xref: /dragonfly/sys/netinet/ip_input.c (revision 66e72101)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
67  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68  */
69 
70 #define	_IP_VHL
71 
72 #include "opt_bootp.h"
73 #include "opt_ipdn.h"
74 #include "opt_ipdivert.h"
75 #include "opt_ipstealth.h"
76 #include "opt_ipsec.h"
77 #include "opt_rss.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/mpipe.h>
84 #include <sys/domain.h>
85 #include <sys/protosw.h>
86 #include <sys/socket.h>
87 #include <sys/time.h>
88 #include <sys/globaldata.h>
89 #include <sys/thread.h>
90 #include <sys/kernel.h>
91 #include <sys/syslog.h>
92 #include <sys/sysctl.h>
93 #include <sys/in_cksum.h>
94 #include <sys/lock.h>
95 
96 #include <sys/mplock2.h>
97 
98 #include <machine/stdarg.h>
99 
100 #include <net/if.h>
101 #include <net/if_types.h>
102 #include <net/if_var.h>
103 #include <net/if_dl.h>
104 #include <net/pfil.h>
105 #include <net/route.h>
106 #include <net/netisr2.h>
107 
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/in_pcb.h>
113 #include <netinet/ip_var.h>
114 #include <netinet/ip_icmp.h>
115 #include <netinet/ip_divert.h>
116 #include <netinet/ip_flow.h>
117 
118 #include <sys/thread2.h>
119 #include <sys/msgport2.h>
120 #include <net/netmsg2.h>
121 
122 #include <sys/socketvar.h>
123 
124 #include <net/ipfw/ip_fw.h>
125 #include <net/dummynet/ip_dummynet.h>
126 
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #include <netproto/key/key.h>
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #include <netproto/ipsec/key.h>
135 #endif
136 
137 int rsvp_on = 0;
138 static int ip_rsvp_on;
139 struct socket *ip_rsvpd;
140 
141 int ipforwarding = 0;
142 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
143     &ipforwarding, 0, "Enable IP forwarding between interfaces");
144 
145 static int ipsendredirects = 1; /* XXX */
146 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
147     &ipsendredirects, 0, "Enable sending IP redirects");
148 
149 int ip_defttl = IPDEFTTL;
150 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
151     &ip_defttl, 0, "Maximum TTL on IP packets");
152 
153 static int ip_dosourceroute = 0;
154 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
155     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
156 
157 static int ip_acceptsourceroute = 0;
158 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
159     CTLFLAG_RW, &ip_acceptsourceroute, 0,
160     "Enable accepting source routed IP packets");
161 
162 static int ip_keepfaith = 0;
163 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
164     &ip_keepfaith, 0,
165     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
166 
167 static int nipq = 0;	/* total # of reass queues */
168 static int maxnipq;
169 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
170     &maxnipq, 0,
171     "Maximum number of IPv4 fragment reassembly queue entries");
172 
173 static int maxfragsperpacket;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
175     &maxfragsperpacket, 0,
176     "Maximum number of IPv4 fragments allowed per packet");
177 
178 static int ip_sendsourcequench = 0;
179 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
180     &ip_sendsourcequench, 0,
181     "Enable the transmission of source quench packets");
182 
183 int ip_do_randomid = 1;
184 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
185     &ip_do_randomid, 0,
186     "Assign random ip_id values");
187 /*
188  * XXX - Setting ip_checkinterface mostly implements the receive side of
189  * the Strong ES model described in RFC 1122, but since the routing table
190  * and transmit implementation do not implement the Strong ES model,
191  * setting this to 1 results in an odd hybrid.
192  *
193  * XXX - ip_checkinterface currently must be disabled if you use ipnat
194  * to translate the destination address to another local interface.
195  *
196  * XXX - ip_checkinterface must be disabled if you add IP aliases
197  * to the loopback interface instead of the interface where the
198  * packets for those addresses are received.
199  */
200 static int ip_checkinterface = 0;
201 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
202     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
203 
204 static u_long ip_hash_count = 0;
205 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, hash_count, CTLFLAG_RD,
206     &ip_hash_count, 0, "Number of packets hashed by IP");
207 
208 #ifdef RSS_DEBUG
209 static u_long ip_rehash_count = 0;
210 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, rehash_count, CTLFLAG_RD,
211     &ip_rehash_count, 0, "Number of packets rehashed by IP");
212 
213 static u_long ip_dispatch_fast = 0;
214 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
215     &ip_dispatch_fast, 0, "Number of packets handled on current CPU");
216 
217 static u_long ip_dispatch_slow = 0;
218 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
219     &ip_dispatch_slow, 0, "Number of packets messaged to another CPU");
220 #endif
221 
222 static struct lwkt_token ipq_token = LWKT_TOKEN_INITIALIZER(ipq_token);
223 
224 #ifdef DIAGNOSTIC
225 static int ipprintfs = 0;
226 #endif
227 
228 extern	struct domain inetdomain;
229 extern	struct protosw inetsw[];
230 u_char	ip_protox[IPPROTO_MAX];
231 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
232 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
233 						/* inet addr hash table */
234 u_long	in_ifaddrhmask;				/* mask for hash table */
235 
236 static struct mbuf *ipforward_mtemp[MAXCPU];
237 
238 struct ip_stats ipstats_percpu[MAXCPU] __cachealign;
239 
240 static int
241 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
242 {
243 	int cpu, error = 0;
244 
245 	for (cpu = 0; cpu < ncpus; ++cpu) {
246 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
247 					sizeof(struct ip_stats))))
248 			break;
249 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
250 				       sizeof(struct ip_stats))))
251 			break;
252 	}
253 
254 	return (error);
255 }
256 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
257     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
258 
259 /* Packet reassembly stuff */
260 #define	IPREASS_NHASH_LOG2	6
261 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
262 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
263 #define	IPREASS_HASH(x,y)						\
264     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
265 
266 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
267 
268 #ifdef IPCTL_DEFMTU
269 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
270     &ip_mtu, 0, "Default MTU");
271 #endif
272 
273 #ifdef IPSTEALTH
274 static int ipstealth = 0;
275 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
276 #else
277 static const int ipstealth = 0;
278 #endif
279 
280 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
281 
282 struct pfil_head inet_pfil_hook;
283 
284 /*
285  * struct ip_srcrt_opt is used to store packet state while it travels
286  * through the stack.
287  *
288  * XXX Note that the code even makes assumptions on the size and
289  * alignment of fields inside struct ip_srcrt so e.g. adding some
290  * fields will break the code.  This needs to be fixed.
291  *
292  * We need to save the IP options in case a protocol wants to respond
293  * to an incoming packet over the same route if the packet got here
294  * using IP source routing.  This allows connection establishment and
295  * maintenance when the remote end is on a network that is not known
296  * to us.
297  */
298 struct ip_srcrt {
299 	struct	in_addr dst;			/* final destination */
300 	char	nop;				/* one NOP to align */
301 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
302 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
303 };
304 
305 struct ip_srcrt_opt {
306 	int		ip_nhops;
307 	struct ip_srcrt	ip_srcrt;
308 };
309 
310 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
311 static struct malloc_pipe ipq_mpipe;
312 
313 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
314 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
315 static void		ip_freef(struct ipqhead *, struct ipq *);
316 static void		ip_input_handler(netmsg_t);
317 
318 /*
319  * IP initialization: fill in IP protocol switch table.
320  * All protocols not implemented in kernel go to raw IP protocol handler.
321  */
322 void
323 ip_init(void)
324 {
325 	struct protosw *pr;
326 	int i;
327 	int cpu;
328 
329 	/*
330 	 * Make sure we can handle a reasonable number of fragments but
331 	 * cap it at 4000 (XXX).
332 	 */
333 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
334 		    IFQ_MAXLEN, 4000, 0, NULL, NULL, NULL);
335 	for (i = 0; i < ncpus; ++i) {
336 		TAILQ_INIT(&in_ifaddrheads[i]);
337 		in_ifaddrhashtbls[i] =
338 			hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
339 	}
340 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
341 	if (pr == NULL)
342 		panic("ip_init");
343 	for (i = 0; i < IPPROTO_MAX; i++)
344 		ip_protox[i] = pr - inetsw;
345 	for (pr = inetdomain.dom_protosw;
346 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
347 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
348 			if (pr->pr_protocol != IPPROTO_RAW)
349 				ip_protox[pr->pr_protocol] = pr - inetsw;
350 		}
351 	}
352 
353 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
354 	inet_pfil_hook.ph_af = AF_INET;
355 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
356 		kprintf("%s: WARNING: unable to register pfil hook, "
357 			"error %d\n", __func__, i);
358 	}
359 
360 	for (i = 0; i < IPREASS_NHASH; i++)
361 		TAILQ_INIT(&ipq[i]);
362 
363 	maxnipq = nmbclusters / 32;
364 	maxfragsperpacket = 16;
365 
366 	ip_id = time_second & 0xffff;
367 
368 	for (cpu = 0; cpu < ncpus; ++cpu) {
369 		/*
370 		 * Initialize IP statistics counters for each CPU.
