xref: /dragonfly/sys/netinet/ip_input.c (revision 70705abf)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
67  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68  * $DragonFly: src/sys/netinet/ip_input.c,v 1.73 2007/11/16 05:07:36 sephe Exp $
69  */
70 
71 #define	_IP_VHL
72 
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
96 
97 #include <machine/stdarg.h>
98 
99 #include <net/if.h>
100 #include <net/if_types.h>
101 #include <net/if_var.h>
102 #include <net/if_dl.h>
103 #include <net/pfil.h>
104 #include <net/route.h>
105 #include <net/netisr.h>
106 
107 #include <netinet/in.h>
108 #include <netinet/in_systm.h>
109 #include <netinet/in_var.h>
110 #include <netinet/ip.h>
111 #include <netinet/in_pcb.h>
112 #include <netinet/ip_var.h>
113 #include <netinet/ip_icmp.h>
114 
115 #include <sys/thread2.h>
116 #include <sys/msgport2.h>
117 #include <net/netmsg2.h>
118 
119 #include <sys/socketvar.h>
120 
121 #include <net/ipfw/ip_fw.h>
122 #include <net/dummynet/ip_dummynet.h>
123 
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #endif
128 
129 #ifdef FAST_IPSEC
130 #include <netproto/ipsec/ipsec.h>
131 #include <netproto/ipsec/key.h>
132 #endif
133 
134 int rsvp_on = 0;
135 static int ip_rsvp_on;
136 struct socket *ip_rsvpd;
137 
138 int ipforwarding = 0;
139 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
140     &ipforwarding, 0, "Enable IP forwarding between interfaces");
141 
142 static int ipsendredirects = 1; /* XXX */
143 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
144     &ipsendredirects, 0, "Enable sending IP redirects");
145 
146 int ip_defttl = IPDEFTTL;
147 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
148     &ip_defttl, 0, "Maximum TTL on IP packets");
149 
150 static int ip_dosourceroute = 0;
151 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
152     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
153 
154 static int ip_acceptsourceroute = 0;
155 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
156     CTLFLAG_RW, &ip_acceptsourceroute, 0,
157     "Enable accepting source routed IP packets");
158 
159 static int ip_keepfaith = 0;
160 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
161     &ip_keepfaith, 0,
162     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
163 
164 static int nipq = 0;	/* total # of reass queues */
165 static int maxnipq;
166 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
167     &maxnipq, 0,
168     "Maximum number of IPv4 fragment reassembly queue entries");
169 
170 static int maxfragsperpacket;
171 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
172     &maxfragsperpacket, 0,
173     "Maximum number of IPv4 fragments allowed per packet");
174 
175 static int ip_sendsourcequench = 0;
176 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
177     &ip_sendsourcequench, 0,
178     "Enable the transmission of source quench packets");
179 
180 int ip_do_randomid = 0;
181 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
182     &ip_do_randomid, 0,
183     "Assign random ip_id values");
184 /*
185  * XXX - Setting ip_checkinterface mostly implements the receive side of
186  * the Strong ES model described in RFC 1122, but since the routing table
187  * and transmit implementation do not implement the Strong ES model,
188  * setting this to 1 results in an odd hybrid.
189  *
190  * XXX - ip_checkinterface currently must be disabled if you use ipnat
191  * to translate the destination address to another local interface.
192  *
193  * XXX - ip_checkinterface must be disabled if you add IP aliases
194  * to the loopback interface instead of the interface where the
195  * packets for those addresses are received.
