xref: /dragonfly/sys/netinet/ip_input.c (revision 65867155)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
63  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
64  */
65 
66 #define	_IP_VHL
67 
68 #include "opt_bootp.h"
69 #include "opt_ipdn.h"
70 #include "opt_ipdivert.h"
71 #include "opt_ipstealth.h"
72 #include "opt_ipsec.h"
73 #include "opt_rss.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/mpipe.h>
80 #include <sys/domain.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/time.h>
84 #include <sys/globaldata.h>
85 #include <sys/thread.h>
86 #include <sys/kernel.h>
87 #include <sys/syslog.h>
88 #include <sys/sysctl.h>
89 #include <sys/in_cksum.h>
90 #include <sys/lock.h>
91 
92 #include <sys/mplock2.h>
93 
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/if_types.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/pfil.h>
101 #include <net/route.h>
102 #include <net/netisr2.h>
103 
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_icmp.h>
111 #include <netinet/ip_divert.h>
112 #include <netinet/ip_flow.h>
113 
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116 #include <net/netmsg2.h>
117 
118 #include <sys/socketvar.h>
119 
120 #include <net/ipfw/ip_fw.h>
121 #include <net/dummynet/ip_dummynet.h>
122 
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/key.h>
131 #endif
132 
133 int rsvp_on = 0;
134 static int ip_rsvp_on;
135 struct socket *ip_rsvpd;
136 
137 int ipforwarding = 0;
138 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
139     &ipforwarding, 0, "Enable IP forwarding between interfaces");
140 
141 static int ipsendredirects = 1; /* XXX */
142 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
143     &ipsendredirects, 0, "Enable sending IP redirects");
144 
145 int ip_defttl = IPDEFTTL;
146 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
147     &ip_defttl, 0, "Maximum TTL on IP packets");
148 
149 static int ip_dosourceroute = 0;
150 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
151     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
152 
153 static int ip_acceptsourceroute = 0;
154 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
155     CTLFLAG_RW, &ip_acceptsourceroute, 0,
156     "Enable accepting source routed IP packets");
157 
158 static int ip_keepfaith = 0;
159 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
160     &ip_keepfaith, 0,
161     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
162 
163 static int maxnipq;
164 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
165     &maxnipq, 0,
166     "Maximum number of IPv4 fragment reassembly queue entries");
167 
168 static int maxfragsperpacket;
169 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
170     &maxfragsperpacket, 0,
171     "Maximum number of IPv4 fragments allowed per packet");
172 
173 static int ip_sendsourcequench = 0;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
175     &ip_sendsourcequench, 0,
176     "Enable the transmission of source quench packets");
177 
178 int ip_do_randomid = 1;
179 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
180     &ip_do_randomid, 0,
181     "Assign random ip_id values");
182 /*
183  * XXX - Setting ip_checkinterface mostly implements the receive side of
184  * the Strong ES model described in RFC 1122, but since the routing table
185  * and transmit implementation do not implement the Strong ES model,
186  * setting this to 1 results in an odd hybrid.
187  *
188  * XXX - ip_checkinterface currently must be disabled if you use ipnat
189  * to translate the destination address to another local interface.
190  *
191  * XXX - ip_checkinterface must be disabled if you add IP aliases
192  * to the loopback interface instead of the interface where the
193  * packets for those addresses are received.
194  */
195 static int ip_checkinterface = 0;
196 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
197     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
198 
199 static u_long ip_hash_count = 0;
200 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, hash_count, CTLFLAG_RD,
201     &ip_hash_count, 0, "Number of packets hashed by IP");
202 
203 #ifdef RSS_DEBUG
204 static u_long ip_rehash_count = 0;
205 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, rehash_count, CTLFLAG_RD,
206     &ip_rehash_count, 0, "Number of packets rehashed by IP");
207 
208 static u_long ip_dispatch_fast = 0;
209 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
210     &ip_dispatch_fast, 0, "Number of packets handled on current CPU");
211 
212 static u_long ip_dispatch_slow = 0;
213 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
214     &ip_dispatch_slow, 0, "Number of packets messaged to another CPU");
215 #endif
216 
217 #ifdef DIAGNOSTIC
218 static int ipprintfs = 0;
219 #endif
220 
221 extern	struct domain inetdomain;
222 extern	struct protosw inetsw[];
223 u_char	ip_protox[IPPROTO_MAX];
224 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
225 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
226 						/* inet addr hash table */
227 u_long	in_ifaddrhmask;				/* mask for hash table */
228 
229 static struct mbuf *ipforward_mtemp[MAXCPU];
230 
231 struct ip_stats ipstats_percpu[MAXCPU] __cachealign;
232 
233 static int
234 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
235 {
236 	int cpu, error = 0;
237 
238 	for (cpu = 0; cpu < ncpus; ++cpu) {
239 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
240 					sizeof(struct ip_stats))))
241 			break;
242 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
243 				       sizeof(struct ip_stats))))
244 			break;
245 	}
246 
247 	return (error);
248 }
249 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
250     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
251 
252 /* Packet reassembly stuff */
253 #define	IPREASS_NHASH_LOG2	6
254 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
255 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
256 #define	IPREASS_HASH(x,y)						\
257     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
258 
259 TAILQ_HEAD(ipqhead, ipq);
260 struct ipfrag_queue {
261 	int			nipq;
262 	struct netmsg_base	timeo_netmsg;
263 	struct netmsg_base	drain_netmsg;
264 	struct ipqhead		ipq[IPREASS_NHASH];
265 } __cachealign;
266 
267 static struct ipfrag_queue	ipfrag_queue_pcpu[MAXCPU];
268 
269 #ifdef IPCTL_DEFMTU
270 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
271     &ip_mtu, 0, "Default MTU");
272 #endif
273 
274 #ifdef IPSTEALTH
275 static int ipstealth = 0;
276 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
277 #else
278 static const int ipstealth = 0;
279 #endif
280 
281 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
282 
283 struct pfil_head inet_pfil_hook;
284 
285 /*
286  * struct ip_srcrt_opt is used to store packet state while it travels
287  * through the stack.
288  *
289  * XXX Note that the code even makes assumptions on the size and
290  * alignment of fields inside struct ip_srcrt so e.g. adding some
291  * fields will break the code.  This needs to be fixed.
292  *
293  * We need to save the IP options in case a protocol wants to respond
294  * to an incoming packet over the same route if the packet got here
295  * using IP source routing.  This allows connection establishment and
296  * maintenance when the remote end is on a network that is not known
297  * to us.
298  */
299 struct ip_srcrt {
300 	struct	in_addr dst;			/* final destination */
301 	char	nop;				/* one NOP to align */
302 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
303 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
304 };
305 
306 struct ip_srcrt_opt {
307 	int		ip_nhops;
308 	struct ip_srcrt	ip_srcrt;
309 };
310 
311 #define IPFRAG_MPIPE_MAX	4096
312 #define MAXIPFRAG_MIN		((IPFRAG_MPIPE_MAX * 2) / 256)
313 
314 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
315 static struct malloc_pipe ipq_mpipe;
316 
317 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
318 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
319 static void		ip_freef(struct ipfrag_queue *, struct ipqhead *,
320 			    struct ipq *);
321 static void		ip_input_handler(netmsg_t);
322 
323 static void		ipfrag_timeo_dispatch(netmsg_t);
324 static void		ipfrag_drain_dispatch(netmsg_t);
325 
326 /*
327  * IP initialization: fill in IP protocol switch table.
328  * All protocols not implemented in kernel go to raw IP protocol handler.
329  */
330 void
331 ip_init(void)
332 {
333 	struct protosw *pr;
334 	int cpu, i;
335 
336 	/*
337 	 * Make sure we can handle a reasonable number of fragments but
338 	 * cap it at IPFRAG_MPIPE_MAX.
339 	 */
340 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
341 	    IFQ_MAXLEN, IPFRAG_MPIPE_MAX, 0, NULL, NULL, NULL);
342 	for (cpu = 0; cpu < ncpus; ++cpu) {
343 		TAILQ_INIT(&in_ifaddrheads[cpu]);
344 		in_ifaddrhashtbls[cpu] =
345 		    hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
346 	}
347 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
348 	if (pr == NULL)
349 		panic("ip_init");
350 	for (i = 0; i < IPPROTO_MAX; i++)
351 		ip_protox[i] = pr - inetsw;
352 	for (pr = inetdomain.dom_protosw;
353 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
354 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
355 			if (pr->pr_protocol != IPPROTO_RAW)
356 				ip_protox[pr->pr_protocol] = pr - inetsw;
357 		}
358 	}
359 
360 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
361 	inet_pfil_hook.ph_af = AF_INET;
362 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
363 		kprintf("%s: WARNING: unable to register pfil hook, "
364 			"error %d\n", __func__, i);
365 	}
366 
367 	maxnipq = (nmbclusters / 32) / ncpus2;
368 	if (maxnipq < MAXIPFRAG_MIN)
369 		maxnipq = MAXIPFRAG_MIN;
370 	maxfragsperpacket = 16;
371 
372 	ip_id = time_second & 0xffff;	/* time_second survives reboots */
373 
374 	for (cpu = 0; cpu < ncpus; ++cpu) {
375 		/*
376 		 * Initialize IP statistics counters for each CPU.