371 		 */
372 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
373 
374 		/*
375 		 * Preallocate mbuf template for forwarding
376 		 */
377 		MGETHDR(ipforward_mtemp[cpu], MB_WAIT, MT_DATA);
378 	}
379 
380 	netisr_register(NETISR_IP, ip_input_handler, ip_hashfn_in);
381 	netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
382 }
383 
384 /* Do transport protocol processing. */
385 static void
386 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
387 {
388 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
389 
390 	/*
391 	 * Switch out to protocol's input routine.
392 	 */
393 	PR_GET_MPLOCK(pr);
394 	pr->pr_input(&m, &hlen, ip->ip_p);
395 	PR_REL_MPLOCK(pr);
396 }
397 
398 static void
399 transport_processing_handler(netmsg_t msg)
400 {
401 	struct netmsg_packet *pmsg = &msg->packet;
402 	struct ip *ip;
403 	int hlen;
404 
405 	ip = mtod(pmsg->nm_packet, struct ip *);
406 	hlen = pmsg->base.lmsg.u.ms_result;
407 
408 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
409 	/* msg was embedded in the mbuf, do not reply! */
410 }
411 
412 static void
413 ip_input_handler(netmsg_t msg)
414 {
415 	ip_input(msg->packet.nm_packet);
416 	/* msg was embedded in the mbuf, do not reply! */
417 }
418 
419 /*
420  * IP input routine.  Checksum and byte swap header.  If fragmented
421  * try to reassemble.  Process options.  Pass to next level.
422  */
423 void
424 ip_input(struct mbuf *m)
425 {
426 	struct ip *ip;
427 	struct in_ifaddr *ia = NULL;
428 	struct in_ifaddr_container *iac;
429 	int hlen, checkif;
430 	u_short sum;
431 	struct in_addr pkt_dst;
432 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
433 	struct in_addr odst;			/* original dst address(NAT) */
434 	struct m_tag *mtag;
435 	struct sockaddr_in *next_hop = NULL;
436 	lwkt_port_t port;
437 #ifdef FAST_IPSEC
438 	struct tdb_ident *tdbi;
439 	struct secpolicy *sp;
440 	int error;
441 #endif
442 
443 	M_ASSERTPKTHDR(m);
444 
445 	/*
446 	 * This routine is called from numerous places which may not have
447 	 * characterized the packet.
448 	 */
449 	if ((m->m_flags & M_HASH) == 0) {
450 		atomic_add_long(&ip_hash_count, 1);
451 		ip_hashfn(&m, 0, IP_MPORT_IN);
452 		if (m == NULL)
453 			return;
454 		KKASSERT(m->m_flags & M_HASH);
455 	}
456 	ip = mtod(m, struct ip *);
457 
458 	/*
459 	 * Pull out certain tags
460 	 */
461 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
462 		/* Next hop */
463 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
464 		KKASSERT(mtag != NULL);
465 		next_hop = m_tag_data(mtag);
466 	}
467 
468 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
469 		/* dummynet already filtered us */
470 		ip = mtod(m, struct ip *);
471 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
472 		goto iphack;
473 	}
474 
475 	ipstat.ips_total++;
476 
477 	/* length checks already done in ip_hashfn() */
478 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
479 
480 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
481 		ipstat.ips_badvers++;
482 		goto bad;
483 	}
484 
485 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
486 	/* length checks already done in ip_hashfn() */
487 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
488 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
489 
490 	/* 127/8 must not appear on wire - RFC1122 */
491 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
492 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
493 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
494 			ipstat.ips_badaddr++;
495 			goto bad;
496 		}
497 	}
498 
499 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
500 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
501 	} else {
502 		if (hlen == sizeof(struct ip))
503 			sum = in_cksum_hdr(ip);
504 		else
505 			sum = in_cksum(m, hlen);
506 	}
507 	if (sum != 0) {
508 		ipstat.ips_badsum++;
509 		goto bad;
510 	}
511 
512 #ifdef ALTQ
513 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
514 		/* packet is dropped by traffic conditioner */
515 		return;
516 	}
517 #endif
518 	/*
519 	 * Convert fields to host representation.
520 	 */
521 	ip->ip_len = ntohs(ip->ip_len);
522 	ip->ip_off = ntohs(ip->ip_off);
523 
524 	/* length checks already done in ip_hashfn() */
525 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
526 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
527 
528 	/*
529 	 * Trim mbufs if longer than the IP header would have us expect.
530 	 */
531 	if (m->m_pkthdr.len > ip->ip_len) {
532 		if (m->m_len == m->m_pkthdr.len) {
533 			m->m_len = ip->ip_len;
534 			m->m_pkthdr.len = ip->ip_len;
535 		} else {
536 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
537 		}
538 	}
539 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
540 	/*
541 	 * Bypass packet filtering for packets from a tunnel (gif).
542 	 */
543 	if (ipsec_gethist(m, NULL))
544 		goto pass;
545 #endif
546 
547 	/*
548 	 * IpHack's section.
549 	 * Right now when no processing on packet has done
550 	 * and it is still fresh out of network we do our black
551 	 * deals with it.
552 	 * - Firewall: deny/allow/divert
553 	 * - Xlate: translate packet's addr/port (NAT).
554 	 * - Pipe: pass pkt through dummynet.
555 	 * - Wrap: fake packet's addr/port <unimpl.>
556 	 * - Encapsulate: put it in another IP and send out. <unimp.>
557 	 */
558 
559 iphack:
560 	/*
561 	 * If we've been forwarded from the output side, then
562 	 * skip the firewall a second time
563 	 */
564 	if (next_hop != NULL)
565 		goto ours;
566 
567 	/* No pfil hooks */
568 	if (!pfil_has_hooks(&inet_pfil_hook)) {
569 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
570 			/*
571 			 * Strip dummynet tags from stranded packets
572 			 */
573 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
574 			KKASSERT(mtag != NULL);
575 			m_tag_delete(m, mtag);
576 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
577 		}
578 		goto pass;
579 	}
580 
581 	/*
582 	 * Run through list of hooks for input packets.
583 	 *
584 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
585 	 *	  clear M_HASH.
586 	 */
587 	odst = ip->ip_dst;
588 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
589 		return;
590 	if (m == NULL)	/* consumed by filter */
591 		return;
592 	ip = mtod(m, struct ip *);
593 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
594 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
595 
596 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
597 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
598 		KKASSERT(mtag != NULL);
599 		next_hop = m_tag_data(mtag);
600 	}
601 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
602 		ip_dn_queue(m);
603 		return;
604 	}
605 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
606 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
607 	}
608 pass:
609 	/*
610 	 * Process options and, if not destined for us,
611 	 * ship it on.  ip_dooptions returns 1 when an
612 	 * error was detected (causing an icmp message
613 	 * to be sent and the original packet to be freed).
614 	 */
615 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
616 		return;
617 
618 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
619 	 * matter if it is destined to another node, or whether it is
620 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
621 	 * anywhere else. Also checks if the rsvp daemon is running before
622 	 * grabbing the packet.
623 	 */
624 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
625 		goto ours;
626 
627 	/*
628 	 * Check our list of addresses, to see if the packet is for us.
629 	 * If we don't have any addresses, assume any unicast packet
630 	 * we receive might be for us (and let the upper layers deal
631 	 * with it).
632 	 */
633 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
634 	    !(m->m_flags & (M_MCAST | M_BCAST)))
635 		goto ours;
636 
637 	/*
638 	 * Cache the destination address of the packet; this may be
639 	 * changed by use of 'ipfw fwd'.
640 	 */
641 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
642 
643 	/*
644 	 * Enable a consistency check between the destination address
645 	 * and the arrival interface for a unicast packet (the RFC 1122
646 	 * strong ES model) if IP forwarding is disabled and the packet
647 	 * is not locally generated and the packet is not subject to
648 	 * 'ipfw fwd'.
649 	 *
650 	 * XXX - Checking also should be disabled if the destination
651 	 * address is ipnat'ed to a different interface.
652 	 *
653 	 * XXX - Checking is incompatible with IP aliases added
654 	 * to the loopback interface instead of the interface where
655 	 * the packets are received.
656 	 */
657 	checkif = ip_checkinterface &&
658 		  !ipforwarding &&
659 		  m->m_pkthdr.rcvif != NULL &&
660 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
661 		  next_hop == NULL;
662 
663 	/*
664 	 * Check for exact addresses in the hash bucket.