196  */
197 static int ip_checkinterface = 0;
198 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
199     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
200 
201 #ifdef DIAGNOSTIC
202 static int ipprintfs = 0;
203 #endif
204 
205 extern	struct domain inetdomain;
206 extern	struct protosw inetsw[];
207 u_char	ip_protox[IPPROTO_MAX];
208 struct	in_ifaddrhead in_ifaddrhead;		/* first inet address */
209 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table */
210 u_long	in_ifaddrhmask;				/* mask for hash table */
211 
212 struct ip_stats ipstats_percpu[MAXCPU];
213 #ifdef SMP
214 static int
215 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
216 {
217 	int cpu, error = 0;
218 
219 	for (cpu = 0; cpu < ncpus; ++cpu) {
220 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
221 					sizeof(struct ip_stats))))
222 			break;
223 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
224 				       sizeof(struct ip_stats))))
225 			break;
226 	}
227 
228 	return (error);
229 }
230 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
231     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
232 #else
233 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
234     &ipstat, ip_stats, "IP statistics");
235 #endif
236 
237 /* Packet reassembly stuff */
238 #define	IPREASS_NHASH_LOG2	6
239 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
240 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
241 #define	IPREASS_HASH(x,y)						\
242     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
243 
244 static struct ipq ipq[IPREASS_NHASH];
245 
246 #ifdef IPCTL_DEFMTU
247 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
248     &ip_mtu, 0, "Default MTU");
249 #endif
250 
251 #ifdef IPSTEALTH
252 static int ipstealth = 0;
253 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
254 #else
255 static const int ipstealth = 0;
256 #endif
257 
258 
259 /* Firewall hooks */
260 ip_fw_chk_t *ip_fw_chk_ptr;
261 ip_fw_dn_io_t *ip_fw_dn_io_ptr;
262 int fw_enable = 1;
263 int fw_one_pass = 1;
264 
265 struct pfil_head inet_pfil_hook;
266 
267 /*
268  * XXX this is ugly -- the following two global variables are
269  * used to store packet state while it travels through the stack.
270  * Note that the code even makes assumptions on the size and
271  * alignment of fields inside struct ip_srcrt so e.g. adding some
272  * fields will break the code. This needs to be fixed.
273  *
274  * We need to save the IP options in case a protocol wants to respond
275  * to an incoming packet over the same route if the packet got here
276  * using IP source routing.  This allows connection establishment and
277  * maintenance when the remote end is on a network that is not known
278  * to us.
279  */
280 static int ip_nhops = 0;
281 
282 static	struct ip_srcrt {
283 	struct	in_addr dst;			/* final destination */
284 	char	nop;				/* one NOP to align */
285 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
286 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
287 } ip_srcrt;
288 
289 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
290 static struct malloc_pipe ipq_mpipe;
291 
292 static void		save_rte (u_char *, struct in_addr);
293 static int		ip_dooptions (struct mbuf *m, int,
294 					struct sockaddr_in *next_hop);
295 static void		ip_forward (struct mbuf *m, boolean_t using_srcrt,
296 					struct sockaddr_in *next_hop);
297 static void		ip_freef (struct ipq *);
298 static void		ip_input_handler (struct netmsg *);
299 static struct mbuf	*ip_reass (struct mbuf *, struct ipq *,
300 					struct ipq *, u_int32_t *);
301 
302 /*
303  * IP initialization: fill in IP protocol switch table.
304  * All protocols not implemented in kernel go to raw IP protocol handler.
305  */
306 void
307 ip_init(void)
308 {
309 	struct protosw *pr;
310 	int i;
311 #ifdef SMP
312 	int cpu;
313 #endif
314 
315 	/*
316 	 * Make sure we can handle a reasonable number of fragments but
317 	 * cap it at 4000 (XXX).
318 	 */
319 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
320 		    IFQ_MAXLEN, 4000, 0, NULL);
321 	TAILQ_INIT(&in_ifaddrhead);
322 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
323 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
324 	if (pr == NULL)
325 		panic("ip_init");
326 	for (i = 0; i < IPPROTO_MAX; i++)
327 		ip_protox[i] = pr - inetsw;
328 	for (pr = inetdomain.dom_protosw;
329 	     pr < inetdomain.dom_protoswNPROTOSW; pr++)
330 		if (pr->pr_domain->dom_family == PF_INET &&
331 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
332 			ip_protox[pr->pr_protocol] = pr - inetsw;
333 
334 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
335 	inet_pfil_hook.ph_af = AF_INET;
336 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
337 		kprintf("%s: WARNING: unable to register pfil hook, "
338 			"error %d\n", __func__, i);
339 	}
340 
341 	for (i = 0; i < IPREASS_NHASH; i++)
342 	    ipq[i].next = ipq[i].prev = &ipq[i];
343 
344 	maxnipq = nmbclusters / 32;
345 	maxfragsperpacket = 16;
346 
347 	ip_id = time_second & 0xffff;
348 
349 	/*
350 	 * Initialize IP statistics counters for each CPU.
