xref: /dragonfly/sys/netinet/ip_input.c (revision 3d201fd0)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1993
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
84  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
85  * $DragonFly: src/sys/netinet/ip_input.c,v 1.58 2005/08/31 22:21:23 hsu Exp $
86  */
87 
88 #define	_IP_VHL
89 
90 #include "opt_bootp.h"
91 #include "opt_ipfw.h"
92 #include "opt_ipdn.h"
93 #include "opt_ipdivert.h"
94 #include "opt_ipfilter.h"
95 #include "opt_ipstealth.h"
96 #include "opt_ipsec.h"
97 
98 #include <sys/param.h>
99 #include <sys/systm.h>
100 #include <sys/mbuf.h>
101 #include <sys/malloc.h>
102 #include <sys/mpipe.h>
103 #include <sys/domain.h>
104 #include <sys/protosw.h>
105 #include <sys/socket.h>
106 #include <sys/time.h>
107 #include <sys/globaldata.h>
108 #include <sys/thread.h>
109 #include <sys/kernel.h>
110 #include <sys/syslog.h>
111 #include <sys/sysctl.h>
112 #include <sys/in_cksum.h>
113 
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116 
117 #include <machine/stdarg.h>
118 
119 #include <net/if.h>
120 #include <net/if_types.h>
121 #include <net/if_var.h>
122 #include <net/if_dl.h>
123 #include <net/pfil.h>
124 #include <net/route.h>
125 #include <net/netisr.h>
126 #include <net/intrq.h>
127 
128 #include <netinet/in.h>
129 #include <netinet/in_systm.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135 
136 
137 #include <sys/socketvar.h>
138 
139 #include <net/ipfw/ip_fw.h>
140 #include <net/dummynet/ip_dummynet.h>
141 
142 #ifdef IPSEC
143 #include <netinet6/ipsec.h>
144 #include <netproto/key/key.h>
145 #endif
146 
147 #ifdef FAST_IPSEC
148 #include <netproto/ipsec/ipsec.h>
149 #include <netproto/ipsec/key.h>
150 #endif
151 
152 int rsvp_on = 0;
153 static int ip_rsvp_on;
154 struct socket *ip_rsvpd;
155 
156 int ipforwarding = 0;
157 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
158     &ipforwarding, 0, "Enable IP forwarding between interfaces");
159 
160 static int ipsendredirects = 1; /* XXX */
161 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
162     &ipsendredirects, 0, "Enable sending IP redirects");
163 
164 int ip_defttl = IPDEFTTL;
165 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
166     &ip_defttl, 0, "Maximum TTL on IP packets");
167 
168 static int ip_dosourceroute = 0;
169 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
170     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
171 
172 static int ip_acceptsourceroute = 0;
173 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
174     CTLFLAG_RW, &ip_acceptsourceroute, 0,
175     "Enable accepting source routed IP packets");
176 
177 static int ip_keepfaith = 0;
178 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
179     &ip_keepfaith, 0,
180     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
181 
182 static int nipq = 0;	/* total # of reass queues */
183 static int maxnipq;
184 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
185     &maxnipq, 0,
186     "Maximum number of IPv4 fragment reassembly queue entries");
187 
188 static int maxfragsperpacket;
189 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
190     &maxfragsperpacket, 0,
191     "Maximum number of IPv4 fragments allowed per packet");
192 
193 static int ip_sendsourcequench = 0;
194 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
195     &ip_sendsourcequench, 0,
196     "Enable the transmission of source quench packets");
197 
198 int ip_do_randomid = 0;
199 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
200     &ip_do_randomid, 0,
201     "Assign random ip_id values");
202 /*
203  * XXX - Setting ip_checkinterface mostly implements the receive side of
204  * the Strong ES model described in RFC 1122, but since the routing table
205  * and transmit implementation do not implement the Strong ES model,
206  * setting this to 1 results in an odd hybrid.
207  *
208  * XXX - ip_checkinterface currently must be disabled if you use ipnat
209  * to translate the destination address to another local interface.
210  *
211  * XXX - ip_checkinterface must be disabled if you add IP aliases
212  * to the loopback interface instead of the interface where the
213  * packets for those addresses are received.
214  */
215 static int ip_checkinterface = 0;
216 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
217     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
218 
219 #ifdef DIAGNOSTIC
220 static int ipprintfs = 0;
221 #endif
222 
223 static struct ifqueue ipintrq;
224 static int ipqmaxlen = IFQ_MAXLEN;
225 
226 extern	struct domain inetdomain;
227 extern	struct protosw inetsw[];
228 u_char	ip_protox[IPPROTO_MAX];
229 struct	in_ifaddrhead in_ifaddrhead;		/* first inet address */
230 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table */
231 u_long	in_ifaddrhmask;				/* mask for hash table */
232 
233 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
234     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
235 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
236     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
237 
238 struct ip_stats ipstats_percpu[MAXCPU];
239 #ifdef SMP
240 static int
241 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
242 {
243 	int cpu, error = 0;
244 
245 	for (cpu = 0; cpu < ncpus; ++cpu) {
246 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
247 					sizeof(struct ip_stats))))
248 			break;
249 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
250 				       sizeof(struct ip_stats))))
251 			break;
252 	}
253 
254 	return (error);
255 }
256 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
257     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
258 #else
259 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
260     &ipstat, ip_stats, "IP statistics");
261 #endif
262 
263 /* Packet reassembly stuff */
264 #define	IPREASS_NHASH_LOG2	6
265 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
266 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
267 #define	IPREASS_HASH(x,y)						\
268     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
269 
270 static struct ipq ipq[IPREASS_NHASH];
271 const  int    ipintrq_present = 1;
272 
273 #ifdef IPCTL_DEFMTU
274 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
275     &ip_mtu, 0, "Default MTU");
276 #endif
277 
278 #ifdef IPSTEALTH
279 static int ipstealth = 0;
280 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
281 #else
282 static const int ipstealth = 0;
283 #endif
284 
285 
286 /* Firewall hooks */
287 ip_fw_chk_t *ip_fw_chk_ptr;
288 int fw_enable = 1;
289 int fw_one_pass = 1;
290 
291 /* Dummynet hooks */
292 ip_dn_io_t *ip_dn_io_ptr;
293 
294 struct pfil_head inet_pfil_hook;
295 
296 /*
297  * XXX this is ugly -- the following two global variables are
298  * used to store packet state while it travels through the stack.
299  * Note that the code even makes assumptions on the size and
300  * alignment of fields inside struct ip_srcrt so e.g. adding some
301  * fields will break the code. This needs to be fixed.
302  *
303  * We need to save the IP options in case a protocol wants to respond
304  * to an incoming packet over the same route if the packet got here
305  * using IP source routing.  This allows connection establishment and
306  * maintenance when the remote end is on a network that is not known
307  * to us.
308  */
309 static int ip_nhops = 0;
310 
311 static	struct ip_srcrt {
312 	struct	in_addr dst;			/* final destination */
313 	char	nop;				/* one NOP to align */
314 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
315 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
316 } ip_srcrt;
317 
318 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
319 static struct malloc_pipe ipq_mpipe;
320 
321 static void		save_rte (u_char *, struct in_addr);
322 static int		ip_dooptions (struct mbuf *m, int,
323 					struct sockaddr_in *next_hop);
324 static void		ip_forward (struct mbuf *m, boolean_t using_srcrt,
325 					struct sockaddr_in *next_hop);
326 static void		ip_freef (struct ipq *);
327 static int		ip_input_handler (struct netmsg *);
328 static struct mbuf	*ip_reass (struct mbuf *, struct ipq *,
329 					struct ipq *, u_int32_t *);
330 
331 /*
332  * IP initialization: fill in IP protocol switch table.
333  * All protocols not implemented in kernel go to raw IP protocol handler.
334  */
335 void
336 ip_init(void)
337 {
338 	struct protosw *pr;
339 	int i;
340 #ifdef SMP
341 	int cpu;
342 #endif
343 
344 	/*
345 	 * Make sure we can handle a reasonable number of fragments but
346 	 * cap it at 4000 (XXX).
347 	 */
348 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
349 		    IFQ_MAXLEN, 4000, 0, NULL);
350 	TAILQ_INIT(&in_ifaddrhead);
351 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
352 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
353 	if (pr == NULL)
354 		panic("ip_init");
355 	for (i = 0; i < IPPROTO_MAX; i++)
356 		ip_protox[i] = pr - inetsw;
357 	for (pr = inetdomain.dom_protosw;
358 	     pr < inetdomain.dom_protoswNPROTOSW; pr++)
359 		if (pr->pr_domain->dom_family == PF_INET &&
360 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
361 			ip_protox[pr->pr_protocol] = pr - inetsw;
362 
363 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
364 	inet_pfil_hook.ph_af = AF_INET;
365 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
366 		printf("%s: WARNING: unable to register pfil hook, "
367 			"error %d\n", __func__, i);
368 	}
369 
370 	for (i = 0; i < IPREASS_NHASH; i++)
371 	    ipq[i].next = ipq[i].prev = &ipq[i];
372 
373 	maxnipq = nmbclusters / 32;
374 	maxfragsperpacket = 16;
375 
376 	ip_id = time_second & 0xffff;
377 	ipintrq.ifq_maxlen = ipqmaxlen;
378 
379 	/*
380 	 * Initialize IP statistics counters for each CPU.