665 	 */
666 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
667 		ia = iac->ia;
668 
669 		/*
670 		 * If the address matches, verify that the packet
671 		 * arrived via the correct interface if checking is
672 		 * enabled.
673 		 */
674 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
675 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
676 			goto ours;
677 	}
678 	ia = NULL;
679 
680 	/*
681 	 * Check for broadcast addresses.
682 	 *
683 	 * Only accept broadcast packets that arrive via the matching
684 	 * interface.  Reception of forwarded directed broadcasts would
685 	 * be handled via ip_forward() and ether_output() with the loopback
686 	 * into the stack for SIMPLEX interfaces handled by ether_output().
687 	 */
688 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
689 		struct ifaddr_container *ifac;
690 
691 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
692 			      ifa_link) {
693 			struct ifaddr *ifa = ifac->ifa;
694 
695 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
696 				continue;
697 			if (ifa->ifa_addr->sa_family != AF_INET)
698 				continue;
699 			ia = ifatoia(ifa);
700 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
701 								pkt_dst.s_addr)
702 				goto ours;
703 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
704 				goto ours;
705 #ifdef BOOTP_COMPAT
706 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
707 				goto ours;
708 #endif
709 		}
710 	}
711 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
712 		struct in_multi *inm;
713 
714 		/* XXX Multicast is not MPSAFE yet */
715 		get_mplock();
716 
717 		if (ip_mrouter != NULL) {
718 			/*
719 			 * If we are acting as a multicast router, all
720 			 * incoming multicast packets are passed to the
721 			 * kernel-level multicast forwarding function.
722 			 * The packet is returned (relatively) intact; if
723 			 * ip_mforward() returns a non-zero value, the packet
724 			 * must be discarded, else it may be accepted below.
725 			 */
726 			if (ip_mforward != NULL &&
727 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
728 				rel_mplock();
729 				ipstat.ips_cantforward++;
730 				m_freem(m);
731 				return;
732 			}
733 
734 			/*
735 			 * The process-level routing daemon needs to receive
736 			 * all multicast IGMP packets, whether or not this
737 			 * host belongs to their destination groups.
738 			 */
739 			if (ip->ip_p == IPPROTO_IGMP) {
740 				rel_mplock();
741 				goto ours;
742 			}
743 			ipstat.ips_forward++;
744 		}
745 		/*
746 		 * See if we belong to the destination multicast group on the
747 		 * arrival interface.
748 		 */
749 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
750 		if (inm == NULL) {
751 			rel_mplock();
752 			ipstat.ips_notmember++;
753 			m_freem(m);
754 			return;
755 		}
756 
757 		rel_mplock();
758 		goto ours;
759 	}
760 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
761 		goto ours;
762 	if (ip->ip_dst.s_addr == INADDR_ANY)
763 		goto ours;
764 
765 	/*
766 	 * FAITH(Firewall Aided Internet Translator)
767 	 */
768 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
769 		if (ip_keepfaith) {
770 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
771 				goto ours;
772 		}
773 		m_freem(m);
774 		return;
775 	}
776 
777 	/*
778 	 * Not for us; forward if possible and desirable.
779 	 */
780 	if (!ipforwarding) {
781 		ipstat.ips_cantforward++;
782 		m_freem(m);
783 	} else {
784 #ifdef IPSEC
785 		/*
786 		 * Enforce inbound IPsec SPD.
787 		 */
788 		if (ipsec4_in_reject(m, NULL)) {
789 			ipsecstat.in_polvio++;
790 			goto bad;
791 		}
792 #endif
793 #ifdef FAST_IPSEC
794 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
795 		crit_enter();
796 		if (mtag != NULL) {
797 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
798 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
799 		} else {
800 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
801 						   IP_FORWARDING, &error);
802 		}
803 		if (sp == NULL) {	/* NB: can happen if error */
804 			crit_exit();
805 			/*XXX error stat???*/
806 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
807 			goto bad;
808 		}
809 
810 		/*
811 		 * Check security policy against packet attributes.
812 		 */
813 		error = ipsec_in_reject(sp, m);
814 		KEY_FREESP(&sp);
815 		crit_exit();
816 		if (error) {
817 			ipstat.ips_cantforward++;
818 			goto bad;
819 		}
820 #endif
821 		ip_forward(m, using_srcrt, next_hop);
822 	}
823 	return;
824 
825 ours:
826 
827 	/*
828 	 * IPSTEALTH: Process non-routing options only
829 	 * if the packet is destined for us.
830 	 */
831 	if (ipstealth &&
832 	    hlen > sizeof(struct ip) &&
833 	    ip_dooptions(m, 1, next_hop))
834 		return;
835 
836 	/* Count the packet in the ip address stats */
837 	if (ia != NULL) {
838 		IFA_STAT_INC(&ia->ia_ifa, ipackets, 1);
839 		IFA_STAT_INC(&ia->ia_ifa, ibytes, m->m_pkthdr.len);
840 	}
841 
842 	/*
843 	 * If offset or IP_MF are set, must reassemble.
844 	 * Otherwise, nothing need be done.
845 	 * (We could look in the reassembly queue to see
846 	 * if the packet was previously fragmented,
847 	 * but it's not worth the time; just let them time out.)
848 	 */
849 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
850 		/*
851 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
852 		 * will return a different mbuf.
853 		 *
854 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
855 		 *	 us to recharacterize the packet.
856 		 */
857 		m = ip_reass(m);
858 		if (m == NULL)
859 			return;
860 		ip = mtod(m, struct ip *);
861 
862 		/* Get the header length of the reassembled packet */
863 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
864 	} else {
865 		ip->ip_len -= hlen;
866 	}
867 
868 #ifdef IPSEC
869 	/*
870 	 * enforce IPsec policy checking if we are seeing last header.
871 	 * note that we do not visit this with protocols with pcb layer
872 	 * code - like udp/tcp/raw ip.
873 	 */
874 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
875 	    ipsec4_in_reject(m, NULL)) {
876 		ipsecstat.in_polvio++;
877 		goto bad;
878 	}
879 #endif
880 #if FAST_IPSEC
881 	/*
882 	 * enforce IPsec policy checking if we are seeing last header.
883 	 * note that we do not visit this with protocols with pcb layer
884 	 * code - like udp/tcp/raw ip.
885 	 */
886 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
887 		/*
888 		 * Check if the packet has already had IPsec processing
889 		 * done.  If so, then just pass it along.  This tag gets
890 		 * set during AH, ESP, etc. input handling, before the
891 		 * packet is returned to the ip input queue for delivery.
892 		 */
893 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
894 		crit_enter();
895 		if (mtag != NULL) {
896 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
897 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
898 		} else {
899 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
900 						   IP_FORWARDING, &error);
901 		}
902 		if (sp != NULL) {
903 			/*
904 			 * Check security policy against packet attributes.
905 			 */
906 			error = ipsec_in_reject(sp, m);
907 			KEY_FREESP(&sp);
908 		} else {
909 			/* XXX error stat??? */
910 			error = EINVAL;
911 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
912 			goto bad;
913 		}
914 		crit_exit();
915 		if (error)
916 			goto bad;
917 	}
918 #endif /* FAST_IPSEC */
919 
920 	/*
921 	 * We must forward the packet to the correct protocol thread if
922 	 * we are not already in it.
923 	 *
924 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
925 	 *	 further for protocol processing, instead we pass hlen
926 	 *	 to the protosw and let it deal with it.
927 	 */
928 	ipstat.ips_delivered++;
929 
930 	if ((m->m_flags & M_HASH) == 0) {
931 #ifdef RSS_DEBUG
932 		atomic_add_long(&ip_rehash_count, 1);
933 #endif
934 		ip->ip_len = htons(ip->ip_len + hlen);
935 		ip->ip_off = htons(ip->ip_off);
936 
937 		ip_hashfn(&m, 0, IP_MPORT_IN);
938 		if (m == NULL)
939 			return;
940 
941 		ip = mtod(m, struct ip *);
942 		ip->ip_len = ntohs(ip->ip_len) - hlen;
943 		ip->ip_off = ntohs(ip->ip_off);
944 		KKASSERT(m->m_flags & M_HASH);
945 	}
946 	port = netisr_hashport(m->m_pkthdr.hash);
947 
948 	if (port != &curthread->td_msgport) {
949 		struct netmsg_packet *pmsg;
950 
951 #ifdef RSS_DEBUG
952 		atomic_add_long(&ip_dispatch_slow, 1);
953 #endif
954 
955 		pmsg = &m->m_hdr.mh_netmsg;
956 		netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
957 			    0, transport_processing_handler);
958 		pmsg->nm_packet = m;
959 		pmsg->base.lmsg.u.ms_result = hlen;
960 		lwkt_sendmsg(port, &pmsg->base.lmsg);
961 	} else {
962 #ifdef RSS_DEBUG
963 		atomic_add_long(&ip_dispatch_fast, 1);
964 #endif
965 		transport_processing_oncpu(m, hlen, ip);
966 	}
967 	return;
968 
969 bad:
970 	m_freem(m);
971 }
972 
973 /*
974  * Take incoming datagram fragment and try to reassemble it into
975  * whole datagram.  If a chain for reassembly of this datagram already
976  * exists, then it is given as fp; otherwise have to make a chain.
