xref: /dragonfly/sys/netinet/ip_input.c (revision 3f5e28f4)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
67  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68  * $DragonFly: src/sys/netinet/ip_input.c,v 1.66 2007/04/04 06:13:26 dillon Exp $
69  */
70 
71 #define	_IP_VHL
72 
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
96 
97 #include <sys/thread2.h>
98 #include <sys/msgport2.h>
99 
100 #include <machine/stdarg.h>
101 
102 #include <net/if.h>
103 #include <net/if_types.h>
104 #include <net/if_var.h>
105 #include <net/if_dl.h>
106 #include <net/pfil.h>
107 #include <net/route.h>
108 #include <net/netisr.h>
109 #include <net/intrq.h>
110 
111 #include <netinet/in.h>
112 #include <netinet/in_systm.h>
113 #include <netinet/in_var.h>
114 #include <netinet/ip.h>
115 #include <netinet/in_pcb.h>
116 #include <netinet/ip_var.h>
117 #include <netinet/ip_icmp.h>
118 
119 
120 #include <sys/socketvar.h>
121 
122 #include <net/ipfw/ip_fw.h>
123 #include <net/dummynet/ip_dummynet.h>
124 
125 #ifdef IPSEC
126 #include <netinet6/ipsec.h>
127 #include <netproto/key/key.h>
128 #endif
129 
130 #ifdef FAST_IPSEC
131 #include <netproto/ipsec/ipsec.h>
132 #include <netproto/ipsec/key.h>
133 #endif
134 
135 int rsvp_on = 0;
136 static int ip_rsvp_on;
137 struct socket *ip_rsvpd;
138 
139 int ipforwarding = 0;
140 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
141     &ipforwarding, 0, "Enable IP forwarding between interfaces");
142 
143 static int ipsendredirects = 1; /* XXX */
144 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
145     &ipsendredirects, 0, "Enable sending IP redirects");
146 
147 int ip_defttl = IPDEFTTL;
148 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
149     &ip_defttl, 0, "Maximum TTL on IP packets");
150 
151 static int ip_dosourceroute = 0;
152 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
153     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
154 
155 static int ip_acceptsourceroute = 0;
156 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
157     CTLFLAG_RW, &ip_acceptsourceroute, 0,
158     "Enable accepting source routed IP packets");
159 
160 static int ip_keepfaith = 0;
161 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
162     &ip_keepfaith, 0,
163     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
164 
165 static int nipq = 0;	/* total # of reass queues */
166 static int maxnipq;
167 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
168     &maxnipq, 0,
169     "Maximum number of IPv4 fragment reassembly queue entries");
170 
171 static int maxfragsperpacket;
172 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
173     &maxfragsperpacket, 0,
174     "Maximum number of IPv4 fragments allowed per packet");
175 
176 static int ip_sendsourcequench = 0;
177 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
178     &ip_sendsourcequench, 0,
179     "Enable the transmission of source quench packets");
180 
181 int ip_do_randomid = 0;
182 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
183     &ip_do_randomid, 0,
184     "Assign random ip_id values");
185 /*
186  * XXX - Setting ip_checkinterface mostly implements the receive side of
187  * the Strong ES model described in RFC 1122, but since the routing table
188  * and transmit implementation do not implement the Strong ES model,
189  * setting this to 1 results in an odd hybrid.
190  *
191  * XXX - ip_checkinterface currently must be disabled if you use ipnat
192  * to translate the destination address to another local interface.
193  *
194  * XXX - ip_checkinterface must be disabled if you add IP aliases
195  * to the loopback interface instead of the interface where the
196  * packets for those addresses are received.
197  */
198 static int ip_checkinterface = 0;
199 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
200     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
201 
202 #ifdef DIAGNOSTIC
203 static int ipprintfs = 0;
204 #endif
205 
206 static struct ifqueue ipintrq;
207 static int ipqmaxlen = IFQ_MAXLEN;
208 
209 extern	struct domain inetdomain;
210 extern	struct protosw inetsw[];
211 u_char	ip_protox[IPPROTO_MAX];
212 struct	in_ifaddrhead in_ifaddrhead;		/* first inet address */
213 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table */
214 u_long	in_ifaddrhmask;				/* mask for hash table */
215 
216 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
217     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
218 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
219     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
220 
221 struct ip_stats ipstats_percpu[MAXCPU];
222 #ifdef SMP
223 static int
224 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
225 {
226 	int cpu, error = 0;
227 
228 	for (cpu = 0; cpu < ncpus; ++cpu) {
229 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
230 					sizeof(struct ip_stats))))
231 			break;
232 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
233 				       sizeof(struct ip_stats))))
234 			break;
235 	}
236 
237 	return (error);
238 }
239 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
240     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
241 #else
242 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
243     &ipstat, ip_stats, "IP statistics");
244 #endif
245 
246 /* Packet reassembly stuff */
247 #define	IPREASS_NHASH_LOG2	6
248 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
249 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
250 #define	IPREASS_HASH(x,y)						\
251     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
252 
253 static struct ipq ipq[IPREASS_NHASH];
254 const  int    ipintrq_present = 1;
255 
256 #ifdef IPCTL_DEFMTU
257 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
258     &ip_mtu, 0, "Default MTU");
259 #endif
260 
261 #ifdef IPSTEALTH
262 static int ipstealth = 0;
263 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
264 #else
265 static const int ipstealth = 0;
266 #endif
267 
268 
269 /* Firewall hooks */
270 ip_fw_chk_t *ip_fw_chk_ptr;
271 int fw_enable = 1;
272 int fw_one_pass = 1;
273 
274 /* Dummynet hooks */
275 ip_dn_io_t *ip_dn_io_ptr;
276 
277 struct pfil_head inet_pfil_hook;
278 
279 /*
280  * XXX this is ugly -- the following two global variables are
281  * used to store packet state while it travels through the stack.
282  * Note that the code even makes assumptions on the size and
283  * alignment of fields inside struct ip_srcrt so e.g. adding some
284  * fields will break the code. This needs to be fixed.
285  *
286  * We need to save the IP options in case a protocol wants to respond
287  * to an incoming packet over the same route if the packet got here
288  * using IP source routing.  This allows connection establishment and
289  * maintenance when the remote end is on a network that is not known
290  * to us.
291  */
292 static int ip_nhops = 0;
293 
294 static	struct ip_srcrt {
295 	struct	in_addr dst;			/* final destination */
296 	char	nop;				/* one NOP to align */
297 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
298 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
299 } ip_srcrt;
300 
301 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
302 static struct malloc_pipe ipq_mpipe;
303 
304 static void		save_rte (u_char *, struct in_addr);
305 static int		ip_dooptions (struct mbuf *m, int,
306 					struct sockaddr_in *next_hop);
307 static void		ip_forward (struct mbuf *m, boolean_t using_srcrt,
308 					struct sockaddr_in *next_hop);
309 static void		ip_freef (struct ipq *);
310 static int		ip_input_handler (struct netmsg *);
311 static struct mbuf	*ip_reass (struct mbuf *, struct ipq *,
312 					struct ipq *, u_int32_t *);
313 
314 /*
315  * IP initialization: fill in IP protocol switch table.
316  * All protocols not implemented in kernel go to raw IP protocol handler.
317  */
318 void
319 ip_init(void)
320 {
321 	struct protosw *pr;
322 	int i;
323 #ifdef SMP
324 	int cpu;
325 #endif
326 
327 	/*
328 	 * Make sure we can handle a reasonable number of fragments but
329 	 * cap it at 4000 (XXX).
330 	 */
331 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
332 		    IFQ_MAXLEN, 4000, 0, NULL);
333 	TAILQ_INIT(&in_ifaddrhead);
334 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
335 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
336 	if (pr == NULL)
337 		panic("ip_init");
338 	for (i = 0; i < IPPROTO_MAX; i++)
339 		ip_protox[i] = pr - inetsw;
340 	for (pr = inetdomain.dom_protosw;
341 	     pr < inetdomain.dom_protoswNPROTOSW; pr++)
342 		if (pr->pr_domain->dom_family == PF_INET &&
343 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
344 			ip_protox[pr->pr_protocol] = pr - inetsw;
345 
346 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
347 	inet_pfil_hook.ph_af = AF_INET;
348 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
349 		kprintf("%s: WARNING: unable to register pfil hook, "
350 			"error %d\n", __func__, i);
351 	}
352 
353 	for (i = 0; i < IPREASS_NHASH; i++)
354 	    ipq[i].next = ipq[i].prev = &ipq[i];
355 
356 	maxnipq = nmbclusters / 32;
357 	maxfragsperpacket = 16;
358 
359 	ip_id = time_second & 0xffff;
360 	ipintrq.ifq_maxlen = ipqmaxlen;
361 
362 	/*
363 	 * Initialize IP statistics counters for each CPU.
