->rt_ifp = rt->rt_ifa->ifa_ifp;
140 					break;
141 				}
142 			}
143 		}
144 	}
145 
146 	if (rt->rt_rmx.rmx_mtu != 0 && !(rt->rt_rmx.rmx_locks & RTV_MTU) &&
147 	    rt->rt_ifp != NULL)
148 		rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu;
149 
150 	ret = rn_addroute(key, mask, head, treenodes);
151 	if (ret == NULL && (rt->rt_flags & RTF_HOST)) {
152 		struct rtentry *oldrt;
153 
154 		/*
155 		 * We are trying to add a host route, but can't.
156 		 * Find out if it is because of an ARP entry and
157 		 * delete it if so.
158 		 */
159 		oldrt = rtpurelookup((struct sockaddr *)sin);
160 		if (oldrt != NULL) {
161 			--oldrt->rt_refcnt;
162 			if ((oldrt->rt_flags & RTF_LLINFO) &&
163 			    (oldrt->rt_flags & RTF_HOST) &&
164 			    oldrt->rt_gateway &&
165 			    oldrt->rt_gateway->sa_family == AF_LINK) {
166 				rtrequest(RTM_DELETE, rt_key(oldrt),
167 					  oldrt->rt_gateway, rt_mask(oldrt),
168 					  oldrt->rt_flags, NULL);
169 				ret = rn_addroute(key, mask, head, treenodes);
170 			}
171 		}
172 	}
173 
174 	/*
175 	 * If the new route has been created successfully, and it is
176 	 * not a multicast/broadcast or cloned route, then we will
177 	 * have to flush the ipflow.  Otherwise, we may end up using
178 	 * the wrong route.
179 	 */
180 	if (ret != NULL &&
181 	    (rt->rt_flags &
182 	     (RTF_MULTICAST | RTF_BROADCAST | RTF_WASCLONED)) == 0) {
183 		ipflow_flush_oncpu();
184 	}
185 	return ret;
186 }
187 
188 /*
189  * This code is the inverse of in_closeroute: on first reference, if we
190  * were managing the route, stop doing so and set the expiration timer
191  * back off again.
192  */
193 static struct radix_node *
194 in_matchroute(char *key, struct radix_node_head *head)
195 {
196 	struct radix_node *rn = rn_match(key, head);
197 	struct rtentry *rt = (struct rtentry *)rn;
198 
199 	if (rt != NULL && rt->rt_refcnt == 0) { /* this is first reference */
200 		if (rt->rt_flags & RTPRF_EXPIRING) {
201 			rt->rt_flags &= ~RTPRF_EXPIRING;
202 			rt->rt_rmx.rmx_expire = 0;
203 		}
204 	}
205 	return rn;
206 }
207 
208 static int rtq_reallyold = 60*60;  /* one hour is ``really old'' */
209 SYSCTL_INT(_net_inet_ip, IPCTL_RTEXPIRE, rtexpire, CTLFLAG_RW,
210     &rtq_reallyold , 0,
211     "Default expiration time on cloned routes");
212 
213 static int rtq_minreallyold = 10;  /* never automatically crank down to less */
214 SYSCTL_INT(_net_inet_ip, IPCTL_RTMINEXPIRE, rtminexpire, CTLFLAG_RW,
215     &rtq_minreallyold , 0,
216     "Minimum time to attempt to hold onto cloned routes");
217 
218 static int rtq_toomany = 128;	   /* 128 cached routes is ``too many'' */
219 SYSCTL_INT(_net_inet_ip, IPCTL_RTMAXCACHE, rtmaxcache, CTLFLAG_RW,
220     &rtq_toomany , 0, "Upper limit on cloned routes");
221 
222 /*
223  * On last reference drop, mark the route as belong to us so that it can be
224  * timed out.