977  */
978 struct mbuf *
979 ip_reass(struct mbuf *m)
980 {
981 	struct ip *ip = mtod(m, struct ip *);
982 	struct mbuf *p = NULL, *q, *nq;
983 	struct mbuf *n;
984 	struct ipq *fp = NULL;
985 	struct ipqhead *head;
986 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
987 	int i, next;
988 	u_short sum;
989 
990 	/* If maxnipq is 0, never accept fragments. */
991 	if (maxnipq == 0) {
992 		ipstat.ips_fragments++;
993 		ipstat.ips_fragdropped++;
994 		m_freem(m);
995 		return NULL;
996 	}
997 
998 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
999 	/*
1000 	 * Look for queue of fragments of this datagram.
1001 	 */
1002 	lwkt_gettoken(&ipq_token);
1003 	head = &ipq[sum];
1004 	TAILQ_FOREACH(fp, head, ipq_list) {
1005 		if (ip->ip_id == fp->ipq_id &&
1006 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1007 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1008 		    ip->ip_p == fp->ipq_p)
1009 			goto found;
1010 	}
1011 
1012 	fp = NULL;
1013 
1014 	/*
1015 	 * Enforce upper bound on number of fragmented packets
1016 	 * for which we attempt reassembly;
1017 	 * If maxnipq is -1, accept all fragments without limitation.
1018 	 */
1019 	if (nipq > maxnipq && maxnipq > 0) {
1020 		/*
1021 		 * drop something from the tail of the current queue
1022 		 * before proceeding further
1023 		 */
1024 		struct ipq *q = TAILQ_LAST(head, ipqhead);
1025 		if (q == NULL) {
1026 			/*
1027 			 * The current queue is empty,
1028 			 * so drop from one of the others.
1029 			 */
1030 			for (i = 0; i < IPREASS_NHASH; i++) {
1031 				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
1032 				if (r) {
1033 					ipstat.ips_fragtimeout += r->ipq_nfrags;
1034 					ip_freef(&ipq[i], r);
1035 					break;
1036 				}
1037 			}
1038 		} else {
1039 			ipstat.ips_fragtimeout += q->ipq_nfrags;
1040 			ip_freef(head, q);
1041 		}
1042 	}
1043 found:
1044 	/*
1045 	 * Adjust ip_len to not reflect header,
1046 	 * convert offset of this to bytes.
1047 	 */
1048 	ip->ip_len -= hlen;
1049 	if (ip->ip_off & IP_MF) {
1050 		/*
1051 		 * Make sure that fragments have a data length
1052 		 * that's a non-zero multiple of 8 bytes.
1053 		 */
1054 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1055 			ipstat.ips_toosmall++; /* XXX */
1056 			m_freem(m);
1057 			goto done;
1058 		}
1059 		m->m_flags |= M_FRAG;
1060 	} else {
1061 		m->m_flags &= ~M_FRAG;
1062 	}
1063 	ip->ip_off <<= 3;
1064 
1065 	ipstat.ips_fragments++;
1066 	m->m_pkthdr.header = ip;
1067 
1068 	/*
1069 	 * If the hardware has not done csum over this fragment
1070 	 * then csum_data is not valid at all.
1071 	 */
1072 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1073 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1074 		m->m_pkthdr.csum_data = 0;
1075 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1076 	}
1077 
1078 	/*
1079 	 * Presence of header sizes in mbufs
1080 	 * would confuse code below.
1081 	 */
1082 	m->m_data += hlen;
1083 	m->m_len -= hlen;
1084 
1085 	/*
1086 	 * If first fragment to arrive, create a reassembly queue.
1087 	 */
1088 	if (fp == NULL) {
1089 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1090 			goto dropfrag;
1091 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1092 		nipq++;
1093 		fp->ipq_nfrags = 1;
1094 		fp->ipq_ttl = IPFRAGTTL;
1095 		fp->ipq_p = ip->ip_p;
1096 		fp->ipq_id = ip->ip_id;
1097 		fp->ipq_src = ip->ip_src;
1098 		fp->ipq_dst = ip->ip_dst;
1099 		fp->ipq_frags = m;
1100 		m->m_nextpkt = NULL;
1101 		goto inserted;
1102 	} else {
1103 		fp->ipq_nfrags++;
1104 	}
1105 
1106 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1107 
1108 	/*
1109 	 * Find a segment which begins after this one does.
1110 	 */
1111 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1112 		if (GETIP(q)->ip_off > ip->ip_off)
1113 			break;
1114 	}
1115 
1116 	/*
1117 	 * If there is a preceding segment, it may provide some of
1118 	 * our data already.  If so, drop the data from the incoming
1119 	 * segment.  If it provides all of our data, drop us, otherwise
1120 	 * stick new segment in the proper place.
1121 	 *
1122 	 * If some of the data is dropped from the the preceding
1123 	 * segment, then it's checksum is invalidated.
1124 	 */
1125 	if (p) {
1126 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1127 		if (i > 0) {
1128 			if (i >= ip->ip_len)
1129 				goto dropfrag;
1130 			m_adj(m, i);
1131 			m->m_pkthdr.csum_flags = 0;
1132 			ip->ip_off += i;
1133 			ip->ip_len -= i;
1134 		}
1135 		m->m_nextpkt = p->m_nextpkt;
1136 		p->m_nextpkt = m;
1137 	} else {
1138 		m->m_nextpkt = fp->ipq_frags;
1139 		fp->ipq_frags = m;
1140 	}
1141 
1142 	/*
1143 	 * While we overlap succeeding segments trim them or,
1144 	 * if they are completely covered, dequeue them.
1145 	 */
1146 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1147 	     q = nq) {
1148 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1149 		if (i < GETIP(q)->ip_len) {
1150 			GETIP(q)->ip_len -= i;
1151 			GETIP(q)->ip_off += i;
1152 			m_adj(q, i);
1153 			q->m_pkthdr.csum_flags = 0;
1154 			break;
1155 		}
1156 		nq = q->m_nextpkt;
1157 		m->m_nextpkt = nq;
1158 		ipstat.ips_fragdropped++;
1159 		fp->ipq_nfrags--;
1160 		q->m_nextpkt = NULL;
1161 		m_freem(q);
1162 	}
1163 
1164 inserted:
1165 	/*
1166 	 * Check for complete reassembly and perform frag per packet
1167 	 * limiting.
1168 	 *
1169 	 * Frag limiting is performed here so that the nth frag has
1170 	 * a chance to complete the packet before we drop the packet.
1171 	 * As a result, n+1 frags are actually allowed per packet, but
1172 	 * only n will ever be stored. (n = maxfragsperpacket.)
1173 	 *
1174 	 */
1175 	next = 0;
1176 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1177 		if (GETIP(q)->ip_off != next) {
1178 			if (fp->ipq_nfrags > maxfragsperpacket) {
1179 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1180 				ip_freef(head, fp);
1181 			}
1182 			goto done;
1183 		}
1184 		next += GETIP(q)->ip_len;
1185 	}
1186 	/* Make sure the last packet didn't have the IP_MF flag */
1187 	if (p->m_flags & M_FRAG) {
1188 		if (fp->ipq_nfrags > maxfragsperpacket) {
1189 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1190 			ip_freef(head, fp);
1191 		}
1192 		goto done;
1193 	}
1194 
1195 	/*
1196 	 * Reassembly is complete.  Make sure the packet is a sane size.
1197 	 */
1198 	q = fp->ipq_frags;
1199 	ip = GETIP(q);
1200 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1201 		ipstat.ips_toolong++;
1202 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1203 		ip_freef(head, fp);
1204 		goto done;
1205 	}
1206 
1207 	/*
1208 	 * Concatenate fragments.