381 	 *
382 	 */
383 #ifdef SMP
384 	for (cpu = 0; cpu < ncpus; ++cpu) {
385 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
386 	}
387 #else
388 	bzero(&ipstat, sizeof(struct ip_stats));
389 #endif
390 
391 	netisr_register(NETISR_IP, ip_mport, ip_input_handler);
392 }
393 
394 /*
395  * XXX watch out this one. It is perhaps used as a cache for
396  * the most recently used route ? it is cleared in in_addroute()
397  * when a new route is successfully created.
398  */
399 struct route ipforward_rt;
400 
401 /* Do transport protocol processing. */
402 static void
403 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
404 			   struct sockaddr_in *nexthop)
405 {
406 	/*
407 	 * Switch out to protocol's input routine.
408 	 */
409 	if (nexthop && ip->ip_p == IPPROTO_TCP) {
410 		/* TCP needs IPFORWARD info if available */
411 		struct m_hdr tag;
412 
413 		tag.mh_type = MT_TAG;
414 		tag.mh_flags = PACKET_TAG_IPFORWARD;
415 		tag.mh_data = (caddr_t)nexthop;
416 		tag.mh_next = m;
417 
418 		(*inetsw[ip_protox[ip->ip_p]].pr_input)
419 		    ((struct mbuf *)&tag, hlen, ip->ip_p);
420 	} else {
421 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
422 	}
423 }
424 
425 struct netmsg_transport_packet {
426 	struct lwkt_msg		nm_lmsg;
427 	struct mbuf		*nm_mbuf;
428 	int			nm_hlen;
429 	boolean_t		nm_hasnexthop;
430 	struct sockaddr_in	nm_nexthop;
431 };
432 
433 static int
434 transport_processing_handler(lwkt_msg_t lmsg)
435 {
436 	struct netmsg_transport_packet *msg = (void *)lmsg;
437 	struct sockaddr_in *nexthop;
438 	struct ip *ip;
439 
440 	ip = mtod(msg->nm_mbuf, struct ip *);
441 	nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
442 	transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
443 	lwkt_replymsg(lmsg, 0);
444 	return(EASYNC);
445 }
446 
447 static int
448 ip_input_handler(struct netmsg *msg0)
449 {
450 	struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
451 
452 	ip_input(m);
453 	lwkt_replymsg(&msg0->nm_lmsg, 0);
454 	return(EASYNC);
455 }
456 
457 /*
458  * IP input routine.  Checksum and byte swap header.  If fragmented
459  * try to reassemble.  Process options.  Pass to next level.
460  */
461 void
462 ip_input(struct mbuf *m)
463 {
464 	struct ip *ip;
465 	struct ipq *fp;
466 	struct in_ifaddr *ia = NULL;
467 	struct ifaddr *ifa;
468 	int i, hlen, checkif;
469 	u_short sum;
470 	struct in_addr pkt_dst;
471 	u_int32_t divert_info = 0;		/* packet divert/tee info */
472 	struct ip_fw_args args;
473 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
474 	boolean_t needredispatch = FALSE;
475 	struct in_addr odst;			/* original dst address(NAT) */
476 #if defined(FAST_IPSEC) || defined(IPDIVERT)
477 	struct m_tag *mtag;
478 #endif
479 #ifdef FAST_IPSEC
480 	struct tdb_ident *tdbi;
481 	struct secpolicy *sp;
482 	int error;
483 #endif
484 
485 	args.eh = NULL;
486 	args.oif = NULL;
487 	args.rule = NULL;
488 	args.next_hop = NULL;
489 
490 	/* Grab info from MT_TAG mbufs prepended to the chain. */
491 	while (m != NULL && m->m_type == MT_TAG) {
492 		switch(m->_m_tag_id) {
493 		case PACKET_TAG_DUMMYNET:
494 			args.rule = ((struct dn_pkt *)m)->rule;
495 			break;
496 		case PACKET_TAG_IPFORWARD:
497 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
498 			break;
499 		default:
500 			printf("ip_input: unrecognised MT_TAG tag %d\n",
501 			    m->_m_tag_id);
502 			break;
503 		}
504 		m = m->m_next;
505 	}
506 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_input: no HDR"));
507 
508 	if (args.rule != NULL) {	/* dummynet already filtered us */
509 		ip = mtod(m, struct ip *);
510 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
511 		goto iphack;
512 	}
513 
514 	ipstat.ips_total++;
515 
516 	/* length checks already done in ip_demux() */
517 	KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
518 
519 	ip = mtod(m, struct ip *);
520 
521 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
522 		ipstat.ips_badvers++;
523 		goto bad;
524 	}
525 
526 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
527 	/* length checks already done in ip_demux() */
528 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
529 	KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
530 
531 	/* 127/8 must not appear on wire - RFC1122 */
532 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
533 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
534 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
535 			ipstat.ips_badaddr++;
536 			goto bad;
537 		}
538 	}
539 
540 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
541 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
542 	} else {
543 		if (hlen == sizeof(struct ip)) {
544 			sum = in_cksum_hdr(ip);
545 		} else {
546 			sum = in_cksum(m, hlen);
547 		}
548 	}
549 	if (sum != 0) {
550 		ipstat.ips_badsum++;
551 		goto bad;
552 	}
553 
554 #ifdef ALTQ
555 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
556 		/* packet is dropped by traffic conditioner */
557 		return;
558 	}
559 #endif
560 	/*
561 	 * Convert fields to host representation.
562 	 */
563 	ip->ip_len = ntohs(ip->ip_len);
564 	if (ip->ip_len < hlen) {
565 		ipstat.ips_badlen++;
566 		goto bad;
567 	}
568 	ip->ip_off = ntohs(ip->ip_off);
569 
570 	/*
571 	 * Check that the amount of data in the buffers
572 	 * is as at least much as the IP header would have us expect.
573 	 * Trim mbufs if longer than we expect.
574 	 * Drop packet if shorter than we expect.
575 	 */
576 	if (m->m_pkthdr.len < ip->ip_len) {
577 		ipstat.ips_tooshort++;
578 		goto bad;
579 	}
580 	if (m->m_pkthdr.len > ip->ip_len) {
581 		if (m->m_len == m->m_pkthdr.len) {
582 			m->m_len = ip->ip_len;
583 			m->m_pkthdr.len = ip->ip_len;
584 		} else
585 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
586 	}
587 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
588 	/*
589 	 * Bypass packet filtering for packets from a tunnel (gif).
590 	 */
591 	if (ipsec_gethist(m, NULL))
592 		goto pass;
593 #endif
594 
595 	/*
596 	 * IpHack's section.
597 	 * Right now when no processing on packet has done
598 	 * and it is still fresh out of network we do our black
599 	 * deals with it.
600 	 * - Firewall: deny/allow/divert
601 	 * - Xlate: translate packet's addr/port (NAT).
602 	 * - Pipe: pass pkt through dummynet.
603 	 * - Wrap: fake packet's addr/port <unimpl.>
604 	 * - Encapsulate: put it in another IP and send out. <unimp.>
605 	 */
606 
607 iphack:
608 
609 	/*
610 	 * Run through list of hooks for input packets.
611 	 *
612 	 * NB: Beware of the destination address changing (e.g.
613 	 *     by NAT rewriting). When this happens, tell
614 	 *     ip_forward to do the right thing.
615 	 */
616 	if (pfil_has_hooks(&inet_pfil_hook)) {
617 		odst = ip->ip_dst;
618 		if (pfil_run_hooks(&inet_pfil_hook, &m,
619 		    m->m_pkthdr.rcvif, PFIL_IN)) {
620 			return;
621 		}
622 		if (m == NULL)			/* consumed by filter */
623 			return;
624 		ip = mtod(m, struct ip *);
625 		using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
626 	}
627 
628 	if (fw_enable && IPFW_LOADED) {
629 		/*
630 		 * If we've been forwarded from the output side, then
631 		 * skip the firewall a second time
632 		 */
633 		if (args.next_hop != NULL)
634 			goto ours;
635 
636 		args.m = m;
637 		i = ip_fw_chk_ptr(&args);
638 		m = args.m;
639 
640 		if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) {	/* drop */
641 			if (m != NULL)
642 				m_freem(m);
643 			return;
644 		}
645 		ip = mtod(m, struct ip *);	/* just in case m changed */
646 		if (i == 0 && args.next_hop == NULL)	/* common case */
647 			goto pass;
648 		if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
649 			/* Send packet to the appropriate pipe */
650 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
651 			return;
652 		}
653 #ifdef IPDIVERT
654 		if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
655 			/* Divert or tee packet */
656 			divert_info = i;
657 			goto ours;
658 		}
659 #endif
660 		if (i == 0 && args.next_hop != NULL)
661 			goto pass;
662 		/*
663 		 * if we get here, the packet must be dropped
664 		 */
665 		m_freem(m);
666 		return;
667 	}
668 pass:
669 
670 	/*
671 	 * Process options and, if not destined for us,
672 	 * ship it on.  ip_dooptions returns 1 when an
673 	 * error was detected (causing an icmp message
674 	 * to be sent and the original packet to be freed).