364 	 *
365 	 */
366 #ifdef SMP
367 	for (cpu = 0; cpu < ncpus; ++cpu) {
368 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
369 	}
370 #else
371 	bzero(&ipstat, sizeof(struct ip_stats));
372 #endif
373 
374 	netisr_register(NETISR_IP, ip_mport, ip_input_handler);
375 }
376 
377 /*
378  * XXX watch out this one. It is perhaps used as a cache for
379  * the most recently used route ? it is cleared in in_addroute()
380  * when a new route is successfully created.
381  */
382 struct route ipforward_rt[MAXCPU];
383 
384 /* Do transport protocol processing. */
385 static void
386 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
387 			   struct sockaddr_in *nexthop)
388 {
389 	/*
390 	 * Switch out to protocol's input routine.
391 	 */
392 	if (nexthop && ip->ip_p == IPPROTO_TCP) {
393 		/* TCP needs IPFORWARD info if available */
394 		struct m_hdr tag;
395 
396 		tag.mh_type = MT_TAG;
397 		tag.mh_flags = PACKET_TAG_IPFORWARD;
398 		tag.mh_data = (caddr_t)nexthop;
399 		tag.mh_next = m;
400 
401 		(*inetsw[ip_protox[ip->ip_p]].pr_input)
402 		    ((struct mbuf *)&tag, hlen, ip->ip_p);
403 	} else {
404 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
405 	}
406 }
407 
408 struct netmsg_transport_packet {
409 	struct lwkt_msg		nm_lmsg;
410 	struct mbuf		*nm_mbuf;
411 	int			nm_hlen;
412 	boolean_t		nm_hasnexthop;
413 	struct sockaddr_in	nm_nexthop;
414 };
415 
416 static int
417 transport_processing_handler(lwkt_msg_t lmsg)
418 {
419 	struct netmsg_transport_packet *msg = (void *)lmsg;
420 	struct sockaddr_in *nexthop;
421 	struct ip *ip;
422 
423 	ip = mtod(msg->nm_mbuf, struct ip *);
424 	nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
425 	transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
426 	lwkt_replymsg(lmsg, 0);
427 	return(EASYNC);
428 }
429 
430 static int
431 ip_input_handler(struct netmsg *msg0)
432 {
433 	struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
434 
435 	ip_input(m);
436 	/* msg0 was embedded in the mbuf, do not reply! */
437 	return(EASYNC);
438 }
439 
440 /*
441  * IP input routine.  Checksum and byte swap header.  If fragmented
442  * try to reassemble.  Process options.  Pass to next level.
443  */
444 void
445 ip_input(struct mbuf *m)
446 {
447 	struct ip *ip;
448 	struct ipq *fp;
449 	struct in_ifaddr *ia = NULL;
450 	struct ifaddr *ifa;
451 	int i, hlen, checkif;
452 	u_short sum;
453 	struct in_addr pkt_dst;
454 	u_int32_t divert_info = 0;		/* packet divert/tee info */
455 	struct ip_fw_args args;
456 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
457 	boolean_t needredispatch = FALSE;
458 	struct in_addr odst;			/* original dst address(NAT) */
459 #if defined(FAST_IPSEC) || defined(IPDIVERT)
460 	struct m_tag *mtag;
461 #endif
462 #ifdef FAST_IPSEC
463 	struct tdb_ident *tdbi;
464 	struct secpolicy *sp;
465 	int error;
466 #endif
467 
468 	args.eh = NULL;
469 	args.oif = NULL;
470 	args.rule = NULL;
471 	args.next_hop = NULL;
472 
473 	/* Grab info from MT_TAG mbufs prepended to the chain. */
474 	while (m != NULL && m->m_type == MT_TAG) {
475 		switch(m->_m_tag_id) {
476 		case PACKET_TAG_DUMMYNET:
477 			args.rule = ((struct dn_pkt *)m)->rule;
478 			break;
479 		case PACKET_TAG_IPFORWARD:
480 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
481 			break;
482 		default:
483 			kprintf("ip_input: unrecognised MT_TAG tag %d\n",
484 			    m->_m_tag_id);
485 			break;
486 		}
487 		m = m->m_next;
488 	}
489 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_input: no HDR"));
490 
491 	if (args.rule != NULL) {	/* dummynet already filtered us */
492 		ip = mtod(m, struct ip *);
493 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
494 		goto iphack;
495 	}
496 
497 	ipstat.ips_total++;
498 
499 	/* length checks already done in ip_demux() */
500 	KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
501 
502 	ip = mtod(m, struct ip *);
503 
504 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
505 		ipstat.ips_badvers++;
506 		goto bad;
507 	}
508 
509 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
510 	/* length checks already done in ip_demux() */
511 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
512 	KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
513 
514 	/* 127/8 must not appear on wire - RFC1122 */
515 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
516 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
517 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
518 			ipstat.ips_badaddr++;
519 			goto bad;
520 		}
521 	}
522 
523 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
524 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
525 	} else {
526 		if (hlen == sizeof(struct ip)) {
527 			sum = in_cksum_hdr(ip);
528 		} else {
529 			sum = in_cksum(m, hlen);
530 		}
531 	}
532 	if (sum != 0) {
533 		ipstat.ips_badsum++;
534 		goto bad;
535 	}
536 
537 #ifdef ALTQ
538 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
539 		/* packet is dropped by traffic conditioner */
540 		return;
541 	}
542 #endif
543 	/*
544 	 * Convert fields to host representation.
545 	 */
546 	ip->ip_len = ntohs(ip->ip_len);
547 	if (ip->ip_len < hlen) {
548 		ipstat.ips_badlen++;
549 		goto bad;
550 	}
551 	ip->ip_off = ntohs(ip->ip_off);
552 
553 	/*
554 	 * Check that the amount of data in the buffers
555 	 * is as at least much as the IP header would have us expect.
556 	 * Trim mbufs if longer than we expect.
557 	 * Drop packet if shorter than we expect.
558 	 */
559 	if (m->m_pkthdr.len < ip->ip_len) {
560 		ipstat.ips_tooshort++;
561 		goto bad;
562 	}
563 	if (m->m_pkthdr.len > ip->ip_len) {
564 		if (m->m_len == m->m_pkthdr.len) {
565 			m->m_len = ip->ip_len;
566 			m->m_pkthdr.len = ip->ip_len;
567 		} else
568 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
569 	}
570 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
571 	/*
572 	 * Bypass packet filtering for packets from a tunnel (gif).
573 	 */
574 	if (ipsec_gethist(m, NULL))
575 		goto pass;
576 #endif
577 
578 	/*
579 	 * IpHack's section.
580 	 * Right now when no processing on packet has done
581 	 * and it is still fresh out of network we do our black
582 	 * deals with it.
583 	 * - Firewall: deny/allow/divert
584 	 * - Xlate: translate packet's addr/port (NAT).
585 	 * - Pipe: pass pkt through dummynet.
586 	 * - Wrap: fake packet's addr/port <unimpl.>
587 	 * - Encapsulate: put it in another IP and send out. <unimp.>
588 	 */
589 
590 iphack:
591 
592 	/*
593 	 * Run through list of hooks for input packets.
594 	 *
595 	 * NB: Beware of the destination address changing (e.g.
596 	 *     by NAT rewriting). When this happens, tell
597 	 *     ip_forward to do the right thing.
598 	 */
599 	if (pfil_has_hooks(&inet_pfil_hook)) {
600 		odst = ip->ip_dst;
601 		if (pfil_run_hooks(&inet_pfil_hook, &m,
602 		    m->m_pkthdr.rcvif, PFIL_IN)) {
603 			return;
604 		}
605 		if (m == NULL)			/* consumed by filter */
606 			return;
607 		ip = mtod(m, struct ip *);
608 		using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
609 	}
610 
611 	if (fw_enable && IPFW_LOADED) {
612 		/*
613 		 * If we've been forwarded from the output side, then
614 		 * skip the firewall a second time
615 		 */
616 		if (args.next_hop != NULL)
617 			goto ours;
618 
619 		args.m = m;
620 		i = ip_fw_chk_ptr(&args);
621 		m = args.m;
622 
623 		if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) {	/* drop */
624 			if (m != NULL)
625 				m_freem(m);
626 			return;
627 		}
628 		ip = mtod(m, struct ip *);	/* just in case m changed */
629 		if (i == 0 && args.next_hop == NULL)	/* common case */
630 			goto pass;
631 		if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
632 			/* Send packet to the appropriate pipe */
633 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
634 			return;
635 		}
636 #ifdef IPDIVERT
637 		if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
638 			/* Divert or tee packet */
639 			divert_info = i;
640 			goto ours;
641 		}
642 #endif
643 		if (i == 0 && args.next_hop != NULL)
644 			goto pass;
645 		/*
646 		 * if we get here, the packet must be dropped
647 		 */
648 		m_freem(m);
649 		return;
650 	}
651 pass:
652 
653 	/*
654 	 * Process options and, if not destined for us,
655 	 * ship it on.  ip_dooptions returns 1 when an
656 	 * error was detected (causing an icmp message
657 	 * to be sent and the original packet to be freed).