377 		 */
378 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
379 
380 		/*
381 		 * Preallocate mbuf template for forwarding
382 		 */
383 		MGETHDR(ipforward_mtemp[cpu], M_WAITOK, MT_DATA);
384 
385 		/*
386 		 * Initialize per-cpu ip fragments queues
387 		 */
388 		for (i = 0; i < IPREASS_NHASH; i++) {
389 			struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[cpu];
390 
391 			TAILQ_INIT(&fragq->ipq[i]);
392 			netmsg_init(&fragq->timeo_netmsg, NULL,
393 			    &netisr_adone_rport, MSGF_PRIORITY,
394 			    ipfrag_timeo_dispatch);
395 			netmsg_init(&fragq->drain_netmsg, NULL,
396 			    &netisr_adone_rport, MSGF_PRIORITY,
397 			    ipfrag_drain_dispatch);
398 		}
399 	}
400 
401 	netisr_register(NETISR_IP, ip_input_handler, ip_hashfn);
402 	netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
403 }
404 
405 /* Do transport protocol processing. */
406 static void
407 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
408 {
409 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
410 
411 	/*
412 	 * Switch out to protocol's input routine.
413 	 */
414 	PR_GET_MPLOCK(pr);
415 	pr->pr_input(&m, &hlen, ip->ip_p);
416 	PR_REL_MPLOCK(pr);
417 }
418 
419 static void
420 transport_processing_handler(netmsg_t msg)
421 {
422 	struct netmsg_packet *pmsg = &msg->packet;
423 	struct ip *ip;
424 	int hlen;
425 
426 	ip = mtod(pmsg->nm_packet, struct ip *);
427 	hlen = pmsg->base.lmsg.u.ms_result;
428 
429 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
430 	/* msg was embedded in the mbuf, do not reply! */
431 }
432 
433 static void
434 ip_input_handler(netmsg_t msg)
435 {
436 	ip_input(msg->packet.nm_packet);
437 	/* msg was embedded in the mbuf, do not reply! */
438 }
439 
440 /*
441  * IP input routine.  Checksum and byte swap header.  If fragmented
442  * try to reassemble.  Process options.  Pass to next level.
443  */
444 void
445 ip_input(struct mbuf *m)
446 {
447 	struct ip *ip;
448 	struct in_ifaddr *ia = NULL;
449 	struct in_ifaddr_container *iac;
450 	int hlen, checkif;
451 	u_short sum;
452 	struct in_addr pkt_dst;
453 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
454 	struct in_addr odst;			/* original dst address(NAT) */
455 	struct m_tag *mtag;
456 	struct sockaddr_in *next_hop = NULL;
457 	lwkt_port_t port;
458 #ifdef FAST_IPSEC
459 	struct tdb_ident *tdbi;
460 	struct secpolicy *sp;
461 	int error;
462 #endif
463 
464 	M_ASSERTPKTHDR(m);
465 
466 	/*
467 	 * This routine is called from numerous places which may not have
468 	 * characterized the packet.
469 	 */
470 	ip = mtod(m, struct ip *);
471 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
472 	    ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) {
473 		/*
474 		 * Force hash recalculation for fragments and multicast
475 		 * packets; hardware may not do it correctly.
476 		 * XXX add flag to indicate the hash is from hardware
477 		 */
478 		m->m_flags &= ~M_HASH;
479 	}
480 	if ((m->m_flags & M_HASH) == 0) {
481 		ip_hashfn(&m, 0);
482 		if (m == NULL)
483 			return;
484 		KKASSERT(m->m_flags & M_HASH);
485 
486 		if (&curthread->td_msgport !=
487 		    netisr_hashport(m->m_pkthdr.hash)) {
488 			netisr_queue(NETISR_IP, m);
489 			/* Requeued to other netisr msgport; done */
490 			return;
491 		}
492 
493 		/* mbuf could have been changed */
494 		ip = mtod(m, struct ip *);
495 	}
496 
497 	/*
498 	 * Pull out certain tags
499 	 */
500 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
501 		/* Next hop */
502 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
503 		KKASSERT(mtag != NULL);
504 		next_hop = m_tag_data(mtag);
505 	}
506 
507 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
508 		/* dummynet already filtered us */
509 		ip = mtod(m, struct ip *);
510 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
511 		goto iphack;
512 	}
513 
514 	ipstat.ips_total++;
515 
516 	/* length checks already done in ip_hashfn() */
517 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
518 
519 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
520 		ipstat.ips_badvers++;
521 		goto bad;
522 	}
523 
524 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
525 	/* length checks already done in ip_hashfn() */
526 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
527 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
528 
529 	/* 127/8 must not appear on wire - RFC1122 */
530 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
531 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
532 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
533 			ipstat.ips_badaddr++;
534 			goto bad;
535 		}
536 	}
537 
538 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
539 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
540 	} else {
541 		if (hlen == sizeof(struct ip))
542 			sum = in_cksum_hdr(ip);
543 		else
544 			sum = in_cksum(m, hlen);
545 	}
546 	if (sum != 0) {
547 		ipstat.ips_badsum++;
548 		goto bad;
549 	}
550 
551 #ifdef ALTQ
552 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
553 		/* packet is dropped by traffic conditioner */
554 		return;
555 	}
556 #endif
557 	/*
558 	 * Convert fields to host representation.
559 	 */
560 	ip->ip_len = ntohs(ip->ip_len);
561 	ip->ip_off = ntohs(ip->ip_off);
562 
563 	/* length checks already done in ip_hashfn() */
564 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
565 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
566 
567 	/*
568 	 * Trim mbufs if longer than the IP header would have us expect.
569 	 */
570 	if (m->m_pkthdr.len > ip->ip_len) {
571 		if (m->m_len == m->m_pkthdr.len) {
572 			m->m_len = ip->ip_len;
573 			m->m_pkthdr.len = ip->ip_len;
574 		} else {
575 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
576 		}
577 	}
578 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
579 	/*
580 	 * Bypass packet filtering for packets from a tunnel (gif).
581 	 */
582 	if (ipsec_gethist(m, NULL))
583 		goto pass;
584 #endif
585 
586 	/*
587 	 * IpHack's section.
588 	 * Right now when no processing on packet has done
589 	 * and it is still fresh out of network we do our black
590 	 * deals with it.
591 	 * - Firewall: deny/allow/divert
592 	 * - Xlate: translate packet's addr/port (NAT).
593 	 * - Pipe: pass pkt through dummynet.
594 	 * - Wrap: fake packet's addr/port <unimpl.>
595 	 * - Encapsulate: put it in another IP and send out. <unimp.>
596 	 */
597 
598 iphack:
599 	/*
600 	 * If we've been forwarded from the output side, then
601 	 * skip the firewall a second time
602 	 */
603 	if (next_hop != NULL)
604 		goto ours;
605 
606 	/* No pfil hooks */
607 	if (!pfil_has_hooks(&inet_pfil_hook)) {
608 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
609 			/*
610 			 * Strip dummynet tags from stranded packets
611 			 */
612 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
613 			KKASSERT(mtag != NULL);
614 			m_tag_delete(m, mtag);
615 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
616 		}
617 		goto pass;
618 	}
619 
620 	/*
621 	 * Run through list of hooks for input packets.
622 	 *
623 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
624 	 *	  clear M_HASH.
625 	 */
626 	odst = ip->ip_dst;
627 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
628 		return;
629 	if (m == NULL)	/* consumed by filter */
630 		return;
631 	ip = mtod(m, struct ip *);
632 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
633 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
634 
635 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
636 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
637 		KKASSERT(mtag != NULL);
638 		next_hop = m_tag_data(mtag);
639 	}
640 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
641 		ip_dn_queue(m);
642 		return;
643 	}
644 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
645 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
646 	}
647 pass:
648 	/*
649 	 * Process options and, if not destined for us,
650 	 * ship it on.  ip_dooptions returns 1 when an
651 	 * error was detected (causing an icmp message
652 	 * to be sent and the original packet to be freed).
653 	 */
654 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
655 		return;
656 
657 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
658 	 * matter if it is destined to another node, or whether it is
659 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
660 	 * anywhere else. Also checks if the rsvp daemon is running before
661 	 * grabbing the packet.
662 	 */
663 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
664 		goto ours;
665 
666 	/*
667 	 * Check our list of addresses, to see if the packet is for us.
668 	 * If we don't have any addresses, assume any unicast packet
669 	 * we receive might be for us (and let the upper layers deal
670 	 * with it).
671 	 */
672 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
673 	    !(m->m_flags & (M_MCAST | M_BCAST)))
674 		goto ours;
675 
676 	/*
677 	 * Cache the destination address of the packet; this may be
678 	 * changed by use of 'ipfw fwd'.
679 	 */
680 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
681 
682 	/*
683 	 * Enable a consistency check between the destination address
684 	 * and the arrival interface for a unicast packet (the RFC 1122
685 	 * strong ES model) if IP forwarding is disabled and the packet
686 	 * is not locally generated and the packet is not subject to
687 	 * 'ipfw fwd'.