351 	 *
352 	 */
353 #ifdef SMP
354 	for (cpu = 0; cpu < ncpus; ++cpu) {
355 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
356 	}
357 #else
358 	bzero(&ipstat, sizeof(struct ip_stats));
359 #endif
360 
361 	netisr_register(NETISR_IP, ip_mport, ip_input_handler);
362 }
363 
364 /*
365  * XXX watch out this one. It is perhaps used as a cache for
366  * the most recently used route ? it is cleared in in_addroute()
367  * when a new route is successfully created.
368  */
369 struct route ipforward_rt[MAXCPU];
370 
371 /* Do transport protocol processing. */
372 static void
373 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
374 			   struct sockaddr_in *nexthop)
375 {
376 	/*
377 	 * Switch out to protocol's input routine.
378 	 */
379 	if (nexthop && ip->ip_p == IPPROTO_TCP) {
380 		/* TCP needs IPFORWARD info if available */
381 		struct m_hdr tag;
382 
383 		tag.mh_type = MT_TAG;
384 		tag.mh_flags = PACKET_TAG_IPFORWARD;
385 		tag.mh_data = (caddr_t)nexthop;
386 		tag.mh_next = m;
387 
388 		(*inetsw[ip_protox[ip->ip_p]].pr_input)
389 		    ((struct mbuf *)&tag, hlen, ip->ip_p);
390 	} else {
391 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
392 	}
393 }
394 
395 struct netmsg_transport_packet {
396 	struct netmsg		nm_netmsg;
397 	struct mbuf		*nm_mbuf;
398 	int			nm_hlen;
399 	boolean_t		nm_hasnexthop;
400 	struct sockaddr_in	nm_nexthop;
401 };
402 
403 static void
404 transport_processing_handler(netmsg_t netmsg)
405 {
406 	struct netmsg_transport_packet *msg = (void *)netmsg;
407 	struct sockaddr_in *nexthop;
408 	struct ip *ip;
409 
410 	ip = mtod(msg->nm_mbuf, struct ip *);
411 	nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
412 	transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
413 	lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
414 }
415 
416 static void
417 ip_input_handler(struct netmsg *msg0)
418 {
419 	struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
420 
421 	ip_input(m);
422 	/* msg0 was embedded in the mbuf, do not reply! */
423 }
424 
425 /*
426  * IP input routine.  Checksum and byte swap header.  If fragmented
427  * try to reassemble.  Process options.  Pass to next level.
428  */
429 void
430 ip_input(struct mbuf *m)
431 {
432 	struct ip *ip;
433 	struct ipq *fp;
434 	struct in_ifaddr *ia = NULL;
435 	struct ifaddr *ifa;
436 	int i, hlen, checkif;
437 	u_short sum;
438 	struct in_addr pkt_dst;
439 	u_int32_t divert_info = 0;		/* packet divert/tee info */
440 	struct ip_fw_args args;
441 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
442 	boolean_t needredispatch = FALSE;
443 	struct in_addr odst;			/* original dst address(NAT) */
444 	struct m_tag *mtag;
445 #ifdef FAST_IPSEC
446 	struct tdb_ident *tdbi;
447 	struct secpolicy *sp;
448 	int error;
449 #endif
450 
451 	args.eh = NULL;
452 	args.oif = NULL;
453 	args.rule = NULL;
454 	args.next_hop = NULL;
455 
456 	/* Grab info from MT_TAG mbufs prepended to the chain. */
457 	while (m != NULL && m->m_type == MT_TAG) {
458 		switch(m->_m_tag_id) {
459 		case PACKET_TAG_IPFORWARD:
460 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
461 			break;
462 		default:
463 			kprintf("ip_input: unrecognised MT_TAG tag %d\n",
464 			    m->_m_tag_id);
465 			break;
466 		}
467 		m = m->m_next;
468 	}
469 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_input: no HDR"));
470 
471 	/* Extract info from dummynet tag */
472 	mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
473 	if (mtag != NULL) {
474 		args.rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
475 
476 		m_tag_delete(m, mtag);
477 		mtag = NULL;
478 	}
479 
480 	if (args.rule != NULL) {	/* dummynet already filtered us */
481 		ip = mtod(m, struct ip *);
482 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
483 		goto iphack;
484 	}
485 
486 	ipstat.ips_total++;
487 
488 	/* length checks already done in ip_demux() */
489 	KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
490 
491 	ip = mtod(m, struct ip *);
492 
493 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
494 		ipstat.ips_badvers++;
495 		goto bad;
496 	}
497 
498 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
499 	/* length checks already done in ip_demux() */
500 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
501 	KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
502 
503 	/* 127/8 must not appear on wire - RFC1122 */
504 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
505 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
506 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
507 			ipstat.ips_badaddr++;
508 			goto bad;
509 		}
510 	}
511 
512 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
513 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
514 	} else {
515 		if (hlen == sizeof(struct ip)) {
516 			sum = in_cksum_hdr(ip);
517 		} else {
518 			sum = in_cksum(m, hlen);
519 		}
520 	}
521 	if (sum != 0) {
522 		ipstat.ips_badsum++;
523 		goto bad;
524 	}
525 
526 #ifdef ALTQ
527 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
528 		/* packet is dropped by traffic conditioner */
529 		return;
530 	}
531 #endif
532 	/*
533 	 * Convert fields to host representation.
