xref: /dragonfly/sys/netinet/ip_input.c (revision 066b6da2)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
63  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
64  */
65 
66 #define	_IP_VHL
67 
68 #include "opt_bootp.h"
69 #include "opt_ipdn.h"
70 #include "opt_ipdivert.h"
71 #include "opt_ipstealth.h"
72 #include "opt_ipsec.h"
73 #include "opt_rss.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/mpipe.h>
80 #include <sys/domain.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/time.h>
84 #include <sys/globaldata.h>
85 #include <sys/thread.h>
86 #include <sys/kernel.h>
87 #include <sys/syslog.h>
88 #include <sys/sysctl.h>
89 #include <sys/in_cksum.h>
90 #include <sys/lock.h>
91 
92 #include <sys/mplock2.h>
93 
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/if_types.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/pfil.h>
101 #include <net/route.h>
102 #include <net/netisr2.h>
103 
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_icmp.h>
111 #include <netinet/ip_divert.h>
112 #include <netinet/ip_flow.h>
113 
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116 #include <net/netmsg2.h>
117 
118 #include <sys/socketvar.h>
119 
120 #include <net/ipfw/ip_fw.h>
121 #include <net/dummynet/ip_dummynet.h>
122 
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/key.h>
131 #endif
132 
133 int rsvp_on = 0;
134 static int ip_rsvp_on;
135 struct socket *ip_rsvpd;
136 
137 int ipforwarding = 0;
138 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
139     &ipforwarding, 0, "Enable IP forwarding between interfaces");
140 
141 static int ipsendredirects = 1; /* XXX */
142 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
143     &ipsendredirects, 0, "Enable sending IP redirects");
144 
145 int ip_defttl = IPDEFTTL;
146 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
147     &ip_defttl, 0, "Maximum TTL on IP packets");
148 
149 static int ip_dosourceroute = 0;
150 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
151     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
152 
153 static int ip_acceptsourceroute = 0;
154 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
155     CTLFLAG_RW, &ip_acceptsourceroute, 0,
156     "Enable accepting source routed IP packets");
157 
158 static int ip_keepfaith = 0;
159 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
160     &ip_keepfaith, 0,
161     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
162 
163 static int maxnipq;
164 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
165     &maxnipq, 0,
166     "Maximum number of IPv4 fragment reassembly queue entries");
167 
168 static int maxfragsperpacket;
169 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
170     &maxfragsperpacket, 0,
171     "Maximum number of IPv4 fragments allowed per packet");
172 
173 static int ip_sendsourcequench = 0;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
175     &ip_sendsourcequench, 0,
176     "Enable the transmission of source quench packets");
177 
178 int ip_do_randomid = 1;
179 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
180     &ip_do_randomid, 0,
181     "Assign random ip_id values");
182 /*
183  * XXX - Setting ip_checkinterface mostly implements the receive side of
184  * the Strong ES model described in RFC 1122, but since the routing table
185  * and transmit implementation do not implement the Strong ES model,
186  * setting this to 1 results in an odd hybrid.
187  *
188  * XXX - ip_checkinterface currently must be disabled if you use ipnat
189  * to translate the destination address to another local interface.
190  *
191  * XXX - ip_checkinterface must be disabled if you add IP aliases
192  * to the loopback interface instead of the interface where the
193  * packets for those addresses are received.
194  */
195 static int ip_checkinterface = 0;
196 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
197     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
198 
199 static u_long ip_hash_count = 0;
200 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, hash_count, CTLFLAG_RD,
201     &ip_hash_count, 0, "Number of packets hashed by IP");
202 
203 #ifdef RSS_DEBUG
204 static u_long ip_rehash_count = 0;
205 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, rehash_count, CTLFLAG_RD,
206     &ip_rehash_count, 0, "Number of packets rehashed by IP");
207 
208 static u_long ip_dispatch_fast = 0;
209 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
210     &ip_dispatch_fast, 0, "Number of packets handled on current CPU");
211 
212 static u_long ip_dispatch_slow = 0;
213 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
214     &ip_dispatch_slow, 0, "Number of packets messaged to another CPU");
215 #endif
216 
217 #ifdef DIAGNOSTIC
218 static int ipprintfs = 0;
219 #endif
220 
221 extern	struct domain inetdomain;
222 extern	struct protosw inetsw[];
223 u_char	ip_protox[IPPROTO_MAX];
224 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
225 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
226 						/* inet addr hash table */
227 u_long	in_ifaddrhmask;				/* mask for hash table */
228 
229 static struct mbuf *ipforward_mtemp[MAXCPU];
230 
231 struct ip_stats ipstats_percpu[MAXCPU] __cachealign;
232 
233 static int
234 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
235 {
236 	int cpu, error = 0;
237 
238 	for (cpu = 0; cpu < ncpus; ++cpu) {
239 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
240 					sizeof(struct ip_stats))))
241 			break;
242 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
243 				       sizeof(struct ip_stats))))
244 			break;
245 	}
246 
247 	return (error);
248 }
249 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
250     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
251 
252 /* Packet reassembly stuff */
253 #define	IPREASS_NHASH_LOG2	6
254 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
255 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
256 #define	IPREASS_HASH(x,y)						\
257     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
258 
259 TAILQ_HEAD(ipqhead, ipq);
260 struct ipfrag_queue {
261 	int			nipq;
262 	struct netmsg_base	timeo_netmsg;
263 	struct netmsg_base	drain_netmsg;
264 	struct ipqhead		ipq[IPREASS_NHASH];
265 } __cachealign;
266 
267 static struct ipfrag_queue	ipfrag_queue_pcpu[MAXCPU];
268 
269 #ifdef IPCTL_DEFMTU
270 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
271     &ip_mtu, 0, "Default MTU");
272 #endif
273 
274 #ifdef IPSTEALTH
275 static int ipstealth = 0;
276 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
277 #else
278 static const int ipstealth = 0;
279 #endif
280 
281 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
282 
283 struct pfil_head inet_pfil_hook;
284 
285 /*
286  * struct ip_srcrt_opt is used to store packet state while it travels
287  * through the stack.
288  *
289  * XXX Note that the code even makes assumptions on the size and
290  * alignment of fields inside struct ip_srcrt so e.g. adding some
291  * fields will break the code.  This needs to be fixed.
292  *
293  * We need to save the IP options in case a protocol wants to respond
294  * to an incoming packet over the same route if the packet got here
295  * using IP source routing.  This allows connection establishment and
296  * maintenance when the remote end is on a network that is not known
297  * to us.
298  */
299 struct ip_srcrt {
300 	struct	in_addr dst;			/* final destination */
301 	char	nop;				/* one NOP to align */
302 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
303 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
304 };
305 
306 struct ip_srcrt_opt {
307 	int		ip_nhops;
308 	struct ip_srcrt	ip_srcrt;
309 };
310 
311 #define IPFRAG_MPIPE_MAX	4096
312 #define MAXIPFRAG_MIN		((IPFRAG_MPIPE_MAX * 2) / 256)
313 
314 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
315 static struct malloc_pipe ipq_mpipe;
316 
317 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
318 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
319 static void		ip_freef(struct ipfrag_queue *, struct ipqhead *,
320 			    struct ipq *);
321 static void		ip_input_handler(netmsg_t);
322 
323 static void		ipfrag_timeo_dispatch(netmsg_t);
324 static void		ipfrag_drain_dispatch(netmsg_t);
325 
326 /*
327  * IP initialization: fill in IP protocol switch table.
328  * All protocols not implemented in kernel go to raw IP protocol handler.
329  */
330 void
331 ip_init(void)
332 {
333 	struct protosw *pr;
334 	int cpu, i;
335 
336 	/*
337 	 * Make sure we can handle a reasonable number of fragments but
338 	 * cap it at IPFRAG_MPIPE_MAX.
339 	 */
340 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
341 	    IFQ_MAXLEN, IPFRAG_MPIPE_MAX, 0, NULL, NULL, NULL);
342 	for (cpu = 0; cpu < ncpus; ++cpu) {
343 		TAILQ_INIT(&in_ifaddrheads[cpu]);
344 		in_ifaddrhashtbls[cpu] =
345 		    hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
346 	}
347 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
348 	if (pr == NULL)
349 		panic("ip_init");
350 	for (i = 0; i < IPPROTO_MAX; i++)
351 		ip_protox[i] = pr - inetsw;
352 	for (pr = inetdomain.dom_protosw;
353 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
354 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
355 			if (pr->pr_protocol != IPPROTO_RAW)
356 				ip_protox[pr->pr_protocol] = pr - inetsw;
357 		}
358 	}
359 
360 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
361 	inet_pfil_hook.ph_af = AF_INET;
362 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
363 		kprintf("%s: WARNING: unable to register pfil hook, "
364 			"error %d\n", __func__, i);
365 	}
366 
367 	maxnipq = (nmbclusters / 32) / ncpus2;
368 	if (maxnipq < MAXIPFRAG_MIN)
369 		maxnipq = MAXIPFRAG_MIN;
370 	maxfragsperpacket = 16;
371 
372 	ip_id = time_second & 0xffff;	/* time_second survives reboots */
373 
374 	for (cpu = 0; cpu < ncpus; ++cpu) {
375 		/*
376 		 * Initialize IP statistics counters for each CPU.
