xref: /dragonfly/sys/netinet/ip_input.c (revision 59a92d18)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
67  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68  * $DragonFly: src/sys/netinet/ip_input.c,v 1.115 2008/10/28 07:09:26 sephe Exp $
69  */
70 
71 #define	_IP_VHL
72 
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
96 #include <sys/lock.h>
97 
98 #include <sys/mplock2.h>
99 
100 #include <machine/stdarg.h>
101 
102 #include <net/if.h>
103 #include <net/if_types.h>
104 #include <net/if_var.h>
105 #include <net/if_dl.h>
106 #include <net/pfil.h>
107 #include <net/route.h>
108 #include <net/netisr.h>
109 
110 #include <netinet/in.h>
111 #include <netinet/in_systm.h>
112 #include <netinet/in_var.h>
113 #include <netinet/ip.h>
114 #include <netinet/in_pcb.h>
115 #include <netinet/ip_var.h>
116 #include <netinet/ip_icmp.h>
117 #include <netinet/ip_divert.h>
118 #include <netinet/ip_flow.h>
119 
120 #include <sys/thread2.h>
121 #include <sys/msgport2.h>
122 #include <net/netmsg2.h>
123 
124 #include <sys/socketvar.h>
125 
126 #include <net/ipfw/ip_fw.h>
127 #include <net/dummynet/ip_dummynet.h>
128 
129 #ifdef IPSEC
130 #include <netinet6/ipsec.h>
131 #include <netproto/key/key.h>
132 #endif
133 
134 #ifdef FAST_IPSEC
135 #include <netproto/ipsec/ipsec.h>
136 #include <netproto/ipsec/key.h>
137 #endif
138 
139 int rsvp_on = 0;
140 static int ip_rsvp_on;
141 struct socket *ip_rsvpd;
142 
143 int ipforwarding = 0;
144 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
145     &ipforwarding, 0, "Enable IP forwarding between interfaces");
146 
147 static int ipsendredirects = 1; /* XXX */
148 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
149     &ipsendredirects, 0, "Enable sending IP redirects");
150 
151 int ip_defttl = IPDEFTTL;
152 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
153     &ip_defttl, 0, "Maximum TTL on IP packets");
154 
155 static int ip_dosourceroute = 0;
156 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
157     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
158 
159 static int ip_acceptsourceroute = 0;
160 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
161     CTLFLAG_RW, &ip_acceptsourceroute, 0,
162     "Enable accepting source routed IP packets");
163 
164 static int ip_keepfaith = 0;
165 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
166     &ip_keepfaith, 0,
167     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
168 
169 static int nipq = 0;	/* total # of reass queues */
170 static int maxnipq;
171 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
172     &maxnipq, 0,
173     "Maximum number of IPv4 fragment reassembly queue entries");
174 
175 static int maxfragsperpacket;
176 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
177     &maxfragsperpacket, 0,
178     "Maximum number of IPv4 fragments allowed per packet");
179 
180 static int ip_sendsourcequench = 0;
181 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
182     &ip_sendsourcequench, 0,
183     "Enable the transmission of source quench packets");
184 
185 int ip_do_randomid = 1;
186 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
187     &ip_do_randomid, 0,
188     "Assign random ip_id values");
189 /*
190  * XXX - Setting ip_checkinterface mostly implements the receive side of
191  * the Strong ES model described in RFC 1122, but since the routing table
192  * and transmit implementation do not implement the Strong ES model,
193  * setting this to 1 results in an odd hybrid.
194  *
195  * XXX - ip_checkinterface currently must be disabled if you use ipnat
196  * to translate the destination address to another local interface.
197  *
198  * XXX - ip_checkinterface must be disabled if you add IP aliases
199  * to the loopback interface instead of the interface where the
200  * packets for those addresses are received.
201  */
202 static int ip_checkinterface = 0;
203 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
204     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
205 
206 static int ip_dispatch_fast = 0;
207 static int ip_dispatch_slow = 0;
208 static int ip_dispatch_recheck = 0;
209 static int ip_dispatch_software = 0;
210 SYSCTL_INT(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
211     &ip_dispatch_fast, 0,
212     "Number of IP dispatches handled on current CPU");
213 SYSCTL_INT(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
214     &ip_dispatch_slow, 0,
215     "Number of IP dispatches messaged to another CPU");
216 SYSCTL_INT(_net_inet_ip, OID_AUTO, dispatch_software_count, CTLFLAG_RD,
217     &ip_dispatch_software, 0, "");
218 SYSCTL_INT(_net_inet_ip, OID_AUTO, dispatch_recheck_count, CTLFLAG_RD,
219     &ip_dispatch_recheck, 0, "");
220 
221 static struct lwkt_token ipq_token = LWKT_TOKEN_MP_INITIALIZER(ipq_token);
222 
223 #ifdef DIAGNOSTIC
224 static int ipprintfs = 0;
225 #endif
226 
227 extern	struct domain inetdomain;
228 extern	struct protosw inetsw[];
229 u_char	ip_protox[IPPROTO_MAX];
230 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
231 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
232 						/* inet addr hash table */
233 u_long	in_ifaddrhmask;				/* mask for hash table */
234 
235 struct ip_stats ipstats_percpu[MAXCPU];
236 #ifdef SMP
237 static int
238 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
239 {
240 	int cpu, error = 0;
241 
242 	for (cpu = 0; cpu < ncpus; ++cpu) {
243 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
244 					sizeof(struct ip_stats))))
245 			break;
246 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
247 				       sizeof(struct ip_stats))))
248 			break;
249 	}
250 
251 	return (error);
252 }
253 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
254     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
255 #else
256 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
257     &ipstat, ip_stats, "IP statistics");
258 #endif
259 
260 /* Packet reassembly stuff */
261 #define	IPREASS_NHASH_LOG2	6
262 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
263 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
264 #define	IPREASS_HASH(x,y)						\
265     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
266 
267 static struct ipq ipq[IPREASS_NHASH];
268 
269 #ifdef IPCTL_DEFMTU
270 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
271     &ip_mtu, 0, "Default MTU");
272 #endif
273 
274 #ifdef IPSTEALTH
275 static int ipstealth = 0;
276 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
277 #else
278 static const int ipstealth = 0;
279 #endif
280 
281 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
282 
283 struct pfil_head inet_pfil_hook;
284 
285 /*
286  * struct ip_srcrt_opt is used to store packet state while it travels
287  * through the stack.
288  *
289  * XXX Note that the code even makes assumptions on the size and
290  * alignment of fields inside struct ip_srcrt so e.g. adding some
291  * fields will break the code.  This needs to be fixed.
292  *
293  * We need to save the IP options in case a protocol wants to respond
294  * to an incoming packet over the same route if the packet got here
295  * using IP source routing.  This allows connection establishment and
296  * maintenance when the remote end is on a network that is not known
297  * to us.
298  */
299 struct ip_srcrt {
300 	struct	in_addr dst;			/* final destination */
301 	char	nop;				/* one NOP to align */
302 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
303 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
304 };
305 
306 struct ip_srcrt_opt {
307 	int		ip_nhops;
308 	struct ip_srcrt	ip_srcrt;
309 };
310 
311 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
312 static struct malloc_pipe ipq_mpipe;
313 
314 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
315 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
316 static void		ip_freef(struct ipq *);
317 static void		ip_input_handler(netmsg_t);
318 
319 /*
320  * IP initialization: fill in IP protocol switch table.
321  * All protocols not implemented in kernel go to raw IP protocol handler.
322  */
323 void
324 ip_init(void)
325 {
326 	struct protosw *pr;
327 	int i;
328 #ifdef SMP
329 	int cpu;
330 #endif
331 
332 	/*
333 	 * Make sure we can handle a reasonable number of fragments but
334 	 * cap it at 4000 (XXX).
335 	 */
336 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
337 		    IFQ_MAXLEN, 4000, 0, NULL);
338 	for (i = 0; i < ncpus; ++i) {
339 		TAILQ_INIT(&in_ifaddrheads[i]);
340 		in_ifaddrhashtbls[i] =
341 			hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
342 	}
343 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
344 	if (pr == NULL)
345 		panic("ip_init");
346 	for (i = 0; i < IPPROTO_MAX; i++)
347 		ip_protox[i] = pr - inetsw;
348 	for (pr = inetdomain.dom_protosw;
349 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
350 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
351 			if (pr->pr_protocol != IPPROTO_RAW)
352 				ip_protox[pr->pr_protocol] = pr - inetsw;
353 		}
354 	}
355 
356 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
357 	inet_pfil_hook.ph_af = AF_INET;
358 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
359 		kprintf("%s: WARNING: unable to register pfil hook, "
360 			"error %d\n", __func__, i);
361 	}
362 
363 	for (i = 0; i < IPREASS_NHASH; i++)
364 		ipq[i].next = ipq[i].prev = &ipq[i];
365 
366 	maxnipq = nmbclusters / 32;
367 	maxfragsperpacket = 16;
368 
369 	ip_id = time_second & 0xffff;
370 
371 	/*
372 	 * Initialize IP statistics counters for each CPU.