534 	 */
535 	ip->ip_len = ntohs(ip->ip_len);
536 	if (ip->ip_len < hlen) {
537 		ipstat.ips_badlen++;
538 		goto bad;
539 	}
540 	ip->ip_off = ntohs(ip->ip_off);
541 
542 	/*
543 	 * Check that the amount of data in the buffers
544 	 * is as at least much as the IP header would have us expect.
545 	 * Trim mbufs if longer than we expect.
546 	 * Drop packet if shorter than we expect.
547 	 */
548 	if (m->m_pkthdr.len < ip->ip_len) {
549 		ipstat.ips_tooshort++;
550 		goto bad;
551 	}
552 	if (m->m_pkthdr.len > ip->ip_len) {
553 		if (m->m_len == m->m_pkthdr.len) {
554 			m->m_len = ip->ip_len;
555 			m->m_pkthdr.len = ip->ip_len;
556 		} else
557 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
558 	}
559 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
560 	/*
561 	 * Bypass packet filtering for packets from a tunnel (gif).
562 	 */
563 	if (ipsec_gethist(m, NULL))
564 		goto pass;
565 #endif
566 
567 	/*
568 	 * IpHack's section.
569 	 * Right now when no processing on packet has done
570 	 * and it is still fresh out of network we do our black
571 	 * deals with it.
572 	 * - Firewall: deny/allow/divert
573 	 * - Xlate: translate packet's addr/port (NAT).
574 	 * - Pipe: pass pkt through dummynet.
575 	 * - Wrap: fake packet's addr/port <unimpl.>
576 	 * - Encapsulate: put it in another IP and send out. <unimp.>
577 	 */
578 
579 iphack:
580 
581 	/*
582 	 * Run through list of hooks for input packets.
583 	 *
584 	 * NB: Beware of the destination address changing (e.g.
585 	 *     by NAT rewriting). When this happens, tell
586 	 *     ip_forward to do the right thing.
587 	 */
588 	if (pfil_has_hooks(&inet_pfil_hook)) {
589 		odst = ip->ip_dst;
590 		if (pfil_run_hooks(&inet_pfil_hook, &m,
591 		    m->m_pkthdr.rcvif, PFIL_IN)) {
592 			return;
593 		}
594 		if (m == NULL)			/* consumed by filter */
595 			return;
596 		ip = mtod(m, struct ip *);
597 		using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
598 	}
599 
600 	if (fw_enable && IPFW_LOADED) {
601 		/*
602 		 * If we've been forwarded from the output side, then
603 		 * skip the firewall a second time
604 		 */
605 		if (args.next_hop != NULL)
606 			goto ours;
607 
608 		args.m = m;
609 		i = ip_fw_chk_ptr(&args);
610 		m = args.m;
611 
612 		if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) {	/* drop */
613 			if (m != NULL)
614 				m_freem(m);
615 			return;
616 		}
617 		ip = mtod(m, struct ip *);	/* just in case m changed */
618 		if (i == 0 && args.next_hop == NULL)	/* common case */
619 			goto pass;
620 		if (i & IP_FW_PORT_DYNT_FLAG) {
621 			/* Send packet to the appropriate pipe */
622 			ip_fw_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
623 			return;
624 		}
625 #ifdef IPDIVERT
626 		if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
627 			/* Divert or tee packet */
628 			divert_info = i;
629 			goto ours;
630 		}
631 #endif
632 		if (i == 0 && args.next_hop != NULL)
633 			goto pass;
634 		/*
635 		 * if we get here, the packet must be dropped
636 		 */
637 		m_freem(m);
638 		return;
639 	}
640 pass:
641 
642 	/*
643 	 * Process options and, if not destined for us,
644 	 * ship it on.  ip_dooptions returns 1 when an
645 	 * error was detected (causing an icmp message
646 	 * to be sent and the original packet to be freed).