377 		 */
378 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
379 
380 		/*
381 		 * Preallocate mbuf template for forwarding
382 		 */
383 		MGETHDR(ipforward_mtemp[cpu], MB_WAIT, MT_DATA);
384 
385 		/*
386 		 * Initialize per-cpu ip fragments queues
387 		 */
388 		for (i = 0; i < IPREASS_NHASH; i++) {
389 			struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[cpu];
390 
391 			TAILQ_INIT(&fragq->ipq[i]);
392 			netmsg_init(&fragq->timeo_netmsg, NULL,
393 			    &netisr_adone_rport, 0, ipfrag_timeo_dispatch);
394 			netmsg_init(&fragq->drain_netmsg, NULL,
395 			    &netisr_adone_rport, 0, ipfrag_drain_dispatch);
396 		}
397 	}
398 
399 	netisr_register(NETISR_IP, ip_input_handler, ip_hashfn_in);
400 	netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
401 }
402 
403 /* Do transport protocol processing. */
404 static void
405 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
406 {
407 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
408 
409 	/*
410 	 * Switch out to protocol's input routine.
411 	 */
412 	PR_GET_MPLOCK(pr);
413 	pr->pr_input(&m, &hlen, ip->ip_p);
414 	PR_REL_MPLOCK(pr);
415 }
416 
417 static void
418 transport_processing_handler(netmsg_t msg)
419 {
420 	struct netmsg_packet *pmsg = &msg->packet;
421 	struct ip *ip;
422 	int hlen;
423 
424 	ip = mtod(pmsg->nm_packet, struct ip *);
425 	hlen = pmsg->base.lmsg.u.ms_result;
426 
427 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
428 	/* msg was embedded in the mbuf, do not reply! */
429 }
430 
431 static void
432 ip_input_handler(netmsg_t msg)
433 {
434 	ip_input(msg->packet.nm_packet);
435 	/* msg was embedded in the mbuf, do not reply! */
436 }
437 
438 /*
439  * IP input routine.  Checksum and byte swap header.  If fragmented
440  * try to reassemble.  Process options.  Pass to next level.
441  */
442 void
443 ip_input(struct mbuf *m)
444 {
445 	struct ip *ip;
446 	struct in_ifaddr *ia = NULL;
447 	struct in_ifaddr_container *iac;
448 	int hlen, checkif;
449 	u_short sum;
450 	struct in_addr pkt_dst;
451 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
452 	struct in_addr odst;			/* original dst address(NAT) */
453 	struct m_tag *mtag;
454 	struct sockaddr_in *next_hop = NULL;
455 	lwkt_port_t port;
456 #ifdef FAST_IPSEC
457 	struct tdb_ident *tdbi;
458 	struct secpolicy *sp;
459 	int error;
460 #endif
461 
462 	M_ASSERTPKTHDR(m);
463 
464 	/*
465 	 * This routine is called from numerous places which may not have
466 	 * characterized the packet.
467 	 */
468 	ip = mtod(m, struct ip *);
469 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
470 	    ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) {
471 		/*
472 		 * Force hash recalculation for fragments and multicast
473 		 * packets; hardware may not do it correctly.
474 		 * XXX add flag to indicate the hash is from hardware
475 		 */
476 		m->m_flags &= ~M_HASH;
477 	}
478 	if ((m->m_flags & M_HASH) == 0) {
479 		ip_hashfn(&m, 0, IP_MPORT_IN);
480 		if (m == NULL)
481 			return;
482 		KKASSERT(m->m_flags & M_HASH);
483 
484 		if (&curthread->td_msgport !=
485 		    netisr_hashport(m->m_pkthdr.hash)) {
486 			netisr_queue(NETISR_IP, m);
487 			/* Requeued to other netisr msgport; done */
488 			return;
489 		}
490 
491 		/* mbuf could have been changed */
492 		ip = mtod(m, struct ip *);
493 	}
494 
495 	/*
496 	 * Pull out certain tags
497 	 */
498 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
499 		/* Next hop */
500 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
501 		KKASSERT(mtag != NULL);
502 		next_hop = m_tag_data(mtag);
503 	}
504 
505 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
506 		/* dummynet already filtered us */
507 		ip = mtod(m, struct ip *);
508 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
509 		goto iphack;
510 	}
511 
512 	ipstat.ips_total++;
513 
514 	/* length checks already done in ip_hashfn() */
515 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
516 
517 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
518 		ipstat.ips_badvers++;
519 		goto bad;
520 	}
521 
522 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
523 	/* length checks already done in ip_hashfn() */
524 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
525 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
526 
527 	/* 127/8 must not appear on wire - RFC1122 */
528 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
529 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
530 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
531 			ipstat.ips_badaddr++;
532 			goto bad;
533 		}
534 	}
535 
536 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
537 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
538 	} else {
539 		if (hlen == sizeof(struct ip))
540 			sum = in_cksum_hdr(ip);
541 		else
542 			sum = in_cksum(m, hlen);
543 	}
544 	if (sum != 0) {
545 		ipstat.ips_badsum++;
546 		goto bad;
547 	}
548 
549 #ifdef ALTQ
550 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
551 		/* packet is dropped by traffic conditioner */
552 		return;
553 	}
554 #endif
555 	/*
556 	 * Convert fields to host representation.
557 	 */
558 	ip->ip_len = ntohs(ip->ip_len);
559 	ip->ip_off = ntohs(ip->ip_off);
560 
561 	/* length checks already done in ip_hashfn() */
562 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
563 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
564 
565 	/*
566 	 * Trim mbufs if longer than the IP header would have us expect.
567 	 */
568 	if (m->m_pkthdr.len > ip->ip_len) {
569 		if (m->m_len == m->m_pkthdr.len) {
570 			m->m_len = ip->ip_len;
571 			m->m_pkthdr.len = ip->ip_len;
572 		} else {
573 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
574 		}
575 	}
576 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
577 	/*
578 	 * Bypass packet filtering for packets from a tunnel (gif).
579 	 */
580 	if (ipsec_gethist(m, NULL))
581 		goto pass;
582 #endif
583 
584 	/*
585 	 * IpHack's section.
586 	 * Right now when no processing on packet has done
587 	 * and it is still fresh out of network we do our black
588 	 * deals with it.
589 	 * - Firewall: deny/allow/divert
590 	 * - Xlate: translate packet's addr/port (NAT).
591 	 * - Pipe: pass pkt through dummynet.
592 	 * - Wrap: fake packet's addr/port <unimpl.>
593 	 * - Encapsulate: put it in another IP and send out. <unimp.>
594 	 */
595 
596 iphack:
597 	/*
598 	 * If we've been forwarded from the output side, then
599 	 * skip the firewall a second time
600 	 */
601 	if (next_hop != NULL)
602 		goto ours;
603 
604 	/* No pfil hooks */
605 	if (!pfil_has_hooks(&inet_pfil_hook)) {
606 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
607 			/*
608 			 * Strip dummynet tags from stranded packets
609 			 */
610 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
611 			KKASSERT(mtag != NULL);
612 			m_tag_delete(m, mtag);
613 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
614 		}
615 		goto pass;
616 	}
617 
618 	/*
619 	 * Run through list of hooks for input packets.
620 	 *
621 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
622 	 *	  clear M_HASH.
623 	 */
624 	odst = ip->ip_dst;
625 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
626 		return;
627 	if (m == NULL)	/* consumed by filter */
628 		return;
629 	ip = mtod(m, struct ip *);
630 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
631 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
632 
633 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
634 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
635 		KKASSERT(mtag != NULL);
636 		next_hop = m_tag_data(mtag);
637 	}
638 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
639 		ip_dn_queue(m);
640 		return;
641 	}
642 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
643 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
644 	}
645 pass:
646 	/*
647 	 * Process options and, if not destined for us,
648 	 * ship it on.  ip_dooptions returns 1 when an
649 	 * error was detected (causing an icmp message
650 	 * to be sent and the original packet to be freed).
651 	 */
652 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
653 		return;
654 
655 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
656 	 * matter if it is destined to another node, or whether it is
657 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
658 	 * anywhere else. Also checks if the rsvp daemon is running before
659 	 * grabbing the packet.
660 	 */
661 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
662 		goto ours;
663 
664 	/*
665 	 * Check our list of addresses, to see if the packet is for us.
666 	 * If we don't have any addresses, assume any unicast packet
667 	 * we receive might be for us (and let the upper layers deal
668 	 * with it).
669 	 */
670 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
671 	    !(m->m_flags & (M_MCAST | M_BCAST)))
672 		goto ours;
673 
674 	/*
675 	 * Cache the destination address of the packet; this may be
676 	 * changed by use of 'ipfw fwd'.
677 	 */
678 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
679 
680 	/*
681 	 * Enable a consistency check between the destination address
682 	 * and the arrival interface for a unicast packet (the RFC 1122
683 	 * strong ES model) if IP forwarding is disabled and the packet
684 	 * is not locally generated and the packet is not subject to
685 	 * 'ipfw fwd'.