675 	 */
676 	ip_nhops = 0;		/* for source routed packets */
677 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
678 		return;
679 
680 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
681 	 * matter if it is destined to another node, or whether it is
682 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
683 	 * anywhere else. Also checks if the rsvp daemon is running before
684 	 * grabbing the packet.
685 	 */
686 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
687 		goto ours;
688 
689 	/*
690 	 * Check our list of addresses, to see if the packet is for us.
691 	 * If we don't have any addresses, assume any unicast packet
692 	 * we receive might be for us (and let the upper layers deal
693 	 * with it).
694 	 */
695 	if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
696 		goto ours;
697 
698 	/*
699 	 * Cache the destination address of the packet; this may be
700 	 * changed by use of 'ipfw fwd'.
701 	 */
702 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
703 
704 	/*
705 	 * Enable a consistency check between the destination address
706 	 * and the arrival interface for a unicast packet (the RFC 1122
707 	 * strong ES model) if IP forwarding is disabled and the packet
708 	 * is not locally generated and the packet is not subject to
709 	 * 'ipfw fwd'.
710 	 *
711 	 * XXX - Checking also should be disabled if the destination
712 	 * address is ipnat'ed to a different interface.
713 	 *
714 	 * XXX - Checking is incompatible with IP aliases added
715 	 * to the loopback interface instead of the interface where
716 	 * the packets are received.
717 	 */
718 	checkif = ip_checkinterface &&
719 		  !ipforwarding &&
720 		  m->m_pkthdr.rcvif != NULL &&
721 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
722 		  (args.next_hop == NULL);
723 
724 	/*
725 	 * Check for exact addresses in the hash bucket.
726 	 */
727 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
728 		/*
729 		 * If the address matches, verify that the packet
730 		 * arrived via the correct interface if checking is
731 		 * enabled.
732 		 */
733 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
734 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
735 			goto ours;
736 	}
737 	/*
738 	 * Check for broadcast addresses.
739 	 *
740 	 * Only accept broadcast packets that arrive via the matching
741 	 * interface.  Reception of forwarded directed broadcasts would
742 	 * be handled via ip_forward() and ether_output() with the loopback
743 	 * into the stack for SIMPLEX interfaces handled by ether_output().
744 	 */
745 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
746 		TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
747 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
748 				continue;
749 			if (ifa->ifa_addr->sa_family != AF_INET)
750 				continue;
751 			ia = ifatoia(ifa);
752 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
753 								pkt_dst.s_addr)
754 				goto ours;
755 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
756 				goto ours;
757 #ifdef BOOTP_COMPAT
758 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
759 				goto ours;
760 #endif
761 		}
762 	}
763 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
764 		struct in_multi *inm;
765 
766 		if (ip_mrouter != NULL) {
767 			/*
768 			 * If we are acting as a multicast router, all
769 			 * incoming multicast packets are passed to the
770 			 * kernel-level multicast forwarding function.
771 			 * The packet is returned (relatively) intact; if
772 			 * ip_mforward() returns a non-zero value, the packet
773 			 * must be discarded, else it may be accepted below.
774 			 */
775 			if (ip_mforward != NULL &&
776 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
777 				ipstat.ips_cantforward++;
778 				m_freem(m);
779 				return;
780 			}
781 
782 			/*
783 			 * The process-level routing daemon needs to receive
784 			 * all multicast IGMP packets, whether or not this
785 			 * host belongs to their destination groups.
786 			 */
787 			if (ip->ip_p == IPPROTO_IGMP)
788 				goto ours;
789 			ipstat.ips_forward++;
790 		}
791 		/*
792 		 * See if we belong to the destination multicast group on the
793 		 * arrival interface.
794 		 */
795 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
796 		if (inm == NULL) {
797 			ipstat.ips_notmember++;
798 			m_freem(m);
799 			return;
800 		}
801 		goto ours;
802 	}
803 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
804 		goto ours;
805 	if (ip->ip_dst.s_addr == INADDR_ANY)
806 		goto ours;
807 
808 	/*
809 	 * FAITH(Firewall Aided Internet Translator)
810 	 */
811 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
812 		if (ip_keepfaith) {
813 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
814 				goto ours;
815 		}
816 		m_freem(m);
817 		return;
818 	}
819 
820 	/*
821 	 * Not for us; forward if possible and desirable.
822 	 */
823 	if (!ipforwarding) {
824 		ipstat.ips_cantforward++;
825 		m_freem(m);
826 	} else {
827 #ifdef IPSEC
828 		/*
829 		 * Enforce inbound IPsec SPD.
830 		 */
831 		if (ipsec4_in_reject(m, NULL)) {
832 			ipsecstat.in_polvio++;
833 			goto bad;
834 		}
835 #endif
836 #ifdef FAST_IPSEC
837 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
838 		crit_enter();
839 		if (mtag != NULL) {
840 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
841 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
842 		} else {
843 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
844 						   IP_FORWARDING, &error);
845 		}
846 		if (sp == NULL) {	/* NB: can happen if error */
847 			crit_exit();
848 			/*XXX error stat???*/
849 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
850 			goto bad;
851 		}
852 
853 		/*
854 		 * Check security policy against packet attributes.
855 		 */
856 		error = ipsec_in_reject(sp, m);
857 		KEY_FREESP(&sp);
858 		crit_exit();
859 		if (error) {
860 			ipstat.ips_cantforward++;
861 			goto bad;
862 		}
863 #endif
864 		ip_forward(m, using_srcrt, args.next_hop);
865 	}
866 	return;
867 
868 ours:
869 
870 	/*
871 	 * IPSTEALTH: Process non-routing options only
872 	 * if the packet is destined for us.
873 	 */
874 	if (ipstealth &&
875 	    hlen > sizeof(struct ip) &&
876 	    ip_dooptions(m, 1, args.next_hop))
877 		return;
878 
879 	/* Count the packet in the ip address stats */
880 	if (ia != NULL) {
881 		ia->ia_ifa.if_ipackets++;
882 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
883 	}
884 
885 	/*
886 	 * If offset or IP_MF are set, must reassemble.
887 	 * Otherwise, nothing need be done.
888 	 * (We could look in the reassembly queue to see
889 	 * if the packet was previously fragmented,
890 	 * but it's not worth the time; just let them time out.)
891 	 */
892 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
893 
894 		/* If maxnipq is 0, never accept fragments. */
895 		if (maxnipq == 0) {
896 			ipstat.ips_fragments++;
897 			ipstat.ips_fragdropped++;
898 			goto bad;
899 		}
900 
901 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
902 		/*
903 		 * Look for queue of fragments
904 		 * of this datagram.
905 		 */
906 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
907 			if (ip->ip_id == fp->ipq_id &&
908 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
909 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
910 			    ip->ip_p == fp->ipq_p)
911 				goto found;
912 
913 		fp = NULL;
914 
915 		/*
916 		 * Enforce upper bound on number of fragmented packets
917 		 * for which we attempt reassembly;
918 		 * If maxnipq is -1, accept all fragments without limitation.
919 		 */
920 		if ((nipq > maxnipq) && (maxnipq > 0)) {
921 			/*
922 			 * drop something from the tail of the current queue
923 			 * before proceeding further
924 			 */
925 			if (ipq[sum].prev == &ipq[sum]) {   /* gak */
926 				for (i = 0; i < IPREASS_NHASH; i++) {
927 					if (ipq[i].prev != &ipq[i]) {
928 						ipstat.ips_fragtimeout +=
929 						    ipq[i].prev->ipq_nfrags;
930 						ip_freef(ipq[i].prev);
931 						break;
932 					}
933 				}
934 			} else {
935 				ipstat.ips_fragtimeout +=
936 				    ipq[sum].prev->ipq_nfrags;
937 				ip_freef(ipq[sum].prev);
938 			}
939 		}
940 found:
941 		/*
942 		 * Adjust ip_len to not reflect header,
943 		 * convert offset of this to bytes.
944 		 */
945 		ip->ip_len -= hlen;
946 		if (ip->ip_off & IP_MF) {
947 			/*
948 			 * Make sure that fragments have a data length
949 			 * that's a non-zero multiple of 8 bytes.
950 			 */
951 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
952 				ipstat.ips_toosmall++; /* XXX */
953 				goto bad;
954 			}
955 			m->m_flags |= M_FRAG;
956 		} else
957 			m->m_flags &= ~M_FRAG;
958 		ip->ip_off <<= 3;
959 
960 		/*
961 		 * Attempt reassembly; if it succeeds, proceed.
962 		 * ip_reass() will return a different mbuf, and update
963 		 * the divert info in divert_info.