373 	 *
374 	 */
375 #ifdef SMP
376 	for (cpu = 0; cpu < ncpus; ++cpu) {
377 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
378 	}
379 #else
380 	bzero(&ipstat, sizeof(struct ip_stats));
381 #endif
382 
383 	netisr_register(NETISR_IP, ip_input_handler, ip_cpufn_in);
384 }
385 
386 /* Do transport protocol processing. */
387 static void
388 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
389 {
390 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
391 
392 	/*
393 	 * Switch out to protocol's input routine.
394 	 */
395 	PR_GET_MPLOCK(pr);
396 	pr->pr_input(&m, &hlen, ip->ip_p);
397 	PR_REL_MPLOCK(pr);
398 }
399 
400 static void
401 transport_processing_handler(netmsg_t msg)
402 {
403 	struct netmsg_packet *pmsg = &msg->packet;
404 	struct ip *ip;
405 	int hlen;
406 
407 	ip = mtod(pmsg->nm_packet, struct ip *);
408 	hlen = pmsg->base.lmsg.u.ms_result;
409 
410 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
411 	/* msg was embedded in the mbuf, do not reply! */
412 }
413 
414 static void
415 ip_input_handler(netmsg_t msg)
416 {
417 	ip_input(msg->packet.nm_packet);
418 	/* msg was embedded in the mbuf, do not reply! */
419 }
420 
421 /*
422  * IP input routine.  Checksum and byte swap header.  If fragmented
423  * try to reassemble.  Process options.  Pass to next level.
424  */
425 void
426 ip_input(struct mbuf *m)
427 {
428 	struct ip *ip;
429 	struct in_ifaddr *ia = NULL;
430 	struct in_ifaddr_container *iac;
431 	int hlen, checkif;
432 	u_short sum;
433 	struct in_addr pkt_dst;
434 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
435 	struct in_addr odst;			/* original dst address(NAT) */
436 	struct m_tag *mtag;
437 	struct sockaddr_in *next_hop = NULL;
438 	lwkt_port_t port;
439 #ifdef FAST_IPSEC
440 	struct tdb_ident *tdbi;
441 	struct secpolicy *sp;
442 	int error;
443 #endif
444 
445 	M_ASSERTPKTHDR(m);
446 
447 	/*
448 	 * This routine is called from numerous places which may not have
449 	 * characterized the packet.
450 	 */
451 	if ((m->m_flags & M_HASH) == 0) {
452 		++ip_dispatch_software;
453 		ip_cpufn(&m, 0, IP_MPORT_IN);
454 		if (m == NULL)
455 			return;
456 		KKASSERT(m->m_flags & M_HASH);
457 	}
458 	ip = mtod(m, struct ip *);
459 
460 	/*
461 	 * Pull out certain tags
462 	 */
463 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
464 		/* Next hop */
465 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
466 		KKASSERT(mtag != NULL);
467 		next_hop = m_tag_data(mtag);
468 	}
469 
470 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
471 		/* dummynet already filtered us */
472 		ip = mtod(m, struct ip *);
473 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
474 		goto iphack;
475 	}
476 
477 	ipstat.ips_total++;
478 
479 	/* length checks already done in ip_cpufn() */
480 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
481 
482 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
483 		ipstat.ips_badvers++;
484 		goto bad;
485 	}
486 
487 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
488 	/* length checks already done in ip_cpufn() */
489 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
490 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
491 
492 	/* 127/8 must not appear on wire - RFC1122 */
493 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
494 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
495 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
496 			ipstat.ips_badaddr++;
497 			goto bad;
498 		}
499 	}
500 
501 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
502 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
503 	} else {
504 		if (hlen == sizeof(struct ip))
505 			sum = in_cksum_hdr(ip);
506 		else
507 			sum = in_cksum(m, hlen);
508 	}
509 	if (sum != 0) {
510 		ipstat.ips_badsum++;
511 		goto bad;
512 	}
513 
514 #ifdef ALTQ
515 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
516 		/* packet is dropped by traffic conditioner */
517 		return;
518 	}
519 #endif
520 	/*
521 	 * Convert fields to host representation.
522 	 */
523 	ip->ip_len = ntohs(ip->ip_len);
524 	ip->ip_off = ntohs(ip->ip_off);
525 
526 	/* length checks already done in ip_cpufn() */
527 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
528 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
529 
530 	/*
531 	 * Trim mbufs if longer than the IP header would have us expect.
532 	 */
533 	if (m->m_pkthdr.len > ip->ip_len) {
534 		if (m->m_len == m->m_pkthdr.len) {
535 			m->m_len = ip->ip_len;
536 			m->m_pkthdr.len = ip->ip_len;
537 		} else {
538 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
539 		}
540 	}
541 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
542 	/*
543 	 * Bypass packet filtering for packets from a tunnel (gif).
544 	 */
545 	if (ipsec_gethist(m, NULL))
546 		goto pass;
547 #endif
548 
549 	/*
550 	 * IpHack's section.
551 	 * Right now when no processing on packet has done
552 	 * and it is still fresh out of network we do our black
553 	 * deals with it.
554 	 * - Firewall: deny/allow/divert
555 	 * - Xlate: translate packet's addr/port (NAT).
556 	 * - Pipe: pass pkt through dummynet.
557 	 * - Wrap: fake packet's addr/port <unimpl.>
558 	 * - Encapsulate: put it in another IP and send out. <unimp.>
559 	 */
560 
561 iphack:
562 	/*
563 	 * If we've been forwarded from the output side, then
564 	 * skip the firewall a second time
565 	 */
566 	if (next_hop != NULL)
567 		goto ours;
568 
569 	/* No pfil hooks */
570 	if (!pfil_has_hooks(&inet_pfil_hook)) {
571 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
572 			/*
573 			 * Strip dummynet tags from stranded packets
574 			 */
575 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
576 			KKASSERT(mtag != NULL);
577 			m_tag_delete(m, mtag);
578 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
579 		}
580 		goto pass;
581 	}
582 
583 	/*
584 	 * Run through list of hooks for input packets.
585 	 *
586 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
587 	 *	  clear M_HASH.
588 	 */
589 	odst = ip->ip_dst;
590 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
591 		return;
592 	if (m == NULL)	/* consumed by filter */
593 		return;
594 	ip = mtod(m, struct ip *);
595 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
596 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
597 
598 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
599 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
600 		KKASSERT(mtag != NULL);
601 		next_hop = m_tag_data(mtag);
602 	}
603 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
604 		ip_dn_queue(m);
605 		return;
606 	}
607 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
608 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
609 	}
610 pass:
611 	/*
612 	 * Process options and, if not destined for us,
613 	 * ship it on.  ip_dooptions returns 1 when an
614 	 * error was detected (causing an icmp message
615 	 * to be sent and the original packet to be freed).
616 	 */
617 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
618 		return;
619 
620 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
621 	 * matter if it is destined to another node, or whether it is
622 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
623 	 * anywhere else. Also checks if the rsvp daemon is running before
624 	 * grabbing the packet.
625 	 */
626 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
627 		goto ours;
628 
629 	/*
630 	 * Check our list of addresses, to see if the packet is for us.
631 	 * If we don't have any addresses, assume any unicast packet
632 	 * we receive might be for us (and let the upper layers deal
633 	 * with it).
634 	 */
635 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
636 	    !(m->m_flags & (M_MCAST | M_BCAST)))
637 		goto ours;
638 
639 	/*
640 	 * Cache the destination address of the packet; this may be
641 	 * changed by use of 'ipfw fwd'.
642 	 */
643 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
644 
645 	/*
646 	 * Enable a consistency check between the destination address
647 	 * and the arrival interface for a unicast packet (the RFC 1122
648 	 * strong ES model) if IP forwarding is disabled and the packet
649 	 * is not locally generated and the packet is not subject to
650 	 * 'ipfw fwd'.
651 	 *
652 	 * XXX - Checking also should be disabled if the destination
653 	 * address is ipnat'ed to a different interface.