1209 	 */
1210 	m = q;
1211 	n = m->m_next;
1212 	m->m_next = NULL;
1213 	m_cat(m, n);
1214 	nq = q->m_nextpkt;
1215 	q->m_nextpkt = NULL;
1216 	for (q = nq; q != NULL; q = nq) {
1217 		nq = q->m_nextpkt;
1218 		q->m_nextpkt = NULL;
1219 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1220 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1221 		m_cat(m, q);
1222 	}
1223 
1224 	/*
1225 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1226 	 * be added back.  This assumes no more then 65535 packet fragments
1227 	 * were reassembled.  A second carry can also occur (but not a third).
1228 	 */
1229 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1230 				(m->m_pkthdr.csum_data >> 16);
1231 	if (m->m_pkthdr.csum_data > 0xFFFF)
1232 		m->m_pkthdr.csum_data -= 0xFFFF;
1233 
1234 	/*
1235 	 * Create header for new ip packet by
1236 	 * modifying header of first packet;
1237 	 * dequeue and discard fragment reassembly header.
1238 	 * Make header visible.
1239 	 */
1240 	ip->ip_len = next;
1241 	ip->ip_src = fp->ipq_src;
1242 	ip->ip_dst = fp->ipq_dst;
1243 	TAILQ_REMOVE(head, fp, ipq_list);
1244 	nipq--;
1245 	mpipe_free(&ipq_mpipe, fp);
1246 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1247 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1248 	/* some debugging cruft by sklower, below, will go away soon */
1249 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1250 		int plen = 0;
1251 
1252 		for (n = m; n; n = n->m_next)
1253 			plen += n->m_len;
1254 		m->m_pkthdr.len = plen;
1255 	}
1256 
1257 	/*
1258 	 * Reassembly complete, return the next protocol.
1259 	 *
1260 	 * Be sure to clear M_HASH to force the packet
1261 	 * to be re-characterized.
1262 	 *
1263 	 * Clear M_FRAG, we are no longer a fragment.
1264 	 */
1265 	m->m_flags &= ~(M_HASH | M_FRAG);
1266 
1267 	ipstat.ips_reassembled++;
1268 	lwkt_reltoken(&ipq_token);
1269 	return (m);
1270 
1271 dropfrag:
1272 	ipstat.ips_fragdropped++;
1273 	if (fp != NULL)
1274 		fp->ipq_nfrags--;
1275 	m_freem(m);
1276 done:
1277 	lwkt_reltoken(&ipq_token);
1278 	return (NULL);
1279 
1280 #undef GETIP
1281 }
1282 
1283 /*
1284  * Free a fragment reassembly header and all
1285  * associated datagrams.
1286  *
1287  * Called with ipq_token held.
1288  */
1289 static void
1290 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1291 {
1292 	struct mbuf *q;
1293 
1294 	/*
1295 	 * Remove first to protect against blocking
1296 	 */
1297 	TAILQ_REMOVE(fhp, fp, ipq_list);
1298 
1299 	/*
1300 	 * Clean out at our leisure
1301 	 */
1302 	while (fp->ipq_frags) {
1303 		q = fp->ipq_frags;
1304 		fp->ipq_frags = q->m_nextpkt;
1305 		q->m_nextpkt = NULL;
1306 		m_freem(q);
1307 	}
1308 	mpipe_free(&ipq_mpipe, fp);
1309 	nipq--;
1310 }
1311 
1312 /*
1313  * IP timer processing;
1314  * if a timer expires on a reassembly
1315  * queue, discard it.
1316  */
1317 void
1318 ip_slowtimo(void)
1319 {
1320 	struct ipq *fp, *fp_temp;
1321 	struct ipqhead *head;
1322 	int i;
1323 
1324 	lwkt_gettoken(&ipq_token);
1325 	for (i = 0; i < IPREASS_NHASH; i++) {
1326 		head = &ipq[i];
1327 		TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1328 			if (--fp->ipq_ttl == 0) {
1329 				ipstat.ips_fragtimeout += fp->ipq_nfrags;
1330 				ip_freef(head, fp);
1331 			}
1332 		}
1333 	}
1334 	/*
1335 	 * If we are over the maximum number of fragments
1336 	 * (due to the limit being lowered), drain off
1337 	 * enough to get down to the new limit.
1338 	 */
1339 	if (maxnipq >= 0 && nipq > maxnipq) {
1340 		for (i = 0; i < IPREASS_NHASH; i++) {
1341 			head = &ipq[i];
1342 			while (nipq > maxnipq && !TAILQ_EMPTY(head)) {
1343 				ipstat.ips_fragdropped +=
1344 				    TAILQ_FIRST(head)->ipq_nfrags;
1345 				ip_freef(head, TAILQ_FIRST(head));
1346 			}
1347 		}
1348 	}
1349 	lwkt_reltoken(&ipq_token);
1350 	ipflow_slowtimo();
1351 }
1352 
1353 /*
1354  * Drain off all datagram fragments.
1355  */
1356 void
1357 ip_drain(void)
1358 {
1359 	struct ipqhead *head;
1360 	int i;
1361 
1362 	lwkt_gettoken(&ipq_token);
1363 	for (i = 0; i < IPREASS_NHASH; i++) {
1364 		head = &ipq[i];
1365 		while (!TAILQ_EMPTY(head)) {
1366 			ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1367 			ip_freef(head, TAILQ_FIRST(head));
1368 		}
1369 	}
1370 	lwkt_reltoken(&ipq_token);
1371 	in_rtqdrain();
1372 }
1373 
1374 /*
1375  * Do option processing on a datagram,
1376  * possibly discarding it if bad options are encountered,
1377  * or forwarding it if source-routed.
1378  * The pass argument is used when operating in the IPSTEALTH
1379  * mode to tell what options to process:
1380  * [LS]SRR (pass 0) or the others (pass 1).
1381  * The reason for as many as two passes is that when doing IPSTEALTH,
1382  * non-routing options should be processed only if the packet is for us.
1383  * Returns 1 if packet has been forwarded/freed,
1384  * 0 if the packet should be processed further.
1385  */
1386 static int
1387 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1388 {
1389 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1390 	struct ip *ip = mtod(m, struct ip *);
1391 	u_char *cp;
1392 	struct in_ifaddr *ia;
1393 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1394 	boolean_t forward = FALSE;
1395 	struct in_addr *sin, dst;
1396 	n_time ntime;
1397 
1398 	dst = ip->ip_dst;
1399 	cp = (u_char *)(ip + 1);
1400 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1401 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1402 		opt = cp[IPOPT_OPTVAL];
1403 		if (opt == IPOPT_EOL)
1404 			break;
1405 		if (opt == IPOPT_NOP)
1406 			optlen = 1;
1407 		else {
1408 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1409 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1410 				goto bad;
1411 			}
1412 			optlen = cp[IPOPT_OLEN];
1413 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1414 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1415 				goto bad;
1416 			}
1417 		}
1418 		switch (opt) {
1419 
1420 		default:
1421 			break;
1422 
1423 		/*
1424 		 * Source routing with record.
1425 		 * Find interface with current destination address.
1426 		 * If none on this machine then drop if strictly routed,
1427 		 * or do nothing if loosely routed.
1428 		 * Record interface address and bring up next address
1429 		 * component.  If strictly routed make sure next
1430 		 * address is on directly accessible net.
1431 		 */
1432 		case IPOPT_LSRR:
1433 		case IPOPT_SSRR:
1434 			if (ipstealth && pass > 0)
1435 				break;
1436 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1437 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1438 				goto bad;
1439 			}
1440 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1441 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1442 				goto bad;
1443 			}
1444 			ipaddr.sin_addr = ip->ip_dst;
1445 			ia = (struct in_ifaddr *)
1446 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1447 			if (ia == NULL) {
1448 				if (opt == IPOPT_SSRR) {
1449 					type = ICMP_UNREACH;
1450 					code = ICMP_UNREACH_SRCFAIL;
1451 					goto bad;
1452 				}
1453 				if (!ip_dosourceroute)
1454 					goto nosourcerouting;
1455 				/*
1456 				 * Loose routing, and not at next destination
1457 				 * yet; nothing to do except forward.
1458 				 */
1459 				break;
1460 			}
1461 			off--;			/* 0 origin */
1462 			if (off > optlen - (int)sizeof(struct in_addr)) {
1463 				/*
1464 				 * End of source route.  Should be for us.
1465 				 */
1466 				if (!ip_acceptsourceroute)
1467 					goto nosourcerouting;
1468 				save_rte(m, cp, ip->ip_src);
1469 				break;
1470 			}
1471 			if (ipstealth)
1472 				goto dropit;
1473 			if (!ip_dosourceroute) {
1474 				if (ipforwarding) {
1475 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1476 
1477 					/*
1478 					 * Acting as a router, so generate ICMP
1479 					 */
1480 nosourcerouting:
1481 					strcpy(buf, inet_ntoa(ip->ip_dst));
1482 					log(LOG_WARNING,
1483 					    "attempted source route from %s to %s\n",
1484 					    inet_ntoa(ip->ip_src), buf);
1485 					type = ICMP_UNREACH;
1486 					code = ICMP_UNREACH_SRCFAIL;
1487 					goto bad;
1488 				} else {
1489 					/*
1490 					 * Not acting as a router,
1491 					 * so silently drop.