688 	 *
689 	 * XXX - Checking also should be disabled if the destination
690 	 * address is ipnat'ed to a different interface.
691 	 *
692 	 * XXX - Checking is incompatible with IP aliases added
693 	 * to the loopback interface instead of the interface where
694 	 * the packets are received.
695 	 */
696 	checkif = ip_checkinterface &&
697 		  !ipforwarding &&
698 		  m->m_pkthdr.rcvif != NULL &&
699 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
700 		  next_hop == NULL;
701 
702 	/*
703 	 * Check for exact addresses in the hash bucket.
704 	 */
705 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
706 		ia = iac->ia;
707 
708 		/*
709 		 * If the address matches, verify that the packet
710 		 * arrived via the correct interface if checking is
711 		 * enabled.
712 		 */
713 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
714 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
715 			goto ours;
716 	}
717 	ia = NULL;
718 
719 	/*
720 	 * Check for broadcast addresses.
721 	 *
722 	 * Only accept broadcast packets that arrive via the matching
723 	 * interface.  Reception of forwarded directed broadcasts would
724 	 * be handled via ip_forward() and ether_output() with the loopback
725 	 * into the stack for SIMPLEX interfaces handled by ether_output().
726 	 */
727 	if (m->m_pkthdr.rcvif != NULL &&
728 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
729 		struct ifaddr_container *ifac;
730 
731 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
732 			      ifa_link) {
733 			struct ifaddr *ifa = ifac->ifa;
734 
735 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
736 				continue;
737 			if (ifa->ifa_addr->sa_family != AF_INET)
738 				continue;
739 			ia = ifatoia(ifa);
740 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
741 								pkt_dst.s_addr)
742 				goto ours;
743 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
744 				goto ours;
745 #ifdef BOOTP_COMPAT
746 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
747 				goto ours;
748 #endif
749 		}
750 	}
751 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
752 		struct in_multi *inm;
753 
754 		if (ip_mrouter != NULL) {
755 			/* XXX Multicast routing is not MPSAFE yet */
756 			get_mplock();
757 
758 			/*
759 			 * If we are acting as a multicast router, all
760 			 * incoming multicast packets are passed to the
761 			 * kernel-level multicast forwarding function.
762 			 * The packet is returned (relatively) intact; if
763 			 * ip_mforward() returns a non-zero value, the packet
764 			 * must be discarded, else it may be accepted below.
765 			 */
766 			if (ip_mforward != NULL &&
767 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
768 				rel_mplock();
769 				ipstat.ips_cantforward++;
770 				m_freem(m);
771 				return;
772 			}
773 
774 			rel_mplock();
775 
776 			/*
777 			 * The process-level routing daemon needs to receive
778 			 * all multicast IGMP packets, whether or not this
779 			 * host belongs to their destination groups.
780 			 */
781 			if (ip->ip_p == IPPROTO_IGMP)
782 				goto ours;
783 			ipstat.ips_forward++;
784 		}
785 		/*
786 		 * See if we belong to the destination multicast group on the
787 		 * arrival interface.
788 		 */
789 		inm = IN_LOOKUP_MULTI(&ip->ip_dst, m->m_pkthdr.rcvif);
790 		if (inm == NULL) {
791 			ipstat.ips_notmember++;
792 			m_freem(m);
793 			return;
794 		}
795 		goto ours;
796 	}
797 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
798 		goto ours;
799 	if (ip->ip_dst.s_addr == INADDR_ANY)
800 		goto ours;
801 
802 	/*
803 	 * FAITH(Firewall Aided Internet Translator)
804 	 */
805 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
806 		if (ip_keepfaith) {
807 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
808 				goto ours;
809 		}
810 		m_freem(m);
811 		return;
812 	}
813 
814 	/*
815 	 * Not for us; forward if possible and desirable.
816 	 */
817 	if (!ipforwarding) {
818 		ipstat.ips_cantforward++;
819 		m_freem(m);
820 	} else {
821 #ifdef IPSEC
822 		/*
823 		 * Enforce inbound IPsec SPD.
824 		 */
825 		if (ipsec4_in_reject(m, NULL)) {
826 			ipsecstat.in_polvio++;
827 			goto bad;
828 		}
829 #endif
830 #ifdef FAST_IPSEC
831 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
832 		crit_enter();
833 		if (mtag != NULL) {
834 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
835 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
836 		} else {
837 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
838 						   IP_FORWARDING, &error);
839 		}
840 		if (sp == NULL) {	/* NB: can happen if error */
841 			crit_exit();
842 			/*XXX error stat???*/
843 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
844 			goto bad;
845 		}
846 
847 		/*
848 		 * Check security policy against packet attributes.
849 		 */
850 		error = ipsec_in_reject(sp, m);
851 		KEY_FREESP(&sp);
852 		crit_exit();
853 		if (error) {
854 			ipstat.ips_cantforward++;
855 			goto bad;
856 		}
857 #endif
858 		ip_forward(m, using_srcrt, next_hop);
859 	}
860 	return;
861 
862 ours:
863 
864 	/*
865 	 * IPSTEALTH: Process non-routing options only
866 	 * if the packet is destined for us.
867 	 */
868 	if (ipstealth &&
869 	    hlen > sizeof(struct ip) &&
870 	    ip_dooptions(m, 1, next_hop))
871 		return;
872 
873 	/* Count the packet in the ip address stats */
874 	if (ia != NULL) {
875 		IFA_STAT_INC(&ia->ia_ifa, ipackets, 1);
876 		IFA_STAT_INC(&ia->ia_ifa, ibytes, m->m_pkthdr.len);
877 	}
878 
879 	/*
880 	 * If offset or IP_MF are set, must reassemble.
881 	 * Otherwise, nothing need be done.
882 	 * (We could look in the reassembly queue to see
883 	 * if the packet was previously fragmented,
884 	 * but it's not worth the time; just let them time out.)
885 	 */
886 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
887 		/*
888 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
889 		 * will return a different mbuf.
890 		 *
891 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
892 		 *	 us to recharacterize the packet.
893 		 */
894 		m = ip_reass(m);
895 		if (m == NULL)
896 			return;
897 		ip = mtod(m, struct ip *);
898 
899 		/* Get the header length of the reassembled packet */
900 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
901 	} else {
902 		ip->ip_len -= hlen;
903 	}
904 
905 #ifdef IPSEC
906 	/*
907 	 * enforce IPsec policy checking if we are seeing last header.
908 	 * note that we do not visit this with protocols with pcb layer
909 	 * code - like udp/tcp/raw ip.
910 	 */
911 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
912 	    ipsec4_in_reject(m, NULL)) {
913 		ipsecstat.in_polvio++;
914 		goto bad;
915 	}
916 #endif
917 #ifdef FAST_IPSEC
918 	/*
919 	 * enforce IPsec policy checking if we are seeing last header.
920 	 * note that we do not visit this with protocols with pcb layer
921 	 * code - like udp/tcp/raw ip.
922 	 */
923 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
924 		/*
925 		 * Check if the packet has already had IPsec processing
926 		 * done.  If so, then just pass it along.  This tag gets
927 		 * set during AH, ESP, etc. input handling, before the
928 		 * packet is returned to the ip input queue for delivery.
929 		 */
930 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
931 		crit_enter();
932 		if (mtag != NULL) {
933 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
934 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
935 		} else {
936 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
937 						   IP_FORWARDING, &error);
938 		}
939 		if (sp != NULL) {
940 			/*
941 			 * Check security policy against packet attributes.
942 			 */
943 			error = ipsec_in_reject(sp, m);
944 			KEY_FREESP(&sp);
945 		} else {
946 			/* XXX error stat??? */
947 			error = EINVAL;
948 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
949 			crit_exit();
950 			goto bad;
951 		}
952 		crit_exit();
953 		if (error)
954 			goto bad;
955 	}
956 #endif /* FAST_IPSEC */
957 
958 	/*
959 	 * We must forward the packet to the correct protocol thread if
960 	 * we are not already in it.
961 	 *
962 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
963 	 *	 further for protocol processing, instead we pass hlen
964 	 *	 to the protosw and let it deal with it.
965 	 */
966 	ipstat.ips_delivered++;
967 
968 	if ((m->m_flags & M_HASH) == 0) {
969 #ifdef RSS_DEBUG
970 		atomic_add_long(&ip_rehash_count, 1);
971 #endif
972 		ip->ip_len = htons(ip->ip_len + hlen);
973 		ip->ip_off = htons(ip->ip_off);
974 
975 		ip_hashfn(&m, 0);
976 		if (m == NULL)
977 			return;
978 
979 		ip = mtod(m, struct ip *);
980 		ip->ip_len = ntohs(ip->ip_len) - hlen;
981 		ip->ip_off = ntohs(ip->ip_off);
982 		KKASSERT(m->m_flags & M_HASH);
983 	}
984 	port = netisr_hashport(m->m_pkthdr.hash);
985 
986 	if (port != &curthread->td_msgport) {
987 		struct netmsg_packet *pmsg;
988 
989 #ifdef RSS_DEBUG
990 		atomic_add_long(&ip_dispatch_slow, 1);
991 #endif
992 
993 		pmsg = &m->m_hdr.mh_netmsg;
994 		netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
995 			    0, transport_processing_handler);
996 		pmsg->nm_packet = m;
997 		pmsg->base.lmsg.u.ms_result = hlen;
998 		lwkt_sendmsg(port, &pmsg->base.lmsg);
999 	} else {
1000 #ifdef RSS_DEBUG
1001 		atomic_add_long(&ip_dispatch_fast, 1);
1002 #endif
1003 		transport_processing_oncpu(m, hlen, ip);
1004 	}
1005 	return;
1006 
1007 bad:
1008 	m_freem(m);
1009 }
1010 
1011 /*
1012  * Take incoming datagram fragment and try to reassemble it into
1013  * whole datagram.  If a chain for reassembly of this datagram already
1014  * exists, then it is given as fp; otherwise have to make a chain.