654 	 *
655 	 * XXX - Checking is incompatible with IP aliases added
656 	 * to the loopback interface instead of the interface where
657 	 * the packets are received.
658 	 */
659 	checkif = ip_checkinterface &&
660 		  !ipforwarding &&
661 		  m->m_pkthdr.rcvif != NULL &&
662 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
663 		  next_hop == NULL;
664 
665 	/*
666 	 * Check for exact addresses in the hash bucket.
667 	 */
668 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
669 		ia = iac->ia;
670 
671 		/*
672 		 * If the address matches, verify that the packet
673 		 * arrived via the correct interface if checking is
674 		 * enabled.
675 		 */
676 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
677 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
678 			goto ours;
679 	}
680 	ia = NULL;
681 
682 	/*
683 	 * Check for broadcast addresses.
684 	 *
685 	 * Only accept broadcast packets that arrive via the matching
686 	 * interface.  Reception of forwarded directed broadcasts would
687 	 * be handled via ip_forward() and ether_output() with the loopback
688 	 * into the stack for SIMPLEX interfaces handled by ether_output().
689 	 */
690 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
691 		struct ifaddr_container *ifac;
692 
693 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
694 			      ifa_link) {
695 			struct ifaddr *ifa = ifac->ifa;
696 
697 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
698 				continue;
699 			if (ifa->ifa_addr->sa_family != AF_INET)
700 				continue;
701 			ia = ifatoia(ifa);
702 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
703 								pkt_dst.s_addr)
704 				goto ours;
705 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
706 				goto ours;
707 #ifdef BOOTP_COMPAT
708 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
709 				goto ours;
710 #endif
711 		}
712 	}
713 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
714 		struct in_multi *inm;
715 
716 		/* XXX Multicast is not MPSAFE yet */
717 		get_mplock();
718 
719 		if (ip_mrouter != NULL) {
720 			/*
721 			 * If we are acting as a multicast router, all
722 			 * incoming multicast packets are passed to the
723 			 * kernel-level multicast forwarding function.
724 			 * The packet is returned (relatively) intact; if
725 			 * ip_mforward() returns a non-zero value, the packet
726 			 * must be discarded, else it may be accepted below.
727 			 */
728 			if (ip_mforward != NULL &&
729 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
730 				rel_mplock();
731 				ipstat.ips_cantforward++;
732 				m_freem(m);
733 				return;
734 			}
735 
736 			/*
737 			 * The process-level routing daemon needs to receive
738 			 * all multicast IGMP packets, whether or not this
739 			 * host belongs to their destination groups.
740 			 */
741 			if (ip->ip_p == IPPROTO_IGMP) {
742 				rel_mplock();
743 				goto ours;
744 			}
745 			ipstat.ips_forward++;
746 		}
747 		/*
748 		 * See if we belong to the destination multicast group on the
749 		 * arrival interface.
750 		 */
751 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
752 		if (inm == NULL) {
753 			rel_mplock();
754 			ipstat.ips_notmember++;
755 			m_freem(m);
756 			return;
757 		}
758 
759 		rel_mplock();
760 		goto ours;
761 	}
762 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
763 		goto ours;
764 	if (ip->ip_dst.s_addr == INADDR_ANY)
765 		goto ours;
766 
767 	/*
768 	 * FAITH(Firewall Aided Internet Translator)
769 	 */
770 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
771 		if (ip_keepfaith) {
772 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
773 				goto ours;
774 		}
775 		m_freem(m);
776 		return;
777 	}
778 
779 	/*
780 	 * Not for us; forward if possible and desirable.
781 	 */
782 	if (!ipforwarding) {
783 		ipstat.ips_cantforward++;
784 		m_freem(m);
785 	} else {
786 #ifdef IPSEC
787 		/*
788 		 * Enforce inbound IPsec SPD.
789 		 */
790 		if (ipsec4_in_reject(m, NULL)) {
791 			ipsecstat.in_polvio++;
792 			goto bad;
793 		}
794 #endif
795 #ifdef FAST_IPSEC
796 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
797 		crit_enter();
798 		if (mtag != NULL) {
799 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
800 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
801 		} else {
802 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
803 						   IP_FORWARDING, &error);
804 		}
805 		if (sp == NULL) {	/* NB: can happen if error */
806 			crit_exit();
807 			/*XXX error stat???*/
808 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
809 			goto bad;
810 		}
811 
812 		/*
813 		 * Check security policy against packet attributes.
814 		 */
815 		error = ipsec_in_reject(sp, m);
816 		KEY_FREESP(&sp);
817 		crit_exit();
818 		if (error) {
819 			ipstat.ips_cantforward++;
820 			goto bad;
821 		}
822 #endif
823 		ip_forward(m, using_srcrt, next_hop);
824 	}
825 	return;
826 
827 ours:
828 
829 	/*
830 	 * IPSTEALTH: Process non-routing options only
831 	 * if the packet is destined for us.
832 	 */
833 	if (ipstealth &&
834 	    hlen > sizeof(struct ip) &&
835 	    ip_dooptions(m, 1, next_hop))
836 		return;
837 
838 	/* Count the packet in the ip address stats */
839 	if (ia != NULL) {
840 		ia->ia_ifa.if_ipackets++;
841 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
842 	}
843 
844 	/*
845 	 * If offset or IP_MF are set, must reassemble.
846 	 * Otherwise, nothing need be done.
847 	 * (We could look in the reassembly queue to see
848 	 * if the packet was previously fragmented,
849 	 * but it's not worth the time; just let them time out.)
850 	 */
851 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
852 		/*
853 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
854 		 * will return a different mbuf.
855 		 *
856 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
857 		 *	 us to recharacterize the packet.
858 		 */
859 		m = ip_reass(m);
860 		if (m == NULL)
861 			return;
862 		ip = mtod(m, struct ip *);
863 
864 		/* Get the header length of the reassembled packet */
865 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
866 	} else {
867 		ip->ip_len -= hlen;
868 	}
869 
870 #ifdef IPSEC
871 	/*
872 	 * enforce IPsec policy checking if we are seeing last header.
873 	 * note that we do not visit this with protocols with pcb layer
874 	 * code - like udp/tcp/raw ip.
875 	 */
876 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
877 	    ipsec4_in_reject(m, NULL)) {
878 		ipsecstat.in_polvio++;
879 		goto bad;
880 	}
881 #endif
882 #if FAST_IPSEC
883 	/*
884 	 * enforce IPsec policy checking if we are seeing last header.
885 	 * note that we do not visit this with protocols with pcb layer
886 	 * code - like udp/tcp/raw ip.
887 	 */
888 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
889 		/*
890 		 * Check if the packet has already had IPsec processing
891 		 * done.  If so, then just pass it along.  This tag gets
892 		 * set during AH, ESP, etc. input handling, before the
893 		 * packet is returned to the ip input queue for delivery.
894 		 */
895 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
896 		crit_enter();
897 		if (mtag != NULL) {
898 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
899 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
900 		} else {
901 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
902 						   IP_FORWARDING, &error);
903 		}
904 		if (sp != NULL) {
905 			/*
906 			 * Check security policy against packet attributes.
907 			 */
908 			error = ipsec_in_reject(sp, m);
909 			KEY_FREESP(&sp);
910 		} else {
911 			/* XXX error stat??? */
912 			error = EINVAL;
913 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
914 			goto bad;
915 		}
916 		crit_exit();
917 		if (error)
918 			goto bad;
919 	}
920 #endif /* FAST_IPSEC */
921 
922 	/*
923 	 * We must forward the packet to the correct protocol thread if
924 	 * we are not already in it.
925 	 *
926 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
927 	 *	 further for protocol processing, instead we pass hlen
928 	 *	 to the protosw and let it deal with it.
929 	 */
930 	ipstat.ips_delivered++;
931 
932 	if ((m->m_flags & M_HASH) == 0) {
933 		++ip_dispatch_recheck;
934 		ip->ip_len = htons(ip->ip_len + hlen);
935 		ip->ip_off = htons(ip->ip_off);
936 
937 		ip_cpufn(&m, 0, IP_MPORT_IN);
938 		if (m == NULL)
939 			return;
940 
941 		ip = mtod(m, struct ip *);
942 		ip->ip_len = ntohs(ip->ip_len) - hlen;
943 		ip->ip_off = ntohs(ip->ip_off);
944 		KKASSERT(m->m_flags & M_HASH);
945 	}
946 	port = cpu_portfn(m->m_pkthdr.hash);
947 
948 	if (port != &curthread->td_msgport) {
949 		struct netmsg_packet *pmsg;
950 
951 		++ip_dispatch_slow;
952 
953 		pmsg = &m->m_hdr.mh_netmsg;
954 		netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
955 			    0, transport_processing_handler);
956 		pmsg->nm_packet = m;
957 		pmsg->base.lmsg.u.ms_result = hlen;
958 		lwkt_sendmsg(port, &pmsg->base.lmsg);
959 	} else {
960 		++ip_dispatch_fast;
961 		transport_processing_oncpu(m, hlen, ip);
962 	}
963 	return;
964 
965 bad:
966 	m_freem(m);
967 }
968 
969 /*
970  * Take incoming datagram fragment and try to reassemble it into
971  * whole datagram.  If a chain for reassembly of this datagram already
972  * exists, then it is given as fp; otherwise have to make a chain.