964 		 */
965 		ipstat.ips_fragments++;
966 		m->m_pkthdr.header = ip;
967 		m = ip_reass(m, fp, &ipq[sum], &divert_info);
968 		if (m == NULL)
969 			return;
970 		ipstat.ips_reassembled++;
971 		needredispatch = TRUE;
972 		ip = mtod(m, struct ip *);
973 		/* Get the header length of the reassembled packet */
974 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
975 #ifdef IPDIVERT
976 		/* Restore original checksum before diverting packet */
977 		if (divert_info != 0) {
978 			ip->ip_len += hlen;
979 			ip->ip_len = htons(ip->ip_len);
980 			ip->ip_off = htons(ip->ip_off);
981 			ip->ip_sum = 0;
982 			if (hlen == sizeof(struct ip))
983 				ip->ip_sum = in_cksum_hdr(ip);
984 			else
985 				ip->ip_sum = in_cksum(m, hlen);
986 			ip->ip_off = ntohs(ip->ip_off);
987 			ip->ip_len = ntohs(ip->ip_len);
988 			ip->ip_len -= hlen;
989 		}
990 #endif
991 	} else {
992 		ip->ip_len -= hlen;
993 	}
994 
995 #ifdef IPDIVERT
996 	/*
997 	 * Divert or tee packet to the divert protocol if required.
998 	 */
999 	if (divert_info != 0) {
1000 		struct mbuf *clone = NULL;
1001 
1002 		/* Clone packet if we're doing a 'tee' */
1003 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
1004 			clone = m_dup(m, MB_DONTWAIT);
1005 
1006 		/* Restore packet header fields to original values */
1007 		ip->ip_len += hlen;
1008 		ip->ip_len = htons(ip->ip_len);
1009 		ip->ip_off = htons(ip->ip_off);
1010 
1011 		/* Deliver packet to divert input routine */
1012 		divert_packet(m, 1, divert_info & 0xffff);
1013 		ipstat.ips_delivered++;
1014 
1015 		/* If 'tee', continue with original packet */
1016 		if (clone == NULL)
1017 			return;
1018 		m = clone;
1019 		ip = mtod(m, struct ip *);
1020 		ip->ip_len += hlen;
1021 		/*
1022 		 * Jump backwards to complete processing of the
1023 		 * packet. But first clear divert_info to avoid
1024 		 * entering this block again.
1025 		 * We do not need to clear args.divert_rule
1026 		 * or args.next_hop as they will not be used.
1027 		 *
1028 		 * XXX Better safe than sorry, remove the DIVERT tag.
1029 		 */
1030 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1031 		if (mtag != NULL)
1032 			m_tag_delete(m, mtag);
1033 
1034 		divert_info = 0;
1035 		goto pass;
1036 	}
1037 #endif
1038 
1039 #ifdef IPSEC
1040 	/*
1041 	 * enforce IPsec policy checking if we are seeing last header.
1042 	 * note that we do not visit this with protocols with pcb layer
1043 	 * code - like udp/tcp/raw ip.
1044 	 */
1045 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1046 	    ipsec4_in_reject(m, NULL)) {
1047 		ipsecstat.in_polvio++;
1048 		goto bad;
1049 	}
1050 #endif
1051 #if FAST_IPSEC
1052 	/*
1053 	 * enforce IPsec policy checking if we are seeing last header.
1054 	 * note that we do not visit this with protocols with pcb layer
1055 	 * code - like udp/tcp/raw ip.
1056 	 */
1057 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1058 		/*
1059 		 * Check if the packet has already had IPsec processing
1060 		 * done.  If so, then just pass it along.  This tag gets
1061 		 * set during AH, ESP, etc. input handling, before the
1062 		 * packet is returned to the ip input queue for delivery.
1063 		 */
1064 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1065 		crit_enter();
1066 		if (mtag != NULL) {
1067 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
1068 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1069 		} else {
1070 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1071 						   IP_FORWARDING, &error);
1072 		}
1073 		if (sp != NULL) {
1074 			/*
1075 			 * Check security policy against packet attributes.
1076 			 */
1077 			error = ipsec_in_reject(sp, m);
1078 			KEY_FREESP(&sp);
1079 		} else {
1080 			/* XXX error stat??? */
1081 			error = EINVAL;
1082 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1083 			goto bad;
1084 		}
1085 		crit_exit();
1086 		if (error)
1087 			goto bad;
1088 	}
1089 #endif /* FAST_IPSEC */
1090 
1091 	ipstat.ips_delivered++;
1092 	if (needredispatch) {
1093 		struct netmsg_transport_packet *msg;
1094 		lwkt_port_t port;
1095 
1096 		ip->ip_off = htons(ip->ip_off);
1097 		ip->ip_len = htons(ip->ip_len);
1098 		port = ip_mport(&m);
1099 		if (port == NULL)
1100 			return;
1101 
1102 		msg = malloc(sizeof(struct netmsg_transport_packet), M_LWKTMSG,
1103 			     M_INTWAIT | M_NULLOK);
1104 		if (msg == NULL)
1105 			goto bad;
1106 
1107 		lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1108 			lwkt_cmd_func(transport_processing_handler),
1109 			lwkt_cmd_op_none);
1110 		msg->nm_hlen = hlen;
1111 		msg->nm_hasnexthop = (args.next_hop != NULL);
1112 		if (msg->nm_hasnexthop)
1113 			msg->nm_nexthop = *args.next_hop;  /* structure copy */
1114 
1115 		msg->nm_mbuf = m;
1116 		ip = mtod(m, struct ip *);
1117 		ip->ip_len = ntohs(ip->ip_len);
1118 		ip->ip_off = ntohs(ip->ip_off);
1119 		lwkt_sendmsg(port, &msg->nm_lmsg);
1120 	} else {
1121 		transport_processing_oncpu(m, hlen, ip, args.next_hop);
1122 	}
1123 	return;
1124 
1125 bad:
1126 	m_freem(m);
1127 }
1128 
1129 /*
1130  * Take incoming datagram fragment and try to reassemble it into
1131  * whole datagram.  If a chain for reassembly of this datagram already
1132  * exists, then it is given as fp; otherwise have to make a chain.
1133  *
1134  * When IPDIVERT enabled, keep additional state with each packet that
1135  * tells us if we need to divert or tee the packet we're building.
1136  * In particular, *divinfo includes the port and TEE flag.
1137  */
1138 
1139 static struct mbuf *
1140 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1141 	 u_int32_t *divinfo)
1142 {
1143 	struct ip *ip = mtod(m, struct ip *);
1144 	struct mbuf *p = NULL, *q, *nq;
1145 	struct mbuf *n;
1146 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1147 	int i, next;
1148 #ifdef IPDIVERT
1149 	struct m_tag *mtag;
1150 #endif
1151 
1152 	/*
1153 	 * Presence of header sizes in mbufs
1154 	 * would confuse code below.
1155 	 */
1156 	m->m_data += hlen;
1157 	m->m_len -= hlen;
1158 
1159 	/*
1160 	 * If first fragment to arrive, create a reassembly queue.
1161 	 */
1162 	if (fp == NULL) {
1163 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1164 			goto dropfrag;
1165 		insque(fp, where);
1166 		nipq++;
1167 		fp->ipq_nfrags = 1;
1168 		fp->ipq_ttl = IPFRAGTTL;
1169 		fp->ipq_p = ip->ip_p;
1170 		fp->ipq_id = ip->ip_id;
1171 		fp->ipq_src = ip->ip_src;
1172 		fp->ipq_dst = ip->ip_dst;
1173 		fp->ipq_frags = m;
1174 		m->m_nextpkt = NULL;
1175 #ifdef IPDIVERT
1176 		fp->ipq_div_info = 0;
1177 #endif
1178 		goto inserted;
1179 	} else {
1180 		fp->ipq_nfrags++;
1181 	}
1182 
1183 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1184 
1185 	/*
1186 	 * Find a segment which begins after this one does.
1187 	 */
1188 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1189 		if (GETIP(q)->ip_off > ip->ip_off)
1190 			break;
1191 
1192 	/*
1193 	 * If there is a preceding segment, it may provide some of
1194 	 * our data already.  If so, drop the data from the incoming
1195 	 * segment.  If it provides all of our data, drop us, otherwise
1196 	 * stick new segment in the proper place.
1197 	 *
1198 	 * If some of the data is dropped from the the preceding
1199 	 * segment, then it's checksum is invalidated.
1200 	 */
1201 	if (p) {
1202 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1203 		if (i > 0) {
1204 			if (i >= ip->ip_len)
1205 				goto dropfrag;
1206 			m_adj(m, i);
1207 			m->m_pkthdr.csum_flags = 0;
1208 			ip->ip_off += i;
1209 			ip->ip_len -= i;
1210 		}
1211 		m->m_nextpkt = p->m_nextpkt;
1212 		p->m_nextpkt = m;
1213 	} else {
1214 		m->m_nextpkt = fp->ipq_frags;
1215 		fp->ipq_frags = m;
1216 	}
1217 
1218 	/*
1219 	 * While we overlap succeeding segments trim them or,
1220 	 * if they are completely covered, dequeue them.