1015  */
1016 struct mbuf *
1017 ip_reass(struct mbuf *m)
1018 {
1019 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1020 	struct ip *ip = mtod(m, struct ip *);
1021 	struct mbuf *p = NULL, *q, *nq;
1022 	struct mbuf *n;
1023 	struct ipq *fp = NULL;
1024 	struct ipqhead *head;
1025 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1026 	int i, next;
1027 	u_short sum;
1028 
1029 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
1030 	if (maxnipq == 0 || maxfragsperpacket == 0) {
1031 		ipstat.ips_fragments++;
1032 		ipstat.ips_fragdropped++;
1033 		m_freem(m);
1034 		return NULL;
1035 	}
1036 
1037 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1038 	/*
1039 	 * Look for queue of fragments of this datagram.
1040 	 */
1041 	head = &fragq->ipq[sum];
1042 	TAILQ_FOREACH(fp, head, ipq_list) {
1043 		if (ip->ip_id == fp->ipq_id &&
1044 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1045 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1046 		    ip->ip_p == fp->ipq_p)
1047 			goto found;
1048 	}
1049 
1050 	fp = NULL;
1051 
1052 	/*
1053 	 * Enforce upper bound on number of fragmented packets
1054 	 * for which we attempt reassembly;
1055 	 * If maxnipq is -1, accept all fragments without limitation.
1056 	 */
1057 	if (fragq->nipq > maxnipq && maxnipq > 0) {
1058 		/*
1059 		 * drop something from the tail of the current queue
1060 		 * before proceeding further
1061 		 */
1062 		struct ipq *q = TAILQ_LAST(head, ipqhead);
1063 		if (q == NULL) {
1064 			/*
1065 			 * The current queue is empty,
1066 			 * so drop from one of the others.
1067 			 */
1068 			for (i = 0; i < IPREASS_NHASH; i++) {
1069 				struct ipq *r = TAILQ_LAST(&fragq->ipq[i],
1070 				    ipqhead);
1071 				if (r) {
1072 					ipstat.ips_fragtimeout += r->ipq_nfrags;
1073 					ip_freef(fragq, &fragq->ipq[i], r);
1074 					break;
1075 				}
1076 			}
1077 		} else {
1078 			ipstat.ips_fragtimeout += q->ipq_nfrags;
1079 			ip_freef(fragq, head, q);
1080 		}
1081 	}
1082 found:
1083 	/*
1084 	 * Adjust ip_len to not reflect header,
1085 	 * convert offset of this to bytes.
1086 	 */
1087 	ip->ip_len -= hlen;
1088 	if (ip->ip_off & IP_MF) {
1089 		/*
1090 		 * Make sure that fragments have a data length
1091 		 * that's a non-zero multiple of 8 bytes.
1092 		 */
1093 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1094 			ipstat.ips_toosmall++; /* XXX */
1095 			m_freem(m);
1096 			goto done;
1097 		}
1098 		m->m_flags |= M_FRAG;
1099 	} else {
1100 		m->m_flags &= ~M_FRAG;
1101 	}
1102 	ip->ip_off <<= 3;
1103 
1104 	ipstat.ips_fragments++;
1105 	m->m_pkthdr.header = ip;
1106 
1107 	/*
1108 	 * If the hardware has not done csum over this fragment
1109 	 * then csum_data is not valid at all.
1110 	 */
1111 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1112 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1113 		m->m_pkthdr.csum_data = 0;
1114 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1115 	}
1116 
1117 	/*
1118 	 * Presence of header sizes in mbufs
1119 	 * would confuse code below.
1120 	 */
1121 	m->m_data += hlen;
1122 	m->m_len -= hlen;
1123 
1124 	/*
1125 	 * If first fragment to arrive, create a reassembly queue.
1126 	 */
1127 	if (fp == NULL) {
1128 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1129 			goto dropfrag;
1130 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1131 		fragq->nipq++;
1132 		fp->ipq_nfrags = 1;
1133 		fp->ipq_ttl = IPFRAGTTL;
1134 		fp->ipq_p = ip->ip_p;
1135 		fp->ipq_id = ip->ip_id;
1136 		fp->ipq_src = ip->ip_src;
1137 		fp->ipq_dst = ip->ip_dst;
1138 		fp->ipq_frags = m;
1139 		m->m_nextpkt = NULL;
1140 		goto inserted;
1141 	}
1142 	fp->ipq_nfrags++;
1143 
1144 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1145 
1146 	/*
1147 	 * Find a segment which begins after this one does.
1148 	 */
1149 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1150 		if (GETIP(q)->ip_off > ip->ip_off)
1151 			break;
1152 	}
1153 
1154 	/*
1155 	 * If there is a preceding segment, it may provide some of
1156 	 * our data already.  If so, drop the data from the incoming
1157 	 * segment.  If it provides all of our data, drop us, otherwise
1158 	 * stick new segment in the proper place.
1159 	 *
1160 	 * If some of the data is dropped from the the preceding
1161 	 * segment, then it's checksum is invalidated.
1162 	 */
1163 	if (p) {
1164 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1165 		if (i > 0) {
1166 			if (i >= ip->ip_len)
1167 				goto dropfrag;
1168 			m_adj(m, i);
1169 			m->m_pkthdr.csum_flags = 0;
1170 			ip->ip_off += i;
1171 			ip->ip_len -= i;
1172 		}
1173 		m->m_nextpkt = p->m_nextpkt;
1174 		p->m_nextpkt = m;
1175 	} else {
1176 		m->m_nextpkt = fp->ipq_frags;
1177 		fp->ipq_frags = m;
1178 	}
1179 
1180 	/*
1181 	 * While we overlap succeeding segments trim them or,
1182 	 * if they are completely covered, dequeue them.
1183 	 */
1184 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1185 	     q = nq) {
1186 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1187 		if (i < GETIP(q)->ip_len) {
1188 			GETIP(q)->ip_len -= i;
1189 			GETIP(q)->ip_off += i;
1190 			m_adj(q, i);
1191 			q->m_pkthdr.csum_flags = 0;
1192 			break;
1193 		}
1194 		nq = q->m_nextpkt;
1195 		m->m_nextpkt = nq;
1196 		ipstat.ips_fragdropped++;
1197 		fp->ipq_nfrags--;
1198 		q->m_nextpkt = NULL;
1199 		m_freem(q);
1200 	}
1201 
1202 inserted:
1203 	/*
1204 	 * Check for complete reassembly and perform frag per packet
1205 	 * limiting.
1206 	 *
1207 	 * Frag limiting is performed here so that the nth frag has
1208 	 * a chance to complete the packet before we drop the packet.
1209 	 * As a result, n+1 frags are actually allowed per packet, but
1210 	 * only n will ever be stored. (n = maxfragsperpacket.)
1211 	 *
1212 	 */
1213 	next = 0;
1214 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1215 		if (GETIP(q)->ip_off != next) {
1216 			if (fp->ipq_nfrags > maxfragsperpacket) {
1217 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1218 				ip_freef(fragq, head, fp);
1219 			}
1220 			goto done;
1221 		}
1222 		next += GETIP(q)->ip_len;
1223 	}
1224 	/* Make sure the last packet didn't have the IP_MF flag */
1225 	if (p->m_flags & M_FRAG) {
1226 		if (fp->ipq_nfrags > maxfragsperpacket) {
1227 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1228 			ip_freef(fragq, head, fp);
1229 		}
1230 		goto done;
1231 	}
1232 
1233 	/*
1234 	 * Reassembly is complete.  Make sure the packet is a sane size.
1235 	 */
1236 	q = fp->ipq_frags;
1237 	ip = GETIP(q);
1238 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1239 		ipstat.ips_toolong++;
1240 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1241 		ip_freef(fragq, head, fp);
1242 		goto done;
1243 	}
1244 
1245 	/*
1246 	 * Concatenate fragments.
1247 	 */
1248 	m = q;
1249 	n = m->m_next;
1250 	m->m_next = NULL;
1251 	m_cat(m, n);
1252 	nq = q->m_nextpkt;
1253 	q->m_nextpkt = NULL;
1254 	for (q = nq; q != NULL; q = nq) {
1255 		nq = q->m_nextpkt;
1256 		q->m_nextpkt = NULL;
1257 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1258 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1259 		m_cat(m, q);
1260 	}
1261 
1262 	/*
1263 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1264 	 * be added back.  This assumes no more then 65535 packet fragments
1265 	 * were reassembled.  A second carry can also occur (but not a third).