686 	 *
687 	 * XXX - Checking also should be disabled if the destination
688 	 * address is ipnat'ed to a different interface.
689 	 *
690 	 * XXX - Checking is incompatible with IP aliases added
691 	 * to the loopback interface instead of the interface where
692 	 * the packets are received.
693 	 */
694 	checkif = ip_checkinterface &&
695 		  !ipforwarding &&
696 		  m->m_pkthdr.rcvif != NULL &&
697 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
698 		  next_hop == NULL;
699 
700 	/*
701 	 * Check for exact addresses in the hash bucket.
702 	 */
703 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
704 		ia = iac->ia;
705 
706 		/*
707 		 * If the address matches, verify that the packet
708 		 * arrived via the correct interface if checking is
709 		 * enabled.
710 		 */
711 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
712 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
713 			goto ours;
714 	}
715 	ia = NULL;
716 
717 	/*
718 	 * Check for broadcast addresses.
719 	 *
720 	 * Only accept broadcast packets that arrive via the matching
721 	 * interface.  Reception of forwarded directed broadcasts would
722 	 * be handled via ip_forward() and ether_output() with the loopback
723 	 * into the stack for SIMPLEX interfaces handled by ether_output().
724 	 */
725 	if (m->m_pkthdr.rcvif != NULL &&
726 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
727 		struct ifaddr_container *ifac;
728 
729 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
730 			      ifa_link) {
731 			struct ifaddr *ifa = ifac->ifa;
732 
733 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
734 				continue;
735 			if (ifa->ifa_addr->sa_family != AF_INET)
736 				continue;
737 			ia = ifatoia(ifa);
738 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
739 								pkt_dst.s_addr)
740 				goto ours;
741 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
742 				goto ours;
743 #ifdef BOOTP_COMPAT
744 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
745 				goto ours;
746 #endif
747 		}
748 	}
749 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
750 		struct in_multi *inm;
751 
752 		if (ip_mrouter != NULL) {
753 			/* XXX Multicast routing is not MPSAFE yet */
754 			get_mplock();
755 
756 			/*
757 			 * If we are acting as a multicast router, all
758 			 * incoming multicast packets are passed to the
759 			 * kernel-level multicast forwarding function.
760 			 * The packet is returned (relatively) intact; if
761 			 * ip_mforward() returns a non-zero value, the packet
762 			 * must be discarded, else it may be accepted below.
763 			 */
764 			if (ip_mforward != NULL &&
765 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
766 				rel_mplock();
767 				ipstat.ips_cantforward++;
768 				m_freem(m);
769 				return;
770 			}
771 
772 			rel_mplock();
773 
774 			/*
775 			 * The process-level routing daemon needs to receive
776 			 * all multicast IGMP packets, whether or not this
777 			 * host belongs to their destination groups.
778 			 */
779 			if (ip->ip_p == IPPROTO_IGMP)
780 				goto ours;
781 			ipstat.ips_forward++;
782 		}
783 		/*
784 		 * See if we belong to the destination multicast group on the
785 		 * arrival interface.
786 		 */
787 		inm = IN_LOOKUP_MULTI(&ip->ip_dst, m->m_pkthdr.rcvif);
788 		if (inm == NULL) {
789 			ipstat.ips_notmember++;
790 			m_freem(m);
791 			return;
792 		}
793 		goto ours;
794 	}
795 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
796 		goto ours;
797 	if (ip->ip_dst.s_addr == INADDR_ANY)
798 		goto ours;
799 
800 	/*
801 	 * FAITH(Firewall Aided Internet Translator)
802 	 */
803 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
804 		if (ip_keepfaith) {
805 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
806 				goto ours;
807 		}
808 		m_freem(m);
809 		return;
810 	}
811 
812 	/*
813 	 * Not for us; forward if possible and desirable.
814 	 */
815 	if (!ipforwarding) {
816 		ipstat.ips_cantforward++;
817 		m_freem(m);
818 	} else {
819 #ifdef IPSEC
820 		/*
821 		 * Enforce inbound IPsec SPD.
822 		 */
823 		if (ipsec4_in_reject(m, NULL)) {
824 			ipsecstat.in_polvio++;
825 			goto bad;
826 		}
827 #endif
828 #ifdef FAST_IPSEC
829 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
830 		crit_enter();
831 		if (mtag != NULL) {
832 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
833 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
834 		} else {
835 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
836 						   IP_FORWARDING, &error);
837 		}
838 		if (sp == NULL) {	/* NB: can happen if error */
839 			crit_exit();
840 			/*XXX error stat???*/
841 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
842 			goto bad;
843 		}
844 
845 		/*
846 		 * Check security policy against packet attributes.
847 		 */
848 		error = ipsec_in_reject(sp, m);
849 		KEY_FREESP(&sp);
850 		crit_exit();
851 		if (error) {
852 			ipstat.ips_cantforward++;
853 			goto bad;
854 		}
855 #endif
856 		ip_forward(m, using_srcrt, next_hop);
857 	}
858 	return;
859 
860 ours:
861 
862 	/*
863 	 * IPSTEALTH: Process non-routing options only
864 	 * if the packet is destined for us.
865 	 */
866 	if (ipstealth &&
867 	    hlen > sizeof(struct ip) &&
868 	    ip_dooptions(m, 1, next_hop))
869 		return;
870 
871 	/* Count the packet in the ip address stats */
872 	if (ia != NULL) {
873 		IFA_STAT_INC(&ia->ia_ifa, ipackets, 1);
874 		IFA_STAT_INC(&ia->ia_ifa, ibytes, m->m_pkthdr.len);
875 	}
876 
877 	/*
878 	 * If offset or IP_MF are set, must reassemble.
879 	 * Otherwise, nothing need be done.
880 	 * (We could look in the reassembly queue to see
881 	 * if the packet was previously fragmented,
882 	 * but it's not worth the time; just let them time out.)
883 	 */
884 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
885 		/*
886 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
887 		 * will return a different mbuf.
888 		 *
889 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
890 		 *	 us to recharacterize the packet.
891 		 */
892 		m = ip_reass(m);
893 		if (m == NULL)
894 			return;
895 		ip = mtod(m, struct ip *);
896 
897 		/* Get the header length of the reassembled packet */
898 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
899 	} else {
900 		ip->ip_len -= hlen;
901 	}
902 
903 #ifdef IPSEC
904 	/*
905 	 * enforce IPsec policy checking if we are seeing last header.
906 	 * note that we do not visit this with protocols with pcb layer
907 	 * code - like udp/tcp/raw ip.
908 	 */
909 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
910 	    ipsec4_in_reject(m, NULL)) {
911 		ipsecstat.in_polvio++;
912 		goto bad;
913 	}
914 #endif
915 #ifdef FAST_IPSEC
916 	/*
917 	 * enforce IPsec policy checking if we are seeing last header.
918 	 * note that we do not visit this with protocols with pcb layer
919 	 * code - like udp/tcp/raw ip.
920 	 */
921 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
922 		/*
923 		 * Check if the packet has already had IPsec processing
924 		 * done.  If so, then just pass it along.  This tag gets
925 		 * set during AH, ESP, etc. input handling, before the
926 		 * packet is returned to the ip input queue for delivery.
927 		 */
928 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
929 		crit_enter();
930 		if (mtag != NULL) {
931 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
932 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
933 		} else {
934 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
935 						   IP_FORWARDING, &error);
936 		}
937 		if (sp != NULL) {
938 			/*
939 			 * Check security policy against packet attributes.
940 			 */
941 			error = ipsec_in_reject(sp, m);
942 			KEY_FREESP(&sp);
943 		} else {
944 			/* XXX error stat??? */
945 			error = EINVAL;
946 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
947 			crit_exit();
948 			goto bad;
949 		}
950 		crit_exit();
951 		if (error)
952 			goto bad;
953 	}
954 #endif /* FAST_IPSEC */
955 
956 	/*
957 	 * We must forward the packet to the correct protocol thread if
958 	 * we are not already in it.
959 	 *
960 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
961 	 *	 further for protocol processing, instead we pass hlen
962 	 *	 to the protosw and let it deal with it.
963 	 */
964 	ipstat.ips_delivered++;
965 
966 	if ((m->m_flags & M_HASH) == 0) {
967 #ifdef RSS_DEBUG
968 		atomic_add_long(&ip_rehash_count, 1);
969 #endif
970 		ip->ip_len = htons(ip->ip_len + hlen);
971 		ip->ip_off = htons(ip->ip_off);
972 
973 		ip_hashfn(&m, 0, IP_MPORT_IN);
974 		if (m == NULL)
975 			return;
976 
977 		ip = mtod(m, struct ip *);
978 		ip->ip_len = ntohs(ip->ip_len) - hlen;
979 		ip->ip_off = ntohs(ip->ip_off);
980 		KKASSERT(m->m_flags & M_HASH);
981 	}
982 	port = netisr_hashport(m->m_pkthdr.hash);
983 
984 	if (port != &curthread->td_msgport) {
985 		struct netmsg_packet *pmsg;
986 
987 #ifdef RSS_DEBUG
988 		atomic_add_long(&ip_dispatch_slow, 1);
989 #endif
990 
991 		pmsg = &m->m_hdr.mh_netmsg;
992 		netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
993 			    0, transport_processing_handler);
994 		pmsg->nm_packet = m;
995 		pmsg->base.lmsg.u.ms_result = hlen;
996 		lwkt_sendmsg(port, &pmsg->base.lmsg);
997 	} else {
998 #ifdef RSS_DEBUG
999 		atomic_add_long(&ip_dispatch_fast, 1);
1000 #endif
1001 		transport_processing_oncpu(m, hlen, ip);
1002 	}
1003 	return;
1004 
1005 bad:
1006 	m_freem(m);
1007 }
1008 
1009 /*
1010  * Take incoming datagram fragment and try to reassemble it into
1011  * whole datagram.  If a chain for reassembly of this datagram already
1012  * exists, then it is given as fp; otherwise have to make a chain.