658 	 */
659 	ip_nhops = 0;		/* for source routed packets */
660 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
661 		return;
662 
663 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
664 	 * matter if it is destined to another node, or whether it is
665 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
666 	 * anywhere else. Also checks if the rsvp daemon is running before
667 	 * grabbing the packet.
668 	 */
669 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
670 		goto ours;
671 
672 	/*
673 	 * Check our list of addresses, to see if the packet is for us.
674 	 * If we don't have any addresses, assume any unicast packet
675 	 * we receive might be for us (and let the upper layers deal
676 	 * with it).
677 	 */
678 	if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
679 		goto ours;
680 
681 	/*
682 	 * Cache the destination address of the packet; this may be
683 	 * changed by use of 'ipfw fwd'.
684 	 */
685 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
686 
687 	/*
688 	 * Enable a consistency check between the destination address
689 	 * and the arrival interface for a unicast packet (the RFC 1122
690 	 * strong ES model) if IP forwarding is disabled and the packet
691 	 * is not locally generated and the packet is not subject to
692 	 * 'ipfw fwd'.
693 	 *
694 	 * XXX - Checking also should be disabled if the destination
695 	 * address is ipnat'ed to a different interface.
696 	 *
697 	 * XXX - Checking is incompatible with IP aliases added
698 	 * to the loopback interface instead of the interface where
699 	 * the packets are received.
700 	 */
701 	checkif = ip_checkinterface &&
702 		  !ipforwarding &&
703 		  m->m_pkthdr.rcvif != NULL &&
704 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
705 		  (args.next_hop == NULL);
706 
707 	/*
708 	 * Check for exact addresses in the hash bucket.
709 	 */
710 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
711 		/*
712 		 * If the address matches, verify that the packet
713 		 * arrived via the correct interface if checking is
714 		 * enabled.
715 		 */
716 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
717 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
718 			goto ours;
719 	}
720 	/*
721 	 * Check for broadcast addresses.
722 	 *
723 	 * Only accept broadcast packets that arrive via the matching
724 	 * interface.  Reception of forwarded directed broadcasts would
725 	 * be handled via ip_forward() and ether_output() with the loopback
726 	 * into the stack for SIMPLEX interfaces handled by ether_output().
727 	 */
728 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
729 		TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
730 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
731 				continue;
732 			if (ifa->ifa_addr->sa_family != AF_INET)
733 				continue;
734 			ia = ifatoia(ifa);
735 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
736 								pkt_dst.s_addr)
737 				goto ours;
738 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
739 				goto ours;
740 #ifdef BOOTP_COMPAT
741 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
742 				goto ours;
743 #endif
744 		}
745 	}
746 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
747 		struct in_multi *inm;
748 
749 		if (ip_mrouter != NULL) {
750 			/*
751 			 * If we are acting as a multicast router, all
752 			 * incoming multicast packets are passed to the
753 			 * kernel-level multicast forwarding function.
754 			 * The packet is returned (relatively) intact; if
755 			 * ip_mforward() returns a non-zero value, the packet
756 			 * must be discarded, else it may be accepted below.
757 			 */
758 			if (ip_mforward != NULL &&
759 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
760 				ipstat.ips_cantforward++;
761 				m_freem(m);
762 				return;
763 			}
764 
765 			/*
766 			 * The process-level routing daemon needs to receive
767 			 * all multicast IGMP packets, whether or not this
768 			 * host belongs to their destination groups.
769 			 */
770 			if (ip->ip_p == IPPROTO_IGMP)
771 				goto ours;
772 			ipstat.ips_forward++;
773 		}
774 		/*
775 		 * See if we belong to the destination multicast group on the
776 		 * arrival interface.
777 		 */
778 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
779 		if (inm == NULL) {
780 			ipstat.ips_notmember++;
781 			m_freem(m);
782 			return;
783 		}
784 		goto ours;
785 	}
786 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
787 		goto ours;
788 	if (ip->ip_dst.s_addr == INADDR_ANY)
789 		goto ours;
790 
791 	/*
792 	 * FAITH(Firewall Aided Internet Translator)
793 	 */
794 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
795 		if (ip_keepfaith) {
796 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
797 				goto ours;
798 		}
799 		m_freem(m);
800 		return;
801 	}
802 
803 	/*
804 	 * Not for us; forward if possible and desirable.
805 	 */
806 	if (!ipforwarding) {
807 		ipstat.ips_cantforward++;
808 		m_freem(m);
809 	} else {
810 #ifdef IPSEC
811 		/*
812 		 * Enforce inbound IPsec SPD.
813 		 */
814 		if (ipsec4_in_reject(m, NULL)) {
815 			ipsecstat.in_polvio++;
816 			goto bad;
817 		}
818 #endif
819 #ifdef FAST_IPSEC
820 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
821 		crit_enter();
822 		if (mtag != NULL) {
823 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
824 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
825 		} else {
826 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
827 						   IP_FORWARDING, &error);
828 		}
829 		if (sp == NULL) {	/* NB: can happen if error */
830 			crit_exit();
831 			/*XXX error stat???*/
832 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
833 			goto bad;
834 		}
835 
836 		/*
837 		 * Check security policy against packet attributes.
838 		 */
839 		error = ipsec_in_reject(sp, m);
840 		KEY_FREESP(&sp);
841 		crit_exit();
842 		if (error) {
843 			ipstat.ips_cantforward++;
844 			goto bad;
845 		}
846 #endif
847 		ip_forward(m, using_srcrt, args.next_hop);
848 	}
849 	return;
850 
851 ours:
852 
853 	/*
854 	 * IPSTEALTH: Process non-routing options only
855 	 * if the packet is destined for us.
856 	 */
857 	if (ipstealth &&
858 	    hlen > sizeof(struct ip) &&
859 	    ip_dooptions(m, 1, args.next_hop))
860 		return;
861 
862 	/* Count the packet in the ip address stats */
863 	if (ia != NULL) {
864 		ia->ia_ifa.if_ipackets++;
865 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
866 	}
867 
868 	/*
869 	 * If offset or IP_MF are set, must reassemble.
870 	 * Otherwise, nothing need be done.
871 	 * (We could look in the reassembly queue to see
872 	 * if the packet was previously fragmented,
873 	 * but it's not worth the time; just let them time out.)
874 	 */
875 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
876 
877 		/* If maxnipq is 0, never accept fragments. */
878 		if (maxnipq == 0) {
879 			ipstat.ips_fragments++;
880 			ipstat.ips_fragdropped++;
881 			goto bad;
882 		}
883 
884 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
885 		/*
886 		 * Look for queue of fragments
887 		 * of this datagram.
888 		 */
889 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
890 			if (ip->ip_id == fp->ipq_id &&
891 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
892 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
893 			    ip->ip_p == fp->ipq_p)
894 				goto found;
895 
896 		fp = NULL;
897 
898 		/*
899 		 * Enforce upper bound on number of fragmented packets
900 		 * for which we attempt reassembly;
901 		 * If maxnipq is -1, accept all fragments without limitation.
902 		 */
903 		if ((nipq > maxnipq) && (maxnipq > 0)) {
904 			/*
905 			 * drop something from the tail of the current queue
906 			 * before proceeding further
907 			 */
908 			if (ipq[sum].prev == &ipq[sum]) {   /* gak */
909 				for (i = 0; i < IPREASS_NHASH; i++) {
910 					if (ipq[i].prev != &ipq[i]) {
911 						ipstat.ips_fragtimeout +=
912 						    ipq[i].prev->ipq_nfrags;
913 						ip_freef(ipq[i].prev);
914 						break;
915 					}
916 				}
917 			} else {
918 				ipstat.ips_fragtimeout +=
919 				    ipq[sum].prev->ipq_nfrags;
920 				ip_freef(ipq[sum].prev);
921 			}
922 		}
923 found:
924 		/*
925 		 * Adjust ip_len to not reflect header,
926 		 * convert offset of this to bytes.
927 		 */
928 		ip->ip_len -= hlen;
929 		if (ip->ip_off & IP_MF) {
930 			/*
931 			 * Make sure that fragments have a data length
932 			 * that's a non-zero multiple of 8 bytes.
933 			 */
934 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
935 				ipstat.ips_toosmall++; /* XXX */
936 				goto bad;
937 			}
938 			m->m_flags |= M_FRAG;
939 		} else
940 			m->m_flags &= ~M_FRAG;
941 		ip->ip_off <<= 3;
942 
943 		/*
944 		 * Attempt reassembly; if it succeeds, proceed.
945 		 * ip_reass() will return a different mbuf, and update
946 		 * the divert info in divert_info.