225  */
226 static void
227 in_closeroute(struct radix_node *rn, struct radix_node_head *head)
228 {
229 	struct rtentry *rt = (struct rtentry *)rn;
230 
231 	if (!(rt->rt_flags & RTF_UP))
232 		return;		/* prophylactic measures */
233 
234 	if ((rt->rt_flags & (RTF_LLINFO | RTF_HOST)) != RTF_HOST)
235 		return;
236 
237 	if ((rt->rt_flags & (RTF_WASCLONED | RTPRF_EXPIRING)) != RTF_WASCLONED)
238 		return;
239 
240 	/*
241 	 * As requested by David Greenman:
242 	 * If rtq_reallyold is 0, just delete the route without
243 	 * waiting for a timeout cycle to kill it.
244 	 */
245 	if (rtq_reallyold != 0) {
246 		rt->rt_flags |= RTPRF_EXPIRING;
247 		rt->rt_rmx.rmx_expire = time_uptime + rtq_reallyold;
248 	} else {
249 		/*
250 		 * Remove route from the radix tree, but defer deallocation
251 		 * until we return to rtfree().
252 		 */
253 		rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt),
254 			  rt->rt_flags, &rt);
255 	}
256 }
257 
258 struct rtqk_arg {
259 	struct radix_node_head *rnh;
260 	int draining;
261 	int killed;
262 	int found;
263 	int updating;
264 	time_t nextstop;
265 };
266 
267 /*
268  * Get rid of old routes.  When draining, this deletes everything, even when
269  * the timeout is not expired yet.  When updating, this makes sure that
270  * nothing has a timeout longer than the current value of rtq_reallyold.
271  */
272 static int
273 in_rtqkill(struct radix_node *rn, void *rock)
274 {
275 	struct rtqk_arg *ap = rock;
276 	struct rtentry *rt = (struct rtentry *)rn;
277 	int err;
278 
279 	if (rt->rt_flags & RTPRF_EXPIRING) {
280 		ap->found++;
281 		if (ap->draining || rt->rt_rmx.rmx_expire <= time_uptime) {
282 			if (rt->rt_refcnt > 0)
283 				panic("rtqkill route really not free");
284 
285 			err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
286 					rt_mask(rt), rt->rt_flags, NULL);
287 			if (err)
288 				log(LOG_WARNING, "in_rtqkill: error %d\n", err);
289 			else
290 				ap->killed++;
291 		} else {
292 			if (ap->updating &&
293 			    (int)(rt->rt_rmx.rmx_expire - time_uptime) >
294 			     rtq_reallyold) {
295 				rt->rt_rmx.rmx_expire = time_uptime +
296 				    rtq_reallyold;
297 			}
298 			ap->nextstop = lmin(ap->nextstop,
299 					    rt->rt_rmx.rmx_expire);
300 		}
301 	}
302 
303 	return 0;
304 }
305 
306 #define RTQ_TIMEOUT	60*10	/* run no less than once every ten minutes */
307 static int rtq_timeout = RTQ_TIMEOUT;
308 
309 /*
310  * NOTE:
311  * 'last_adjusted_timeout' and 'rtq_reallyold' are _not_ read-only, and
312  * could be changed by all CPUs.  However, they are changed at so low
313  * frequency that we could ignore the cache trashing issue and take them
314  * as read-mostly.
315  */
316 static void
317 in_rtqtimo_dispatch(netmsg_t nmsg)
318 {
319 	struct rtqk_arg arg;
320 	struct timeval atv;
321 	static time_t last_adjusted_timeout = 0;
322 	struct in_rtqtimo_ctx *ctx = &in_rtqtimo_context[mycpuid];
323 	struct radix_node_head *rnh = ctx->timo_rnh;
324 
325 	/* Reply ASAP */
326 	crit_enter();
327 	lwkt_replymsg(&nmsg->lmsg, 0);
328 	crit_exit();
329 
330 	arg.found = arg.killed = 0;
331 	arg.rnh = rnh;
332 	arg.nextstop = time_uptime + rtq_timeout;
333 	arg.draining = arg.updating = 0;
334 	rnh->rnh_walktree(rnh, in_rtqkill, &arg);
335 
336 	/*
337 	 * Attempt to be somewhat dynamic about this:
338 	 * If there are ``too many'' routes sitting around taking up space,
339 	 * then crank down the timeout, and see if we can't make some more
340 	 * go away.  However, we make sure that we will never adjust more
341 	 * than once in rtq_timeout seconds, to keep from cranking down too
342 	 * hard.