1266 	 */
1267 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1268 				(m->m_pkthdr.csum_data >> 16);
1269 	if (m->m_pkthdr.csum_data > 0xFFFF)
1270 		m->m_pkthdr.csum_data -= 0xFFFF;
1271 
1272 	/*
1273 	 * Create header for new ip packet by
1274 	 * modifying header of first packet;
1275 	 * dequeue and discard fragment reassembly header.
1276 	 * Make header visible.
1277 	 */
1278 	ip->ip_len = next;
1279 	ip->ip_src = fp->ipq_src;
1280 	ip->ip_dst = fp->ipq_dst;
1281 	TAILQ_REMOVE(head, fp, ipq_list);
1282 	fragq->nipq--;
1283 	mpipe_free(&ipq_mpipe, fp);
1284 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1285 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1286 	/* some debugging cruft by sklower, below, will go away soon */
1287 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1288 		int plen = 0;
1289 
1290 		for (n = m; n; n = n->m_next)
1291 			plen += n->m_len;
1292 		m->m_pkthdr.len = plen;
1293 	}
1294 
1295 	/*
1296 	 * Reassembly complete, return the next protocol.
1297 	 *
1298 	 * Be sure to clear M_HASH to force the packet
1299 	 * to be re-characterized.
1300 	 *
1301 	 * Clear M_FRAG, we are no longer a fragment.
1302 	 */
1303 	m->m_flags &= ~(M_HASH | M_FRAG);
1304 
1305 	ipstat.ips_reassembled++;
1306 	return (m);
1307 
1308 dropfrag:
1309 	ipstat.ips_fragdropped++;
1310 	if (fp != NULL)
1311 		fp->ipq_nfrags--;
1312 	m_freem(m);
1313 done:
1314 	return (NULL);
1315 
1316 #undef GETIP
1317 }
1318 
1319 /*
1320  * Free a fragment reassembly header and all
1321  * associated datagrams.
1322  */
1323 static void
1324 ip_freef(struct ipfrag_queue *fragq, struct ipqhead *fhp, struct ipq *fp)
1325 {
1326 	struct mbuf *q;
1327 
1328 	/*
1329 	 * Remove first to protect against blocking
1330 	 */
1331 	TAILQ_REMOVE(fhp, fp, ipq_list);
1332 
1333 	/*
1334 	 * Clean out at our leisure
1335 	 */
1336 	while (fp->ipq_frags) {
1337 		q = fp->ipq_frags;
1338 		fp->ipq_frags = q->m_nextpkt;
1339 		q->m_nextpkt = NULL;
1340 		m_freem(q);
1341 	}
1342 	mpipe_free(&ipq_mpipe, fp);
1343 	fragq->nipq--;
1344 }
1345 
1346 /*
1347  * If a timer expires on a reassembly queue, discard it.
1348  */
1349 static void
1350 ipfrag_timeo_dispatch(netmsg_t nmsg)
1351 {
1352 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1353 	struct ipq *fp, *fp_temp;
1354 	struct ipqhead *head;
1355 	int i;
1356 
1357 	crit_enter();
1358 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1359 	crit_exit();
1360 
1361 	for (i = 0; i < IPREASS_NHASH; i++) {
1362 		head = &fragq->ipq[i];
1363 		TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1364 			if (--fp->ipq_ttl == 0) {
1365 				ipstat.ips_fragtimeout += fp->ipq_nfrags;
1366 				ip_freef(fragq, head, fp);
1367 			}
1368 		}
1369 	}
1370 	/*
1371 	 * If we are over the maximum number of fragments
1372 	 * (due to the limit being lowered), drain off
1373 	 * enough to get down to the new limit.
1374 	 */
1375 	if (maxnipq >= 0 && fragq->nipq > maxnipq) {
1376 		for (i = 0; i < IPREASS_NHASH; i++) {
1377 			head = &fragq->ipq[i];
1378 			while (fragq->nipq > maxnipq && !TAILQ_EMPTY(head)) {
1379 				ipstat.ips_fragdropped +=
1380 				    TAILQ_FIRST(head)->ipq_nfrags;
1381 				ip_freef(fragq, head, TAILQ_FIRST(head));
1382 			}
1383 		}
1384 	}
1385 }
1386 
1387 static void
1388 ipfrag_timeo_ipi(void *arg __unused)
1389 {
1390 	int cpu = mycpuid;
1391 	struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].timeo_netmsg.lmsg;
1392 
1393 	crit_enter();
1394 	if (msg->ms_flags & MSGF_DONE)
1395 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1396 	crit_exit();
1397 }
1398 
1399 static void
1400 ipfrag_slowtimo(void)
1401 {
1402 	cpumask_t mask;
1403 
1404 	CPUMASK_ASSBMASK(mask, ncpus);
1405 	CPUMASK_ANDMASK(mask, smp_active_mask);
1406 	if (CPUMASK_TESTNZERO(mask))
1407 		lwkt_send_ipiq_mask(mask, ipfrag_timeo_ipi, NULL);
1408 }
1409 
1410 /*
1411  * IP timer processing
1412  */
1413 void
1414 ip_slowtimo(void)
1415 {
1416 	ipfrag_slowtimo();
1417 	ipflow_slowtimo();
1418 }
1419 
1420 /*
1421  * Drain off all datagram fragments.
1422  */
1423 static void
1424 ipfrag_drain_dispatch(netmsg_t nmsg)
1425 {
1426 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1427 	struct ipqhead *head;
1428 	int i;
1429 
1430 	crit_enter();
1431 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1432 	crit_exit();
1433 
1434 	for (i = 0; i < IPREASS_NHASH; i++) {
1435 		head = &fragq->ipq[i];
1436 		while (!TAILQ_EMPTY(head)) {
1437 			ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1438 			ip_freef(fragq, head, TAILQ_FIRST(head));
1439 		}
1440 	}
1441 }
1442 
1443 static void
1444 ipfrag_drain_ipi(void *arg __unused)
1445 {
1446 	int cpu = mycpuid;
1447 	struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].drain_netmsg.lmsg;
1448 
1449 	crit_enter();
1450 	if (msg->ms_flags & MSGF_DONE)
1451 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1452 	crit_exit();
1453 }
1454 
1455 static void
1456 ipfrag_drain(void)
1457 {
1458 	cpumask_t mask;
1459 
1460 	CPUMASK_ASSBMASK(mask, ncpus);
1461 	CPUMASK_ANDMASK(mask, smp_active_mask);
1462 	if (CPUMASK_TESTNZERO(mask))
1463 		lwkt_send_ipiq_mask(mask, ipfrag_drain_ipi, NULL);
1464 }
1465 
1466 void
1467 ip_drain(void)
1468 {
1469 	ipfrag_drain();
1470 	in_rtqdrain();
1471 }
1472 
1473 /*
1474  * Do option processing on a datagram,
1475  * possibly discarding it if bad options are encountered,
1476  * or forwarding it if source-routed.
1477  * The pass argument is used when operating in the IPSTEALTH
1478  * mode to tell what options to process:
1479  * [LS]SRR (pass 0) or the others (pass 1).
1480  * The reason for as many as two passes is that when doing IPSTEALTH,
1481  * non-routing options should be processed only if the packet is for us.
1482  * Returns 1 if packet has been forwarded/freed,
1483  * 0 if the packet should be processed further.
1484  */
1485 static int
1486 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1487 {
1488 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1489 	struct ip *ip = mtod(m, struct ip *);
1490 	u_char *cp;
1491 	struct in_ifaddr *ia;
1492 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1493 	boolean_t forward = FALSE;
1494 	struct in_addr *sin, dst;
1495 	n_time ntime;
1496 
1497 	dst = ip->ip_dst;
1498 	cp = (u_char *)(ip + 1);
1499 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1500 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1501 		opt = cp[IPOPT_OPTVAL];
1502 		if (opt == IPOPT_EOL)
1503 			break;
1504 		if (opt == IPOPT_NOP)
1505 			optlen = 1;
1506 		else {
1507 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1508 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1509 				goto bad;
1510 			}
1511 			optlen = cp[IPOPT_OLEN];
1512 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1513 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1514 				goto bad;
1515 			}
1516 		}
1517 		switch (opt) {
1518 
1519 		default:
1520 			break;
1521 
1522 		/*
1523 		 * Source routing with record.
1524 		 * Find interface with current destination address.
1525 		 * If none on this machine then drop if strictly routed,
1526 		 * or do nothing if loosely routed.
1527 		 * Record interface address and bring up next address
1528 		 * component.  If strictly routed make sure next
1529 		 * address is on directly accessible net.