947 		 */
948 		ipstat.ips_fragments++;
949 		m->m_pkthdr.header = ip;
950 		m = ip_reass(m, fp, &ipq[sum], &divert_info);
951 		if (m == NULL)
952 			return;
953 		ipstat.ips_reassembled++;
954 		needredispatch = TRUE;
955 		ip = mtod(m, struct ip *);
956 		/* Get the header length of the reassembled packet */
957 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
958 #ifdef IPDIVERT
959 		/* Restore original checksum before diverting packet */
960 		if (divert_info != 0) {
961 			ip->ip_len += hlen;
962 			ip->ip_len = htons(ip->ip_len);
963 			ip->ip_off = htons(ip->ip_off);
964 			ip->ip_sum = 0;
965 			if (hlen == sizeof(struct ip))
966 				ip->ip_sum = in_cksum_hdr(ip);
967 			else
968 				ip->ip_sum = in_cksum(m, hlen);
969 			ip->ip_off = ntohs(ip->ip_off);
970 			ip->ip_len = ntohs(ip->ip_len);
971 			ip->ip_len -= hlen;
972 		}
973 #endif
974 	} else {
975 		ip->ip_len -= hlen;
976 	}
977 
978 #ifdef IPDIVERT
979 	/*
980 	 * Divert or tee packet to the divert protocol if required.
981 	 */
982 	if (divert_info != 0) {
983 		struct mbuf *clone = NULL;
984 
985 		/* Clone packet if we're doing a 'tee' */
986 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
987 			clone = m_dup(m, MB_DONTWAIT);
988 
989 		/* Restore packet header fields to original values */
990 		ip->ip_len += hlen;
991 		ip->ip_len = htons(ip->ip_len);
992 		ip->ip_off = htons(ip->ip_off);
993 
994 		/* Deliver packet to divert input routine */
995 		divert_packet(m, 1, divert_info & 0xffff);
996 		ipstat.ips_delivered++;
997 
998 		/* If 'tee', continue with original packet */
999 		if (clone == NULL)
1000 			return;
1001 		m = clone;
1002 		ip = mtod(m, struct ip *);
1003 		ip->ip_len += hlen;
1004 		/*
1005 		 * Jump backwards to complete processing of the
1006 		 * packet. But first clear divert_info to avoid
1007 		 * entering this block again.
1008 		 * We do not need to clear args.divert_rule
1009 		 * or args.next_hop as they will not be used.
1010 		 *
1011 		 * XXX Better safe than sorry, remove the DIVERT tag.
1012 		 */
1013 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1014 		if (mtag != NULL)
1015 			m_tag_delete(m, mtag);
1016 
1017 		divert_info = 0;
1018 		goto pass;
1019 	}
1020 #endif
1021 
1022 #ifdef IPSEC
1023 	/*
1024 	 * enforce IPsec policy checking if we are seeing last header.
1025 	 * note that we do not visit this with protocols with pcb layer
1026 	 * code - like udp/tcp/raw ip.
1027 	 */
1028 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1029 	    ipsec4_in_reject(m, NULL)) {
1030 		ipsecstat.in_polvio++;
1031 		goto bad;
1032 	}
1033 #endif
1034 #if FAST_IPSEC
1035 	/*
1036 	 * enforce IPsec policy checking if we are seeing last header.
1037 	 * note that we do not visit this with protocols with pcb layer
1038 	 * code - like udp/tcp/raw ip.
1039 	 */
1040 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1041 		/*
1042 		 * Check if the packet has already had IPsec processing
1043 		 * done.  If so, then just pass it along.  This tag gets
1044 		 * set during AH, ESP, etc. input handling, before the
1045 		 * packet is returned to the ip input queue for delivery.
1046 		 */
1047 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1048 		crit_enter();
1049 		if (mtag != NULL) {
1050 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
1051 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1052 		} else {
1053 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1054 						   IP_FORWARDING, &error);
1055 		}
1056 		if (sp != NULL) {
1057 			/*
1058 			 * Check security policy against packet attributes.
1059 			 */
1060 			error = ipsec_in_reject(sp, m);
1061 			KEY_FREESP(&sp);
1062 		} else {
1063 			/* XXX error stat??? */
1064 			error = EINVAL;
1065 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1066 			goto bad;
1067 		}
1068 		crit_exit();
1069 		if (error)
1070 			goto bad;
1071 	}
1072 #endif /* FAST_IPSEC */
1073 
1074 	ipstat.ips_delivered++;
1075 	if (needredispatch) {
1076 		struct netmsg_transport_packet *msg;
1077 		lwkt_port_t port;
1078 
1079 		ip->ip_off = htons(ip->ip_off);
1080 		ip->ip_len = htons(ip->ip_len);
1081 		port = ip_mport(&m);
1082 		if (port == NULL)
1083 			return;
1084 
1085 		msg = kmalloc(sizeof(struct netmsg_transport_packet), M_LWKTMSG,
1086 			     M_INTWAIT | M_NULLOK);
1087 		if (msg == NULL)
1088 			goto bad;
1089 
1090 		lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1091 			lwkt_cmd_func(transport_processing_handler),
1092 			lwkt_cmd_op_none);
1093 		msg->nm_hlen = hlen;
1094 		msg->nm_hasnexthop = (args.next_hop != NULL);
1095 		if (msg->nm_hasnexthop)
1096 			msg->nm_nexthop = *args.next_hop;  /* structure copy */
1097 
1098 		msg->nm_mbuf = m;
1099 		ip = mtod(m, struct ip *);
1100 		ip->ip_len = ntohs(ip->ip_len);
1101 		ip->ip_off = ntohs(ip->ip_off);
1102 		lwkt_sendmsg(port, &msg->nm_lmsg);
1103 	} else {
1104 		transport_processing_oncpu(m, hlen, ip, args.next_hop);
1105 	}
1106 	return;
1107 
1108 bad:
1109 	m_freem(m);
1110 }
1111 
1112 /*
1113  * Take incoming datagram fragment and try to reassemble it into
1114  * whole datagram.  If a chain for reassembly of this datagram already
1115  * exists, then it is given as fp; otherwise have to make a chain.
1116  *
1117  * When IPDIVERT enabled, keep additional state with each packet that
1118  * tells us if we need to divert or tee the packet we're building.
1119  * In particular, *divinfo includes the port and TEE flag.
1120  */
1121 
1122 static struct mbuf *
1123 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1124 	 u_int32_t *divinfo)
1125 {
1126 	struct ip *ip = mtod(m, struct ip *);
1127 	struct mbuf *p = NULL, *q, *nq;
1128 	struct mbuf *n;
1129 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1130 	int i, next;
1131 #ifdef IPDIVERT
1132 	struct m_tag *mtag;
1133 #endif
1134 
1135 	/*
1136 	 * Presence of header sizes in mbufs
1137 	 * would confuse code below.
1138 	 */
1139 	m->m_data += hlen;
1140 	m->m_len -= hlen;
1141 
1142 	/*
1143 	 * If first fragment to arrive, create a reassembly queue.
1144 	 */
1145 	if (fp == NULL) {
1146 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1147 			goto dropfrag;
1148 		insque(fp, where);
1149 		nipq++;
1150 		fp->ipq_nfrags = 1;
1151 		fp->ipq_ttl = IPFRAGTTL;
1152 		fp->ipq_p = ip->ip_p;
1153 		fp->ipq_id = ip->ip_id;
1154 		fp->ipq_src = ip->ip_src;
1155 		fp->ipq_dst = ip->ip_dst;
1156 		fp->ipq_frags = m;
1157 		m->m_nextpkt = NULL;
1158 #ifdef IPDIVERT
1159 		fp->ipq_div_info = 0;
1160 #endif
1161 		goto inserted;
1162 	} else {
1163 		fp->ipq_nfrags++;
1164 	}
1165 
1166 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1167 
1168 	/*
1169 	 * Find a segment which begins after this one does.
1170 	 */
1171 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1172 		if (GETIP(q)->ip_off > ip->ip_off)
1173 			break;
1174 
1175 	/*
1176 	 * If there is a preceding segment, it may provide some of
1177 	 * our data already.  If so, drop the data from the incoming
1178 	 * segment.  If it provides all of our data, drop us, otherwise
1179 	 * stick new segment in the proper place.
1180 	 *
1181 	 * If some of the data is dropped from the the preceding
1182 	 * segment, then it's checksum is invalidated.
1183 	 */
1184 	if (p) {
1185 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1186 		if (i > 0) {
1187 			if (i >= ip->ip_len)
1188 				goto dropfrag;
1189 			m_adj(m, i);
1190 			m->m_pkthdr.csum_flags = 0;
1191 			ip->ip_off += i;
1192 			ip->ip_len -= i;
1193 		}
1194 		m->m_nextpkt = p->m_nextpkt;
1195 		p->m_nextpkt = m;
1196 	} else {
1197 		m->m_nextpkt = fp->ipq_frags;
1198 		fp->ipq_frags = m;
1199 	}
1200 
1201 	/*
1202 	 * While we overlap succeeding segments trim them or,
1203 	 * if they are completely covered, dequeue them.