1492 					 */
1493 dropit:
1494 					ipstat.ips_cantforward++;
1495 					m_freem(m);
1496 					return (1);
1497 				}
1498 			}
1499 
1500 			/*
1501 			 * locate outgoing interface
1502 			 */
1503 			memcpy(&ipaddr.sin_addr, cp + off,
1504 			    sizeof ipaddr.sin_addr);
1505 
1506 			if (opt == IPOPT_SSRR) {
1507 #define	INA	struct in_ifaddr *
1508 #define	SA	struct sockaddr *
1509 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1510 									== NULL)
1511 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1512 			} else {
1513 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1514 			}
1515 			if (ia == NULL) {
1516 				type = ICMP_UNREACH;
1517 				code = ICMP_UNREACH_SRCFAIL;
1518 				goto bad;
1519 			}
1520 			ip->ip_dst = ipaddr.sin_addr;
1521 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1522 			    sizeof(struct in_addr));
1523 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1524 			/*
1525 			 * Let ip_intr's mcast routing check handle mcast pkts
1526 			 */
1527 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1528 			break;
1529 
1530 		case IPOPT_RR:
1531 			if (ipstealth && pass == 0)
1532 				break;
1533 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1534 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1535 				goto bad;
1536 			}
1537 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1538 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1539 				goto bad;
1540 			}
1541 			/*
1542 			 * If no space remains, ignore.
1543 			 */
1544 			off--;			/* 0 origin */
1545 			if (off > optlen - (int)sizeof(struct in_addr))
1546 				break;
1547 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1548 			    sizeof ipaddr.sin_addr);
1549 			/*
1550 			 * locate outgoing interface; if we're the destination,
1551 			 * use the incoming interface (should be same).
1552 			 */
1553 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1554 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1555 				type = ICMP_UNREACH;
1556 				code = ICMP_UNREACH_HOST;
1557 				goto bad;
1558 			}
1559 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1560 			    sizeof(struct in_addr));
1561 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1562 			break;
1563 
1564 		case IPOPT_TS:
1565 			if (ipstealth && pass == 0)
1566 				break;
1567 			code = cp - (u_char *)ip;
1568 			if (optlen < 4 || optlen > 40) {
1569 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1570 				goto bad;
1571 			}
1572 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1573 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1574 				goto bad;
1575 			}
1576 			if (off > optlen - (int)sizeof(int32_t)) {
1577 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1578 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1579 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1580 					goto bad;
1581 				}
1582 				break;
1583 			}
1584 			off--;				/* 0 origin */
1585 			sin = (struct in_addr *)(cp + off);
1586 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1587 
1588 			case IPOPT_TS_TSONLY:
1589 				break;
1590 
1591 			case IPOPT_TS_TSANDADDR:
1592 				if (off + sizeof(n_time) +
1593 				    sizeof(struct in_addr) > optlen) {
1594 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1595 					goto bad;
1596 				}
1597 				ipaddr.sin_addr = dst;
1598 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1599 							    m->m_pkthdr.rcvif);
1600 				if (ia == NULL)
1601 					continue;
1602 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1603 				    sizeof(struct in_addr));
1604 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1605 				off += sizeof(struct in_addr);
1606 				break;
1607 
1608 			case IPOPT_TS_PRESPEC:
1609 				if (off + sizeof(n_time) +
1610 				    sizeof(struct in_addr) > optlen) {
1611 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1612 					goto bad;
1613 				}
1614 				memcpy(&ipaddr.sin_addr, sin,
1615 				    sizeof(struct in_addr));
1616 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1617 					continue;
1618 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1619 				off += sizeof(struct in_addr);
1620 				break;
1621 
1622 			default:
1623 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1624 				goto bad;
1625 			}
1626 			ntime = iptime();
1627 			memcpy(cp + off, &ntime, sizeof(n_time));
1628 			cp[IPOPT_OFFSET] += sizeof(n_time);
1629 		}
1630 	}
1631 	if (forward && ipforwarding) {
1632 		ip_forward(m, TRUE, next_hop);
1633 		return (1);
1634 	}
1635 	return (0);
1636 bad:
1637 	icmp_error(m, type, code, 0, 0);
1638 	ipstat.ips_badoptions++;
1639 	return (1);
1640 }
1641 
1642 /*
1643  * Given address of next destination (final or next hop),
1644  * return internet address info of interface to be used to get there.
1645  */
1646 struct in_ifaddr *
1647 ip_rtaddr(struct in_addr dst, struct route *ro0)
1648 {
1649 	struct route sro, *ro;
1650 	struct sockaddr_in *sin;
1651 	struct in_ifaddr *ia;
1652 
1653 	if (ro0 != NULL) {
1654 		ro = ro0;
1655 	} else {
1656 		bzero(&sro, sizeof(sro));
1657 		ro = &sro;
1658 	}
1659 
1660 	sin = (struct sockaddr_in *)&ro->ro_dst;
1661 
1662 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1663 		if (ro->ro_rt != NULL) {
1664 			RTFREE(ro->ro_rt);
1665 			ro->ro_rt = NULL;
1666 		}
1667 		sin->sin_family = AF_INET;
1668 		sin->sin_len = sizeof *sin;
1669 		sin->sin_addr = dst;
1670 		rtalloc_ign(ro, RTF_PRCLONING);
1671 	}
1672 
1673 	if (ro->ro_rt == NULL)
1674 		return (NULL);
1675 
1676 	ia = ifatoia(ro->ro_rt->rt_ifa);
1677 
1678 	if (ro == &sro)
1679 		RTFREE(ro->ro_rt);
1680 	return ia;
1681 }
1682 
1683 /*
1684  * Save incoming source route for use in replies,
1685  * to be picked up later by ip_srcroute if the receiver is interested.
1686  */
1687 static void
1688 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1689 {
1690 	struct m_tag *mtag;
1691 	struct ip_srcrt_opt *opt;
1692 	unsigned olen;
1693 
1694 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), MB_DONTWAIT);
1695 	if (mtag == NULL)
1696 		return;
1697 	opt = m_tag_data(mtag);
1698 
1699 	olen = option[IPOPT_OLEN];
1700 #ifdef DIAGNOSTIC
1701 	if (ipprintfs)
1702 		kprintf("save_rte: olen %d\n", olen);
1703 #endif
1704 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1705 		m_tag_free(mtag);
1706 		return;
1707 	}
1708 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1709 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1710 	opt->ip_srcrt.dst = dst;
1711 	m_tag_prepend(m, mtag);
1712 }
1713 
1714 /*
1715  * Retrieve incoming source route for use in replies,
1716  * in the same form used by setsockopt.
1717  * The first hop is placed before the options, will be removed later.
1718  */
1719 struct mbuf *
1720 ip_srcroute(struct mbuf *m0)
1721 {
1722 	struct in_addr *p, *q;
1723 	struct mbuf *m;
1724 	struct m_tag *mtag;
1725 	struct ip_srcrt_opt *opt;
1726 
1727 	if (m0 == NULL)
1728 		return NULL;
1729 
1730 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1731 	if (mtag == NULL)
1732 		return NULL;
1733 	opt = m_tag_data(mtag);
1734 
1735 	if (opt->ip_nhops == 0)
1736 		return (NULL);
1737 	m = m_get(MB_DONTWAIT, MT_HEADER);
1738 	if (m == NULL)
1739 		return (NULL);
1740 
1741 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1742 
1743 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1744 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1745 		   sizeof(struct in_addr) + OPTSIZ;
1746 #ifdef DIAGNOSTIC
1747 	if (ipprintfs) {
1748 		kprintf("ip_srcroute: nhops %d mlen %d",
1749 			opt->ip_nhops, m->m_len);
1750 	}
1751 #endif
1752 
1753 	/*
1754 	 * First save first hop for return route
1755 	 */
1756 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1757 	*(mtod(m, struct in_addr *)) = *p--;
1758 #ifdef DIAGNOSTIC
1759 	if (ipprintfs)
1760 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1761 #endif
1762 
1763 	/*
1764 	 * Copy option fields and padding (nop) to mbuf.
1765 	 */
1766 	opt->ip_srcrt.nop = IPOPT_NOP;
1767 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1768 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1769 	    OPTSIZ);
1770 	q = (struct in_addr *)(mtod(m, caddr_t) +
1771 	    sizeof(struct in_addr) + OPTSIZ);
1772 #undef OPTSIZ
1773 	/*
1774 	 * Record return path as an IP source route,
1775 	 * reversing the path (pointers are now aligned).