1530 		 */
1531 		case IPOPT_LSRR:
1532 		case IPOPT_SSRR:
1533 			if (ipstealth && pass > 0)
1534 				break;
1535 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1536 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1537 				goto bad;
1538 			}
1539 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1540 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1541 				goto bad;
1542 			}
1543 			ipaddr.sin_addr = ip->ip_dst;
1544 			ia = (struct in_ifaddr *)
1545 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1546 			if (ia == NULL) {
1547 				if (opt == IPOPT_SSRR) {
1548 					type = ICMP_UNREACH;
1549 					code = ICMP_UNREACH_SRCFAIL;
1550 					goto bad;
1551 				}
1552 				if (!ip_dosourceroute)
1553 					goto nosourcerouting;
1554 				/*
1555 				 * Loose routing, and not at next destination
1556 				 * yet; nothing to do except forward.
1557 				 */
1558 				break;
1559 			}
1560 			off--;			/* 0 origin */
1561 			if (off > optlen - (int)sizeof(struct in_addr)) {
1562 				/*
1563 				 * End of source route.  Should be for us.
1564 				 */
1565 				if (!ip_acceptsourceroute)
1566 					goto nosourcerouting;
1567 				save_rte(m, cp, ip->ip_src);
1568 				break;
1569 			}
1570 			if (ipstealth)
1571 				goto dropit;
1572 			if (!ip_dosourceroute) {
1573 				if (ipforwarding) {
1574 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1575 
1576 					/*
1577 					 * Acting as a router, so generate ICMP
1578 					 */
1579 nosourcerouting:
1580 					strcpy(buf, inet_ntoa(ip->ip_dst));
1581 					log(LOG_WARNING,
1582 					    "attempted source route from %s to %s\n",
1583 					    inet_ntoa(ip->ip_src), buf);
1584 					type = ICMP_UNREACH;
1585 					code = ICMP_UNREACH_SRCFAIL;
1586 					goto bad;
1587 				} else {
1588 					/*
1589 					 * Not acting as a router,
1590 					 * so silently drop.
1591 					 */
1592 dropit:
1593 					ipstat.ips_cantforward++;
1594 					m_freem(m);
1595 					return (1);
1596 				}
1597 			}
1598 
1599 			/*
1600 			 * locate outgoing interface
1601 			 */
1602 			memcpy(&ipaddr.sin_addr, cp + off,
1603 			    sizeof ipaddr.sin_addr);
1604 
1605 			if (opt == IPOPT_SSRR) {
1606 #define	INA	struct in_ifaddr *
1607 #define	SA	struct sockaddr *
1608 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1609 									== NULL)
1610 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1611 			} else {
1612 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1613 			}
1614 			if (ia == NULL) {
1615 				type = ICMP_UNREACH;
1616 				code = ICMP_UNREACH_SRCFAIL;
1617 				goto bad;
1618 			}
1619 			ip->ip_dst = ipaddr.sin_addr;
1620 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1621 			    sizeof(struct in_addr));
1622 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1623 			/*
1624 			 * Let ip_intr's mcast routing check handle mcast pkts
1625 			 */
1626 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1627 			break;
1628 
1629 		case IPOPT_RR:
1630 			if (ipstealth && pass == 0)
1631 				break;
1632 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1633 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1634 				goto bad;
1635 			}
1636 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1637 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1638 				goto bad;
1639 			}
1640 			/*
1641 			 * If no space remains, ignore.
1642 			 */
1643 			off--;			/* 0 origin */
1644 			if (off > optlen - (int)sizeof(struct in_addr))
1645 				break;
1646 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1647 			    sizeof ipaddr.sin_addr);
1648 			/*
1649 			 * locate outgoing interface; if we're the destination,
1650 			 * use the incoming interface (should be same).
1651 			 */
1652 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1653 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1654 				type = ICMP_UNREACH;
1655 				code = ICMP_UNREACH_HOST;
1656 				goto bad;
1657 			}
1658 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1659 			    sizeof(struct in_addr));
1660 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1661 			break;
1662 
1663 		case IPOPT_TS:
1664 			if (ipstealth && pass == 0)
1665 				break;
1666 			code = cp - (u_char *)ip;
1667 			if (optlen < 4 || optlen > 40) {
1668 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1669 				goto bad;
1670 			}
1671 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1672 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1673 				goto bad;
1674 			}
1675 			if (off > optlen - (int)sizeof(int32_t)) {
1676 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1677 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1678 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1679 					goto bad;
1680 				}
1681 				break;
1682 			}
1683 			off--;				/* 0 origin */
1684 			sin = (struct in_addr *)(cp + off);
1685 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1686 
1687 			case IPOPT_TS_TSONLY:
1688 				break;
1689 
1690 			case IPOPT_TS_TSANDADDR:
1691 				if (off + sizeof(n_time) +
1692 				    sizeof(struct in_addr) > optlen) {
1693 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1694 					goto bad;
1695 				}
1696 				ipaddr.sin_addr = dst;
1697 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1698 							    m->m_pkthdr.rcvif);
1699 				if (ia == NULL)
1700 					continue;
1701 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1702 				    sizeof(struct in_addr));
1703 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1704 				off += sizeof(struct in_addr);
1705 				break;
1706 
1707 			case IPOPT_TS_PRESPEC:
1708 				if (off + sizeof(n_time) +
1709 				    sizeof(struct in_addr) > optlen) {
1710 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1711 					goto bad;
1712 				}
1713 				memcpy(&ipaddr.sin_addr, sin,
1714 				    sizeof(struct in_addr));
1715 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1716 					continue;
1717 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1718 				off += sizeof(struct in_addr);
1719 				break;
1720 
1721 			default:
1722 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1723 				goto bad;
1724 			}
1725 			ntime = iptime();
1726 			memcpy(cp + off, &ntime, sizeof(n_time));
1727 			cp[IPOPT_OFFSET] += sizeof(n_time);
1728 		}
1729 	}
1730 	if (forward && ipforwarding) {
1731 		ip_forward(m, TRUE, next_hop);
1732 		return (1);
1733 	}
1734 	return (0);
1735 bad:
1736 	icmp_error(m, type, code, 0, 0);
1737 	ipstat.ips_badoptions++;
1738 	return (1);
1739 }
1740 
1741 /*
1742  * Given address of next destination (final or next hop),
1743  * return internet address info of interface to be used to get there.
1744  */
1745 struct in_ifaddr *
1746 ip_rtaddr(struct in_addr dst, struct route *ro0)
1747 {
1748 	struct route sro, *ro;
1749 	struct sockaddr_in *sin;
1750 	struct in_ifaddr *ia;
1751 
1752 	if (ro0 != NULL) {
1753 		ro = ro0;
1754 	} else {
1755 		bzero(&sro, sizeof(sro));
1756 		ro = &sro;
1757 	}
1758 
1759 	sin = (struct sockaddr_in *)&ro->ro_dst;
1760 
1761 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1762 		if (ro->ro_rt != NULL) {
1763 			RTFREE(ro->ro_rt);
1764 			ro->ro_rt = NULL;
1765 		}
1766 		sin->sin_family = AF_INET;
1767 		sin->sin_len = sizeof *sin;
1768 		sin->sin_addr = dst;
1769 		rtalloc_ign(ro, RTF_PRCLONING);
1770 	}
1771 
1772 	if (ro->ro_rt == NULL)
1773 		return (NULL);
1774 
1775 	ia = ifatoia(ro->ro_rt->rt_ifa);
1776 
1777 	if (ro == &sro)
1778 		RTFREE(ro->ro_rt);
1779 	return ia;
1780 }
1781 
1782 /*
1783  * Save incoming source route for use in replies,
1784  * to be picked up later by ip_srcroute if the receiver is interested.
1785  */
1786 static void
1787 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1788 {
1789 	struct m_tag *mtag;
1790 	struct ip_srcrt_opt *opt;
1791 	unsigned olen;
1792 
1793 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), M_NOWAIT);
1794 	if (mtag == NULL)
1795 		return;
1796 	opt = m_tag_data(mtag);
1797 
1798 	olen = option[IPOPT_OLEN];
1799 #ifdef DIAGNOSTIC
1800 	if (ipprintfs)
1801 		kprintf("save_rte: olen %d\n", olen);
1802 #endif
1803 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1804 		m_tag_free(mtag);
1805 		return;
1806 	}
1807 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1808 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1809 	opt->ip_srcrt.dst = dst;
1810 	m_tag_prepend(m, mtag);
1811 }
1812 
1813 /*
1814  * Retrieve incoming source route for use in replies,
1815  * in the same form used by setsockopt.
1816  * The first hop is placed before the options, will be removed later.
1817  */
1818 struct mbuf *
1819 ip_srcroute(struct mbuf *m0)
1820 {
1821 	struct in_addr *p, *q;
1822 	struct mbuf *m;
1823 	struct m_tag *mtag;
1824 	struct ip_srcrt_opt *opt;
1825 
1826 	if (m0 == NULL)
1827 		return NULL;
1828 
1829 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1830 	if (mtag == NULL)
1831 		return NULL;
1832 	opt = m_tag_data(mtag);
1833 
1834 	if (opt->ip_nhops == 0)
1835 		return (NULL);
1836 	m = m_get(M_NOWAIT, MT_HEADER);
1837 	if (m == NULL)
1838 		return (NULL);
1839 
1840 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1841 
1842 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1843 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1844 		   sizeof(struct in_addr) + OPTSIZ;
1845 #ifdef DIAGNOSTIC
1846 	if (ipprintfs) {
1847 		kprintf("ip_srcroute: nhops %d mlen %d",
1848 			opt->ip_nhops, m->m_len);
1849 	}
1850 #endif
1851 
1852 	/*
1853 	 * First save first hop for return route
1854 	 */
1855 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1856 	*(mtod(m, struct in_addr *)) = *p--;
1857 #ifdef DIAGNOSTIC
1858 	if (ipprintfs)
1859 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1860 #endif
1861 
1862 	/*
1863 	 * Copy option fields and padding (nop) to mbuf.