1204 	 */
1205 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1206 	     q = nq) {
1207 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1208 		if (i < GETIP(q)->ip_len) {
1209 			GETIP(q)->ip_len -= i;
1210 			GETIP(q)->ip_off += i;
1211 			m_adj(q, i);
1212 			q->m_pkthdr.csum_flags = 0;
1213 			break;
1214 		}
1215 		nq = q->m_nextpkt;
1216 		m->m_nextpkt = nq;
1217 		ipstat.ips_fragdropped++;
1218 		fp->ipq_nfrags--;
1219 		q->m_nextpkt = NULL;
1220 		m_freem(q);
1221 	}
1222 
1223 inserted:
1224 
1225 #ifdef IPDIVERT
1226 	/*
1227 	 * Transfer firewall instructions to the fragment structure.
1228 	 * Only trust info in the fragment at offset 0.
1229 	 */
1230 	if (ip->ip_off == 0) {
1231 		fp->ipq_div_info = *divinfo;
1232 	} else {
1233 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1234 		if (mtag != NULL)
1235 			m_tag_delete(m, mtag);
1236 	}
1237 	*divinfo = 0;
1238 #endif
1239 
1240 	/*
1241 	 * Check for complete reassembly and perform frag per packet
1242 	 * limiting.
1243 	 *
1244 	 * Frag limiting is performed here so that the nth frag has
1245 	 * a chance to complete the packet before we drop the packet.
1246 	 * As a result, n+1 frags are actually allowed per packet, but
1247 	 * only n will ever be stored. (n = maxfragsperpacket.)
1248 	 *
1249 	 */
1250 	next = 0;
1251 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1252 		if (GETIP(q)->ip_off != next) {
1253 			if (fp->ipq_nfrags > maxfragsperpacket) {
1254 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1255 				ip_freef(fp);
1256 			}
1257 			return (NULL);
1258 		}
1259 		next += GETIP(q)->ip_len;
1260 	}
1261 	/* Make sure the last packet didn't have the IP_MF flag */
1262 	if (p->m_flags & M_FRAG) {
1263 		if (fp->ipq_nfrags > maxfragsperpacket) {
1264 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1265 			ip_freef(fp);
1266 		}
1267 		return (NULL);
1268 	}
1269 
1270 	/*
1271 	 * Reassembly is complete.  Make sure the packet is a sane size.
1272 	 */
1273 	q = fp->ipq_frags;
1274 	ip = GETIP(q);
1275 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1276 		ipstat.ips_toolong++;
1277 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1278 		ip_freef(fp);
1279 		return (NULL);
1280 	}
1281 
1282 	/*
1283 	 * Concatenate fragments.
1284 	 */
1285 	m = q;
1286 	n = m->m_next;
1287 	m->m_next = NULL;
1288 	m_cat(m, n);
1289 	nq = q->m_nextpkt;
1290 	q->m_nextpkt = NULL;
1291 	for (q = nq; q != NULL; q = nq) {
1292 		nq = q->m_nextpkt;
1293 		q->m_nextpkt = NULL;
1294 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1295 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1296 		m_cat(m, q);
1297 	}
1298 
1299 #ifdef IPDIVERT
1300 	/*
1301 	 * Extract firewall instructions from the fragment structure.
1302 	 */
1303 	*divinfo = fp->ipq_div_info;
1304 #endif
1305 
1306 	/*
1307 	 * Create header for new ip packet by
1308 	 * modifying header of first packet;
1309 	 * dequeue and discard fragment reassembly header.
1310 	 * Make header visible.
1311 	 */
1312 	ip->ip_len = next;
1313 	ip->ip_src = fp->ipq_src;
1314 	ip->ip_dst = fp->ipq_dst;
1315 	remque(fp);
1316 	nipq--;
1317 	mpipe_free(&ipq_mpipe, fp);
1318 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1319 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1320 	/* some debugging cruft by sklower, below, will go away soon */
1321 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1322 		int plen = 0;
1323 
1324 		for (n = m; n; n = n->m_next)
1325 			plen += n->m_len;
1326 		m->m_pkthdr.len = plen;
1327 	}
1328 	return (m);
1329 
1330 dropfrag:
1331 #ifdef IPDIVERT
1332 	*divinfo = 0;
1333 #endif
1334 	ipstat.ips_fragdropped++;
1335 	if (fp != NULL)
1336 		fp->ipq_nfrags--;
1337 	m_freem(m);
1338 	return (NULL);
1339 
1340 #undef GETIP
1341 }
1342 
1343 /*
1344  * Free a fragment reassembly header and all
1345  * associated datagrams.
1346  */
1347 static void
1348 ip_freef(struct ipq *fp)
1349 {
1350 	struct mbuf *q;
1351 
1352 	while (fp->ipq_frags) {
1353 		q = fp->ipq_frags;
1354 		fp->ipq_frags = q->m_nextpkt;
1355 		q->m_nextpkt = NULL;
1356 		m_freem(q);
1357 	}
1358 	remque(fp);
1359 	mpipe_free(&ipq_mpipe, fp);
1360 	nipq--;
1361 }
1362 
1363 /*
1364  * IP timer processing;
1365  * if a timer expires on a reassembly
1366  * queue, discard it.
1367  */
1368 void
1369 ip_slowtimo(void)
1370 {
1371 	struct ipq *fp;
1372 	int i;
1373 
1374 	crit_enter();
1375 	for (i = 0; i < IPREASS_NHASH; i++) {
1376 		fp = ipq[i].next;
1377 		if (fp == NULL)
1378 			continue;
1379 		while (fp != &ipq[i]) {
1380 			--fp->ipq_ttl;
1381 			fp = fp->next;
1382 			if (fp->prev->ipq_ttl == 0) {
1383 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1384 				ip_freef(fp->prev);
1385 			}
1386 		}
1387 	}
1388 	/*
1389 	 * If we are over the maximum number of fragments
1390 	 * (due to the limit being lowered), drain off
1391 	 * enough to get down to the new limit.
1392 	 */
1393 	if (maxnipq >= 0 && nipq > maxnipq) {
1394 		for (i = 0; i < IPREASS_NHASH; i++) {
1395 			while (nipq > maxnipq &&
1396 				(ipq[i].next != &ipq[i])) {
1397 				ipstat.ips_fragdropped +=
1398 				    ipq[i].next->ipq_nfrags;
1399 				ip_freef(ipq[i].next);
1400 			}
1401 		}
1402 	}
1403 	ipflow_slowtimo();
1404 	crit_exit();
1405 }
1406 
1407 /*
1408  * Drain off all datagram fragments.
1409  */
1410 void
1411 ip_drain(void)
1412 {
1413 	int i;
1414 
1415 	for (i = 0; i < IPREASS_NHASH; i++) {
1416 		while (ipq[i].next != &ipq[i]) {
1417 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1418 			ip_freef(ipq[i].next);
1419 		}
1420 	}
1421 	in_rtqdrain();
1422 }
1423 
1424 /*
1425  * Do option processing on a datagram,
1426  * possibly discarding it if bad options are encountered,
1427  * or forwarding it if source-routed.
1428  * The pass argument is used when operating in the IPSTEALTH
1429  * mode to tell what options to process:
1430  * [LS]SRR (pass 0) or the others (pass 1).
1431  * The reason for as many as two passes is that when doing IPSTEALTH,
1432  * non-routing options should be processed only if the packet is for us.
1433  * Returns 1 if packet has been forwarded/freed,
1434  * 0 if the packet should be processed further.
1435  */
1436 static int
1437 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1438 {
1439 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1440 	struct ip *ip = mtod(m, struct ip *);
1441 	u_char *cp;
1442 	struct in_ifaddr *ia;
1443 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1444 	boolean_t forward = FALSE;
1445 	struct in_addr *sin, dst;
1446 	n_time ntime;
1447 
1448 	dst = ip->ip_dst;
1449 	cp = (u_char *)(ip + 1);
1450 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1451 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1452 		opt = cp[IPOPT_OPTVAL];
1453 		if (opt == IPOPT_EOL)
1454 			break;
1455 		if (opt == IPOPT_NOP)
1456 			optlen = 1;
1457 		else {
1458 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1459 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1460 				goto bad;
1461 			}
1462 			optlen = cp[IPOPT_OLEN];
1463 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1464 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1465 				goto bad;
1466 			}
1467 		}
1468 		switch (opt) {
1469 
1470 		default:
1471 			break;
1472 
1473 		/*
1474 		 * Source routing with record.
1475 		 * Find interface with current destination address.
1476 		 * If none on this machine then drop if strictly routed,
1477 		 * or do nothing if loosely routed.
1478 		 * Record interface address and bring up next address
1479 		 * component.  If strictly routed make sure next
1480 		 * address is on directly accessible net.