1013  */
1014 struct mbuf *
1015 ip_reass(struct mbuf *m)
1016 {
1017 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1018 	struct ip *ip = mtod(m, struct ip *);
1019 	struct mbuf *p = NULL, *q, *nq;
1020 	struct mbuf *n;
1021 	struct ipq *fp = NULL;
1022 	struct ipqhead *head;
1023 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1024 	int i, next;
1025 	u_short sum;
1026 
1027 	/* If maxnipq is 0, never accept fragments. */
1028 	if (maxnipq == 0) {
1029 		ipstat.ips_fragments++;
1030 		ipstat.ips_fragdropped++;
1031 		m_freem(m);
1032 		return NULL;
1033 	}
1034 
1035 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1036 	/*
1037 	 * Look for queue of fragments of this datagram.
1038 	 */
1039 	head = &fragq->ipq[sum];
1040 	TAILQ_FOREACH(fp, head, ipq_list) {
1041 		if (ip->ip_id == fp->ipq_id &&
1042 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1043 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1044 		    ip->ip_p == fp->ipq_p)
1045 			goto found;
1046 	}
1047 
1048 	fp = NULL;
1049 
1050 	/*
1051 	 * Enforce upper bound on number of fragmented packets
1052 	 * for which we attempt reassembly;
1053 	 * If maxnipq is -1, accept all fragments without limitation.
1054 	 */
1055 	if (fragq->nipq > maxnipq && maxnipq > 0) {
1056 		/*
1057 		 * drop something from the tail of the current queue
1058 		 * before proceeding further
1059 		 */
1060 		struct ipq *q = TAILQ_LAST(head, ipqhead);
1061 		if (q == NULL) {
1062 			/*
1063 			 * The current queue is empty,
1064 			 * so drop from one of the others.
1065 			 */
1066 			for (i = 0; i < IPREASS_NHASH; i++) {
1067 				struct ipq *r = TAILQ_LAST(&fragq->ipq[i],
1068 				    ipqhead);
1069 				if (r) {
1070 					ipstat.ips_fragtimeout += r->ipq_nfrags;
1071 					ip_freef(fragq, &fragq->ipq[i], r);
1072 					break;
1073 				}
1074 			}
1075 		} else {
1076 			ipstat.ips_fragtimeout += q->ipq_nfrags;
1077 			ip_freef(fragq, head, q);
1078 		}
1079 	}
1080 found:
1081 	/*
1082 	 * Adjust ip_len to not reflect header,
1083 	 * convert offset of this to bytes.
1084 	 */
1085 	ip->ip_len -= hlen;
1086 	if (ip->ip_off & IP_MF) {
1087 		/*
1088 		 * Make sure that fragments have a data length
1089 		 * that's a non-zero multiple of 8 bytes.
1090 		 */
1091 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1092 			ipstat.ips_toosmall++; /* XXX */
1093 			m_freem(m);
1094 			goto done;
1095 		}
1096 		m->m_flags |= M_FRAG;
1097 	} else {
1098 		m->m_flags &= ~M_FRAG;
1099 	}
1100 	ip->ip_off <<= 3;
1101 
1102 	ipstat.ips_fragments++;
1103 	m->m_pkthdr.header = ip;
1104 
1105 	/*
1106 	 * If the hardware has not done csum over this fragment
1107 	 * then csum_data is not valid at all.
1108 	 */
1109 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1110 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1111 		m->m_pkthdr.csum_data = 0;
1112 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1113 	}
1114 
1115 	/*
1116 	 * Presence of header sizes in mbufs
1117 	 * would confuse code below.
1118 	 */
1119 	m->m_data += hlen;
1120 	m->m_len -= hlen;
1121 
1122 	/*
1123 	 * If first fragment to arrive, create a reassembly queue.
1124 	 */
1125 	if (fp == NULL) {
1126 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1127 			goto dropfrag;
1128 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1129 		fragq->nipq++;
1130 		fp->ipq_nfrags = 1;
1131 		fp->ipq_ttl = IPFRAGTTL;
1132 		fp->ipq_p = ip->ip_p;
1133 		fp->ipq_id = ip->ip_id;
1134 		fp->ipq_src = ip->ip_src;
1135 		fp->ipq_dst = ip->ip_dst;
1136 		fp->ipq_frags = m;
1137 		m->m_nextpkt = NULL;
1138 		goto inserted;
1139 	} else {
1140 		fp->ipq_nfrags++;
1141 	}
1142 
1143 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1144 
1145 	/*
1146 	 * Find a segment which begins after this one does.
1147 	 */
1148 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1149 		if (GETIP(q)->ip_off > ip->ip_off)
1150 			break;
1151 	}
1152 
1153 	/*
1154 	 * If there is a preceding segment, it may provide some of
1155 	 * our data already.  If so, drop the data from the incoming
1156 	 * segment.  If it provides all of our data, drop us, otherwise
1157 	 * stick new segment in the proper place.
1158 	 *
1159 	 * If some of the data is dropped from the the preceding
1160 	 * segment, then it's checksum is invalidated.
1161 	 */
1162 	if (p) {
1163 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1164 		if (i > 0) {
1165 			if (i >= ip->ip_len)
1166 				goto dropfrag;
1167 			m_adj(m, i);
1168 			m->m_pkthdr.csum_flags = 0;
1169 			ip->ip_off += i;
1170 			ip->ip_len -= i;
1171 		}
1172 		m->m_nextpkt = p->m_nextpkt;
1173 		p->m_nextpkt = m;
1174 	} else {
1175 		m->m_nextpkt = fp->ipq_frags;
1176 		fp->ipq_frags = m;
1177 	}
1178 
1179 	/*
1180 	 * While we overlap succeeding segments trim them or,
1181 	 * if they are completely covered, dequeue them.
1182 	 */
1183 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1184 	     q = nq) {
1185 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1186 		if (i < GETIP(q)->ip_len) {
1187 			GETIP(q)->ip_len -= i;
1188 			GETIP(q)->ip_off += i;
1189 			m_adj(q, i);
1190 			q->m_pkthdr.csum_flags = 0;
1191 			break;
1192 		}
1193 		nq = q->m_nextpkt;
1194 		m->m_nextpkt = nq;
1195 		ipstat.ips_fragdropped++;
1196 		fp->ipq_nfrags--;
1197 		q->m_nextpkt = NULL;
1198 		m_freem(q);
1199 	}
1200 
1201 inserted:
1202 	/*
1203 	 * Check for complete reassembly and perform frag per packet
1204 	 * limiting.
1205 	 *
1206 	 * Frag limiting is performed here so that the nth frag has
1207 	 * a chance to complete the packet before we drop the packet.
1208 	 * As a result, n+1 frags are actually allowed per packet, but
1209 	 * only n will ever be stored. (n = maxfragsperpacket.)
1210 	 *
1211 	 */
1212 	next = 0;
1213 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1214 		if (GETIP(q)->ip_off != next) {
1215 			if (fp->ipq_nfrags > maxfragsperpacket) {
1216 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1217 				ip_freef(fragq, head, fp);
1218 			}
1219 			goto done;
1220 		}
1221 		next += GETIP(q)->ip_len;
1222 	}
1223 	/* Make sure the last packet didn't have the IP_MF flag */
1224 	if (p->m_flags & M_FRAG) {
1225 		if (fp->ipq_nfrags > maxfragsperpacket) {
1226 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1227 			ip_freef(fragq, head, fp);
1228 		}
1229 		goto done;
1230 	}
1231 
1232 	/*
1233 	 * Reassembly is complete.  Make sure the packet is a sane size.
1234 	 */
1235 	q = fp->ipq_frags;
1236 	ip = GETIP(q);
1237 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1238 		ipstat.ips_toolong++;
1239 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1240 		ip_freef(fragq, head, fp);
1241 		goto done;
1242 	}
1243 
1244 	/*
1245 	 * Concatenate fragments.
1246 	 */
1247 	m = q;
1248 	n = m->m_next;
1249 	m->m_next = NULL;
1250 	m_cat(m, n);
1251 	nq = q->m_nextpkt;
1252 	q->m_nextpkt = NULL;
1253 	for (q = nq; q != NULL; q = nq) {
1254 		nq = q->m_nextpkt;
1255 		q->m_nextpkt = NULL;
1256 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1257 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1258 		m_cat(m, q);
1259 	}
1260 
1261 	/*
1262 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1263 	 * be added back.  This assumes no more then 65535 packet fragments
1264 	 * were reassembled.  A second carry can also occur (but not a third).