973  */
974 struct mbuf *
975 ip_reass(struct mbuf *m)
976 {
977 	struct ip *ip = mtod(m, struct ip *);
978 	struct mbuf *p = NULL, *q, *nq;
979 	struct mbuf *n;
980 	struct ipq *fp = NULL;
981 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
982 	int i, next;
983 	u_short sum;
984 
985 	/* If maxnipq is 0, never accept fragments. */
986 	if (maxnipq == 0) {
987 		ipstat.ips_fragments++;
988 		ipstat.ips_fragdropped++;
989 		m_freem(m);
990 		return NULL;
991 	}
992 
993 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
994 	/*
995 	 * Look for queue of fragments of this datagram.
996 	 */
997 	lwkt_gettoken(&ipq_token);
998 	for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next) {
999 		if (ip->ip_id == fp->ipq_id &&
1000 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1001 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1002 		    ip->ip_p == fp->ipq_p)
1003 			goto found;
1004 	}
1005 
1006 	fp = NULL;
1007 
1008 	/*
1009 	 * Enforce upper bound on number of fragmented packets
1010 	 * for which we attempt reassembly;
1011 	 * If maxnipq is -1, accept all fragments without limitation.
1012 	 */
1013 	if (nipq > maxnipq && maxnipq > 0) {
1014 		/*
1015 		 * drop something from the tail of the current queue
1016 		 * before proceeding further
1017 		 */
1018 		if (ipq[sum].prev == &ipq[sum]) {   /* gak */
1019 			for (i = 0; i < IPREASS_NHASH; i++) {
1020 				if (ipq[i].prev != &ipq[i]) {
1021 					ipstat.ips_fragtimeout +=
1022 					    ipq[i].prev->ipq_nfrags;
1023 					ip_freef(ipq[i].prev);
1024 					break;
1025 				}
1026 			}
1027 		} else {
1028 			ipstat.ips_fragtimeout +=
1029 			    ipq[sum].prev->ipq_nfrags;
1030 			ip_freef(ipq[sum].prev);
1031 		}
1032 	}
1033 found:
1034 	/*
1035 	 * Adjust ip_len to not reflect header,
1036 	 * convert offset of this to bytes.
1037 	 */
1038 	ip->ip_len -= hlen;
1039 	if (ip->ip_off & IP_MF) {
1040 		/*
1041 		 * Make sure that fragments have a data length
1042 		 * that's a non-zero multiple of 8 bytes.
1043 		 */
1044 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1045 			ipstat.ips_toosmall++; /* XXX */
1046 			m_freem(m);
1047 			goto done;
1048 		}
1049 		m->m_flags |= M_FRAG;
1050 	} else {
1051 		m->m_flags &= ~M_FRAG;
1052 	}
1053 	ip->ip_off <<= 3;
1054 
1055 	ipstat.ips_fragments++;
1056 	m->m_pkthdr.header = ip;
1057 
1058 	/*
1059 	 * If the hardware has not done csum over this fragment
1060 	 * then csum_data is not valid at all.
1061 	 */
1062 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1063 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1064 		m->m_pkthdr.csum_data = 0;
1065 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1066 	}
1067 
1068 	/*
1069 	 * Presence of header sizes in mbufs
1070 	 * would confuse code below.
1071 	 */
1072 	m->m_data += hlen;
1073 	m->m_len -= hlen;
1074 
1075 	/*
1076 	 * If first fragment to arrive, create a reassembly queue.
1077 	 */
1078 	if (fp == NULL) {
1079 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1080 			goto dropfrag;
1081 		insque(fp, &ipq[sum]);
1082 		nipq++;
1083 		fp->ipq_nfrags = 1;
1084 		fp->ipq_ttl = IPFRAGTTL;
1085 		fp->ipq_p = ip->ip_p;
1086 		fp->ipq_id = ip->ip_id;
1087 		fp->ipq_src = ip->ip_src;
1088 		fp->ipq_dst = ip->ip_dst;
1089 		fp->ipq_frags = m;
1090 		m->m_nextpkt = NULL;
1091 		goto inserted;
1092 	} else {
1093 		fp->ipq_nfrags++;
1094 	}
1095 
1096 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1097 
1098 	/*
1099 	 * Find a segment which begins after this one does.
1100 	 */
1101 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1102 		if (GETIP(q)->ip_off > ip->ip_off)
1103 			break;
1104 	}
1105 
1106 	/*
1107 	 * If there is a preceding segment, it may provide some of
1108 	 * our data already.  If so, drop the data from the incoming
1109 	 * segment.  If it provides all of our data, drop us, otherwise
1110 	 * stick new segment in the proper place.
1111 	 *
1112 	 * If some of the data is dropped from the the preceding
1113 	 * segment, then it's checksum is invalidated.
1114 	 */
1115 	if (p) {
1116 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1117 		if (i > 0) {
1118 			if (i >= ip->ip_len)
1119 				goto dropfrag;
1120 			m_adj(m, i);
1121 			m->m_pkthdr.csum_flags = 0;
1122 			ip->ip_off += i;
1123 			ip->ip_len -= i;
1124 		}
1125 		m->m_nextpkt = p->m_nextpkt;
1126 		p->m_nextpkt = m;
1127 	} else {
1128 		m->m_nextpkt = fp->ipq_frags;
1129 		fp->ipq_frags = m;
1130 	}
1131 
1132 	/*
1133 	 * While we overlap succeeding segments trim them or,
1134 	 * if they are completely covered, dequeue them.
1135 	 */
1136 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1137 	     q = nq) {
1138 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1139 		if (i < GETIP(q)->ip_len) {
1140 			GETIP(q)->ip_len -= i;
1141 			GETIP(q)->ip_off += i;
1142 			m_adj(q, i);
1143 			q->m_pkthdr.csum_flags = 0;
1144 			break;
1145 		}
1146 		nq = q->m_nextpkt;
1147 		m->m_nextpkt = nq;
1148 		ipstat.ips_fragdropped++;
1149 		fp->ipq_nfrags--;
1150 		q->m_nextpkt = NULL;
1151 		m_freem(q);
1152 	}
1153 
1154 inserted:
1155 	/*
1156 	 * Check for complete reassembly and perform frag per packet
1157 	 * limiting.
1158 	 *
1159 	 * Frag limiting is performed here so that the nth frag has
1160 	 * a chance to complete the packet before we drop the packet.
1161 	 * As a result, n+1 frags are actually allowed per packet, but
1162 	 * only n will ever be stored. (n = maxfragsperpacket.)
1163 	 *
1164 	 */
1165 	next = 0;
1166 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1167 		if (GETIP(q)->ip_off != next) {
1168 			if (fp->ipq_nfrags > maxfragsperpacket) {
1169 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1170 				ip_freef(fp);
1171 			}
1172 			goto done;
1173 		}
1174 		next += GETIP(q)->ip_len;
1175 	}
1176 	/* Make sure the last packet didn't have the IP_MF flag */
1177 	if (p->m_flags & M_FRAG) {
1178 		if (fp->ipq_nfrags > maxfragsperpacket) {
1179 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1180 			ip_freef(fp);
1181 		}
1182 		goto done;
1183 	}
1184 
1185 	/*
1186 	 * Reassembly is complete.  Make sure the packet is a sane size.
1187 	 */
1188 	q = fp->ipq_frags;
1189 	ip = GETIP(q);
1190 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1191 		ipstat.ips_toolong++;
1192 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1193 		ip_freef(fp);
1194 		goto done;
1195 	}
1196 
1197 	/*
1198 	 * Concatenate fragments.