1864 	 */
1865 	opt->ip_srcrt.nop = IPOPT_NOP;
1866 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1867 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1868 	    OPTSIZ);
1869 	q = (struct in_addr *)(mtod(m, caddr_t) +
1870 	    sizeof(struct in_addr) + OPTSIZ);
1871 #undef OPTSIZ
1872 	/*
1873 	 * Record return path as an IP source route,
1874 	 * reversing the path (pointers are now aligned).
1875 	 */
1876 	while (p >= opt->ip_srcrt.route) {
1877 #ifdef DIAGNOSTIC
1878 		if (ipprintfs)
1879 			kprintf(" %x", ntohl(q->s_addr));
1880 #endif
1881 		*q++ = *p--;
1882 	}
1883 	/*
1884 	 * Last hop goes to final destination.
1885 	 */
1886 	*q = opt->ip_srcrt.dst;
1887 	m_tag_delete(m0, mtag);
1888 #ifdef DIAGNOSTIC
1889 	if (ipprintfs)
1890 		kprintf(" %x\n", ntohl(q->s_addr));
1891 #endif
1892 	return (m);
1893 }
1894 
1895 /*
1896  * Strip out IP options.
1897  */
1898 void
1899 ip_stripoptions(struct mbuf *m)
1900 {
1901 	int datalen;
1902 	struct ip *ip = mtod(m, struct ip *);
1903 	caddr_t opts;
1904 	int optlen;
1905 
1906 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1907 	opts = (caddr_t)(ip + 1);
1908 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1909 	bcopy(opts + optlen, opts, datalen);
1910 	m->m_len -= optlen;
1911 	if (m->m_flags & M_PKTHDR)
1912 		m->m_pkthdr.len -= optlen;
1913 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1914 }
1915 
1916 u_char inetctlerrmap[PRC_NCMDS] = {
1917 	0,		0,		0,		0,
1918 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1919 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1920 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1921 	0,		0,		0,		0,
1922 	ENOPROTOOPT,	ECONNREFUSED
1923 };
1924 
1925 /*
1926  * Forward a packet.  If some error occurs return the sender
1927  * an icmp packet.  Note we can't always generate a meaningful
1928  * icmp message because icmp doesn't have a large enough repertoire
1929  * of codes and types.
1930  *
1931  * If not forwarding, just drop the packet.  This could be confusing
1932  * if ipforwarding was zero but some routing protocol was advancing
1933  * us as a gateway to somewhere.  However, we must let the routing
1934  * protocol deal with that.
1935  *
1936  * The using_srcrt parameter indicates whether the packet is being forwarded
1937  * via a source route.
1938  */
1939 void
1940 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1941 {
1942 	struct ip *ip = mtod(m, struct ip *);
1943 	struct rtentry *rt;
1944 	struct route fwd_ro;
1945 	int error, type = 0, code = 0, destmtu = 0;
1946 	struct mbuf *mcopy, *mtemp = NULL;
1947 	n_long dest;
1948 	struct in_addr pkt_dst;
1949 
1950 	dest = INADDR_ANY;
1951 	/*
1952 	 * Cache the destination address of the packet; this may be
1953 	 * changed by use of 'ipfw fwd'.
1954 	 */
1955 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1956 
1957 #ifdef DIAGNOSTIC
1958 	if (ipprintfs)
1959 		kprintf("forward: src %x dst %x ttl %x\n",
1960 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1961 #endif
1962 
1963 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1964 		ipstat.ips_cantforward++;
1965 		m_freem(m);
1966 		return;
1967 	}
1968 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1969 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1970 		return;
1971 	}
1972 
1973 	bzero(&fwd_ro, sizeof(fwd_ro));
1974 	ip_rtaddr(pkt_dst, &fwd_ro);
1975 	if (fwd_ro.ro_rt == NULL) {
1976 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1977 		return;
1978 	}
1979 	rt = fwd_ro.ro_rt;
1980 
1981 	if (curthread->td_type == TD_TYPE_NETISR) {
1982 		/*
1983 		 * Save the IP header and at most 8 bytes of the payload,
1984 		 * in case we need to generate an ICMP message to the src.
1985 		 */
1986 		mtemp = ipforward_mtemp[mycpuid];
1987 		KASSERT((mtemp->m_flags & M_EXT) == 0 &&
1988 		    mtemp->m_data == mtemp->m_pktdat &&
1989 		    m_tag_first(mtemp) == NULL,
1990 		    ("ip_forward invalid mtemp1"));
1991 
1992 		if (!m_dup_pkthdr(mtemp, m, M_NOWAIT)) {
1993 			/*
1994 			 * It's probably ok if the pkthdr dup fails (because
1995 			 * the deep copy of the tag chain failed), but for now
1996 			 * be conservative and just discard the copy since
1997 			 * code below may some day want the tags.
1998 			 */
1999 			mtemp = NULL;
2000 		} else {
2001 			mtemp->m_type = m->m_type;
2002 			mtemp->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
2003 			    (int)ip->ip_len);
2004 			mtemp->m_pkthdr.len = mtemp->m_len;
2005 			m_copydata(m, 0, mtemp->m_len, mtod(mtemp, caddr_t));
2006 		}
2007 	}
2008 
2009 	if (!ipstealth)
2010 		ip->ip_ttl -= IPTTLDEC;
2011 
2012 	/*
2013 	 * If forwarding packet using same interface that it came in on,
2014 	 * perhaps should send a redirect to sender to shortcut a hop.
2015 	 * Only send redirect if source is sending directly to us,
2016 	 * and if packet was not source routed (or has any options).
2017 	 * Also, don't send redirect if forwarding using a default route
2018 	 * or a route modified by a redirect.
2019 	 */
2020 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
2021 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
2022 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
2023 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
2024 		u_long src = ntohl(ip->ip_src.s_addr);
2025 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
2026 
2027 		if (rt_ifa != NULL &&
2028 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
2029 			if (rt->rt_flags & RTF_GATEWAY)
2030 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
2031 			else
2032 				dest = pkt_dst.s_addr;
2033 			/*
2034 			 * Router requirements says to only send
2035 			 * host redirects.
2036 			 */
2037 			type = ICMP_REDIRECT;
2038 			code = ICMP_REDIRECT_HOST;
2039 #ifdef DIAGNOSTIC
2040 			if (ipprintfs)
2041 				kprintf("redirect (%d) to %x\n", code, dest);
2042 #endif
2043 		}
2044 	}
2045 
2046 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
2047 	if (error == 0) {
2048 		ipstat.ips_forward++;
2049 		if (type == 0) {
2050 			if (mtemp)
2051 				ipflow_create(&fwd_ro, mtemp);
2052 			goto done;
2053 		}
2054 		ipstat.ips_redirectsent++;
2055 	} else {
2056 		ipstat.ips_cantforward++;
2057 	}
2058 
2059 	if (mtemp == NULL)
2060 		goto done;
2061 
2062 	/*
2063 	 * Errors that do not require generating ICMP message
2064 	 */
2065 	switch (error) {
2066 	case ENOBUFS:
2067 		/*
2068 		 * A router should not generate ICMP_SOURCEQUENCH as
2069 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2070 		 * Source quench could be a big problem under DoS attacks,
2071 		 * or if the underlying interface is rate-limited.
2072 		 * Those who need source quench packets may re-enable them
2073 		 * via the net.inet.ip.sendsourcequench sysctl.
2074 		 */
2075 		if (!ip_sendsourcequench)
2076 			goto done;
2077 		break;
2078 
2079 	case EACCES:			/* ipfw denied packet */
2080 		goto done;
2081 	}
2082 
2083 	KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2084 	    mtemp->m_data == mtemp->m_pktdat,
2085 	    ("ip_forward invalid mtemp2"));
2086 	mcopy = m_copym(mtemp, 0, mtemp->m_len, M_NOWAIT);
2087 	if (mcopy == NULL)
2088 		goto done;
2089 
2090 	/*
2091 	 * Send ICMP message.
2092 	 */
2093 	switch (error) {
2094 	case 0:				/* forwarded, but need redirect */
2095 		/* type, code set above */
2096 		break;
2097 
2098 	case ENETUNREACH:		/* shouldn't happen, checked above */
2099 	case EHOSTUNREACH:
2100 	case ENETDOWN:
2101 	case EHOSTDOWN:
2102 	default:
2103 		type = ICMP_UNREACH;
2104 		code = ICMP_UNREACH_HOST;
2105 		break;
2106 
2107 	case EMSGSIZE:
2108 		type = ICMP_UNREACH;
2109 		code = ICMP_UNREACH_NEEDFRAG;
2110 #ifdef IPSEC
2111 		/*
2112 		 * If the packet is routed over IPsec tunnel, tell the
2113 		 * originator the tunnel MTU.