1221 	 */
1222 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1223 	     q = nq) {
1224 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1225 		if (i < GETIP(q)->ip_len) {
1226 			GETIP(q)->ip_len -= i;
1227 			GETIP(q)->ip_off += i;
1228 			m_adj(q, i);
1229 			q->m_pkthdr.csum_flags = 0;
1230 			break;
1231 		}
1232 		nq = q->m_nextpkt;
1233 		m->m_nextpkt = nq;
1234 		ipstat.ips_fragdropped++;
1235 		fp->ipq_nfrags--;
1236 		m_freem(q);
1237 	}
1238 
1239 inserted:
1240 
1241 #ifdef IPDIVERT
1242 	/*
1243 	 * Transfer firewall instructions to the fragment structure.
1244 	 * Only trust info in the fragment at offset 0.
1245 	 */
1246 	if (ip->ip_off == 0) {
1247 		fp->ipq_div_info = *divinfo;
1248 	} else {
1249 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1250 		if (mtag != NULL)
1251 			m_tag_delete(m, mtag);
1252 	}
1253 	*divinfo = 0;
1254 #endif
1255 
1256 	/*
1257 	 * Check for complete reassembly and perform frag per packet
1258 	 * limiting.
1259 	 *
1260 	 * Frag limiting is performed here so that the nth frag has
1261 	 * a chance to complete the packet before we drop the packet.
1262 	 * As a result, n+1 frags are actually allowed per packet, but
1263 	 * only n will ever be stored. (n = maxfragsperpacket.)
1264 	 *
1265 	 */
1266 	next = 0;
1267 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1268 		if (GETIP(q)->ip_off != next) {
1269 			if (fp->ipq_nfrags > maxfragsperpacket) {
1270 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1271 				ip_freef(fp);
1272 			}
1273 			return (NULL);
1274 		}
1275 		next += GETIP(q)->ip_len;
1276 	}
1277 	/* Make sure the last packet didn't have the IP_MF flag */
1278 	if (p->m_flags & M_FRAG) {
1279 		if (fp->ipq_nfrags > maxfragsperpacket) {
1280 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1281 			ip_freef(fp);
1282 		}
1283 		return (NULL);
1284 	}
1285 
1286 	/*
1287 	 * Reassembly is complete.  Make sure the packet is a sane size.
1288 	 */
1289 	q = fp->ipq_frags;
1290 	ip = GETIP(q);
1291 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1292 		ipstat.ips_toolong++;
1293 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1294 		ip_freef(fp);
1295 		return (NULL);
1296 	}
1297 
1298 	/*
1299 	 * Concatenate fragments.
1300 	 */
1301 	m = q;
1302 	n = m->m_next;
1303 	m->m_next = NULL;
1304 	m_cat(m, n);
1305 	nq = q->m_nextpkt;
1306 	q->m_nextpkt = NULL;
1307 	for (q = nq; q != NULL; q = nq) {
1308 		nq = q->m_nextpkt;
1309 		q->m_nextpkt = NULL;
1310 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1311 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1312 		m_cat(m, q);
1313 	}
1314 
1315 #ifdef IPDIVERT
1316 	/*
1317 	 * Extract firewall instructions from the fragment structure.
1318 	 */
1319 	*divinfo = fp->ipq_div_info;
1320 #endif
1321 
1322 	/*
1323 	 * Create header for new ip packet by
1324 	 * modifying header of first packet;
1325 	 * dequeue and discard fragment reassembly header.
1326 	 * Make header visible.
1327 	 */
1328 	ip->ip_len = next;
1329 	ip->ip_src = fp->ipq_src;
1330 	ip->ip_dst = fp->ipq_dst;
1331 	remque(fp);
1332 	nipq--;
1333 	mpipe_free(&ipq_mpipe, fp);
1334 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1335 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1336 	/* some debugging cruft by sklower, below, will go away soon */
1337 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1338 		int plen = 0;
1339 
1340 		for (n = m; n; n = n->m_next)
1341 			plen += n->m_len;
1342 		m->m_pkthdr.len = plen;
1343 	}
1344 	return (m);
1345 
1346 dropfrag:
1347 #ifdef IPDIVERT
1348 	*divinfo = 0;
1349 #endif
1350 	ipstat.ips_fragdropped++;
1351 	if (fp != NULL)
1352 		fp->ipq_nfrags--;
1353 	m_freem(m);
1354 	return (NULL);
1355 
1356 #undef GETIP
1357 }
1358 
1359 /*
1360  * Free a fragment reassembly header and all
1361  * associated datagrams.
1362  */
1363 static void
1364 ip_freef(struct ipq *fp)
1365 {
1366 	struct mbuf *q;
1367 
1368 	while (fp->ipq_frags) {
1369 		q = fp->ipq_frags;
1370 		fp->ipq_frags = q->m_nextpkt;
1371 		m_freem(q);
1372 	}
1373 	remque(fp);
1374 	mpipe_free(&ipq_mpipe, fp);
1375 	nipq--;
1376 }
1377 
1378 /*
1379  * IP timer processing;
1380  * if a timer expires on a reassembly
1381  * queue, discard it.
1382  */
1383 void
1384 ip_slowtimo(void)
1385 {
1386 	struct ipq *fp;
1387 	int i;
1388 
1389 	crit_enter();
1390 	for (i = 0; i < IPREASS_NHASH; i++) {
1391 		fp = ipq[i].next;
1392 		if (fp == NULL)
1393 			continue;
1394 		while (fp != &ipq[i]) {
1395 			--fp->ipq_ttl;
1396 			fp = fp->next;
1397 			if (fp->prev->ipq_ttl == 0) {
1398 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1399 				ip_freef(fp->prev);
1400 			}
1401 		}
1402 	}
1403 	/*
1404 	 * If we are over the maximum number of fragments
1405 	 * (due to the limit being lowered), drain off
1406 	 * enough to get down to the new limit.
1407 	 */
1408 	if (maxnipq >= 0 && nipq > maxnipq) {
1409 		for (i = 0; i < IPREASS_NHASH; i++) {
1410 			while (nipq > maxnipq &&
1411 				(ipq[i].next != &ipq[i])) {
1412 				ipstat.ips_fragdropped +=
1413 				    ipq[i].next->ipq_nfrags;
1414 				ip_freef(ipq[i].next);
1415 			}
1416 		}
1417 	}
1418 	ipflow_slowtimo();
1419 	crit_exit();
1420 }
1421 
1422 /*
1423  * Drain off all datagram fragments.
1424  */
1425 void
1426 ip_drain(void)
1427 {
1428 	int i;
1429 
1430 	for (i = 0; i < IPREASS_NHASH; i++) {
1431 		while (ipq[i].next != &ipq[i]) {
1432 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1433 			ip_freef(ipq[i].next);
1434 		}
1435 	}
1436 	in_rtqdrain();
1437 }
1438 
1439 /*
1440  * Do option processing on a datagram,
1441  * possibly discarding it if bad options are encountered,
1442  * or forwarding it if source-routed.
1443  * The pass argument is used when operating in the IPSTEALTH
1444  * mode to tell what options to process:
1445  * [LS]SRR (pass 0) or the others (pass 1).
1446  * The reason for as many as two passes is that when doing IPSTEALTH,
1447  * non-routing options should be processed only if the packet is for us.
1448  * Returns 1 if packet has been forwarded/freed,
1449  * 0 if the packet should be processed further.
1450  */
1451 static int
1452 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1453 {
1454 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1455 	struct ip *ip = mtod(m, struct ip *);
1456 	u_char *cp;
1457 	struct in_ifaddr *ia;
1458 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1459 	boolean_t forward = FALSE;
1460 	struct in_addr *sin, dst;
1461 	n_time ntime;
1462 
1463 	dst = ip->ip_dst;
1464 	cp = (u_char *)(ip + 1);
1465 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1466 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1467 		opt = cp[IPOPT_OPTVAL];
1468 		if (opt == IPOPT_EOL)
1469 			break;
1470 		if (opt == IPOPT_NOP)
1471 			optlen = 1;
1472 		else {
1473 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1474 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1475 				goto bad;
1476 			}
1477 			optlen = cp[IPOPT_OLEN];
1478 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1479 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1480 				goto bad;
1481 			}
1482 		}
1483 		switch (opt) {
1484 
1485 		default:
1486 			break;
1487 
1488 		/*
1489 		 * Source routing with record.
1490 		 * Find interface with current destination address.
1491 		 * If none on this machine then drop if strictly routed,
1492 		 * or do nothing if loosely routed.
1493 		 * Record interface address and bring up next address
1494 		 * component.  If strictly routed make sure next
1495 		 * address is on directly accessible net.
1496 		 */
1497 		case IPOPT_LSRR:
1498 		case IPOPT_SSRR:
1499 			if (ipstealth && pass > 0)
1500 				break;
1501 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1502 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1503 				goto bad;
1504 			}
1505 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1506 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1507 				goto bad;
1508 			}
1509 			ipaddr.sin_addr = ip->ip_dst;
1510 			ia = (struct in_ifaddr *)
1511 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1512 			if (ia == NULL) {
1513 				if (opt == IPOPT_SSRR) {
1514 					type = ICMP_UNREACH;
1515 					code = ICMP_UNREACH_SRCFAIL;
1516 					goto bad;
1517 				}
1518 				if (!ip_dosourceroute)
1519 					goto nosourcerouting;
1520 				/*
1521 				 * Loose routing, and not at next destination
1522 				 * yet; nothing to do except forward.