1199 	 */
1200 	m = q;
1201 	n = m->m_next;
1202 	m->m_next = NULL;
1203 	m_cat(m, n);
1204 	nq = q->m_nextpkt;
1205 	q->m_nextpkt = NULL;
1206 	for (q = nq; q != NULL; q = nq) {
1207 		nq = q->m_nextpkt;
1208 		q->m_nextpkt = NULL;
1209 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1210 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1211 		m_cat(m, q);
1212 	}
1213 
1214 	/*
1215 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1216 	 * be added back.  This assumes no more then 65535 packet fragments
1217 	 * were reassembled.  A second carry can also occur (but not a third).
1218 	 */
1219 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1220 				(m->m_pkthdr.csum_data >> 16);
1221 	if (m->m_pkthdr.csum_data > 0xFFFF)
1222 		m->m_pkthdr.csum_data -= 0xFFFF;
1223 
1224 	/*
1225 	 * Create header for new ip packet by
1226 	 * modifying header of first packet;
1227 	 * dequeue and discard fragment reassembly header.
1228 	 * Make header visible.
1229 	 */
1230 	ip->ip_len = next;
1231 	ip->ip_src = fp->ipq_src;
1232 	ip->ip_dst = fp->ipq_dst;
1233 	remque(fp);
1234 	nipq--;
1235 	mpipe_free(&ipq_mpipe, fp);
1236 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1237 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1238 	/* some debugging cruft by sklower, below, will go away soon */
1239 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1240 		int plen = 0;
1241 
1242 		for (n = m; n; n = n->m_next)
1243 			plen += n->m_len;
1244 		m->m_pkthdr.len = plen;
1245 	}
1246 
1247 	/*
1248 	 * Reassembly complete, return the next protocol.
1249 	 *
1250 	 * Be sure to clear M_HASH to force the packet
1251 	 * to be re-characterized.
1252 	 *
1253 	 * Clear M_FRAG, we are no longer a fragment.
1254 	 */
1255 	m->m_flags &= ~(M_HASH | M_FRAG);
1256 
1257 	ipstat.ips_reassembled++;
1258 	lwkt_reltoken(&ipq_token);
1259 	return (m);
1260 
1261 dropfrag:
1262 	ipstat.ips_fragdropped++;
1263 	if (fp != NULL)
1264 		fp->ipq_nfrags--;
1265 	m_freem(m);
1266 done:
1267 	lwkt_reltoken(&ipq_token);
1268 	return (NULL);
1269 
1270 #undef GETIP
1271 }
1272 
1273 /*
1274  * Free a fragment reassembly header and all
1275  * associated datagrams.
1276  *
1277  * Called with ipq_token held.
1278  */
1279 static void
1280 ip_freef(struct ipq *fp)
1281 {
1282 	struct mbuf *q;
1283 
1284 	/*
1285 	 * Remove first to protect against blocking
1286 	 */
1287 	remque(fp);
1288 
1289 	/*
1290 	 * Clean out at our leisure
1291 	 */
1292 	while (fp->ipq_frags) {
1293 		q = fp->ipq_frags;
1294 		fp->ipq_frags = q->m_nextpkt;
1295 		q->m_nextpkt = NULL;
1296 		m_freem(q);
1297 	}
1298 	mpipe_free(&ipq_mpipe, fp);
1299 	nipq--;
1300 }
1301 
1302 /*
1303  * IP timer processing;
1304  * if a timer expires on a reassembly
1305  * queue, discard it.
1306  */
1307 void
1308 ip_slowtimo(void)
1309 {
1310 	struct ipq *fp;
1311 	int i;
1312 
1313 	lwkt_gettoken(&ipq_token);
1314 	for (i = 0; i < IPREASS_NHASH; i++) {
1315 		fp = ipq[i].next;
1316 		if (fp == NULL)
1317 			continue;
1318 		while (fp != &ipq[i]) {
1319 			--fp->ipq_ttl;
1320 			fp = fp->next;
1321 			if (fp->prev->ipq_ttl == 0) {
1322 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1323 				ip_freef(fp->prev);
1324 			}
1325 		}
1326 	}
1327 	/*
1328 	 * If we are over the maximum number of fragments
1329 	 * (due to the limit being lowered), drain off
1330 	 * enough to get down to the new limit.
1331 	 */
1332 	if (maxnipq >= 0 && nipq > maxnipq) {
1333 		for (i = 0; i < IPREASS_NHASH; i++) {
1334 			while (nipq > maxnipq &&
1335 				(ipq[i].next != &ipq[i])) {
1336 				ipstat.ips_fragdropped +=
1337 				    ipq[i].next->ipq_nfrags;
1338 				ip_freef(ipq[i].next);
1339 			}
1340 		}
1341 	}
1342 	lwkt_reltoken(&ipq_token);
1343 	ipflow_slowtimo();
1344 }
1345 
1346 /*
1347  * Drain off all datagram fragments.
1348  */
1349 void
1350 ip_drain(void)
1351 {
1352 	int i;
1353 
1354 	lwkt_gettoken(&ipq_token);
1355 	for (i = 0; i < IPREASS_NHASH; i++) {
1356 		while (ipq[i].next != &ipq[i]) {
1357 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1358 			ip_freef(ipq[i].next);
1359 		}
1360 	}
1361 	lwkt_reltoken(&ipq_token);
1362 	in_rtqdrain();
1363 }
1364 
1365 /*
1366  * Do option processing on a datagram,
1367  * possibly discarding it if bad options are encountered,
1368  * or forwarding it if source-routed.
1369  * The pass argument is used when operating in the IPSTEALTH
1370  * mode to tell what options to process:
1371  * [LS]SRR (pass 0) or the others (pass 1).
1372  * The reason for as many as two passes is that when doing IPSTEALTH,
1373  * non-routing options should be processed only if the packet is for us.
1374  * Returns 1 if packet has been forwarded/freed,
1375  * 0 if the packet should be processed further.
1376  */
1377 static int
1378 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1379 {
1380 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1381 	struct ip *ip = mtod(m, struct ip *);
1382 	u_char *cp;
1383 	struct in_ifaddr *ia;
1384 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1385 	boolean_t forward = FALSE;
1386 	struct in_addr *sin, dst;
1387 	n_time ntime;
1388 
1389 	dst = ip->ip_dst;
1390 	cp = (u_char *)(ip + 1);
1391 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1392 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1393 		opt = cp[IPOPT_OPTVAL];
1394 		if (opt == IPOPT_EOL)
1395 			break;
1396 		if (opt == IPOPT_NOP)
1397 			optlen = 1;
1398 		else {
1399 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1400 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1401 				goto bad;
1402 			}
1403 			optlen = cp[IPOPT_OLEN];
1404 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1405 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1406 				goto bad;
1407 			}
1408 		}
1409 		switch (opt) {
1410 
1411 		default:
1412 			break;
1413 
1414 		/*
1415 		 * Source routing with record.
1416 		 * Find interface with current destination address.
1417 		 * If none on this machine then drop if strictly routed,
1418 		 * or do nothing if loosely routed.
1419 		 * Record interface address and bring up next address
1420 		 * component.  If strictly routed make sure next
1421 		 * address is on directly accessible net.
1422 		 */
1423 		case IPOPT_LSRR:
1424 		case IPOPT_SSRR:
1425 			if (ipstealth && pass > 0)
1426 				break;
1427 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1428 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1429 				goto bad;
1430 			}
1431 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1432 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1433 				goto bad;
1434 			}
1435 			ipaddr.sin_addr = ip->ip_dst;
1436 			ia = (struct in_ifaddr *)
1437 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1438 			if (ia == NULL) {
1439 				if (opt == IPOPT_SSRR) {
1440 					type = ICMP_UNREACH;
1441 					code = ICMP_UNREACH_SRCFAIL;
1442 					goto bad;
1443 				}
1444 				if (!ip_dosourceroute)
1445 					goto nosourcerouting;
1446 				/*
1447 				 * Loose routing, and not at next destination
1448 				 * yet; nothing to do except forward.
1449 				 */
1450 				break;
1451 			}
1452 			off--;			/* 0 origin */
1453 			if (off > optlen - (int)sizeof(struct in_addr)) {
1454 				/*
1455 				 * End of source route.  Should be for us.
1456 				 */
1457 				if (!ip_acceptsourceroute)
1458 					goto nosourcerouting;
1459 				save_rte(m, cp, ip->ip_src);
1460 				break;
1461 			}
1462 			if (ipstealth)
1463 				goto dropit;
1464 			if (!ip_dosourceroute) {
1465 				if (ipforwarding) {
1466 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1467 
1468 					/*
1469 					 * Acting as a router, so generate ICMP
1470 					 */
1471 nosourcerouting:
1472 					strcpy(buf, inet_ntoa(ip->ip_dst));
1473 					log(LOG_WARNING,
1474 					    "attempted source route from %s to %s\n",
1475 					    inet_ntoa(ip->ip_src), buf);
1476 					type = ICMP_UNREACH;
1477 					code = ICMP_UNREACH_SRCFAIL;
1478 					goto bad;
1479 				} else {
1480 					/*
1481 					 * Not acting as a router,
1482 					 * so silently drop.