1776 	 */
1777 	while (p >= opt->ip_srcrt.route) {
1778 #ifdef DIAGNOSTIC
1779 		if (ipprintfs)
1780 			kprintf(" %x", ntohl(q->s_addr));
1781 #endif
1782 		*q++ = *p--;
1783 	}
1784 	/*
1785 	 * Last hop goes to final destination.
1786 	 */
1787 	*q = opt->ip_srcrt.dst;
1788 	m_tag_delete(m0, mtag);
1789 #ifdef DIAGNOSTIC
1790 	if (ipprintfs)
1791 		kprintf(" %x\n", ntohl(q->s_addr));
1792 #endif
1793 	return (m);
1794 }
1795 
1796 /*
1797  * Strip out IP options.
1798  */
1799 void
1800 ip_stripoptions(struct mbuf *m)
1801 {
1802 	int datalen;
1803 	struct ip *ip = mtod(m, struct ip *);
1804 	caddr_t opts;
1805 	int optlen;
1806 
1807 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1808 	opts = (caddr_t)(ip + 1);
1809 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1810 	bcopy(opts + optlen, opts, datalen);
1811 	m->m_len -= optlen;
1812 	if (m->m_flags & M_PKTHDR)
1813 		m->m_pkthdr.len -= optlen;
1814 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1815 }
1816 
1817 u_char inetctlerrmap[PRC_NCMDS] = {
1818 	0,		0,		0,		0,
1819 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1820 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1821 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1822 	0,		0,		0,		0,
1823 	ENOPROTOOPT,	ECONNREFUSED
1824 };
1825 
1826 /*
1827  * Forward a packet.  If some error occurs return the sender
1828  * an icmp packet.  Note we can't always generate a meaningful
1829  * icmp message because icmp doesn't have a large enough repertoire
1830  * of codes and types.
1831  *
1832  * If not forwarding, just drop the packet.  This could be confusing
1833  * if ipforwarding was zero but some routing protocol was advancing
1834  * us as a gateway to somewhere.  However, we must let the routing
1835  * protocol deal with that.
1836  *
1837  * The using_srcrt parameter indicates whether the packet is being forwarded
1838  * via a source route.
1839  */
1840 void
1841 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1842 {
1843 	struct ip *ip = mtod(m, struct ip *);
1844 	struct rtentry *rt;
1845 	struct route fwd_ro;
1846 	int error, type = 0, code = 0, destmtu = 0;
1847 	struct mbuf *mcopy, *mtemp = NULL;
1848 	n_long dest;
1849 	struct in_addr pkt_dst;
1850 
1851 	dest = INADDR_ANY;
1852 	/*
1853 	 * Cache the destination address of the packet; this may be
1854 	 * changed by use of 'ipfw fwd'.
1855 	 */
1856 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1857 
1858 #ifdef DIAGNOSTIC
1859 	if (ipprintfs)
1860 		kprintf("forward: src %x dst %x ttl %x\n",
1861 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1862 #endif
1863 
1864 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1865 		ipstat.ips_cantforward++;
1866 		m_freem(m);
1867 		return;
1868 	}
1869 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1870 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1871 		return;
1872 	}
1873 
1874 	bzero(&fwd_ro, sizeof(fwd_ro));
1875 	ip_rtaddr(pkt_dst, &fwd_ro);
1876 	if (fwd_ro.ro_rt == NULL) {
1877 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1878 		return;
1879 	}
1880 	rt = fwd_ro.ro_rt;
1881 
1882 	if (curthread->td_type == TD_TYPE_NETISR) {
1883 		/*
1884 		 * Save the IP header and at most 8 bytes of the payload,
1885 		 * in case we need to generate an ICMP message to the src.
1886 		 */
1887 		mtemp = ipforward_mtemp[mycpuid];
1888 		KASSERT((mtemp->m_flags & M_EXT) == 0 &&
1889 		    mtemp->m_data == mtemp->m_pktdat &&
1890 		    m_tag_first(mtemp) == NULL,
1891 		    ("ip_forward invalid mtemp1"));
1892 
1893 		if (!m_dup_pkthdr(mtemp, m, MB_DONTWAIT)) {
1894 			/*
1895 			 * It's probably ok if the pkthdr dup fails (because
1896 			 * the deep copy of the tag chain failed), but for now
1897 			 * be conservative and just discard the copy since
1898 			 * code below may some day want the tags.
1899 			 */
1900 			mtemp = NULL;
1901 		} else {
1902 			mtemp->m_type = m->m_type;
1903 			mtemp->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1904 			    (int)ip->ip_len);
1905 			mtemp->m_pkthdr.len = mtemp->m_len;
1906 			m_copydata(m, 0, mtemp->m_len, mtod(mtemp, caddr_t));
1907 		}
1908 	}
1909 
1910 	if (!ipstealth)
1911 		ip->ip_ttl -= IPTTLDEC;
1912 
1913 	/*
1914 	 * If forwarding packet using same interface that it came in on,
1915 	 * perhaps should send a redirect to sender to shortcut a hop.
1916 	 * Only send redirect if source is sending directly to us,
1917 	 * and if packet was not source routed (or has any options).
1918 	 * Also, don't send redirect if forwarding using a default route
1919 	 * or a route modified by a redirect.
1920 	 */
1921 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1922 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1923 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1924 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1925 		u_long src = ntohl(ip->ip_src.s_addr);
1926 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1927 
1928 		if (rt_ifa != NULL &&
1929 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1930 			if (rt->rt_flags & RTF_GATEWAY)
1931 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1932 			else
1933 				dest = pkt_dst.s_addr;
1934 			/*
1935 			 * Router requirements says to only send
1936 			 * host redirects.
1937 			 */
1938 			type = ICMP_REDIRECT;
1939 			code = ICMP_REDIRECT_HOST;
1940 #ifdef DIAGNOSTIC
1941 			if (ipprintfs)
1942 				kprintf("redirect (%d) to %x\n", code, dest);
1943 #endif
1944 		}
1945 	}
1946 
1947 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
1948 	if (error == 0) {
1949 		ipstat.ips_forward++;
1950 		if (type == 0) {
1951 			if (mtemp)
1952 				ipflow_create(&fwd_ro, mtemp);
1953 			goto done;
1954 		} else {
1955 			ipstat.ips_redirectsent++;
1956 		}
1957 	} else {
1958 		ipstat.ips_cantforward++;
1959 	}
1960 
1961 	if (mtemp == NULL)
1962 		goto done;
1963 
1964 	/*
1965 	 * Errors that do not require generating ICMP message
1966 	 */
1967 	switch (error) {
1968 	case ENOBUFS:
1969 		/*
1970 		 * A router should not generate ICMP_SOURCEQUENCH as
1971 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1972 		 * Source quench could be a big problem under DoS attacks,
1973 		 * or if the underlying interface is rate-limited.
1974 		 * Those who need source quench packets may re-enable them
1975 		 * via the net.inet.ip.sendsourcequench sysctl.
1976 		 */
1977 		if (!ip_sendsourcequench)
1978 			goto done;
1979 		break;
1980 
1981 	case EACCES:			/* ipfw denied packet */
1982 		goto done;
1983 	}
1984 
1985 	KASSERT((mtemp->m_flags & M_EXT) == 0 &&
1986 	    mtemp->m_data == mtemp->m_pktdat,
1987 	    ("ip_forward invalid mtemp2"));
1988 	mcopy = m_copym(mtemp, 0, mtemp->m_len, MB_DONTWAIT);
1989 	if (mcopy == NULL)
1990 		goto done;
1991 
1992 	/*
1993 	 * Send ICMP message.
1994 	 */
1995 	switch (error) {
1996 	case 0:				/* forwarded, but need redirect */
1997 		/* type, code set above */
1998 		break;
1999 
2000 	case ENETUNREACH:		/* shouldn't happen, checked above */
2001 	case EHOSTUNREACH:
2002 	case ENETDOWN:
2003 	case EHOSTDOWN:
2004 	default:
2005 		type = ICMP_UNREACH;
2006 		code = ICMP_UNREACH_HOST;
2007 		break;
2008 
2009 	case EMSGSIZE:
2010 		type = ICMP_UNREACH;
2011 		code = ICMP_UNREACH_NEEDFRAG;
2012 #ifdef IPSEC
2013 		/*
2014 		 * If the packet is routed over IPsec tunnel, tell the
2015 		 * originator the tunnel MTU.
2016 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2017 		 * XXX quickhack!!!