1523 				 */
1524 				break;
1525 			}
1526 			off--;			/* 0 origin */
1527 			if (off > optlen - (int)sizeof(struct in_addr)) {
1528 				/*
1529 				 * End of source route.  Should be for us.
1530 				 */
1531 				if (!ip_acceptsourceroute)
1532 					goto nosourcerouting;
1533 				save_rte(cp, ip->ip_src);
1534 				break;
1535 			}
1536 			if (ipstealth)
1537 				goto dropit;
1538 			if (!ip_dosourceroute) {
1539 				if (ipforwarding) {
1540 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1541 
1542 					/*
1543 					 * Acting as a router, so generate ICMP
1544 					 */
1545 nosourcerouting:
1546 					strcpy(buf, inet_ntoa(ip->ip_dst));
1547 					log(LOG_WARNING,
1548 					    "attempted source route from %s to %s\n",
1549 					    inet_ntoa(ip->ip_src), buf);
1550 					type = ICMP_UNREACH;
1551 					code = ICMP_UNREACH_SRCFAIL;
1552 					goto bad;
1553 				} else {
1554 					/*
1555 					 * Not acting as a router,
1556 					 * so silently drop.
1557 					 */
1558 dropit:
1559 					ipstat.ips_cantforward++;
1560 					m_freem(m);
1561 					return (1);
1562 				}
1563 			}
1564 
1565 			/*
1566 			 * locate outgoing interface
1567 			 */
1568 			memcpy(&ipaddr.sin_addr, cp + off,
1569 			    sizeof ipaddr.sin_addr);
1570 
1571 			if (opt == IPOPT_SSRR) {
1572 #define	INA	struct in_ifaddr *
1573 #define	SA	struct sockaddr *
1574 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1575 									== NULL)
1576 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1577 			} else
1578 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1579 			if (ia == NULL) {
1580 				type = ICMP_UNREACH;
1581 				code = ICMP_UNREACH_SRCFAIL;
1582 				goto bad;
1583 			}
1584 			ip->ip_dst = ipaddr.sin_addr;
1585 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1586 			    sizeof(struct in_addr));
1587 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1588 			/*
1589 			 * Let ip_intr's mcast routing check handle mcast pkts
1590 			 */
1591 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1592 			break;
1593 
1594 		case IPOPT_RR:
1595 			if (ipstealth && pass == 0)
1596 				break;
1597 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1598 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1599 				goto bad;
1600 			}
1601 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1602 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1603 				goto bad;
1604 			}
1605 			/*
1606 			 * If no space remains, ignore.
1607 			 */
1608 			off--;			/* 0 origin */
1609 			if (off > optlen - (int)sizeof(struct in_addr))
1610 				break;
1611 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1612 			    sizeof ipaddr.sin_addr);
1613 			/*
1614 			 * locate outgoing interface; if we're the destination,
1615 			 * use the incoming interface (should be same).
1616 			 */
1617 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1618 			    (ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt))
1619 								     == NULL) {
1620 				type = ICMP_UNREACH;
1621 				code = ICMP_UNREACH_HOST;
1622 				goto bad;
1623 			}
1624 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1625 			    sizeof(struct in_addr));
1626 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1627 			break;
1628 
1629 		case IPOPT_TS:
1630 			if (ipstealth && pass == 0)
1631 				break;
1632 			code = cp - (u_char *)ip;
1633 			if (optlen < 4 || optlen > 40) {
1634 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1635 				goto bad;
1636 			}
1637 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1638 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1639 				goto bad;
1640 			}
1641 			if (off > optlen - (int)sizeof(int32_t)) {
1642 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1643 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1644 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1645 					goto bad;
1646 				}
1647 				break;
1648 			}
1649 			off--;				/* 0 origin */
1650 			sin = (struct in_addr *)(cp + off);
1651 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1652 
1653 			case IPOPT_TS_TSONLY:
1654 				break;
1655 
1656 			case IPOPT_TS_TSANDADDR:
1657 				if (off + sizeof(n_time) +
1658 				    sizeof(struct in_addr) > optlen) {
1659 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1660 					goto bad;
1661 				}
1662 				ipaddr.sin_addr = dst;
1663 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1664 							    m->m_pkthdr.rcvif);
1665 				if (ia == NULL)
1666 					continue;
1667 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1668 				    sizeof(struct in_addr));
1669 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1670 				off += sizeof(struct in_addr);
1671 				break;
1672 
1673 			case IPOPT_TS_PRESPEC:
1674 				if (off + sizeof(n_time) +
1675 				    sizeof(struct in_addr) > optlen) {
1676 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1677 					goto bad;
1678 				}
1679 				memcpy(&ipaddr.sin_addr, sin,
1680 				    sizeof(struct in_addr));
1681 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1682 					continue;
1683 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1684 				off += sizeof(struct in_addr);
1685 				break;
1686 
1687 			default:
1688 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1689 				goto bad;
1690 			}
1691 			ntime = iptime();
1692 			memcpy(cp + off, &ntime, sizeof(n_time));
1693 			cp[IPOPT_OFFSET] += sizeof(n_time);
1694 		}
1695 	}
1696 	if (forward && ipforwarding) {
1697 		ip_forward(m, TRUE, next_hop);
1698 		return (1);
1699 	}
1700 	return (0);
1701 bad:
1702 	icmp_error(m, type, code, 0, NULL);
1703 	ipstat.ips_badoptions++;
1704 	return (1);
1705 }
1706 
1707 /*
1708  * Given address of next destination (final or next hop),
1709  * return internet address info of interface to be used to get there.
1710  */
1711 struct in_ifaddr *
1712 ip_rtaddr(struct in_addr dst, struct route *ro)
1713 {
1714 	struct sockaddr_in *sin;
1715 
1716 	sin = (struct sockaddr_in *)&ro->ro_dst;
1717 
1718 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1719 		if (ro->ro_rt != NULL) {
1720 			RTFREE(ro->ro_rt);
1721 			ro->ro_rt = NULL;
1722 		}
1723 		sin->sin_family = AF_INET;
1724 		sin->sin_len = sizeof *sin;
1725 		sin->sin_addr = dst;
1726 		rtalloc_ign(ro, RTF_PRCLONING);
1727 	}
1728 
1729 	if (ro->ro_rt == NULL)
1730 		return (NULL);
1731 
1732 	return (ifatoia(ro->ro_rt->rt_ifa));
1733 }
1734 
1735 /*
1736  * Save incoming source route for use in replies,
1737  * to be picked up later by ip_srcroute if the receiver is interested.
1738  */
1739 void
1740 save_rte(u_char *option, struct in_addr dst)
1741 {
1742 	unsigned olen;
1743 
1744 	olen = option[IPOPT_OLEN];
1745 #ifdef DIAGNOSTIC
1746 	if (ipprintfs)
1747 		printf("save_rte: olen %d\n", olen);
1748 #endif
1749 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1750 		return;
1751 	bcopy(option, ip_srcrt.srcopt, olen);
1752 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1753 	ip_srcrt.dst = dst;
1754 }
1755 
1756 /*
1757  * Retrieve incoming source route for use in replies,
1758  * in the same form used by setsockopt.
1759  * The first hop is placed before the options, will be removed later.
1760  */
1761 struct mbuf *
1762 ip_srcroute(void)
1763 {
1764 	struct in_addr *p, *q;
1765 	struct mbuf *m;
1766 
1767 	if (ip_nhops == 0)
1768 		return (NULL);
1769 	m = m_get(MB_DONTWAIT, MT_HEADER);
1770 	if (m == NULL)
1771 		return (NULL);
1772 
1773 #define	OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1774 
1775 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1776 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1777 	    OPTSIZ;
1778 #ifdef DIAGNOSTIC
1779 	if (ipprintfs)
1780 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1781 #endif
1782 
1783 	/*
1784 	 * First save first hop for return route
1785 	 */
1786 	p = &ip_srcrt.route[ip_nhops - 1];
1787 	*(mtod(m, struct in_addr *)) = *p--;
1788 #ifdef DIAGNOSTIC
1789 	if (ipprintfs)
1790 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1791 #endif
1792 
1793 	/*
1794 	 * Copy option fields and padding (nop) to mbuf.
1795 	 */
1796 	ip_srcrt.nop = IPOPT_NOP;
1797 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1798 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1799 	    OPTSIZ);
1800 	q = (struct in_addr *)(mtod(m, caddr_t) +
1801 	    sizeof(struct in_addr) + OPTSIZ);
1802 #undef OPTSIZ
1803 	/*
1804 	 * Record return path as an IP source route,
1805 	 * reversing the path (pointers are now aligned).