647 	 */
648 	ip_nhops = 0;		/* for source routed packets */
649 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
650 		return;
651 
652 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
653 	 * matter if it is destined to another node, or whether it is
654 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
655 	 * anywhere else. Also checks if the rsvp daemon is running before
656 	 * grabbing the packet.
657 	 */
658 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
659 		goto ours;
660 
661 	/*
662 	 * Check our list of addresses, to see if the packet is for us.
663 	 * If we don't have any addresses, assume any unicast packet
664 	 * we receive might be for us (and let the upper layers deal
665 	 * with it).
666 	 */
667 	if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
668 		goto ours;
669 
670 	/*
671 	 * Cache the destination address of the packet; this may be
672 	 * changed by use of 'ipfw fwd'.
673 	 */
674 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
675 
676 	/*
677 	 * Enable a consistency check between the destination address
678 	 * and the arrival interface for a unicast packet (the RFC 1122
679 	 * strong ES model) if IP forwarding is disabled and the packet
680 	 * is not locally generated and the packet is not subject to
681 	 * 'ipfw fwd'.
682 	 *
683 	 * XXX - Checking also should be disabled if the destination
684 	 * address is ipnat'ed to a different interface.
685 	 *
686 	 * XXX - Checking is incompatible with IP aliases added
687 	 * to the loopback interface instead of the interface where
688 	 * the packets are received.
689 	 */
690 	checkif = ip_checkinterface &&
691 		  !ipforwarding &&
692 		  m->m_pkthdr.rcvif != NULL &&
693 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
694 		  (args.next_hop == NULL);
695 
696 	/*
697 	 * Check for exact addresses in the hash bucket.
698 	 */
699 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
700 		/*
701 		 * If the address matches, verify that the packet
702 		 * arrived via the correct interface if checking is
703 		 * enabled.
704 		 */
705 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
706 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
707 			goto ours;
708 	}
709 	/*
710 	 * Check for broadcast addresses.
711 	 *
712 	 * Only accept broadcast packets that arrive via the matching
713 	 * interface.  Reception of forwarded directed broadcasts would
714 	 * be handled via ip_forward() and ether_output() with the loopback
715 	 * into the stack for SIMPLEX interfaces handled by ether_output().
716 	 */
717 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
718 		TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
719 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
720 				continue;
721 			if (ifa->ifa_addr->sa_family != AF_INET)
722 				continue;
723 			ia = ifatoia(ifa);
724 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
725 								pkt_dst.s_addr)
726 				goto ours;
727 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
728 				goto ours;
729 #ifdef BOOTP_COMPAT
730 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
731 				goto ours;
732 #endif
733 		}
734 	}
735 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
736 		struct in_multi *inm;
737 
738 		if (ip_mrouter != NULL) {
739 			/*
740 			 * If we are acting as a multicast router, all
741 			 * incoming multicast packets are passed to the
742 			 * kernel-level multicast forwarding function.
743 			 * The packet is returned (relatively) intact; if
744 			 * ip_mforward() returns a non-zero value, the packet
745 			 * must be discarded, else it may be accepted below.
746 			 */
747 			if (ip_mforward != NULL &&
748 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
749 				ipstat.ips_cantforward++;
750 				m_freem(m);
751 				return;
752 			}
753 
754 			/*
755 			 * The process-level routing daemon needs to receive
756 			 * all multicast IGMP packets, whether or not this
757 			 * host belongs to their destination groups.
758 			 */
759 			if (ip->ip_p == IPPROTO_IGMP)
760 				goto ours;
761 			ipstat.ips_forward++;
762 		}
763 		/*
764 		 * See if we belong to the destination multicast group on the
765 		 * arrival interface.