2018 		 */
2019 		if (fwd_ro.ro_rt != NULL) {
2020 			struct secpolicy *sp = NULL;
2021 			int ipsecerror;
2022 			int ipsechdr;
2023 			struct route *ro;
2024 
2025 			sp = ipsec4_getpolicybyaddr(mcopy,
2026 						    IPSEC_DIR_OUTBOUND,
2027 						    IP_FORWARDING,
2028 						    &ipsecerror);
2029 
2030 			if (sp == NULL)
2031 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2032 			else {
2033 				/* count IPsec header size */
2034 				ipsechdr = ipsec4_hdrsiz(mcopy,
2035 							 IPSEC_DIR_OUTBOUND,
2036 							 NULL);
2037 
2038 				/*
2039 				 * find the correct route for outer IPv4
2040 				 * header, compute tunnel MTU.
2041 				 *
2042 				 */
2043 				if (sp->req != NULL && sp->req->sav != NULL &&
2044 				    sp->req->sav->sah != NULL) {
2045 					ro = &sp->req->sav->sah->sa_route;
2046 					if (ro->ro_rt != NULL &&
2047 					    ro->ro_rt->rt_ifp != NULL) {
2048 						destmtu =
2049 						    ro->ro_rt->rt_ifp->if_mtu;
2050 						destmtu -= ipsechdr;
2051 					}
2052 				}
2053 
2054 				key_freesp(sp);
2055 			}
2056 		}
2057 #elif FAST_IPSEC
2058 		/*
2059 		 * If the packet is routed over IPsec tunnel, tell the
2060 		 * originator the tunnel MTU.
2061 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2062 		 * XXX quickhack!!!
2063 		 */
2064 		if (fwd_ro.ro_rt != NULL) {
2065 			struct secpolicy *sp = NULL;
2066 			int ipsecerror;
2067 			int ipsechdr;
2068 			struct route *ro;
2069 
2070 			sp = ipsec_getpolicybyaddr(mcopy,
2071 						   IPSEC_DIR_OUTBOUND,
2072 						   IP_FORWARDING,
2073 						   &ipsecerror);
2074 
2075 			if (sp == NULL)
2076 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2077 			else {
2078 				/* count IPsec header size */
2079 				ipsechdr = ipsec4_hdrsiz(mcopy,
2080 							 IPSEC_DIR_OUTBOUND,
2081 							 NULL);
2082 
2083 				/*
2084 				 * find the correct route for outer IPv4
2085 				 * header, compute tunnel MTU.
2086 				 */
2087 
2088 				if (sp->req != NULL &&
2089 				    sp->req->sav != NULL &&
2090 				    sp->req->sav->sah != NULL) {
2091 					ro = &sp->req->sav->sah->sa_route;
2092 					if (ro->ro_rt != NULL &&
2093 					    ro->ro_rt->rt_ifp != NULL) {
2094 						destmtu =
2095 						    ro->ro_rt->rt_ifp->if_mtu;
2096 						destmtu -= ipsechdr;
2097 					}
2098 				}
2099 
2100 				KEY_FREESP(&sp);
2101 			}
2102 		}
2103 #else /* !IPSEC && !FAST_IPSEC */
2104 		if (fwd_ro.ro_rt != NULL)
2105 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2106 #endif /*IPSEC*/
2107 		ipstat.ips_cantfrag++;
2108 		break;
2109 
2110 	case ENOBUFS:
2111 		type = ICMP_SOURCEQUENCH;
2112 		code = 0;
2113 		break;
2114 
2115 	case EACCES:			/* ipfw denied packet */
2116 		panic("ip_forward EACCES should not reach");
2117 	}
2118 	icmp_error(mcopy, type, code, dest, destmtu);
2119 done:
2120 	if (mtemp != NULL)
2121 		m_tag_delete_chain(mtemp);
2122 	if (fwd_ro.ro_rt != NULL)
2123 		RTFREE(fwd_ro.ro_rt);
2124 }
2125 
2126 void
2127 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2128 	       struct mbuf *m)
2129 {
2130 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2131 		struct timeval tv;
2132 
2133 		microtime(&tv);
2134 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2135 		    SCM_TIMESTAMP, SOL_SOCKET);
2136 		if (*mp)
2137 			mp = &(*mp)->m_next;
2138 	}
2139 	if (inp->inp_flags & INP_RECVDSTADDR) {
2140 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2141 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2142 		if (*mp)
2143 			mp = &(*mp)->m_next;
2144 	}
2145 	if (inp->inp_flags & INP_RECVTTL) {
2146 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2147 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2148 		if (*mp)
2149 			mp = &(*mp)->m_next;
2150 	}
2151 #ifdef notyet
2152 	/* XXX
2153 	 * Moving these out of udp_input() made them even more broken
2154 	 * than they already were.
2155 	 */
2156 	/* options were tossed already */
2157 	if (inp->inp_flags & INP_RECVOPTS) {
2158 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2159 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2160 		if (*mp)
2161 			mp = &(*mp)->m_next;
2162 	}
2163 	/* ip_srcroute doesn't do what we want here, need to fix */
2164 	if (inp->inp_flags & INP_RECVRETOPTS) {
2165 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2166 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2167 		if (*mp)
2168 			mp = &(*mp)->m_next;
2169 	}
2170 #endif
2171 	if (inp->inp_flags & INP_RECVIF) {
2172 		struct ifnet *ifp;
2173 		struct sdlbuf {
2174 			struct sockaddr_dl sdl;
2175 			u_char	pad[32];
2176 		} sdlbuf;
2177 		struct sockaddr_dl *sdp;
2178 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2179 
2180 		if (((ifp = m->m_pkthdr.rcvif)) &&
2181 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2182 			sdp = IF_LLSOCKADDR(ifp);
2183 			/*
2184 			 * Change our mind and don't try copy.
2185 			 */
2186 			if ((sdp->sdl_family != AF_LINK) ||
2187 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2188 				goto makedummy;
2189 			}
2190 			bcopy(sdp, sdl2, sdp->sdl_len);
2191 		} else {
2192 makedummy:
2193 			sdl2->sdl_len =
2194 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2195 			sdl2->sdl_family = AF_LINK;
2196 			sdl2->sdl_index = 0;
2197 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2198 		}
2199 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2200 			IP_RECVIF, IPPROTO_IP);
2201 		if (*mp)
2202 			mp = &(*mp)->m_next;
2203 	}
2204 }
2205 
2206 /*
2207  * XXX these routines are called from the upper part of the kernel.
2208  *
2209  * They could also be moved to ip_mroute.c, since all the RSVP
2210  *  handling is done there already.
2211  */
2212 int
2213 ip_rsvp_init(struct socket *so)
2214 {
2215 	if (so->so_type != SOCK_RAW ||
2216 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2217 		return EOPNOTSUPP;
2218 
2219 	if (ip_rsvpd != NULL)
2220 		return EADDRINUSE;
2221 
2222 	ip_rsvpd = so;
2223 	/*
2224 	 * This may seem silly, but we need to be sure we don't over-increment
2225 	 * the RSVP counter, in case something slips up.
2226 	 */
2227 	if (!ip_rsvp_on) {
2228 		ip_rsvp_on = 1;
2229 		rsvp_on++;
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 int
2236 ip_rsvp_done(void)
2237 {
2238 	ip_rsvpd = NULL;
2239 	/*
2240 	 * This may seem silly, but we need to be sure we don't over-decrement
2241 	 * the RSVP counter, in case something slips up.
2242 	 */
2243 	if (ip_rsvp_on) {
2244 		ip_rsvp_on = 0;
2245 		rsvp_on--;
2246 	}
2247 	return 0;
2248 }
2249 
2250 int
2251 rsvp_input(struct mbuf **mp, int *offp, int proto)
2252 {
2253 	struct mbuf *m = *mp;
2254 
2255 	*mp = NULL;
2256 
2257 	if (rsvp_input_p) { /* call the real one if loaded */
2258 		*mp = m;
2259 		rsvp_input_p(mp, offp, proto);
2260 		return(IPPROTO_DONE);
2261 	}
2262 
2263 	/* Can still get packets with rsvp_on = 0 if there is a local member
2264 	 * of the group to which the RSVP packet is addressed.  But in this
2265 	 * case we want to throw the packet away.
2266 	 */
2267 
2268 	if (!rsvp_on) {
2269 		m_freem(m);
2270 		return(IPPROTO_DONE);
2271 	}
2272 
2273 	if (ip_rsvpd != NULL) {
2274 		*mp = m;
2275 		rip_input(mp, offp, proto);
2276 		return(IPPROTO_DONE);
2277 	}
2278 	/* Drop the packet */
2279 	m_freem(m);
2280 	return(IPPROTO_DONE);
2281 }
2282