1481 		 */
1482 		case IPOPT_LSRR:
1483 		case IPOPT_SSRR:
1484 			if (ipstealth && pass > 0)
1485 				break;
1486 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1487 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1488 				goto bad;
1489 			}
1490 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1491 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1492 				goto bad;
1493 			}
1494 			ipaddr.sin_addr = ip->ip_dst;
1495 			ia = (struct in_ifaddr *)
1496 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1497 			if (ia == NULL) {
1498 				if (opt == IPOPT_SSRR) {
1499 					type = ICMP_UNREACH;
1500 					code = ICMP_UNREACH_SRCFAIL;
1501 					goto bad;
1502 				}
1503 				if (!ip_dosourceroute)
1504 					goto nosourcerouting;
1505 				/*
1506 				 * Loose routing, and not at next destination
1507 				 * yet; nothing to do except forward.
1508 				 */
1509 				break;
1510 			}
1511 			off--;			/* 0 origin */
1512 			if (off > optlen - (int)sizeof(struct in_addr)) {
1513 				/*
1514 				 * End of source route.  Should be for us.
1515 				 */
1516 				if (!ip_acceptsourceroute)
1517 					goto nosourcerouting;
1518 				save_rte(cp, ip->ip_src);
1519 				break;
1520 			}
1521 			if (ipstealth)
1522 				goto dropit;
1523 			if (!ip_dosourceroute) {
1524 				if (ipforwarding) {
1525 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1526 
1527 					/*
1528 					 * Acting as a router, so generate ICMP
1529 					 */
1530 nosourcerouting:
1531 					strcpy(buf, inet_ntoa(ip->ip_dst));
1532 					log(LOG_WARNING,
1533 					    "attempted source route from %s to %s\n",
1534 					    inet_ntoa(ip->ip_src), buf);
1535 					type = ICMP_UNREACH;
1536 					code = ICMP_UNREACH_SRCFAIL;
1537 					goto bad;
1538 				} else {
1539 					/*
1540 					 * Not acting as a router,
1541 					 * so silently drop.
1542 					 */
1543 dropit:
1544 					ipstat.ips_cantforward++;
1545 					m_freem(m);
1546 					return (1);
1547 				}
1548 			}
1549 
1550 			/*
1551 			 * locate outgoing interface
1552 			 */
1553 			memcpy(&ipaddr.sin_addr, cp + off,
1554 			    sizeof ipaddr.sin_addr);
1555 
1556 			if (opt == IPOPT_SSRR) {
1557 #define	INA	struct in_ifaddr *
1558 #define	SA	struct sockaddr *
1559 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1560 									== NULL)
1561 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1562 			} else
1563 				ia = ip_rtaddr(ipaddr.sin_addr,
1564 					       &ipforward_rt[mycpuid]);
1565 			if (ia == NULL) {
1566 				type = ICMP_UNREACH;
1567 				code = ICMP_UNREACH_SRCFAIL;
1568 				goto bad;
1569 			}
1570 			ip->ip_dst = ipaddr.sin_addr;
1571 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1572 			    sizeof(struct in_addr));
1573 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1574 			/*
1575 			 * Let ip_intr's mcast routing check handle mcast pkts
1576 			 */
1577 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1578 			break;
1579 
1580 		case IPOPT_RR:
1581 			if (ipstealth && pass == 0)
1582 				break;
1583 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1584 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1585 				goto bad;
1586 			}
1587 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1588 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1589 				goto bad;
1590 			}
1591 			/*
1592 			 * If no space remains, ignore.
1593 			 */
1594 			off--;			/* 0 origin */
1595 			if (off > optlen - (int)sizeof(struct in_addr))
1596 				break;
1597 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1598 			    sizeof ipaddr.sin_addr);
1599 			/*
1600 			 * locate outgoing interface; if we're the destination,
1601 			 * use the incoming interface (should be same).
1602 			 */
1603 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1604 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1605 			    		    &ipforward_rt[mycpuid]))
1606 								     == NULL) {
1607 				type = ICMP_UNREACH;
1608 				code = ICMP_UNREACH_HOST;
1609 				goto bad;
1610 			}
1611 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1612 			    sizeof(struct in_addr));
1613 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1614 			break;
1615 
1616 		case IPOPT_TS:
1617 			if (ipstealth && pass == 0)
1618 				break;
1619 			code = cp - (u_char *)ip;
1620 			if (optlen < 4 || optlen > 40) {
1621 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1622 				goto bad;
1623 			}
1624 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1625 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1626 				goto bad;
1627 			}
1628 			if (off > optlen - (int)sizeof(int32_t)) {
1629 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1630 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1631 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1632 					goto bad;
1633 				}
1634 				break;
1635 			}
1636 			off--;				/* 0 origin */
1637 			sin = (struct in_addr *)(cp + off);
1638 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1639 
1640 			case IPOPT_TS_TSONLY:
1641 				break;
1642 
1643 			case IPOPT_TS_TSANDADDR:
1644 				if (off + sizeof(n_time) +
1645 				    sizeof(struct in_addr) > optlen) {
1646 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1647 					goto bad;
1648 				}
1649 				ipaddr.sin_addr = dst;
1650 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1651 							    m->m_pkthdr.rcvif);
1652 				if (ia == NULL)
1653 					continue;
1654 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1655 				    sizeof(struct in_addr));
1656 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1657 				off += sizeof(struct in_addr);
1658 				break;
1659 
1660 			case IPOPT_TS_PRESPEC:
1661 				if (off + sizeof(n_time) +
1662 				    sizeof(struct in_addr) > optlen) {
1663 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1664 					goto bad;
1665 				}
1666 				memcpy(&ipaddr.sin_addr, sin,
1667 				    sizeof(struct in_addr));
1668 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1669 					continue;
1670 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1671 				off += sizeof(struct in_addr);
1672 				break;
1673 
1674 			default:
1675 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1676 				goto bad;
1677 			}
1678 			ntime = iptime();
1679 			memcpy(cp + off, &ntime, sizeof(n_time));
1680 			cp[IPOPT_OFFSET] += sizeof(n_time);
1681 		}
1682 	}
1683 	if (forward && ipforwarding) {
1684 		ip_forward(m, TRUE, next_hop);
1685 		return (1);
1686 	}
1687 	return (0);
1688 bad:
1689 	icmp_error(m, type, code, 0, 0);
1690 	ipstat.ips_badoptions++;
1691 	return (1);
1692 }
1693 
1694 /*
1695  * Given address of next destination (final or next hop),
1696  * return internet address info of interface to be used to get there.
1697  */
1698 struct in_ifaddr *
1699 ip_rtaddr(struct in_addr dst, struct route *ro)
1700 {
1701 	struct sockaddr_in *sin;
1702 
1703 	sin = (struct sockaddr_in *)&ro->ro_dst;
1704 
1705 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1706 		if (ro->ro_rt != NULL) {
1707 			RTFREE(ro->ro_rt);
1708 			ro->ro_rt = NULL;
1709 		}
1710 		sin->sin_family = AF_INET;
1711 		sin->sin_len = sizeof *sin;
1712 		sin->sin_addr = dst;
1713 		rtalloc_ign(ro, RTF_PRCLONING);
1714 	}
1715 
1716 	if (ro->ro_rt == NULL)
1717 		return (NULL);
1718 
1719 	return (ifatoia(ro->ro_rt->rt_ifa));
1720 }
1721 
1722 /*
1723  * Save incoming source route for use in replies,
1724  * to be picked up later by ip_srcroute if the receiver is interested.
1725  */
1726 void
1727 save_rte(u_char *option, struct in_addr dst)
1728 {
1729 	unsigned olen;
1730 
1731 	olen = option[IPOPT_OLEN];
1732 #ifdef DIAGNOSTIC
1733 	if (ipprintfs)
1734 		kprintf("save_rte: olen %d\n", olen);
1735 #endif
1736 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1737 		return;
1738 	bcopy(option, ip_srcrt.srcopt, olen);
1739 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1740 	ip_srcrt.dst = dst;
1741 }
1742 
1743 /*
1744  * Retrieve incoming source route for use in replies,
1745  * in the same form used by setsockopt.
1746  * The first hop is placed before the options, will be removed later.
1747  */
1748 struct mbuf *
1749 ip_srcroute(void)
1750 {
1751 	struct in_addr *p, *q;
1752 	struct mbuf *m;
1753 
1754 	if (ip_nhops == 0)
1755 		return (NULL);
1756 	m = m_get(MB_DONTWAIT, MT_HEADER);
1757 	if (m == NULL)
1758 		return (NULL);
1759 
1760 #define	OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1761 
1762 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1763 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1764 	    OPTSIZ;
1765 #ifdef DIAGNOSTIC
1766 	if (ipprintfs)
1767 		kprintf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1768 #endif
1769 
1770 	/*
1771 	 * First save first hop for return route
1772 	 */
1773 	p = &ip_srcrt.route[ip_nhops - 1];
1774 	*(mtod(m, struct in_addr *)) = *p--;
1775 #ifdef DIAGNOSTIC
1776 	if (ipprintfs)
1777 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1778 #endif
1779 
1780 	/*
1781 	 * Copy option fields and padding (nop) to mbuf.