1806 	 */
1807 	while (p >= ip_srcrt.route) {
1808 #ifdef DIAGNOSTIC
1809 		if (ipprintfs)
1810 			printf(" %x", ntohl(q->s_addr));
1811 #endif
1812 		*q++ = *p--;
1813 	}
1814 	/*
1815 	 * Last hop goes to final destination.
1816 	 */
1817 	*q = ip_srcrt.dst;
1818 #ifdef DIAGNOSTIC
1819 	if (ipprintfs)
1820 		printf(" %x\n", ntohl(q->s_addr));
1821 #endif
1822 	return (m);
1823 }
1824 
1825 /*
1826  * Strip out IP options.
1827  */
1828 void
1829 ip_stripoptions(struct mbuf *m)
1830 {
1831 	int datalen;
1832 	struct ip *ip = mtod(m, struct ip *);
1833 	caddr_t opts;
1834 	int optlen;
1835 
1836 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1837 	opts = (caddr_t)(ip + 1);
1838 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1839 	bcopy(opts + optlen, opts, datalen);
1840 	m->m_len -= optlen;
1841 	if (m->m_flags & M_PKTHDR)
1842 		m->m_pkthdr.len -= optlen;
1843 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1844 }
1845 
1846 u_char inetctlerrmap[PRC_NCMDS] = {
1847 	0,		0,		0,		0,
1848 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1849 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1850 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1851 	0,		0,		0,		0,
1852 	ENOPROTOOPT,	ECONNREFUSED
1853 };
1854 
1855 /*
1856  * Forward a packet.  If some error occurs return the sender
1857  * an icmp packet.  Note we can't always generate a meaningful
1858  * icmp message because icmp doesn't have a large enough repertoire
1859  * of codes and types.
1860  *
1861  * If not forwarding, just drop the packet.  This could be confusing
1862  * if ipforwarding was zero but some routing protocol was advancing
1863  * us as a gateway to somewhere.  However, we must let the routing
1864  * protocol deal with that.
1865  *
1866  * The using_srcrt parameter indicates whether the packet is being forwarded
1867  * via a source route.
1868  */
1869 static void
1870 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1871 {
1872 	struct ip *ip = mtod(m, struct ip *);
1873 	struct sockaddr_in *ipforward_rtaddr;
1874 	struct rtentry *rt;
1875 	int error, type = 0, code = 0;
1876 	struct mbuf *mcopy;
1877 	n_long dest;
1878 	struct in_addr pkt_dst;
1879 	struct ifnet *destifp;
1880 	struct m_hdr tag;
1881 #if defined(IPSEC) || defined(FAST_IPSEC)
1882 	struct ifnet dummyifp;
1883 #endif
1884 
1885 	dest = INADDR_ANY;
1886 	/*
1887 	 * Cache the destination address of the packet; this may be
1888 	 * changed by use of 'ipfw fwd'.
1889 	 */
1890 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1891 
1892 #ifdef DIAGNOSTIC
1893 	if (ipprintfs)
1894 		printf("forward: src %x dst %x ttl %x\n",
1895 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1896 #endif
1897 
1898 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1899 		ipstat.ips_cantforward++;
1900 		m_freem(m);
1901 		return;
1902 	}
1903 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1904 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, NULL);
1905 		return;
1906 	}
1907 
1908 	ipforward_rtaddr = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1909 	if (ipforward_rt.ro_rt == NULL ||
1910 	    ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1911 		if (ipforward_rt.ro_rt != NULL) {
1912 			RTFREE(ipforward_rt.ro_rt);
1913 			ipforward_rt.ro_rt = NULL;
1914 		}
1915 		ipforward_rtaddr->sin_family = AF_INET;
1916 		ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1917 		ipforward_rtaddr->sin_addr = pkt_dst;
1918 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1919 		if (ipforward_rt.ro_rt == NULL) {
1920 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest,
1921 				   NULL);
1922 			return;
1923 		}
1924 	}
1925 	rt = ipforward_rt.ro_rt;
1926 
1927 	/*
1928 	 * Save the IP header and at most 8 bytes of the payload,
1929 	 * in case we need to generate an ICMP message to the src.
1930 	 *
1931 	 * XXX this can be optimized a lot by saving the data in a local
1932 	 * buffer on the stack (72 bytes at most), and only allocating the
1933 	 * mbuf if really necessary. The vast majority of the packets
1934 	 * are forwarded without having to send an ICMP back (either
1935 	 * because unnecessary, or because rate limited), so we are
1936 	 * really we are wasting a lot of work here.
1937 	 *
1938 	 * We don't use m_copy() because it might return a reference
1939 	 * to a shared cluster. Both this function and ip_output()
1940 	 * assume exclusive access to the IP header in `m', so any
1941 	 * data in a cluster may change before we reach icmp_error().
1942 	 */
1943 	MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1944 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1945 		/*
1946 		 * It's probably ok if the pkthdr dup fails (because
1947 		 * the deep copy of the tag chain failed), but for now
1948 		 * be conservative and just discard the copy since
1949 		 * code below may some day want the tags.
1950 		 */
1951 		m_free(mcopy);
1952 		mcopy = NULL;
1953 	}
1954 	if (mcopy != NULL) {
1955 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1956 		    (int)ip->ip_len);
1957 		mcopy->m_pkthdr.len = mcopy->m_len;
1958 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1959 	}
1960 
1961 	if (!ipstealth)
1962 		ip->ip_ttl -= IPTTLDEC;
1963 
1964 	/*
1965 	 * If forwarding packet using same interface that it came in on,
1966 	 * perhaps should send a redirect to sender to shortcut a hop.
1967 	 * Only send redirect if source is sending directly to us,
1968 	 * and if packet was not source routed (or has any options).
1969 	 * Also, don't send redirect if forwarding using a default route
1970 	 * or a route modified by a redirect.
1971 	 */
1972 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1973 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1974 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1975 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1976 		u_long src = ntohl(ip->ip_src.s_addr);
1977 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1978 
1979 		if (rt_ifa != NULL &&
1980 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1981 			if (rt->rt_flags & RTF_GATEWAY)
1982 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1983 			else
1984 				dest = pkt_dst.s_addr;
1985 			/*
1986 			 * Router requirements says to only send
1987 			 * host redirects.
1988 			 */
1989 			type = ICMP_REDIRECT;
1990 			code = ICMP_REDIRECT_HOST;
1991 #ifdef DIAGNOSTIC
1992 			if (ipprintfs)
1993 				printf("redirect (%d) to %x\n", code, dest);
1994 #endif
1995 		}
1996 	}
1997 
1998 	if (next_hop != NULL) {
1999 		/* Pass IPFORWARD info if available */
2000 		tag.mh_type = MT_TAG;
2001 		tag.mh_flags = PACKET_TAG_IPFORWARD;
2002 		tag.mh_data = (caddr_t)next_hop;
2003 		tag.mh_next = m;
2004 		m = (struct mbuf *)&tag;
2005 	}
2006 
2007 	error = ip_output(m, NULL, &ipforward_rt, IP_FORWARDING, NULL, NULL);
2008 	if (error == 0) {
2009 		ipstat.ips_forward++;
2010 		if (type == 0) {
2011 			if (mcopy) {
2012 				ipflow_create(&ipforward_rt, mcopy);
2013 				m_freem(mcopy);
2014 			}
2015 			return;		/* most common case */
2016 		} else {
2017 			ipstat.ips_redirectsent++;
2018 		}
2019 	} else {
2020 		ipstat.ips_cantforward++;
2021 	}
2022 
2023 	if (mcopy == NULL)
2024 		return;
2025 
2026 	/*
2027 	 * Send ICMP message.
2028 	 */
2029 	destifp = NULL;
2030 
2031 	switch (error) {
2032 
2033 	case 0:				/* forwarded, but need redirect */
2034 		/* type, code set above */
2035 		break;
2036 
2037 	case ENETUNREACH:		/* shouldn't happen, checked above */
2038 	case EHOSTUNREACH:
2039 	case ENETDOWN:
2040 	case EHOSTDOWN:
2041 	default:
2042 		type = ICMP_UNREACH;
2043 		code = ICMP_UNREACH_HOST;
2044 		break;
2045 
2046 	case EMSGSIZE:
2047 		type = ICMP_UNREACH;
2048 		code = ICMP_UNREACH_NEEDFRAG;
2049 #ifdef IPSEC
2050 		/*
2051 		 * If the packet is routed over IPsec tunnel, tell the
2052 		 * originator the tunnel MTU.
2053 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2054 		 * XXX quickhack!!!
2055 		 */
2056 		if (ipforward_rt.ro_rt != NULL) {
2057 			struct secpolicy *sp = NULL;
2058 			int ipsecerror;
2059 			int ipsechdr;
2060 			struct route *ro;
2061 
2062 			sp = ipsec4_getpolicybyaddr(mcopy,
2063 						    IPSEC_DIR_OUTBOUND,
2064 						    IP_FORWARDING,
2065 						    &ipsecerror);
2066 
2067 			if (sp == NULL)
2068 				destifp = ipforward_rt.ro_rt->rt_ifp;
2069 			else {
2070 				/* count IPsec header size */
2071 				ipsechdr = ipsec4_hdrsiz(mcopy,
2072 							 IPSEC_DIR_OUTBOUND,
2073 							 NULL);
2074 
2075 				/*
2076 				 * find the correct route for outer IPv4
2077 				 * header, compute tunnel MTU.