1483 					 */
1484 dropit:
1485 					ipstat.ips_cantforward++;
1486 					m_freem(m);
1487 					return (1);
1488 				}
1489 			}
1490 
1491 			/*
1492 			 * locate outgoing interface
1493 			 */
1494 			memcpy(&ipaddr.sin_addr, cp + off,
1495 			    sizeof ipaddr.sin_addr);
1496 
1497 			if (opt == IPOPT_SSRR) {
1498 #define	INA	struct in_ifaddr *
1499 #define	SA	struct sockaddr *
1500 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1501 									== NULL)
1502 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1503 			} else {
1504 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1505 			}
1506 			if (ia == NULL) {
1507 				type = ICMP_UNREACH;
1508 				code = ICMP_UNREACH_SRCFAIL;
1509 				goto bad;
1510 			}
1511 			ip->ip_dst = ipaddr.sin_addr;
1512 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1513 			    sizeof(struct in_addr));
1514 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1515 			/*
1516 			 * Let ip_intr's mcast routing check handle mcast pkts
1517 			 */
1518 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1519 			break;
1520 
1521 		case IPOPT_RR:
1522 			if (ipstealth && pass == 0)
1523 				break;
1524 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1525 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1526 				goto bad;
1527 			}
1528 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1529 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1530 				goto bad;
1531 			}
1532 			/*
1533 			 * If no space remains, ignore.
1534 			 */
1535 			off--;			/* 0 origin */
1536 			if (off > optlen - (int)sizeof(struct in_addr))
1537 				break;
1538 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1539 			    sizeof ipaddr.sin_addr);
1540 			/*
1541 			 * locate outgoing interface; if we're the destination,
1542 			 * use the incoming interface (should be same).
1543 			 */
1544 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1545 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1546 				type = ICMP_UNREACH;
1547 				code = ICMP_UNREACH_HOST;
1548 				goto bad;
1549 			}
1550 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1551 			    sizeof(struct in_addr));
1552 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1553 			break;
1554 
1555 		case IPOPT_TS:
1556 			if (ipstealth && pass == 0)
1557 				break;
1558 			code = cp - (u_char *)ip;
1559 			if (optlen < 4 || optlen > 40) {
1560 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1561 				goto bad;
1562 			}
1563 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1564 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1565 				goto bad;
1566 			}
1567 			if (off > optlen - (int)sizeof(int32_t)) {
1568 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1569 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1570 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1571 					goto bad;
1572 				}
1573 				break;
1574 			}
1575 			off--;				/* 0 origin */
1576 			sin = (struct in_addr *)(cp + off);
1577 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1578 
1579 			case IPOPT_TS_TSONLY:
1580 				break;
1581 
1582 			case IPOPT_TS_TSANDADDR:
1583 				if (off + sizeof(n_time) +
1584 				    sizeof(struct in_addr) > optlen) {
1585 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1586 					goto bad;
1587 				}
1588 				ipaddr.sin_addr = dst;
1589 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1590 							    m->m_pkthdr.rcvif);
1591 				if (ia == NULL)
1592 					continue;
1593 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1594 				    sizeof(struct in_addr));
1595 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1596 				off += sizeof(struct in_addr);
1597 				break;
1598 
1599 			case IPOPT_TS_PRESPEC:
1600 				if (off + sizeof(n_time) +
1601 				    sizeof(struct in_addr) > optlen) {
1602 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1603 					goto bad;
1604 				}
1605 				memcpy(&ipaddr.sin_addr, sin,
1606 				    sizeof(struct in_addr));
1607 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1608 					continue;
1609 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1610 				off += sizeof(struct in_addr);
1611 				break;
1612 
1613 			default:
1614 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1615 				goto bad;
1616 			}
1617 			ntime = iptime();
1618 			memcpy(cp + off, &ntime, sizeof(n_time));
1619 			cp[IPOPT_OFFSET] += sizeof(n_time);
1620 		}
1621 	}
1622 	if (forward && ipforwarding) {
1623 		ip_forward(m, TRUE, next_hop);
1624 		return (1);
1625 	}
1626 	return (0);
1627 bad:
1628 	icmp_error(m, type, code, 0, 0);
1629 	ipstat.ips_badoptions++;
1630 	return (1);
1631 }
1632 
1633 /*
1634  * Given address of next destination (final or next hop),
1635  * return internet address info of interface to be used to get there.
1636  */
1637 struct in_ifaddr *
1638 ip_rtaddr(struct in_addr dst, struct route *ro0)
1639 {
1640 	struct route sro, *ro;
1641 	struct sockaddr_in *sin;
1642 	struct in_ifaddr *ia;
1643 
1644 	if (ro0 != NULL) {
1645 		ro = ro0;
1646 	} else {
1647 		bzero(&sro, sizeof(sro));
1648 		ro = &sro;
1649 	}
1650 
1651 	sin = (struct sockaddr_in *)&ro->ro_dst;
1652 
1653 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1654 		if (ro->ro_rt != NULL) {
1655 			RTFREE(ro->ro_rt);
1656 			ro->ro_rt = NULL;
1657 		}
1658 		sin->sin_family = AF_INET;
1659 		sin->sin_len = sizeof *sin;
1660 		sin->sin_addr = dst;
1661 		rtalloc_ign(ro, RTF_PRCLONING);
1662 	}
1663 
1664 	if (ro->ro_rt == NULL)
1665 		return (NULL);
1666 
1667 	ia = ifatoia(ro->ro_rt->rt_ifa);
1668 
1669 	if (ro == &sro)
1670 		RTFREE(ro->ro_rt);
1671 	return ia;
1672 }
1673 
1674 /*
1675  * Save incoming source route for use in replies,
1676  * to be picked up later by ip_srcroute if the receiver is interested.
1677  */
1678 static void
1679 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1680 {
1681 	struct m_tag *mtag;
1682 	struct ip_srcrt_opt *opt;
1683 	unsigned olen;
1684 
1685 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), MB_DONTWAIT);
1686 	if (mtag == NULL)
1687 		return;
1688 	opt = m_tag_data(mtag);
1689 
1690 	olen = option[IPOPT_OLEN];
1691 #ifdef DIAGNOSTIC
1692 	if (ipprintfs)
1693 		kprintf("save_rte: olen %d\n", olen);
1694 #endif
1695 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1696 		m_tag_free(mtag);
1697 		return;
1698 	}
1699 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1700 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1701 	opt->ip_srcrt.dst = dst;
1702 	m_tag_prepend(m, mtag);
1703 }
1704 
1705 /*
1706  * Retrieve incoming source route for use in replies,
1707  * in the same form used by setsockopt.
1708  * The first hop is placed before the options, will be removed later.
1709  */
1710 struct mbuf *
1711 ip_srcroute(struct mbuf *m0)
1712 {
1713 	struct in_addr *p, *q;
1714 	struct mbuf *m;
1715 	struct m_tag *mtag;
1716 	struct ip_srcrt_opt *opt;
1717 
1718 	if (m0 == NULL)
1719 		return NULL;
1720 
1721 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1722 	if (mtag == NULL)
1723 		return NULL;
1724 	opt = m_tag_data(mtag);
1725 
1726 	if (opt->ip_nhops == 0)
1727 		return (NULL);
1728 	m = m_get(MB_DONTWAIT, MT_HEADER);
1729 	if (m == NULL)
1730 		return (NULL);
1731 
1732 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1733 
1734 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1735 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1736 		   sizeof(struct in_addr) + OPTSIZ;
1737 #ifdef DIAGNOSTIC
1738 	if (ipprintfs) {
1739 		kprintf("ip_srcroute: nhops %d mlen %d",
1740 			opt->ip_nhops, m->m_len);
1741 	}
1742 #endif
1743 
1744 	/*
1745 	 * First save first hop for return route
1746 	 */
1747 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1748 	*(mtod(m, struct in_addr *)) = *p--;
1749 #ifdef DIAGNOSTIC
1750 	if (ipprintfs)
1751 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1752 #endif
1753 
1754 	/*
1755 	 * Copy option fields and padding (nop) to mbuf.