343 	 */
344 	if ((arg.found - arg.killed > rtq_toomany) &&
345 	    (int)(time_uptime - last_adjusted_timeout) >= rtq_timeout &&
346 	    rtq_reallyold > rtq_minreallyold) {
347 		rtq_reallyold = 2*rtq_reallyold / 3;
348 		if (rtq_reallyold < rtq_minreallyold) {
349 			rtq_reallyold = rtq_minreallyold;
350 		}
351 
352 		last_adjusted_timeout = time_uptime;
353 #ifdef DIAGNOSTIC
354 		log(LOG_DEBUG, "in_rtqtimo: adjusted rtq_reallyold to %d\n",
355 		    rtq_reallyold);
356 #endif
357 		arg.found = arg.killed = 0;
358 		arg.updating = 1;
359 		rnh->rnh_walktree(rnh, in_rtqkill, &arg);
360 	}
361 
362 	atv.tv_usec = 0;
363 	atv.tv_sec = arg.nextstop - time_uptime;
364 	if ((int)atv.tv_sec < 1) {		/* time shift safety */
365 		atv.tv_sec = 1;
366 		arg.nextstop = time_uptime + atv.tv_sec;
367 	}
368 	if ((int)atv.tv_sec > rtq_timeout) {	/* time shift safety */
369 		atv.tv_sec = rtq_timeout;
370 		arg.nextstop = time_uptime + atv.tv_sec;
371 	}
372 	callout_reset(&ctx->timo_ch, tvtohz_high(&atv), in_rtqtimo, NULL);
373 }
374 
375 static void
376 in_rtqtimo(void *arg __unused)
377 {
378 	int cpuid = mycpuid;
379 	struct lwkt_msg *lmsg = &in_rtqtimo_context[cpuid].timo_nmsg.lmsg;
380 
381 	crit_enter();
382 	if (lmsg->ms_flags & MSGF_DONE)
383 		lwkt_sendmsg(netisr_cpuport(cpuid), lmsg);
384 	crit_exit();
385 }
386 
387 void
388 in_rtqdrain(void)
389 {
390 	struct radix_node_head *rnh = rt_tables[mycpuid][AF_INET];
391 	struct rtqk_arg arg;
392 
393 	arg.found = arg.killed = 0;
394 	arg.rnh = rnh;
395 	arg.nextstop = 0;
396 	arg.draining = 1;
397 	arg.updating = 0;
398 	crit_enter();
399 	rnh->rnh_walktree(rnh, in_rtqkill, &arg);
400 	crit_exit();
401 }
402 
403 /*
404  * Initialize our routing tree.
405  */
406 int
407 in_inithead(void **head, int off)
408 {
409 	struct radix_node_head *rnh;
410 	struct in_rtqtimo_ctx *ctx;
411 	int cpuid = mycpuid;
412 
413 	if (!rn_inithead(head, rn_cpumaskhead(cpuid), off))
414 		return 0;
415 
416 	if (head != (void **)&rt_tables[cpuid][AF_INET]) /* BOGUS! */
417 		return 1;	/* only do this for the real routing table */
418 
419 	rnh = *head;
420 	rnh->rnh_addaddr = in_addroute;
421 	rnh->rnh_matchaddr = in_matchroute;
422 	rnh->rnh_close = in_closeroute;
423 
424 	ctx = &in_rtqtimo_context[cpuid];
425 	ctx->timo_rnh = rnh;
426 	callout_init_mp(&ctx->timo_ch);
427 	netmsg_init(&ctx->timo_nmsg, NULL, &netisr_adone_rport, 0,
428 		    in_rtqtimo_dispatch);
429 
430 	in_rtqtimo(NULL);	/* kick off timeout first time */
431 	return 1;
432 }
433 
434 /*
435  * This zaps old routes when the interface goes down or interface
436  * address is deleted.  In the latter case, it deletes static routes
437  * that point to this address.  If we don't do this, we may end up
438  * using the old address in the future.  The ones we always want to
439  * get rid of are things like ARP entries, since the user might down
440  * the interface, walk over to a completely different network, and
441  * plug back in.