1265 	 */
1266 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1267 				(m->m_pkthdr.csum_data >> 16);
1268 	if (m->m_pkthdr.csum_data > 0xFFFF)
1269 		m->m_pkthdr.csum_data -= 0xFFFF;
1270 
1271 	/*
1272 	 * Create header for new ip packet by
1273 	 * modifying header of first packet;
1274 	 * dequeue and discard fragment reassembly header.
1275 	 * Make header visible.
1276 	 */
1277 	ip->ip_len = next;
1278 	ip->ip_src = fp->ipq_src;
1279 	ip->ip_dst = fp->ipq_dst;
1280 	TAILQ_REMOVE(head, fp, ipq_list);
1281 	fragq->nipq--;
1282 	mpipe_free(&ipq_mpipe, fp);
1283 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1284 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1285 	/* some debugging cruft by sklower, below, will go away soon */
1286 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1287 		int plen = 0;
1288 
1289 		for (n = m; n; n = n->m_next)
1290 			plen += n->m_len;
1291 		m->m_pkthdr.len = plen;
1292 	}
1293 
1294 	/*
1295 	 * Reassembly complete, return the next protocol.
1296 	 *
1297 	 * Be sure to clear M_HASH to force the packet
1298 	 * to be re-characterized.
1299 	 *
1300 	 * Clear M_FRAG, we are no longer a fragment.
1301 	 */
1302 	m->m_flags &= ~(M_HASH | M_FRAG);
1303 
1304 	ipstat.ips_reassembled++;
1305 	return (m);
1306 
1307 dropfrag:
1308 	ipstat.ips_fragdropped++;
1309 	if (fp != NULL)
1310 		fp->ipq_nfrags--;
1311 	m_freem(m);
1312 done:
1313 	return (NULL);
1314 
1315 #undef GETIP
1316 }
1317 
1318 /*
1319  * Free a fragment reassembly header and all
1320  * associated datagrams.
1321  */
1322 static void
1323 ip_freef(struct ipfrag_queue *fragq, struct ipqhead *fhp, struct ipq *fp)
1324 {
1325 	struct mbuf *q;
1326 
1327 	/*
1328 	 * Remove first to protect against blocking
1329 	 */
1330 	TAILQ_REMOVE(fhp, fp, ipq_list);
1331 
1332 	/*
1333 	 * Clean out at our leisure
1334 	 */
1335 	while (fp->ipq_frags) {
1336 		q = fp->ipq_frags;
1337 		fp->ipq_frags = q->m_nextpkt;
1338 		q->m_nextpkt = NULL;
1339 		m_freem(q);
1340 	}
1341 	mpipe_free(&ipq_mpipe, fp);
1342 	fragq->nipq--;
1343 }
1344 
1345 /*
1346  * If a timer expires on a reassembly queue, discard it.
1347  */
1348 static void
1349 ipfrag_timeo_dispatch(netmsg_t nmsg)
1350 {
1351 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1352 	struct ipq *fp, *fp_temp;
1353 	struct ipqhead *head;
1354 	int i;
1355 
1356 	crit_enter();
1357 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1358 	crit_exit();
1359 
1360 	for (i = 0; i < IPREASS_NHASH; i++) {
1361 		head = &fragq->ipq[i];
1362 		TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1363 			if (--fp->ipq_ttl == 0) {
1364 				ipstat.ips_fragtimeout += fp->ipq_nfrags;
1365 				ip_freef(fragq, head, fp);
1366 			}
1367 		}
1368 	}
1369 	/*
1370 	 * If we are over the maximum number of fragments
1371 	 * (due to the limit being lowered), drain off
1372 	 * enough to get down to the new limit.
1373 	 */
1374 	if (maxnipq >= 0 && fragq->nipq > maxnipq) {
1375 		for (i = 0; i < IPREASS_NHASH; i++) {
1376 			head = &fragq->ipq[i];
1377 			while (fragq->nipq > maxnipq && !TAILQ_EMPTY(head)) {
1378 				ipstat.ips_fragdropped +=
1379 				    TAILQ_FIRST(head)->ipq_nfrags;
1380 				ip_freef(fragq, head, TAILQ_FIRST(head));
1381 			}
1382 		}
1383 	}
1384 }
1385 
1386 static void
1387 ipfrag_timeo_ipi(void *arg __unused)
1388 {
1389 	int cpu = mycpuid;
1390 	struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].timeo_netmsg.lmsg;
1391 
1392 	crit_enter();
1393 	if (msg->ms_flags & MSGF_DONE)
1394 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1395 	crit_exit();
1396 }
1397 
1398 static void
1399 ipfrag_slowtimo(void)
1400 {
1401 	cpumask_t mask;
1402 
1403 	CPUMASK_ASSBMASK(mask, ncpus);
1404 	CPUMASK_ANDMASK(mask, smp_active_mask);
1405 	if (CPUMASK_TESTNZERO(mask))
1406 		lwkt_send_ipiq_mask(mask, ipfrag_timeo_ipi, NULL);
1407 }
1408 
1409 /*
1410  * IP timer processing
1411  */
1412 void
1413 ip_slowtimo(void)
1414 {
1415 	ipfrag_slowtimo();
1416 	ipflow_slowtimo();
1417 }
1418 
1419 /*
1420  * Drain off all datagram fragments.
1421  */
1422 static void
1423 ipfrag_drain_dispatch(netmsg_t nmsg)
1424 {
1425 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1426 	struct ipqhead *head;
1427 	int i;
1428 
1429 	crit_enter();
1430 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1431 	crit_exit();
1432 
1433 	for (i = 0; i < IPREASS_NHASH; i++) {
1434 		head = &fragq->ipq[i];
1435 		while (!TAILQ_EMPTY(head)) {
1436 			ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1437 			ip_freef(fragq, head, TAILQ_FIRST(head));
1438 		}
1439 	}
1440 }
1441 
1442 static void
1443 ipfrag_drain_ipi(void *arg __unused)
1444 {
1445 	int cpu = mycpuid;
1446 	struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].drain_netmsg.lmsg;
1447 
1448 	crit_enter();
1449 	if (msg->ms_flags & MSGF_DONE)
1450 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1451 	crit_exit();
1452 }
1453 
1454 static void
1455 ipfrag_drain(void)
1456 {
1457 	cpumask_t mask;
1458 
1459 	CPUMASK_ASSBMASK(mask, ncpus);
1460 	CPUMASK_ANDMASK(mask, smp_active_mask);
1461 	if (CPUMASK_TESTNZERO(mask))
1462 		lwkt_send_ipiq_mask(mask, ipfrag_drain_ipi, NULL);
1463 }
1464 
1465 void
1466 ip_drain(void)
1467 {
1468 	ipfrag_drain();
1469 	in_rtqdrain();
1470 }
1471 
1472 /*
1473  * Do option processing on a datagram,
1474  * possibly discarding it if bad options are encountered,
1475  * or forwarding it if source-routed.
1476  * The pass argument is used when operating in the IPSTEALTH
1477  * mode to tell what options to process:
1478  * [LS]SRR (pass 0) or the others (pass 1).
1479  * The reason for as many as two passes is that when doing IPSTEALTH,
1480  * non-routing options should be processed only if the packet is for us.
1481  * Returns 1 if packet has been forwarded/freed,
1482  * 0 if the packet should be processed further.
1483  */
1484 static int
1485 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1486 {
1487 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1488 	struct ip *ip = mtod(m, struct ip *);
1489 	u_char *cp;
1490 	struct in_ifaddr *ia;
1491 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1492 	boolean_t forward = FALSE;
1493 	struct in_addr *sin, dst;
1494 	n_time ntime;
1495 
1496 	dst = ip->ip_dst;
1497 	cp = (u_char *)(ip + 1);
1498 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1499 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1500 		opt = cp[IPOPT_OPTVAL];
1501 		if (opt == IPOPT_EOL)
1502 			break;
1503 		if (opt == IPOPT_NOP)
1504 			optlen = 1;
1505 		else {
1506 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1507 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1508 				goto bad;
1509 			}
1510 			optlen = cp[IPOPT_OLEN];
1511 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1512 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1513 				goto bad;
1514 			}
1515 		}
1516 		switch (opt) {
1517 
1518 		default:
1519 			break;
1520 
1521 		/*
1522 		 * Source routing with record.
1523 		 * Find interface with current destination address.
1524 		 * If none on this machine then drop if strictly routed,
1525 		 * or do nothing if loosely routed.
1526 		 * Record interface address and bring up next address
1527 		 * component.  If strictly routed make sure next
1528 		 * address is on directly accessible net.