1782 	 */
1783 	ip_srcrt.nop = IPOPT_NOP;
1784 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1785 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1786 	    OPTSIZ);
1787 	q = (struct in_addr *)(mtod(m, caddr_t) +
1788 	    sizeof(struct in_addr) + OPTSIZ);
1789 #undef OPTSIZ
1790 	/*
1791 	 * Record return path as an IP source route,
1792 	 * reversing the path (pointers are now aligned).
1793 	 */
1794 	while (p >= ip_srcrt.route) {
1795 #ifdef DIAGNOSTIC
1796 		if (ipprintfs)
1797 			kprintf(" %x", ntohl(q->s_addr));
1798 #endif
1799 		*q++ = *p--;
1800 	}
1801 	/*
1802 	 * Last hop goes to final destination.
1803 	 */
1804 	*q = ip_srcrt.dst;
1805 #ifdef DIAGNOSTIC
1806 	if (ipprintfs)
1807 		kprintf(" %x\n", ntohl(q->s_addr));
1808 #endif
1809 	return (m);
1810 }
1811 
1812 /*
1813  * Strip out IP options.
1814  */
1815 void
1816 ip_stripoptions(struct mbuf *m)
1817 {
1818 	int datalen;
1819 	struct ip *ip = mtod(m, struct ip *);
1820 	caddr_t opts;
1821 	int optlen;
1822 
1823 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1824 	opts = (caddr_t)(ip + 1);
1825 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1826 	bcopy(opts + optlen, opts, datalen);
1827 	m->m_len -= optlen;
1828 	if (m->m_flags & M_PKTHDR)
1829 		m->m_pkthdr.len -= optlen;
1830 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1831 }
1832 
1833 u_char inetctlerrmap[PRC_NCMDS] = {
1834 	0,		0,		0,		0,
1835 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1836 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1837 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1838 	0,		0,		0,		0,
1839 	ENOPROTOOPT,	ECONNREFUSED
1840 };
1841 
1842 /*
1843  * Forward a packet.  If some error occurs return the sender
1844  * an icmp packet.  Note we can't always generate a meaningful
1845  * icmp message because icmp doesn't have a large enough repertoire
1846  * of codes and types.
1847  *
1848  * If not forwarding, just drop the packet.  This could be confusing
1849  * if ipforwarding was zero but some routing protocol was advancing
1850  * us as a gateway to somewhere.  However, we must let the routing
1851  * protocol deal with that.
1852  *
1853  * The using_srcrt parameter indicates whether the packet is being forwarded
1854  * via a source route.
1855  */
1856 static void
1857 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1858 {
1859 	struct ip *ip = mtod(m, struct ip *);
1860 	struct sockaddr_in *ipforward_rtaddr;
1861 	struct rtentry *rt;
1862 	int error, type = 0, code = 0, destmtu = 0;
1863 	struct mbuf *mcopy;
1864 	n_long dest;
1865 	struct in_addr pkt_dst;
1866 	struct m_hdr tag;
1867 	struct route *cache_rt = &ipforward_rt[mycpuid];
1868 
1869 	dest = INADDR_ANY;
1870 	/*
1871 	 * Cache the destination address of the packet; this may be
1872 	 * changed by use of 'ipfw fwd'.
1873 	 */
1874 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1875 
1876 #ifdef DIAGNOSTIC
1877 	if (ipprintfs)
1878 		kprintf("forward: src %x dst %x ttl %x\n",
1879 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1880 #endif
1881 
1882 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1883 		ipstat.ips_cantforward++;
1884 		m_freem(m);
1885 		return;
1886 	}
1887 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1888 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1889 		return;
1890 	}
1891 
1892 	ipforward_rtaddr = (struct sockaddr_in *) &cache_rt->ro_dst;
1893 	if (cache_rt->ro_rt == NULL ||
1894 	    ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1895 		if (cache_rt->ro_rt != NULL) {
1896 			RTFREE(cache_rt->ro_rt);
1897 			cache_rt->ro_rt = NULL;
1898 		}
1899 		ipforward_rtaddr->sin_family = AF_INET;
1900 		ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1901 		ipforward_rtaddr->sin_addr = pkt_dst;
1902 		rtalloc_ign(cache_rt, RTF_PRCLONING);
1903 		if (cache_rt->ro_rt == NULL) {
1904 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1905 			return;
1906 		}
1907 	}
1908 	rt = cache_rt->ro_rt;
1909 
1910 	/*
1911 	 * Save the IP header and at most 8 bytes of the payload,
1912 	 * in case we need to generate an ICMP message to the src.
1913 	 *
1914 	 * XXX this can be optimized a lot by saving the data in a local
1915 	 * buffer on the stack (72 bytes at most), and only allocating the
1916 	 * mbuf if really necessary. The vast majority of the packets
1917 	 * are forwarded without having to send an ICMP back (either
1918 	 * because unnecessary, or because rate limited), so we are
1919 	 * really we are wasting a lot of work here.
1920 	 *
1921 	 * We don't use m_copy() because it might return a reference
1922 	 * to a shared cluster. Both this function and ip_output()
1923 	 * assume exclusive access to the IP header in `m', so any
1924 	 * data in a cluster may change before we reach icmp_error().
1925 	 */
1926 	MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1927 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1928 		/*
1929 		 * It's probably ok if the pkthdr dup fails (because
1930 		 * the deep copy of the tag chain failed), but for now
1931 		 * be conservative and just discard the copy since
1932 		 * code below may some day want the tags.
1933 		 */
1934 		m_free(mcopy);
1935 		mcopy = NULL;
1936 	}
1937 	if (mcopy != NULL) {
1938 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1939 		    (int)ip->ip_len);
1940 		mcopy->m_pkthdr.len = mcopy->m_len;
1941 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1942 	}
1943 
1944 	if (!ipstealth)
1945 		ip->ip_ttl -= IPTTLDEC;
1946 
1947 	/*
1948 	 * If forwarding packet using same interface that it came in on,
1949 	 * perhaps should send a redirect to sender to shortcut a hop.
1950 	 * Only send redirect if source is sending directly to us,
1951 	 * and if packet was not source routed (or has any options).
1952 	 * Also, don't send redirect if forwarding using a default route
1953 	 * or a route modified by a redirect.
1954 	 */
1955 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1956 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1957 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1958 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1959 		u_long src = ntohl(ip->ip_src.s_addr);
1960 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1961 
1962 		if (rt_ifa != NULL &&
1963 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1964 			if (rt->rt_flags & RTF_GATEWAY)
1965 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1966 			else
1967 				dest = pkt_dst.s_addr;
1968 			/*
1969 			 * Router requirements says to only send
1970 			 * host redirects.
1971 			 */
1972 			type = ICMP_REDIRECT;
1973 			code = ICMP_REDIRECT_HOST;
1974 #ifdef DIAGNOSTIC
1975 			if (ipprintfs)
1976 				kprintf("redirect (%d) to %x\n", code, dest);
1977 #endif
1978 		}
1979 	}
1980 
1981 	if (next_hop != NULL) {
1982 		/* Pass IPFORWARD info if available */
1983 		tag.mh_type = MT_TAG;
1984 		tag.mh_flags = PACKET_TAG_IPFORWARD;
1985 		tag.mh_data = (caddr_t)next_hop;
1986 		tag.mh_next = m;
1987 		m = (struct mbuf *)&tag;
1988 	}
1989 
1990 	error = ip_output(m, NULL, cache_rt, IP_FORWARDING, NULL,
1991 			  NULL);
1992 	if (error == 0) {
1993 		ipstat.ips_forward++;
1994 		if (type == 0) {
1995 			if (mcopy) {
1996 				ipflow_create(cache_rt, mcopy);
1997 				m_freem(mcopy);
1998 			}
1999 			return;		/* most common case */
2000 		} else {
2001 			ipstat.ips_redirectsent++;
2002 		}
2003 	} else {
2004 		ipstat.ips_cantforward++;
2005 	}
2006 
2007 	if (mcopy == NULL)
2008 		return;
2009 
2010 	/*
2011 	 * Send ICMP message.
2012 	 */
2013 
2014 	switch (error) {
2015 
2016 	case 0:				/* forwarded, but need redirect */
2017 		/* type, code set above */
2018 		break;
2019 
2020 	case ENETUNREACH:		/* shouldn't happen, checked above */
2021 	case EHOSTUNREACH:
2022 	case ENETDOWN:
2023 	case EHOSTDOWN:
2024 	default:
2025 		type = ICMP_UNREACH;
2026 		code = ICMP_UNREACH_HOST;
2027 		break;
2028 
2029 	case EMSGSIZE:
2030 		type = ICMP_UNREACH;
2031 		code = ICMP_UNREACH_NEEDFRAG;
2032 #ifdef IPSEC
2033 		/*
2034 		 * If the packet is routed over IPsec tunnel, tell the
2035 		 * originator the tunnel MTU.
2036 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2037 		 * XXX quickhack!!!