766 		 */
767 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
768 		if (inm == NULL) {
769 			ipstat.ips_notmember++;
770 			m_freem(m);
771 			return;
772 		}
773 		goto ours;
774 	}
775 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
776 		goto ours;
777 	if (ip->ip_dst.s_addr == INADDR_ANY)
778 		goto ours;
779 
780 	/*
781 	 * FAITH(Firewall Aided Internet Translator)
782 	 */
783 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
784 		if (ip_keepfaith) {
785 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
786 				goto ours;
787 		}
788 		m_freem(m);
789 		return;
790 	}
791 
792 	/*
793 	 * Not for us; forward if possible and desirable.
794 	 */
795 	if (!ipforwarding) {
796 		ipstat.ips_cantforward++;
797 		m_freem(m);
798 	} else {
799 #ifdef IPSEC
800 		/*
801 		 * Enforce inbound IPsec SPD.
802 		 */
803 		if (ipsec4_in_reject(m, NULL)) {
804 			ipsecstat.in_polvio++;
805 			goto bad;
806 		}
807 #endif
808 #ifdef FAST_IPSEC
809 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
810 		crit_enter();
811 		if (mtag != NULL) {
812 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
813 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
814 		} else {
815 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
816 						   IP_FORWARDING, &error);
817 		}
818 		if (sp == NULL) {	/* NB: can happen if error */
819 			crit_exit();
820 			/*XXX error stat???*/
821 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
822 			goto bad;
823 		}
824 
825 		/*
826 		 * Check security policy against packet attributes.
827 		 */
828 		error = ipsec_in_reject(sp, m);
829 		KEY_FREESP(&sp);
830 		crit_exit();
831 		if (error) {
832 			ipstat.ips_cantforward++;
833 			goto bad;
834 		}
835 #endif
836 		ip_forward(m, using_srcrt, args.next_hop);
837 	}
838 	return;
839 
840 ours:
841 
842 	/*
843 	 * IPSTEALTH: Process non-routing options only
844 	 * if the packet is destined for us.
845 	 */
846 	if (ipstealth &&
847 	    hlen > sizeof(struct ip) &&
848 	    ip_dooptions(m, 1, args.next_hop))
849 		return;
850 
851 	/* Count the packet in the ip address stats */
852 	if (ia != NULL) {
853 		ia->ia_ifa.if_ipackets++;
854 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
855 	}
856 
857 	/*
858 	 * If offset or IP_MF are set, must reassemble.
859 	 * Otherwise, nothing need be done.
860 	 * (We could look in the reassembly queue to see
861 	 * if the packet was previously fragmented,
862 	 * but it's not worth the time; just let them time out.)
863 	 */
864 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
865 
866 		/* If maxnipq is 0, never accept fragments. */
867 		if (maxnipq == 0) {
868 			ipstat.ips_fragments++;
869 			ipstat.ips_fragdropped++;
870 			goto bad;
871 		}
872 
873 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
874 		/*
875 		 * Look for queue of fragments
876 		 * of this datagram.
877 		 */
878 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
879 			if (ip->ip_id == fp->ipq_id &&
880 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
881 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
882 			    ip->ip_p == fp->ipq_p)
883 				goto found;
884 
885 		fp = NULL;
886 
887 		/*
888 		 * Enforce upper bound on number of fragmented packets
889 		 * for which we attempt reassembly;
890 		 * If maxnipq is -1, accept all fragments without limitation.
891 		 */
892 		if ((nipq > maxnipq) && (maxnipq > 0)) {
893 			/*
894 			 * drop something from the tail of the current queue
895 			 * before proceeding further
896 			 */
897 			if (ipq[sum].prev == &ipq[sum]) {   /* gak */
898 				for (i = 0; i < IPREASS_NHASH; i++) {
899 					if (ipq[i].prev != &ipq[i]) {
900 						ipstat.ips_fragtimeout +=
901 						    ipq[i].prev->ipq_nfrags;
902 						ip_freef(ipq[i].prev);
903 						break;
904 					}
905 				}
906 			} else {
907 				ipstat.ips_fragtimeout +=
908 				    ipq[sum].prev->ipq_nfrags;
909 				ip_freef(ipq[sum].prev);
910 			}
911 		}
912 found:
913 		/*
914 		 * Adjust ip_len to not reflect header,
915 		 * convert offset of this to bytes.