1529 		 */
1530 		case IPOPT_LSRR:
1531 		case IPOPT_SSRR:
1532 			if (ipstealth && pass > 0)
1533 				break;
1534 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1535 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1536 				goto bad;
1537 			}
1538 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1539 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1540 				goto bad;
1541 			}
1542 			ipaddr.sin_addr = ip->ip_dst;
1543 			ia = (struct in_ifaddr *)
1544 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1545 			if (ia == NULL) {
1546 				if (opt == IPOPT_SSRR) {
1547 					type = ICMP_UNREACH;
1548 					code = ICMP_UNREACH_SRCFAIL;
1549 					goto bad;
1550 				}
1551 				if (!ip_dosourceroute)
1552 					goto nosourcerouting;
1553 				/*
1554 				 * Loose routing, and not at next destination
1555 				 * yet; nothing to do except forward.
1556 				 */
1557 				break;
1558 			}
1559 			off--;			/* 0 origin */
1560 			if (off > optlen - (int)sizeof(struct in_addr)) {
1561 				/*
1562 				 * End of source route.  Should be for us.
1563 				 */
1564 				if (!ip_acceptsourceroute)
1565 					goto nosourcerouting;
1566 				save_rte(m, cp, ip->ip_src);
1567 				break;
1568 			}
1569 			if (ipstealth)
1570 				goto dropit;
1571 			if (!ip_dosourceroute) {
1572 				if (ipforwarding) {
1573 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1574 
1575 					/*
1576 					 * Acting as a router, so generate ICMP
1577 					 */
1578 nosourcerouting:
1579 					strcpy(buf, inet_ntoa(ip->ip_dst));
1580 					log(LOG_WARNING,
1581 					    "attempted source route from %s to %s\n",
1582 					    inet_ntoa(ip->ip_src), buf);
1583 					type = ICMP_UNREACH;
1584 					code = ICMP_UNREACH_SRCFAIL;
1585 					goto bad;
1586 				} else {
1587 					/*
1588 					 * Not acting as a router,
1589 					 * so silently drop.
1590 					 */
1591 dropit:
1592 					ipstat.ips_cantforward++;
1593 					m_freem(m);
1594 					return (1);
1595 				}
1596 			}
1597 
1598 			/*
1599 			 * locate outgoing interface
1600 			 */
1601 			memcpy(&ipaddr.sin_addr, cp + off,
1602 			    sizeof ipaddr.sin_addr);
1603 
1604 			if (opt == IPOPT_SSRR) {
1605 #define	INA	struct in_ifaddr *
1606 #define	SA	struct sockaddr *
1607 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1608 									== NULL)
1609 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1610 			} else {
1611 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1612 			}
1613 			if (ia == NULL) {
1614 				type = ICMP_UNREACH;
1615 				code = ICMP_UNREACH_SRCFAIL;
1616 				goto bad;
1617 			}
1618 			ip->ip_dst = ipaddr.sin_addr;
1619 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1620 			    sizeof(struct in_addr));
1621 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1622 			/*
1623 			 * Let ip_intr's mcast routing check handle mcast pkts
1624 			 */
1625 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1626 			break;
1627 
1628 		case IPOPT_RR:
1629 			if (ipstealth && pass == 0)
1630 				break;
1631 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1632 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1633 				goto bad;
1634 			}
1635 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1636 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1637 				goto bad;
1638 			}
1639 			/*
1640 			 * If no space remains, ignore.
1641 			 */
1642 			off--;			/* 0 origin */
1643 			if (off > optlen - (int)sizeof(struct in_addr))
1644 				break;
1645 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1646 			    sizeof ipaddr.sin_addr);
1647 			/*
1648 			 * locate outgoing interface; if we're the destination,
1649 			 * use the incoming interface (should be same).
1650 			 */
1651 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1652 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1653 				type = ICMP_UNREACH;
1654 				code = ICMP_UNREACH_HOST;
1655 				goto bad;
1656 			}
1657 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1658 			    sizeof(struct in_addr));
1659 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1660 			break;
1661 
1662 		case IPOPT_TS:
1663 			if (ipstealth && pass == 0)
1664 				break;
1665 			code = cp - (u_char *)ip;
1666 			if (optlen < 4 || optlen > 40) {
1667 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1668 				goto bad;
1669 			}
1670 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1671 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1672 				goto bad;
1673 			}
1674 			if (off > optlen - (int)sizeof(int32_t)) {
1675 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1676 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1677 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1678 					goto bad;
1679 				}
1680 				break;
1681 			}
1682 			off--;				/* 0 origin */
1683 			sin = (struct in_addr *)(cp + off);
1684 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1685 
1686 			case IPOPT_TS_TSONLY:
1687 				break;
1688 
1689 			case IPOPT_TS_TSANDADDR:
1690 				if (off + sizeof(n_time) +
1691 				    sizeof(struct in_addr) > optlen) {
1692 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1693 					goto bad;
1694 				}
1695 				ipaddr.sin_addr = dst;
1696 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1697 							    m->m_pkthdr.rcvif);
1698 				if (ia == NULL)
1699 					continue;
1700 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1701 				    sizeof(struct in_addr));
1702 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1703 				off += sizeof(struct in_addr);
1704 				break;
1705 
1706 			case IPOPT_TS_PRESPEC:
1707 				if (off + sizeof(n_time) +
1708 				    sizeof(struct in_addr) > optlen) {
1709 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1710 					goto bad;
1711 				}
1712 				memcpy(&ipaddr.sin_addr, sin,
1713 				    sizeof(struct in_addr));
1714 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1715 					continue;
1716 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1717 				off += sizeof(struct in_addr);
1718 				break;
1719 
1720 			default:
1721 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1722 				goto bad;
1723 			}
1724 			ntime = iptime();
1725 			memcpy(cp + off, &ntime, sizeof(n_time));
1726 			cp[IPOPT_OFFSET] += sizeof(n_time);
1727 		}
1728 	}
1729 	if (forward && ipforwarding) {
1730 		ip_forward(m, TRUE, next_hop);
1731 		return (1);
1732 	}
1733 	return (0);
1734 bad:
1735 	icmp_error(m, type, code, 0, 0);
1736 	ipstat.ips_badoptions++;
1737 	return (1);
1738 }
1739 
1740 /*
1741  * Given address of next destination (final or next hop),
1742  * return internet address info of interface to be used to get there.
1743  */
1744 struct in_ifaddr *
1745 ip_rtaddr(struct in_addr dst, struct route *ro0)
1746 {
1747 	struct route sro, *ro;
1748 	struct sockaddr_in *sin;
1749 	struct in_ifaddr *ia;
1750 
1751 	if (ro0 != NULL) {
1752 		ro = ro0;
1753 	} else {
1754 		bzero(&sro, sizeof(sro));
1755 		ro = &sro;
1756 	}
1757 
1758 	sin = (struct sockaddr_in *)&ro->ro_dst;
1759 
1760 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1761 		if (ro->ro_rt != NULL) {
1762 			RTFREE(ro->ro_rt);
1763 			ro->ro_rt = NULL;
1764 		}
1765 		sin->sin_family = AF_INET;
1766 		sin->sin_len = sizeof *sin;
1767 		sin->sin_addr = dst;
1768 		rtalloc_ign(ro, RTF_PRCLONING);
1769 	}
1770 
1771 	if (ro->ro_rt == NULL)
1772 		return (NULL);
1773 
1774 	ia = ifatoia(ro->ro_rt->rt_ifa);
1775 
1776 	if (ro == &sro)
1777 		RTFREE(ro->ro_rt);
1778 	return ia;
1779 }
1780 
1781 /*
1782  * Save incoming source route for use in replies,
1783  * to be picked up later by ip_srcroute if the receiver is interested.
1784  */
1785 static void
1786 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1787 {
1788 	struct m_tag *mtag;
1789 	struct ip_srcrt_opt *opt;
1790 	unsigned olen;
1791 
1792 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), MB_DONTWAIT);
1793 	if (mtag == NULL)
1794 		return;
1795 	opt = m_tag_data(mtag);
1796 
1797 	olen = option[IPOPT_OLEN];
1798 #ifdef DIAGNOSTIC
1799 	if (ipprintfs)
1800 		kprintf("save_rte: olen %d\n", olen);
1801 #endif
1802 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1803 		m_tag_free(mtag);
1804 		return;
1805 	}
1806 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1807 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1808 	opt->ip_srcrt.dst = dst;
1809 	m_tag_prepend(m, mtag);
1810 }
1811 
1812 /*
1813  * Retrieve incoming source route for use in replies,
1814  * in the same form used by setsockopt.
1815  * The first hop is placed before the options, will be removed later.
1816  */
1817 struct mbuf *
1818 ip_srcroute(struct mbuf *m0)
1819 {
1820 	struct in_addr *p, *q;
1821 	struct mbuf *m;
1822 	struct m_tag *mtag;
1823 	struct ip_srcrt_opt *opt;
1824 
1825 	if (m0 == NULL)
1826 		return NULL;
1827 
1828 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1829 	if (mtag == NULL)
1830 		return NULL;
1831 	opt = m_tag_data(mtag);
1832 
1833 	if (opt->ip_nhops == 0)
1834 		return (NULL);
1835 	m = m_get(MB_DONTWAIT, MT_HEADER);
1836 	if (m == NULL)
1837 		return (NULL);
1838 
1839 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1840 
1841 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1842 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1843 		   sizeof(struct in_addr) + OPTSIZ;
1844 #ifdef DIAGNOSTIC
1845 	if (ipprintfs) {
1846 		kprintf("ip_srcroute: nhops %d mlen %d",
1847 			opt->ip_nhops, m->m_len);
1848 	}
1849 #endif
1850 
1851 	/*
1852 	 * First save first hop for return route
1853 	 */
1854 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1855 	*(mtod(m, struct in_addr *)) = *p--;
1856 #ifdef DIAGNOSTIC
1857 	if (ipprintfs)
1858 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1859 #endif
1860 
1861 	/*
1862 	 * Copy option fields and padding (nop) to mbuf.