1756 	 */
1757 	opt->ip_srcrt.nop = IPOPT_NOP;
1758 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1759 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1760 	    OPTSIZ);
1761 	q = (struct in_addr *)(mtod(m, caddr_t) +
1762 	    sizeof(struct in_addr) + OPTSIZ);
1763 #undef OPTSIZ
1764 	/*
1765 	 * Record return path as an IP source route,
1766 	 * reversing the path (pointers are now aligned).
1767 	 */
1768 	while (p >= opt->ip_srcrt.route) {
1769 #ifdef DIAGNOSTIC
1770 		if (ipprintfs)
1771 			kprintf(" %x", ntohl(q->s_addr));
1772 #endif
1773 		*q++ = *p--;
1774 	}
1775 	/*
1776 	 * Last hop goes to final destination.
1777 	 */
1778 	*q = opt->ip_srcrt.dst;
1779 	m_tag_delete(m0, mtag);
1780 #ifdef DIAGNOSTIC
1781 	if (ipprintfs)
1782 		kprintf(" %x\n", ntohl(q->s_addr));
1783 #endif
1784 	return (m);
1785 }
1786 
1787 /*
1788  * Strip out IP options.
1789  */
1790 void
1791 ip_stripoptions(struct mbuf *m)
1792 {
1793 	int datalen;
1794 	struct ip *ip = mtod(m, struct ip *);
1795 	caddr_t opts;
1796 	int optlen;
1797 
1798 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1799 	opts = (caddr_t)(ip + 1);
1800 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1801 	bcopy(opts + optlen, opts, datalen);
1802 	m->m_len -= optlen;
1803 	if (m->m_flags & M_PKTHDR)
1804 		m->m_pkthdr.len -= optlen;
1805 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1806 }
1807 
1808 u_char inetctlerrmap[PRC_NCMDS] = {
1809 	0,		0,		0,		0,
1810 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1811 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1812 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1813 	0,		0,		0,		0,
1814 	ENOPROTOOPT,	ECONNREFUSED
1815 };
1816 
1817 /*
1818  * Forward a packet.  If some error occurs return the sender
1819  * an icmp packet.  Note we can't always generate a meaningful
1820  * icmp message because icmp doesn't have a large enough repertoire
1821  * of codes and types.
1822  *
1823  * If not forwarding, just drop the packet.  This could be confusing
1824  * if ipforwarding was zero but some routing protocol was advancing
1825  * us as a gateway to somewhere.  However, we must let the routing
1826  * protocol deal with that.
1827  *
1828  * The using_srcrt parameter indicates whether the packet is being forwarded
1829  * via a source route.
1830  */
1831 void
1832 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1833 {
1834 	struct ip *ip = mtod(m, struct ip *);
1835 	struct rtentry *rt;
1836 	struct route fwd_ro;
1837 	int error, type = 0, code = 0, destmtu = 0;
1838 	struct mbuf *mcopy;
1839 	n_long dest;
1840 	struct in_addr pkt_dst;
1841 
1842 	dest = INADDR_ANY;
1843 	/*
1844 	 * Cache the destination address of the packet; this may be
1845 	 * changed by use of 'ipfw fwd'.
1846 	 */
1847 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1848 
1849 #ifdef DIAGNOSTIC
1850 	if (ipprintfs)
1851 		kprintf("forward: src %x dst %x ttl %x\n",
1852 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1853 #endif
1854 
1855 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1856 		ipstat.ips_cantforward++;
1857 		m_freem(m);
1858 		return;
1859 	}
1860 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1861 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1862 		return;
1863 	}
1864 
1865 	bzero(&fwd_ro, sizeof(fwd_ro));
1866 	ip_rtaddr(pkt_dst, &fwd_ro);
1867 	if (fwd_ro.ro_rt == NULL) {
1868 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1869 		return;
1870 	}
1871 	rt = fwd_ro.ro_rt;
1872 
1873 	/*
1874 	 * Save the IP header and at most 8 bytes of the payload,
1875 	 * in case we need to generate an ICMP message to the src.
1876 	 *
1877 	 * XXX this can be optimized a lot by saving the data in a local
1878 	 * buffer on the stack (72 bytes at most), and only allocating the
1879 	 * mbuf if really necessary. The vast majority of the packets
1880 	 * are forwarded without having to send an ICMP back (either
1881 	 * because unnecessary, or because rate limited), so we are
1882 	 * really we are wasting a lot of work here.
1883 	 *
1884 	 * We don't use m_copy() because it might return a reference
1885 	 * to a shared cluster. Both this function and ip_output()
1886 	 * assume exclusive access to the IP header in `m', so any
1887 	 * data in a cluster may change before we reach icmp_error().
1888 	 */
1889 	MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1890 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1891 		/*
1892 		 * It's probably ok if the pkthdr dup fails (because
1893 		 * the deep copy of the tag chain failed), but for now
1894 		 * be conservative and just discard the copy since
1895 		 * code below may some day want the tags.
1896 		 */
1897 		m_free(mcopy);
1898 		mcopy = NULL;
1899 	}
1900 	if (mcopy != NULL) {
1901 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1902 		    (int)ip->ip_len);
1903 		mcopy->m_pkthdr.len = mcopy->m_len;
1904 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1905 	}
1906 
1907 	if (!ipstealth)
1908 		ip->ip_ttl -= IPTTLDEC;
1909 
1910 	/*
1911 	 * If forwarding packet using same interface that it came in on,
1912 	 * perhaps should send a redirect to sender to shortcut a hop.
1913 	 * Only send redirect if source is sending directly to us,
1914 	 * and if packet was not source routed (or has any options).
1915 	 * Also, don't send redirect if forwarding using a default route
1916 	 * or a route modified by a redirect.
1917 	 */
1918 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1919 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1920 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1921 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1922 		u_long src = ntohl(ip->ip_src.s_addr);
1923 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1924 
1925 		if (rt_ifa != NULL &&
1926 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1927 			if (rt->rt_flags & RTF_GATEWAY)
1928 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1929 			else
1930 				dest = pkt_dst.s_addr;
1931 			/*
1932 			 * Router requirements says to only send
1933 			 * host redirects.
1934 			 */
1935 			type = ICMP_REDIRECT;
1936 			code = ICMP_REDIRECT_HOST;
1937 #ifdef DIAGNOSTIC
1938 			if (ipprintfs)
1939 				kprintf("redirect (%d) to %x\n", code, dest);
1940 #endif
1941 		}
1942 	}
1943 
1944 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
1945 	if (error == 0) {
1946 		ipstat.ips_forward++;
1947 		if (type == 0) {
1948 			if (mcopy) {
1949 				ipflow_create(&fwd_ro, mcopy);
1950 				m_freem(mcopy);
1951 			}
1952 			goto done;
1953 		} else {
1954 			ipstat.ips_redirectsent++;
1955 		}
1956 	} else {
1957 		ipstat.ips_cantforward++;
1958 	}
1959 
1960 	if (mcopy == NULL)
1961 		goto done;
1962 
1963 	/*
1964 	 * Send ICMP message.
1965 	 */
1966 
1967 	switch (error) {
1968 
1969 	case 0:				/* forwarded, but need redirect */
1970 		/* type, code set above */
1971 		break;
1972 
1973 	case ENETUNREACH:		/* shouldn't happen, checked above */
1974 	case EHOSTUNREACH:
1975 	case ENETDOWN:
1976 	case EHOSTDOWN:
1977 	default:
1978 		type = ICMP_UNREACH;
1979 		code = ICMP_UNREACH_HOST;
1980 		break;
1981 
1982 	case EMSGSIZE:
1983 		type = ICMP_UNREACH;
1984 		code = ICMP_UNREACH_NEEDFRAG;
1985 #ifdef IPSEC
1986 		/*
1987 		 * If the packet is routed over IPsec tunnel, tell the
1988 		 * originator the tunnel MTU.
1989 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1990 		 * XXX quickhack!!!
1991 		 */
1992 		if (fwd_ro.ro_rt != NULL) {
1993 			struct secpolicy *sp = NULL;
1994 			int ipsecerror;
1995 			int ipsechdr;
1996 			struct route *ro;
1997 
1998 			sp = ipsec4_getpolicybyaddr(mcopy,
1999 						    IPSEC_DIR_OUTBOUND,
2000 						    IP_FORWARDING,
2001 						    &ipsecerror);
2002 
2003 			if (sp == NULL)
2004 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2005 			else {
2006 				/* count IPsec header size */
2007 				ipsechdr = ipsec4_hdrsiz(mcopy,
2008 							 IPSEC_DIR_OUTBOUND,
2009 							 NULL);
2010 
2011 				/*
2012 				 * find the correct route for outer IPv4
2013 				 * header, compute tunnel MTU.