442  *
443  * in_ifadown() is typically called when an interface is being brought
444  * down.  We must iterate through all per-cpu route tables and clean
445  * them up.
446  */
447 struct in_ifadown_arg {
448 	struct radix_node_head *rnh;
449 	struct ifaddr *ifa;
450 	int del;
451 };
452 
453 static int
454 in_ifadownkill(struct radix_node *rn, void *xap)
455 {
456 	struct in_ifadown_arg *ap = xap;
457 	struct rtentry *rt = (struct rtentry *)rn;
458 	int err;
459 
460 	if (rt->rt_ifa == ap->ifa &&
461 	    (ap->del || !(rt->rt_flags & RTF_STATIC))) {
462 		/*
463 		 * We need to disable the automatic prune that happens
464 		 * in this case in rtrequest() because it will blow
465 		 * away the pointers that rn_walktree() needs in order
466 		 * continue our descent.  We will end up deleting all
467 		 * the routes that rtrequest() would have in any case,
468 		 * so that behavior is not needed there.
469 		 */
470 		rt->rt_flags &= ~(RTF_CLONING | RTF_PRCLONING);
471 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
472 				rt_mask(rt), rt->rt_flags, NULL);
473 		if (err)
474 			log(LOG_WARNING, "in_ifadownkill: error %d\n", err);
475 	}
476 	return 0;
477 }
478 
479 struct netmsg_ifadown {
480 	struct netmsg_base	base;
481 	struct ifaddr		*ifa;
482 	int			del;
483 };
484 
485 static void
486 in_ifadown_dispatch(netmsg_t msg)
487 {
488 	struct netmsg_ifadown *rmsg = (void *)msg;
489 	struct radix_node_head *rnh;
490 	struct ifaddr *ifa = rmsg->ifa;
491 	struct in_ifadown_arg arg;
492 	int nextcpu, cpu;
493 
494 	cpu = mycpuid;
495 
496 	arg.rnh = rnh = rt_tables[cpu][AF_INET];
497 	arg.ifa = ifa;
498 	arg.del = rmsg->del;
499 	rnh->rnh_walktree(rnh, in_ifadownkill, &arg);
500 	ifa->ifa_flags &= ~IFA_ROUTE;
501 
502 	nextcpu = cpu + 1;
503 	if (nextcpu < ncpus)
504 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
505 	else
506 		lwkt_replymsg(&rmsg->base.lmsg, 0);
507 }
508 
509 int
510 in_ifadown_force(struct ifaddr *ifa, int delete)
511 {
512 	struct netmsg_ifadown msg;
513 
514 	if (ifa->ifa_addr->sa_family != AF_INET)
515 		return 1;
516 
517 	/*
518 	 * XXX individual requests are not independantly chained,
519 	 * which means that the per-cpu route tables will not be
520 	 * consistent in the middle of the operation.  If routes
521 	 * related to the interface are manipulated while we are
522 	 * doing this the inconsistancy could trigger a panic.
523 	 */
524 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
525 	    in_ifadown_dispatch);
526 	msg.ifa = ifa;
527 	msg.del = delete;
528 	rt_domsg_global(&msg.base);
529 
530 	return 0;
531 }
532 
533 int
534 in_ifadown(struct ifaddr *ifa, int delete)
535 {
536 #ifdef CARP
537 	if (ifa->ifa_ifp->if_type == IFT_CARP)
538 		return 0;
539 #endif
540 	return in_ifadown_force(ifa, delete);
541 }
542