2114 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2115 		 * XXX quickhack!!!
2116 		 */
2117 		if (fwd_ro.ro_rt != NULL) {
2118 			struct secpolicy *sp = NULL;
2119 			int ipsecerror;
2120 			int ipsechdr;
2121 			struct route *ro;
2122 
2123 			sp = ipsec4_getpolicybyaddr(mcopy,
2124 						    IPSEC_DIR_OUTBOUND,
2125 						    IP_FORWARDING,
2126 						    &ipsecerror);
2127 
2128 			if (sp == NULL)
2129 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2130 			else {
2131 				/* count IPsec header size */
2132 				ipsechdr = ipsec4_hdrsiz(mcopy,
2133 							 IPSEC_DIR_OUTBOUND,
2134 							 NULL);
2135 
2136 				/*
2137 				 * find the correct route for outer IPv4
2138 				 * header, compute tunnel MTU.
2139 				 *
2140 				 */
2141 				if (sp->req != NULL && sp->req->sav != NULL &&
2142 				    sp->req->sav->sah != NULL) {
2143 					ro = &sp->req->sav->sah->sa_route;
2144 					if (ro->ro_rt != NULL &&
2145 					    ro->ro_rt->rt_ifp != NULL) {
2146 						destmtu =
2147 						    ro->ro_rt->rt_ifp->if_mtu;
2148 						destmtu -= ipsechdr;
2149 					}
2150 				}
2151 
2152 				key_freesp(sp);
2153 			}
2154 		}
2155 #elif defined(FAST_IPSEC)
2156 		/*
2157 		 * If the packet is routed over IPsec tunnel, tell the
2158 		 * originator the tunnel MTU.
2159 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2160 		 * XXX quickhack!!!
2161 		 */
2162 		if (fwd_ro.ro_rt != NULL) {
2163 			struct secpolicy *sp = NULL;
2164 			int ipsecerror;
2165 			int ipsechdr;
2166 			struct route *ro;
2167 
2168 			sp = ipsec_getpolicybyaddr(mcopy,
2169 						   IPSEC_DIR_OUTBOUND,
2170 						   IP_FORWARDING,
2171 						   &ipsecerror);
2172 
2173 			if (sp == NULL)
2174 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2175 			else {
2176 				/* count IPsec header size */
2177 				ipsechdr = ipsec4_hdrsiz(mcopy,
2178 							 IPSEC_DIR_OUTBOUND,
2179 							 NULL);
2180 
2181 				/*
2182 				 * find the correct route for outer IPv4
2183 				 * header, compute tunnel MTU.
2184 				 */
2185 
2186 				if (sp->req != NULL &&
2187 				    sp->req->sav != NULL &&
2188 				    sp->req->sav->sah != NULL) {
2189 					ro = &sp->req->sav->sah->sa_route;
2190 					if (ro->ro_rt != NULL &&
2191 					    ro->ro_rt->rt_ifp != NULL) {
2192 						destmtu =
2193 						    ro->ro_rt->rt_ifp->if_mtu;
2194 						destmtu -= ipsechdr;
2195 					}
2196 				}
2197 
2198 				KEY_FREESP(&sp);
2199 			}
2200 		}
2201 #else /* !IPSEC && !FAST_IPSEC */
2202 		if (fwd_ro.ro_rt != NULL)
2203 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2204 #endif /*IPSEC*/
2205 		ipstat.ips_cantfrag++;
2206 		break;
2207 
2208 	case ENOBUFS:
2209 		type = ICMP_SOURCEQUENCH;
2210 		code = 0;
2211 		break;
2212 
2213 	case EACCES:			/* ipfw denied packet */
2214 		panic("ip_forward EACCES should not reach");
2215 	}
2216 	icmp_error(mcopy, type, code, dest, destmtu);
2217 done:
2218 	if (mtemp != NULL)
2219 		m_tag_delete_chain(mtemp);
2220 	if (fwd_ro.ro_rt != NULL)
2221 		RTFREE(fwd_ro.ro_rt);
2222 }
2223 
2224 void
2225 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2226 	       struct mbuf *m)
2227 {
2228 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2229 		struct timeval tv;
2230 
2231 		microtime(&tv);
2232 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2233 		    SCM_TIMESTAMP, SOL_SOCKET);
2234 		if (*mp)
2235 			mp = &(*mp)->m_next;
2236 	}
2237 	if (inp->inp_flags & INP_RECVDSTADDR) {
2238 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2239 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2240 		if (*mp)
2241 			mp = &(*mp)->m_next;
2242 	}
2243 	if (inp->inp_flags & INP_RECVTTL) {
2244 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2245 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2246 		if (*mp)
2247 			mp = &(*mp)->m_next;
2248 	}
2249 #ifdef notyet
2250 	/* XXX
2251 	 * Moving these out of udp_input() made them even more broken
2252 	 * than they already were.
2253 	 */
2254 	/* options were tossed already */
2255 	if (inp->inp_flags & INP_RECVOPTS) {
2256 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2257 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2258 		if (*mp)
2259 			mp = &(*mp)->m_next;
2260 	}
2261 	/* ip_srcroute doesn't do what we want here, need to fix */
2262 	if (inp->inp_flags & INP_RECVRETOPTS) {
2263 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2264 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2265 		if (*mp)
2266 			mp = &(*mp)->m_next;
2267 	}
2268 #endif
2269 	if (inp->inp_flags & INP_RECVIF) {
2270 		struct ifnet *ifp;
2271 		struct sdlbuf {
2272 			struct sockaddr_dl sdl;
2273 			u_char	pad[32];
2274 		} sdlbuf;
2275 		struct sockaddr_dl *sdp;
2276 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2277 
2278 		if (((ifp = m->m_pkthdr.rcvif)) &&
2279 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2280 			sdp = IF_LLSOCKADDR(ifp);
2281 			/*
2282 			 * Change our mind and don't try copy.
2283 			 */
2284 			if ((sdp->sdl_family != AF_LINK) ||
2285 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2286 				goto makedummy;
2287 			}
2288 			bcopy(sdp, sdl2, sdp->sdl_len);
2289 		} else {
2290 makedummy:
2291 			sdl2->sdl_len =
2292 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2293 			sdl2->sdl_family = AF_LINK;
2294 			sdl2->sdl_index = 0;
2295 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2296 		}
2297 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2298 			IP_RECVIF, IPPROTO_IP);
2299 		if (*mp)
2300 			mp = &(*mp)->m_next;
2301 	}
2302 }
2303 
2304 /*
2305  * XXX these routines are called from the upper part of the kernel.
2306  *
2307  * They could also be moved to ip_mroute.c, since all the RSVP
2308  *  handling is done there already.
2309  */
2310 int
2311 ip_rsvp_init(struct socket *so)
2312 {
2313 	if (so->so_type != SOCK_RAW ||
2314 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2315 		return EOPNOTSUPP;
2316 
2317 	if (ip_rsvpd != NULL)
2318 		return EADDRINUSE;
2319 
2320 	ip_rsvpd = so;
2321 	/*
2322 	 * This may seem silly, but we need to be sure we don't over-increment
2323 	 * the RSVP counter, in case something slips up.
2324 	 */
2325 	if (!ip_rsvp_on) {
2326 		ip_rsvp_on = 1;
2327 		rsvp_on++;
2328 	}
2329 
2330 	return 0;
2331 }
2332 
2333 int
2334 ip_rsvp_done(void)
2335 {
2336 	ip_rsvpd = NULL;
2337 	/*
2338 	 * This may seem silly, but we need to be sure we don't over-decrement
2339 	 * the RSVP counter, in case something slips up.
2340 	 */
2341 	if (ip_rsvp_on) {
2342 		ip_rsvp_on = 0;
2343 		rsvp_on--;
2344 	}
2345 	return 0;
2346 }
2347 
2348 int
2349 rsvp_input(struct mbuf **mp, int *offp, int proto)
2350 {
2351 	struct mbuf *m = *mp;
2352 
2353 	*mp = NULL;
2354 
2355 	if (rsvp_input_p) { /* call the real one if loaded */
2356 		*mp = m;
2357 		rsvp_input_p(mp, offp, proto);
2358 		return(IPPROTO_DONE);
2359 	}
2360 
2361 	/* Can still get packets with rsvp_on = 0 if there is a local member
2362 	 * of the group to which the RSVP packet is addressed.  But in this
2363 	 * case we want to throw the packet away.
2364 	 */
2365 
2366 	if (!rsvp_on) {
2367 		m_freem(m);
2368 		return(IPPROTO_DONE);
2369 	}
2370 
2371 	if (ip_rsvpd != NULL) {
2372 		*mp = m;
2373 		rip_input(mp, offp, proto);
2374 		return(IPPROTO_DONE);
2375 	}
2376 	/* Drop the packet */
2377 	m_freem(m);
2378 	return(IPPROTO_DONE);
2379 }
2380