2014 				 *
2015 				 */
2016 				if (sp->req != NULL && sp->req->sav != NULL &&
2017 				    sp->req->sav->sah != NULL) {
2018 					ro = &sp->req->sav->sah->sa_route;
2019 					if (ro->ro_rt != NULL &&
2020 					    ro->ro_rt->rt_ifp != NULL) {
2021 						destmtu =
2022 						    ro->ro_rt->rt_ifp->if_mtu;
2023 						destmtu -= ipsechdr;
2024 					}
2025 				}
2026 
2027 				key_freesp(sp);
2028 			}
2029 		}
2030 #elif FAST_IPSEC
2031 		/*
2032 		 * If the packet is routed over IPsec tunnel, tell the
2033 		 * originator the tunnel MTU.
2034 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2035 		 * XXX quickhack!!!
2036 		 */
2037 		if (fwd_ro.ro_rt != NULL) {
2038 			struct secpolicy *sp = NULL;
2039 			int ipsecerror;
2040 			int ipsechdr;
2041 			struct route *ro;
2042 
2043 			sp = ipsec_getpolicybyaddr(mcopy,
2044 						   IPSEC_DIR_OUTBOUND,
2045 						   IP_FORWARDING,
2046 						   &ipsecerror);
2047 
2048 			if (sp == NULL)
2049 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2050 			else {
2051 				/* count IPsec header size */
2052 				ipsechdr = ipsec4_hdrsiz(mcopy,
2053 							 IPSEC_DIR_OUTBOUND,
2054 							 NULL);
2055 
2056 				/*
2057 				 * find the correct route for outer IPv4
2058 				 * header, compute tunnel MTU.
2059 				 */
2060 
2061 				if (sp->req != NULL &&
2062 				    sp->req->sav != NULL &&
2063 				    sp->req->sav->sah != NULL) {
2064 					ro = &sp->req->sav->sah->sa_route;
2065 					if (ro->ro_rt != NULL &&
2066 					    ro->ro_rt->rt_ifp != NULL) {
2067 						destmtu =
2068 						    ro->ro_rt->rt_ifp->if_mtu;
2069 						destmtu -= ipsechdr;
2070 					}
2071 				}
2072 
2073 				KEY_FREESP(&sp);
2074 			}
2075 		}
2076 #else /* !IPSEC && !FAST_IPSEC */
2077 		if (fwd_ro.ro_rt != NULL)
2078 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2079 #endif /*IPSEC*/
2080 		ipstat.ips_cantfrag++;
2081 		break;
2082 
2083 	case ENOBUFS:
2084 		/*
2085 		 * A router should not generate ICMP_SOURCEQUENCH as
2086 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2087 		 * Source quench could be a big problem under DoS attacks,
2088 		 * or if the underlying interface is rate-limited.
2089 		 * Those who need source quench packets may re-enable them
2090 		 * via the net.inet.ip.sendsourcequench sysctl.
2091 		 */
2092 		if (!ip_sendsourcequench) {
2093 			m_freem(mcopy);
2094 			goto done;
2095 		} else {
2096 			type = ICMP_SOURCEQUENCH;
2097 			code = 0;
2098 		}
2099 		break;
2100 
2101 	case EACCES:			/* ipfw denied packet */
2102 		m_freem(mcopy);
2103 		goto done;
2104 	}
2105 	icmp_error(mcopy, type, code, dest, destmtu);
2106 done:
2107 	if (fwd_ro.ro_rt != NULL)
2108 		RTFREE(fwd_ro.ro_rt);
2109 }
2110 
2111 void
2112 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2113 	       struct mbuf *m)
2114 {
2115 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2116 		struct timeval tv;
2117 
2118 		microtime(&tv);
2119 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2120 		    SCM_TIMESTAMP, SOL_SOCKET);
2121 		if (*mp)
2122 			mp = &(*mp)->m_next;
2123 	}
2124 	if (inp->inp_flags & INP_RECVDSTADDR) {
2125 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2126 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2127 		if (*mp)
2128 			mp = &(*mp)->m_next;
2129 	}
2130 	if (inp->inp_flags & INP_RECVTTL) {
2131 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2132 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2133 		if (*mp)
2134 			mp = &(*mp)->m_next;
2135 	}
2136 #ifdef notyet
2137 	/* XXX
2138 	 * Moving these out of udp_input() made them even more broken
2139 	 * than they already were.
2140 	 */
2141 	/* options were tossed already */
2142 	if (inp->inp_flags & INP_RECVOPTS) {
2143 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2144 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2145 		if (*mp)
2146 			mp = &(*mp)->m_next;
2147 	}
2148 	/* ip_srcroute doesn't do what we want here, need to fix */
2149 	if (inp->inp_flags & INP_RECVRETOPTS) {
2150 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2151 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2152 		if (*mp)
2153 			mp = &(*mp)->m_next;
2154 	}
2155 #endif
2156 	if (inp->inp_flags & INP_RECVIF) {
2157 		struct ifnet *ifp;
2158 		struct sdlbuf {
2159 			struct sockaddr_dl sdl;
2160 			u_char	pad[32];
2161 		} sdlbuf;
2162 		struct sockaddr_dl *sdp;
2163 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2164 
2165 		if (((ifp = m->m_pkthdr.rcvif)) &&
2166 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2167 			sdp = IF_LLSOCKADDR(ifp);
2168 			/*
2169 			 * Change our mind and don't try copy.
2170 			 */
2171 			if ((sdp->sdl_family != AF_LINK) ||
2172 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2173 				goto makedummy;
2174 			}
2175 			bcopy(sdp, sdl2, sdp->sdl_len);
2176 		} else {
2177 makedummy:
2178 			sdl2->sdl_len =
2179 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2180 			sdl2->sdl_family = AF_LINK;
2181 			sdl2->sdl_index = 0;
2182 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2183 		}
2184 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2185 			IP_RECVIF, IPPROTO_IP);
2186 		if (*mp)
2187 			mp = &(*mp)->m_next;
2188 	}
2189 }
2190 
2191 /*
2192  * XXX these routines are called from the upper part of the kernel.
2193  *
2194  * They could also be moved to ip_mroute.c, since all the RSVP
2195  *  handling is done there already.
2196  */
2197 int
2198 ip_rsvp_init(struct socket *so)
2199 {
2200 	if (so->so_type != SOCK_RAW ||
2201 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2202 		return EOPNOTSUPP;
2203 
2204 	if (ip_rsvpd != NULL)
2205 		return EADDRINUSE;
2206 
2207 	ip_rsvpd = so;
2208 	/*
2209 	 * This may seem silly, but we need to be sure we don't over-increment
2210 	 * the RSVP counter, in case something slips up.
2211 	 */
2212 	if (!ip_rsvp_on) {
2213 		ip_rsvp_on = 1;
2214 		rsvp_on++;
2215 	}
2216 
2217 	return 0;
2218 }
2219 
2220 int
2221 ip_rsvp_done(void)
2222 {
2223 	ip_rsvpd = NULL;
2224 	/*
2225 	 * This may seem silly, but we need to be sure we don't over-decrement
2226 	 * the RSVP counter, in case something slips up.
2227 	 */
2228 	if (ip_rsvp_on) {
2229 		ip_rsvp_on = 0;
2230 		rsvp_on--;
2231 	}
2232 	return 0;
2233 }
2234 
2235 int
2236 rsvp_input(struct mbuf **mp, int *offp, int proto)
2237 {
2238 	struct mbuf *m = *mp;
2239 	int off;
2240 
2241 	off = *offp;
2242 	*mp = NULL;
2243 
2244 	if (rsvp_input_p) { /* call the real one if loaded */
2245 		*mp = m;
2246 		rsvp_input_p(mp, offp, proto);
2247 		return(IPPROTO_DONE);
2248 	}
2249 
2250 	/* Can still get packets with rsvp_on = 0 if there is a local member
2251 	 * of the group to which the RSVP packet is addressed.  But in this
2252 	 * case we want to throw the packet away.
2253 	 */
2254 
2255 	if (!rsvp_on) {
2256 		m_freem(m);
2257 		return(IPPROTO_DONE);
2258 	}
2259 
2260 	if (ip_rsvpd != NULL) {
2261 		*mp = m;
2262 		rip_input(mp, offp, proto);
2263 		return(IPPROTO_DONE);
2264 	}
2265 	/* Drop the packet */
2266 	m_freem(m);
2267 	return(IPPROTO_DONE);
2268 }
2269