2078 				 *
2079 				 * XXX BUG ALERT
2080 				 * The "dummyifp" code relies upon the fact
2081 				 * that icmp_error() touches only ifp->if_mtu.
2082 				 */
2083 				/*XXX*/
2084 				destifp = NULL;
2085 				if (sp->req != NULL && sp->req->sav != NULL &&
2086 				    sp->req->sav->sah != NULL) {
2087 					ro = &sp->req->sav->sah->sa_route;
2088 					if (ro->ro_rt != NULL &&
2089 					    ro->ro_rt->rt_ifp != NULL) {
2090 						dummyifp.if_mtu =
2091 						    ro->ro_rt->rt_ifp->if_mtu;
2092 						dummyifp.if_mtu -= ipsechdr;
2093 						destifp = &dummyifp;
2094 					}
2095 				}
2096 
2097 				key_freesp(sp);
2098 			}
2099 		}
2100 #elif FAST_IPSEC
2101 		/*
2102 		 * If the packet is routed over IPsec tunnel, tell the
2103 		 * originator the tunnel MTU.
2104 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2105 		 * XXX quickhack!!!
2106 		 */
2107 		if (ipforward_rt.ro_rt != NULL) {
2108 			struct secpolicy *sp = NULL;
2109 			int ipsecerror;
2110 			int ipsechdr;
2111 			struct route *ro;
2112 
2113 			sp = ipsec_getpolicybyaddr(mcopy,
2114 						   IPSEC_DIR_OUTBOUND,
2115 						   IP_FORWARDING,
2116 						   &ipsecerror);
2117 
2118 			if (sp == NULL)
2119 				destifp = ipforward_rt.ro_rt->rt_ifp;
2120 			else {
2121 				/* count IPsec header size */
2122 				ipsechdr = ipsec4_hdrsiz(mcopy,
2123 							 IPSEC_DIR_OUTBOUND,
2124 							 NULL);
2125 
2126 				/*
2127 				 * find the correct route for outer IPv4
2128 				 * header, compute tunnel MTU.
2129 				 *
2130 				 * XXX BUG ALERT
2131 				 * The "dummyifp" code relies upon the fact
2132 				 * that icmp_error() touches only ifp->if_mtu.
2133 				 */
2134 				/*XXX*/
2135 				destifp = NULL;
2136 				if (sp->req != NULL &&
2137 				    sp->req->sav != NULL &&
2138 				    sp->req->sav->sah != NULL) {
2139 					ro = &sp->req->sav->sah->sa_route;
2140 					if (ro->ro_rt != NULL &&
2141 					    ro->ro_rt->rt_ifp != NULL) {
2142 						dummyifp.if_mtu =
2143 						    ro->ro_rt->rt_ifp->if_mtu;
2144 						dummyifp.if_mtu -= ipsechdr;
2145 						destifp = &dummyifp;
2146 					}
2147 				}
2148 
2149 				KEY_FREESP(&sp);
2150 			}
2151 		}
2152 #else /* !IPSEC && !FAST_IPSEC */
2153 		if (ipforward_rt.ro_rt != NULL)
2154 			destifp = ipforward_rt.ro_rt->rt_ifp;
2155 #endif /*IPSEC*/
2156 		ipstat.ips_cantfrag++;
2157 		break;
2158 
2159 	case ENOBUFS:
2160 		/*
2161 		 * A router should not generate ICMP_SOURCEQUENCH as
2162 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2163 		 * Source quench could be a big problem under DoS attacks,
2164 		 * or if the underlying interface is rate-limited.
2165 		 * Those who need source quench packets may re-enable them
2166 		 * via the net.inet.ip.sendsourcequench sysctl.
2167 		 */
2168 		if (!ip_sendsourcequench) {
2169 			m_freem(mcopy);
2170 			return;
2171 		} else {
2172 			type = ICMP_SOURCEQUENCH;
2173 			code = 0;
2174 		}
2175 		break;
2176 
2177 	case EACCES:			/* ipfw denied packet */
2178 		m_freem(mcopy);
2179 		return;
2180 	}
2181 	icmp_error(mcopy, type, code, dest, destifp);
2182 }
2183 
2184 void
2185 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2186 	       struct mbuf *m)
2187 {
2188 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2189 		struct timeval tv;
2190 
2191 		microtime(&tv);
2192 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2193 		    SCM_TIMESTAMP, SOL_SOCKET);
2194 		if (*mp)
2195 			mp = &(*mp)->m_next;
2196 	}
2197 	if (inp->inp_flags & INP_RECVDSTADDR) {
2198 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2199 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2200 		if (*mp)
2201 			mp = &(*mp)->m_next;
2202 	}
2203 #ifdef notyet
2204 	/* XXX
2205 	 * Moving these out of udp_input() made them even more broken
2206 	 * than they already were.
2207 	 */
2208 	/* options were tossed already */
2209 	if (inp->inp_flags & INP_RECVOPTS) {
2210 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2211 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2212 		if (*mp)
2213 			mp = &(*mp)->m_next;
2214 	}
2215 	/* ip_srcroute doesn't do what we want here, need to fix */
2216 	if (inp->inp_flags & INP_RECVRETOPTS) {
2217 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2218 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2219 		if (*mp)
2220 			mp = &(*mp)->m_next;
2221 	}
2222 #endif
2223 	if (inp->inp_flags & INP_RECVIF) {
2224 		struct ifnet *ifp;
2225 		struct sdlbuf {
2226 			struct sockaddr_dl sdl;
2227 			u_char	pad[32];
2228 		} sdlbuf;
2229 		struct sockaddr_dl *sdp;
2230 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2231 
2232 		if (((ifp = m->m_pkthdr.rcvif)) &&
2233 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2234 			sdp = IF_LLSOCKADDR(ifp);
2235 			/*
2236 			 * Change our mind and don't try copy.
2237 			 */
2238 			if ((sdp->sdl_family != AF_LINK) ||
2239 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2240 				goto makedummy;
2241 			}
2242 			bcopy(sdp, sdl2, sdp->sdl_len);
2243 		} else {
2244 makedummy:
2245 			sdl2->sdl_len =
2246 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2247 			sdl2->sdl_family = AF_LINK;
2248 			sdl2->sdl_index = 0;
2249 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2250 		}
2251 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2252 			IP_RECVIF, IPPROTO_IP);
2253 		if (*mp)
2254 			mp = &(*mp)->m_next;
2255 	}
2256 }
2257 
2258 /*
2259  * XXX these routines are called from the upper part of the kernel.
2260  *
2261  * They could also be moved to ip_mroute.c, since all the RSVP
2262  *  handling is done there already.
2263  */
2264 int
2265 ip_rsvp_init(struct socket *so)
2266 {
2267 	if (so->so_type != SOCK_RAW ||
2268 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2269 		return EOPNOTSUPP;
2270 
2271 	if (ip_rsvpd != NULL)
2272 		return EADDRINUSE;
2273 
2274 	ip_rsvpd = so;
2275 	/*
2276 	 * This may seem silly, but we need to be sure we don't over-increment
2277 	 * the RSVP counter, in case something slips up.
2278 	 */
2279 	if (!ip_rsvp_on) {
2280 		ip_rsvp_on = 1;
2281 		rsvp_on++;
2282 	}
2283 
2284 	return 0;
2285 }
2286 
2287 int
2288 ip_rsvp_done(void)
2289 {
2290 	ip_rsvpd = NULL;
2291 	/*
2292 	 * This may seem silly, but we need to be sure we don't over-decrement
2293 	 * the RSVP counter, in case something slips up.
2294 	 */
2295 	if (ip_rsvp_on) {
2296 		ip_rsvp_on = 0;
2297 		rsvp_on--;
2298 	}
2299 	return 0;
2300 }
2301 
2302 void
2303 rsvp_input(struct mbuf *m, ...)	/* XXX must fixup manually */
2304 {
2305 	int off, proto;
2306 	__va_list ap;
2307 
2308 	__va_start(ap, m);
2309 	off = __va_arg(ap, int);
2310 	proto = __va_arg(ap, int);
2311 	__va_end(ap);
2312 
2313 	if (rsvp_input_p) { /* call the real one if loaded */
2314 		rsvp_input_p(m, off, proto);
2315 		return;
2316 	}
2317 
2318 	/* Can still get packets with rsvp_on = 0 if there is a local member
2319 	 * of the group to which the RSVP packet is addressed.  But in this
2320 	 * case we want to throw the packet away.
2321 	 */
2322 
2323 	if (!rsvp_on) {
2324 		m_freem(m);
2325 		return;
2326 	}
2327 
2328 	if (ip_rsvpd != NULL) {
2329 		rip_input(m, off, proto);
2330 		return;
2331 	}
2332 	/* Drop the packet */
2333 	m_freem(m);
2334 }
2335