1863 	 */
1864 	opt->ip_srcrt.nop = IPOPT_NOP;
1865 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1866 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1867 	    OPTSIZ);
1868 	q = (struct in_addr *)(mtod(m, caddr_t) +
1869 	    sizeof(struct in_addr) + OPTSIZ);
1870 #undef OPTSIZ
1871 	/*
1872 	 * Record return path as an IP source route,
1873 	 * reversing the path (pointers are now aligned).
1874 	 */
1875 	while (p >= opt->ip_srcrt.route) {
1876 #ifdef DIAGNOSTIC
1877 		if (ipprintfs)
1878 			kprintf(" %x", ntohl(q->s_addr));
1879 #endif
1880 		*q++ = *p--;
1881 	}
1882 	/*
1883 	 * Last hop goes to final destination.
1884 	 */
1885 	*q = opt->ip_srcrt.dst;
1886 	m_tag_delete(m0, mtag);
1887 #ifdef DIAGNOSTIC
1888 	if (ipprintfs)
1889 		kprintf(" %x\n", ntohl(q->s_addr));
1890 #endif
1891 	return (m);
1892 }
1893 
1894 /*
1895  * Strip out IP options.
1896  */
1897 void
1898 ip_stripoptions(struct mbuf *m)
1899 {
1900 	int datalen;
1901 	struct ip *ip = mtod(m, struct ip *);
1902 	caddr_t opts;
1903 	int optlen;
1904 
1905 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1906 	opts = (caddr_t)(ip + 1);
1907 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1908 	bcopy(opts + optlen, opts, datalen);
1909 	m->m_len -= optlen;
1910 	if (m->m_flags & M_PKTHDR)
1911 		m->m_pkthdr.len -= optlen;
1912 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1913 }
1914 
1915 u_char inetctlerrmap[PRC_NCMDS] = {
1916 	0,		0,		0,		0,
1917 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1918 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1919 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1920 	0,		0,		0,		0,
1921 	ENOPROTOOPT,	ECONNREFUSED
1922 };
1923 
1924 /*
1925  * Forward a packet.  If some error occurs return the sender
1926  * an icmp packet.  Note we can't always generate a meaningful
1927  * icmp message because icmp doesn't have a large enough repertoire
1928  * of codes and types.
1929  *
1930  * If not forwarding, just drop the packet.  This could be confusing
1931  * if ipforwarding was zero but some routing protocol was advancing
1932  * us as a gateway to somewhere.  However, we must let the routing
1933  * protocol deal with that.
1934  *
1935  * The using_srcrt parameter indicates whether the packet is being forwarded
1936  * via a source route.
1937  */
1938 void
1939 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1940 {
1941 	struct ip *ip = mtod(m, struct ip *);
1942 	struct rtentry *rt;
1943 	struct route fwd_ro;
1944 	int error, type = 0, code = 0, destmtu = 0;
1945 	struct mbuf *mcopy, *mtemp = NULL;
1946 	n_long dest;
1947 	struct in_addr pkt_dst;
1948 
1949 	dest = INADDR_ANY;
1950 	/*
1951 	 * Cache the destination address of the packet; this may be
1952 	 * changed by use of 'ipfw fwd'.
1953 	 */
1954 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1955 
1956 #ifdef DIAGNOSTIC
1957 	if (ipprintfs)
1958 		kprintf("forward: src %x dst %x ttl %x\n",
1959 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1960 #endif
1961 
1962 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1963 		ipstat.ips_cantforward++;
1964 		m_freem(m);
1965 		return;
1966 	}
1967 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1968 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1969 		return;
1970 	}
1971 
1972 	bzero(&fwd_ro, sizeof(fwd_ro));
1973 	ip_rtaddr(pkt_dst, &fwd_ro);
1974 	if (fwd_ro.ro_rt == NULL) {
1975 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1976 		return;
1977 	}
1978 	rt = fwd_ro.ro_rt;
1979 
1980 	if (curthread->td_type == TD_TYPE_NETISR) {
1981 		/*
1982 		 * Save the IP header and at most 8 bytes of the payload,
1983 		 * in case we need to generate an ICMP message to the src.
1984 		 */
1985 		mtemp = ipforward_mtemp[mycpuid];
1986 		KASSERT((mtemp->m_flags & M_EXT) == 0 &&
1987 		    mtemp->m_data == mtemp->m_pktdat &&
1988 		    m_tag_first(mtemp) == NULL,
1989 		    ("ip_forward invalid mtemp1"));
1990 
1991 		if (!m_dup_pkthdr(mtemp, m, MB_DONTWAIT)) {
1992 			/*
1993 			 * It's probably ok if the pkthdr dup fails (because
1994 			 * the deep copy of the tag chain failed), but for now
1995 			 * be conservative and just discard the copy since
1996 			 * code below may some day want the tags.
1997 			 */
1998 			mtemp = NULL;
1999 		} else {
2000 			mtemp->m_type = m->m_type;
2001 			mtemp->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
2002 			    (int)ip->ip_len);
2003 			mtemp->m_pkthdr.len = mtemp->m_len;
2004 			m_copydata(m, 0, mtemp->m_len, mtod(mtemp, caddr_t));
2005 		}
2006 	}
2007 
2008 	if (!ipstealth)
2009 		ip->ip_ttl -= IPTTLDEC;
2010 
2011 	/*
2012 	 * If forwarding packet using same interface that it came in on,
2013 	 * perhaps should send a redirect to sender to shortcut a hop.
2014 	 * Only send redirect if source is sending directly to us,
2015 	 * and if packet was not source routed (or has any options).
2016 	 * Also, don't send redirect if forwarding using a default route
2017 	 * or a route modified by a redirect.
2018 	 */
2019 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
2020 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
2021 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
2022 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
2023 		u_long src = ntohl(ip->ip_src.s_addr);
2024 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
2025 
2026 		if (rt_ifa != NULL &&
2027 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
2028 			if (rt->rt_flags & RTF_GATEWAY)
2029 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
2030 			else
2031 				dest = pkt_dst.s_addr;
2032 			/*
2033 			 * Router requirements says to only send
2034 			 * host redirects.
2035 			 */
2036 			type = ICMP_REDIRECT;
2037 			code = ICMP_REDIRECT_HOST;
2038 #ifdef DIAGNOSTIC
2039 			if (ipprintfs)
2040 				kprintf("redirect (%d) to %x\n", code, dest);
2041 #endif
2042 		}
2043 	}
2044 
2045 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
2046 	if (error == 0) {
2047 		ipstat.ips_forward++;
2048 		if (type == 0) {
2049 			if (mtemp)
2050 				ipflow_create(&fwd_ro, mtemp);
2051 			goto done;
2052 		} else {
2053 			ipstat.ips_redirectsent++;
2054 		}
2055 	} else {
2056 		ipstat.ips_cantforward++;
2057 	}
2058 
2059 	if (mtemp == NULL)
2060 		goto done;
2061 
2062 	/*
2063 	 * Errors that do not require generating ICMP message
2064 	 */
2065 	switch (error) {
2066 	case ENOBUFS:
2067 		/*
2068 		 * A router should not generate ICMP_SOURCEQUENCH as
2069 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2070 		 * Source quench could be a big problem under DoS attacks,
2071 		 * or if the underlying interface is rate-limited.
2072 		 * Those who need source quench packets may re-enable them
2073 		 * via the net.inet.ip.sendsourcequench sysctl.
2074 		 */
2075 		if (!ip_sendsourcequench)
2076 			goto done;
2077 		break;
2078 
2079 	case EACCES:			/* ipfw denied packet */
2080 		goto done;
2081 	}
2082 
2083 	KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2084 	    mtemp->m_data == mtemp->m_pktdat,
2085 	    ("ip_forward invalid mtemp2"));
2086 	mcopy = m_copym(mtemp, 0, mtemp->m_len, MB_DONTWAIT);
2087 	if (mcopy == NULL)
2088 		goto done;
2089 
2090 	/*
2091 	 * Send ICMP message.
2092 	 */
2093 	switch (error) {
2094 	case 0:				/* forwarded, but need redirect */
2095 		/* type, code set above */
2096 		break;
2097 
2098 	case ENETUNREACH:		/* shouldn't happen, checked above */
2099 	case EHOSTUNREACH:
2100 	case ENETDOWN:
2101 	case EHOSTDOWN:
2102 	default:
2103 		type = ICMP_UNREACH;
2104 		code = ICMP_UNREACH_HOST;
2105 		break;
2106 
2107 	case EMSGSIZE:
2108 		type = ICMP_UNREACH;
2109 		code = ICMP_UNREACH_NEEDFRAG;
2110 #ifdef IPSEC
2111 		/*
2112 		 * If the packet is routed over IPsec tunnel, tell the
2113 		 * originator the tunnel MTU.