2038 		 */
2039 		if (cache_rt->ro_rt != NULL) {
2040 			struct secpolicy *sp = NULL;
2041 			int ipsecerror;
2042 			int ipsechdr;
2043 			struct route *ro;
2044 
2045 			sp = ipsec4_getpolicybyaddr(mcopy,
2046 						    IPSEC_DIR_OUTBOUND,
2047 						    IP_FORWARDING,
2048 						    &ipsecerror);
2049 
2050 			if (sp == NULL)
2051 				destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2052 			else {
2053 				/* count IPsec header size */
2054 				ipsechdr = ipsec4_hdrsiz(mcopy,
2055 							 IPSEC_DIR_OUTBOUND,
2056 							 NULL);
2057 
2058 				/*
2059 				 * find the correct route for outer IPv4
2060 				 * header, compute tunnel MTU.
2061 				 *
2062 				 */
2063 				if (sp->req != NULL && sp->req->sav != NULL &&
2064 				    sp->req->sav->sah != NULL) {
2065 					ro = &sp->req->sav->sah->sa_route;
2066 					if (ro->ro_rt != NULL &&
2067 					    ro->ro_rt->rt_ifp != NULL) {
2068 						destmtu =
2069 						    ro->ro_rt->rt_ifp->if_mtu;
2070 						destmtu -= ipsechdr;
2071 					}
2072 				}
2073 
2074 				key_freesp(sp);
2075 			}
2076 		}
2077 #elif FAST_IPSEC
2078 		/*
2079 		 * If the packet is routed over IPsec tunnel, tell the
2080 		 * originator the tunnel MTU.
2081 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2082 		 * XXX quickhack!!!
2083 		 */
2084 		if (cache_rt->ro_rt != NULL) {
2085 			struct secpolicy *sp = NULL;
2086 			int ipsecerror;
2087 			int ipsechdr;
2088 			struct route *ro;
2089 
2090 			sp = ipsec_getpolicybyaddr(mcopy,
2091 						   IPSEC_DIR_OUTBOUND,
2092 						   IP_FORWARDING,
2093 						   &ipsecerror);
2094 
2095 			if (sp == NULL)
2096 				destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2097 			else {
2098 				/* count IPsec header size */
2099 				ipsechdr = ipsec4_hdrsiz(mcopy,
2100 							 IPSEC_DIR_OUTBOUND,
2101 							 NULL);
2102 
2103 				/*
2104 				 * find the correct route for outer IPv4
2105 				 * header, compute tunnel MTU.
2106 				 */
2107 
2108 				if (sp->req != NULL &&
2109 				    sp->req->sav != NULL &&
2110 				    sp->req->sav->sah != NULL) {
2111 					ro = &sp->req->sav->sah->sa_route;
2112 					if (ro->ro_rt != NULL &&
2113 					    ro->ro_rt->rt_ifp != NULL) {
2114 						destmtu =
2115 						    ro->ro_rt->rt_ifp->if_mtu;
2116 						destmtu -= ipsechdr;
2117 					}
2118 				}
2119 
2120 				KEY_FREESP(&sp);
2121 			}
2122 		}
2123 #else /* !IPSEC && !FAST_IPSEC */
2124 		if (cache_rt->ro_rt != NULL)
2125 			destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2126 #endif /*IPSEC*/
2127 		ipstat.ips_cantfrag++;
2128 		break;
2129 
2130 	case ENOBUFS:
2131 		/*
2132 		 * A router should not generate ICMP_SOURCEQUENCH as
2133 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2134 		 * Source quench could be a big problem under DoS attacks,
2135 		 * or if the underlying interface is rate-limited.
2136 		 * Those who need source quench packets may re-enable them
2137 		 * via the net.inet.ip.sendsourcequench sysctl.
2138 		 */
2139 		if (!ip_sendsourcequench) {
2140 			m_freem(mcopy);
2141 			return;
2142 		} else {
2143 			type = ICMP_SOURCEQUENCH;
2144 			code = 0;
2145 		}
2146 		break;
2147 
2148 	case EACCES:			/* ipfw denied packet */
2149 		m_freem(mcopy);
2150 		return;
2151 	}
2152 	icmp_error(mcopy, type, code, dest, destmtu);
2153 }
2154 
2155 void
2156 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2157 	       struct mbuf *m)
2158 {
2159 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2160 		struct timeval tv;
2161 
2162 		microtime(&tv);
2163 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2164 		    SCM_TIMESTAMP, SOL_SOCKET);
2165 		if (*mp)
2166 			mp = &(*mp)->m_next;
2167 	}
2168 	if (inp->inp_flags & INP_RECVDSTADDR) {
2169 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2170 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2171 		if (*mp)
2172 			mp = &(*mp)->m_next;
2173 	}
2174 	if (inp->inp_flags & INP_RECVTTL) {
2175 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2176 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2177 		if (*mp)
2178 			mp = &(*mp)->m_next;
2179 	}
2180 #ifdef notyet
2181 	/* XXX
2182 	 * Moving these out of udp_input() made them even more broken
2183 	 * than they already were.
2184 	 */
2185 	/* options were tossed already */
2186 	if (inp->inp_flags & INP_RECVOPTS) {
2187 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2188 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2189 		if (*mp)
2190 			mp = &(*mp)->m_next;
2191 	}
2192 	/* ip_srcroute doesn't do what we want here, need to fix */
2193 	if (inp->inp_flags & INP_RECVRETOPTS) {
2194 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2195 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2196 		if (*mp)
2197 			mp = &(*mp)->m_next;
2198 	}
2199 #endif
2200 	if (inp->inp_flags & INP_RECVIF) {
2201 		struct ifnet *ifp;
2202 		struct sdlbuf {
2203 			struct sockaddr_dl sdl;
2204 			u_char	pad[32];
2205 		} sdlbuf;
2206 		struct sockaddr_dl *sdp;
2207 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2208 
2209 		if (((ifp = m->m_pkthdr.rcvif)) &&
2210 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2211 			sdp = IF_LLSOCKADDR(ifp);
2212 			/*
2213 			 * Change our mind and don't try copy.
2214 			 */
2215 			if ((sdp->sdl_family != AF_LINK) ||
2216 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2217 				goto makedummy;
2218 			}
2219 			bcopy(sdp, sdl2, sdp->sdl_len);
2220 		} else {
2221 makedummy:
2222 			sdl2->sdl_len =
2223 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2224 			sdl2->sdl_family = AF_LINK;
2225 			sdl2->sdl_index = 0;
2226 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2227 		}
2228 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2229 			IP_RECVIF, IPPROTO_IP);
2230 		if (*mp)
2231 			mp = &(*mp)->m_next;
2232 	}
2233 }
2234 
2235 /*
2236  * XXX these routines are called from the upper part of the kernel.
2237  *
2238  * They could also be moved to ip_mroute.c, since all the RSVP
2239  *  handling is done there already.
2240  */
2241 int
2242 ip_rsvp_init(struct socket *so)
2243 {
2244 	if (so->so_type != SOCK_RAW ||
2245 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2246 		return EOPNOTSUPP;
2247 
2248 	if (ip_rsvpd != NULL)
2249 		return EADDRINUSE;
2250 
2251 	ip_rsvpd = so;
2252 	/*
2253 	 * This may seem silly, but we need to be sure we don't over-increment
2254 	 * the RSVP counter, in case something slips up.
2255 	 */
2256 	if (!ip_rsvp_on) {
2257 		ip_rsvp_on = 1;
2258 		rsvp_on++;
2259 	}
2260 
2261 	return 0;
2262 }
2263 
2264 int
2265 ip_rsvp_done(void)
2266 {
2267 	ip_rsvpd = NULL;
2268 	/*
2269 	 * This may seem silly, but we need to be sure we don't over-decrement
2270 	 * the RSVP counter, in case something slips up.
2271 	 */
2272 	if (ip_rsvp_on) {
2273 		ip_rsvp_on = 0;
2274 		rsvp_on--;
2275 	}
2276 	return 0;
2277 }
2278 
2279 void
2280 rsvp_input(struct mbuf *m, ...)	/* XXX must fixup manually */
2281 {
2282 	int off, proto;
2283 	__va_list ap;
2284 
2285 	__va_start(ap, m);
2286 	off = __va_arg(ap, int);
2287 	proto = __va_arg(ap, int);
2288 	__va_end(ap);
2289 
2290 	if (rsvp_input_p) { /* call the real one if loaded */
2291 		rsvp_input_p(m, off, proto);
2292 		return;
2293 	}
2294 
2295 	/* Can still get packets with rsvp_on = 0 if there is a local member
2296 	 * of the group to which the RSVP packet is addressed.  But in this
2297 	 * case we want to throw the packet away.
2298 	 */
2299 
2300 	if (!rsvp_on) {
2301 		m_freem(m);
2302 		return;
2303 	}
2304 
2305 	if (ip_rsvpd != NULL) {
2306 		rip_input(m, off, proto);
2307 		return;
2308 	}
2309 	/* Drop the packet */
2310 	m_freem(m);
2311 }
2312