2114 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2115 		 * XXX quickhack!!!
2116 		 */
2117 		if (fwd_ro.ro_rt != NULL) {
2118 			struct secpolicy *sp = NULL;
2119 			int ipsecerror;
2120 			int ipsechdr;
2121 			struct route *ro;
2122 
2123 			sp = ipsec4_getpolicybyaddr(mcopy,
2124 						    IPSEC_DIR_OUTBOUND,
2125 						    IP_FORWARDING,
2126 						    &ipsecerror);
2127 
2128 			if (sp == NULL)
2129 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2130 			else {
2131 				/* count IPsec header size */
2132 				ipsechdr = ipsec4_hdrsiz(mcopy,
2133 							 IPSEC_DIR_OUTBOUND,
2134 							 NULL);
2135 
2136 				/*
2137 				 * find the correct route for outer IPv4
2138 				 * header, compute tunnel MTU.
2139 				 *
2140 				 */
2141 				if (sp->req != NULL && sp->req->sav != NULL &&
2142 				    sp->req->sav->sah != NULL) {
2143 					ro = &sp->req->sav->sah->sa_route;
2144 					if (ro->ro_rt != NULL &&
2145 					    ro->ro_rt->rt_ifp != NULL) {
2146 						destmtu =
2147 						    ro->ro_rt->rt_ifp->if_mtu;
2148 						destmtu -= ipsechdr;
2149 					}
2150 				}
2151 
2152 				key_freesp(sp);
2153 			}
2154 		}
2155 #elif defined(FAST_IPSEC)
2156 		/*
2157 		 * If the packet is routed over IPsec tunnel, tell the
2158 		 * originator the tunnel MTU.
2159 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2160 		 * XXX quickhack!!!
2161 		 */
2162 		if (fwd_ro.ro_rt != NULL) {
2163 			struct secpolicy *sp = NULL;
2164 			int ipsecerror;
2165 			int ipsechdr;
2166 			struct route *ro;
2167 
2168 			sp = ipsec_getpolicybyaddr(mcopy,
2169 						   IPSEC_DIR_OUTBOUND,
2170 						   IP_FORWARDING,
2171 						   &ipsecerror);
2172 
2173 			if (sp == NULL)
2174 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2175 			else {
2176 				/* count IPsec header size */
2177 				ipsechdr = ipsec4_hdrsiz(mcopy,
2178 							 IPSEC_DIR_OUTBOUND,
2179 							 NULL);
2180 
2181 				/*
2182 				 * find the correct route for outer IPv4
2183 				 * header, compute tunnel MTU.
2184 				 */
2185 
2186 				if (sp->req != NULL &&
2187 				    sp->req->sav != NULL &&
2188 				    sp->req->sav->sah != NULL) {
2189 					ro = &sp->req->sav->sah->sa_route;
2190 					if (ro->ro_rt != NULL &&
2191 					    ro->ro_rt->rt_ifp != NULL) {
2192 						destmtu =
2193 						    ro->ro_rt->rt_ifp->if_mtu;
2194 						destmtu -= ipsechdr;
2195 					}
2196 				}
2197 
2198 				KEY_FREESP(&sp);
2199 			}
2200 		}
2201 #else /* !IPSEC && !FAST_IPSEC */
2202 		if (fwd_ro.ro_rt != NULL)
2203 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2204 #endif /*IPSEC*/
2205 		ipstat.ips_cantfrag++;
2206 		break;
2207 
2208 	case ENOBUFS:
2209 		type = ICMP_SOURCEQUENCH;
2210 		code = 0;
2211 		break;
2212 
2213 	case EACCES:			/* ipfw denied packet */
2214 		panic("ip_forward EACCES should not reach");
2215 	}
2216 	icmp_error(mcopy, type, code, dest, destmtu);
2217 done:
2218 	if (mtemp != NULL)
2219 		m_tag_delete_chain(mtemp);
2220 	if (fwd_ro.ro_rt != NULL)
2221 		RTFREE(fwd_ro.ro_rt);
2222 }
2223 
2224 void
2225 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2226 	       struct mbuf *m)
2227 {
2228 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2229 		struct timeval tv;
2230 
2231 		microtime(&tv);
2232 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2233 		    SCM_TIMESTAMP, SOL_SOCKET);
2234 		if (*mp)
2235 			mp = &(*mp)->m_next;
2236 	}
2237 	if (inp->inp_flags & INP_RECVDSTADDR) {
2238 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2239 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2240 		if (*mp)
2241 			mp = &(*mp)->m_next;
2242 	}
2243 	if (inp->inp_flags & INP_RECVTTL) {
2244 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2245 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2246 		if (*mp)
2247 			mp = &(*mp)->m_next;
2248 	}
2249 #ifdef notyet
2250 	/* XXX
2251 	 * Moving these out of udp_input() made them even more broken
2252 	 * than they already were.
2253 	 */
2254 	/* options were tossed already */
2255 	if (inp->inp_flags & INP_RECVOPTS) {
2256 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2257 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2258 		if (*mp)
2259 			mp = &(*mp)->m_next;
2260 	}
2261 	/* ip_srcroute doesn't do what we want here, need to fix */
2262 	if (inp->inp_flags & INP_RECVRETOPTS) {
2263 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2264 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2265 		if (*mp)
2266 			mp = &(*mp)->m_next;
2267 	}
2268 #endif
2269 	if (inp->inp_flags & INP_RECVIF) {
2270 		struct ifnet *ifp;
2271 		struct sdlbuf {
2272 			struct sockaddr_dl sdl;
2273 			u_char	pad[32];
2274 		} sdlbuf;
2275 		struct sockaddr_dl *sdp;
2276 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2277 
2278 		if (((ifp = m->m_pkthdr.rcvif)) &&
2279 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2280 			sdp = IF_LLSOCKADDR(ifp);
2281 			/*
2282 			 * Change our mind and don't try copy.
2283 			 */
2284 			if ((sdp->sdl_family != AF_LINK) ||
2285 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2286 				goto makedummy;
2287 			}
2288 			bcopy(sdp, sdl2, sdp->sdl_len);
2289 		} else {
2290 makedummy:
2291 			sdl2->sdl_len =
2292 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2293 			sdl2->sdl_family = AF_LINK;
2294 			sdl2->sdl_index = 0;
2295 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2296 		}
2297 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2298 			IP_RECVIF, IPPROTO_IP);
2299 		if (*mp)
2300 			mp = &(*mp)->m_next;
2301 	}
2302 }
2303 
2304 /*
2305  * XXX these routines are called from the upper part of the kernel.
2306  *
2307  * They could also be moved to ip_mroute.c, since all the RSVP
2308  *  handling is done there already.
2309  */
2310 int
2311 ip_rsvp_init(struct socket *so)
2312 {
2313 	if (so->so_type != SOCK_RAW ||
2314 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2315 		return EOPNOTSUPP;
2316 
2317 	if (ip_rsvpd != NULL)
2318 		return EADDRINUSE;
2319 
2320 	ip_rsvpd = so;
2321 	/*
2322 	 * This may seem silly, but we need to be sure we don't over-increment
2323 	 * the RSVP counter, in case something slips up.
2324 	 */
2325 	if (!ip_rsvp_on) {
2326 		ip_rsvp_on = 1;
2327 		rsvp_on++;
2328 	}
2329 
2330 	return 0;
2331 }
2332 
2333 int
2334 ip_rsvp_done(void)
2335 {
2336 	ip_rsvpd = NULL;
2337 	/*
2338 	 * This may seem silly, but we need to be sure we don't over-decrement
2339 	 * the RSVP counter, in case something slips up.
2340 	 */
2341 	if (ip_rsvp_on) {
2342 		ip_rsvp_on = 0;
2343 		rsvp_on--;
2344 	}
2345 	return 0;
2346 }
2347 
2348 int
2349 rsvp_input(struct mbuf **mp, int *offp, int proto)
2350 {
2351 	struct mbuf *m = *mp;
2352 
2353 	*mp = NULL;
2354 
2355 	if (rsvp_input_p) { /* call the real one if loaded */
2356 		*mp = m;
2357 		rsvp_input_p(mp, offp, proto);
2358 		return(IPPROTO_DONE);
2359 	}
2360 
2361 	/* Can still get packets with rsvp_on = 0 if there is a local member
2362 	 * of the group to which the RSVP packet is addressed.  But in this
2363 	 * case we want to throw the packet away.
2364 	 */
2365 
2366 	if (!rsvp_on) {
2367 		m_freem(m);
2368 		return(IPPROTO_DONE);
2369 	}
2370 
2371 	if (ip_rsvpd != NULL) {
2372 		*mp = m;
2373 		rip_input(mp, offp, proto);
2374 		return(IPPROTO_DONE);
2375 	}
2376 	/* Drop the packet */
2377 	m_freem(m);
2378 	return(IPPROTO_DONE);
2379 }
2380