916 		 */
917 		ip->ip_len -= hlen;
918 		if (ip->ip_off & IP_MF) {
919 			/*
920 			 * Make sure that fragments have a data length
921 			 * that's a non-zero multiple of 8 bytes.
922 			 */
923 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
924 				ipstat.ips_toosmall++; /* XXX */
925 				goto bad;
926 			}
927 			m->m_flags |= M_FRAG;
928 		} else
929 			m->m_flags &= ~M_FRAG;
930 		ip->ip_off <<= 3;
931 
932 		/*
933 		 * Attempt reassembly; if it succeeds, proceed.
934 		 * ip_reass() will return a different mbuf, and update
935 		 * the divert info in divert_info.
936 		 */
937 		ipstat.ips_fragments++;
938 		m->m_pkthdr.header = ip;
939 		m = ip_reass(m, fp, &ipq[sum], &divert_info);
940 		if (m == NULL)
941 			return;
942 		ipstat.ips_reassembled++;
943 		needredispatch = TRUE;
944 		ip = mtod(m, struct ip *);
945 		/* Get the header length of the reassembled packet */
946 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
947 #ifdef IPDIVERT
948 		/* Restore original checksum before diverting packet */
949 		if (divert_info != 0) {
950 			ip->ip_len += hlen;
951 			ip->ip_len = htons(ip->ip_len);
952 			ip->ip_off = htons(ip->ip_off);
953 			ip->ip_sum = 0;
954 			if (hlen == sizeof(struct ip))
955 				ip->ip_sum = in_cksum_hdr(ip);
956 			else
957 				ip->ip_sum = in_cksum(m, hlen);
958 			ip->ip_off = ntohs(ip->ip_off);
959 			ip->ip_len = ntohs(ip->ip_len);
960 			ip->ip_len -= hlen;
961 		}
962 #endif
963 	} else {
964 		ip->ip_len -= hlen;
965 	}
966 
967 #ifdef IPDIVERT
968 	/*
969 	 * Divert or tee packet to the divert protocol if required.
970 	 */
971 	if (divert_info != 0) {
972 		struct mbuf *clone = NULL;
973 
974 		/* Clone packet if we're doing a 'tee' */
975 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
976 			clone = m_dup(m, MB_DONTWAIT);
977 
978 		/* Restore packet header fields to original values */
979 		ip->ip_len += hlen;
980 		ip->ip_len = htons(ip->ip_len);
981 		ip->ip_off = htons(ip->ip_off);
982 
983 		/* Deliver packet to divert input routine */
984 		divert_packet(m, 1, divert_info & 0xffff);
985 		ipstat.ips_delivered++;
986 
987 		/* If 'tee', continue with original packet */
988 		if (clone == NULL)
989 			return;
990 		m = clone;
991 		ip = mtod(m, struct ip *);
992 		ip->ip_len += hlen;
993 		/*
994 		 * Jump backwards to complete processing of the
995 		 * packet. But first clear divert_info to avoid
996 		 * entering this block again.
997 		 * We do not need to clear args.divert_rule
998 		 * or args.next_hop as they will not be used.
999 		 *
1000 		 * XXX Better safe than sorry, remove the DIVERT tag.
1001 		 */
1002 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1003 		if (mtag != NULL)
1004 			m_tag_delete(m, mtag);
1005 
1006 		divert_info = 0;
1007 		goto pass;
1008 	}
1009 #endif
1010 
1011 #ifdef IPSEC
1012 	/*
1013 	 * enforce IPsec policy checking if we are seeing last header.
1014 	 * note that we do not visit this with protocols with pcb layer
1015 	 * code - like udp/tcp/raw ip.
1016 	 */
1017 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1018 	    ipsec4_in_reject(m, NULL)) {
1019 		ipsecstat.in_polvio++;
1020 		goto bad;
1021 	}
1022 #endif
1023 #if FAST_IPSEC
1024 	/*
1025 	 * enforce IPsec policy checking if we are seeing last header.
1026 	 * note that we do not visit this with protocols with pcb layer
1027 	 * code - like udp/tcp/raw ip.
1028 	 */
1029 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1030 		/*
1031 		 * Check if the packet has already had IPsec processing
1032 		 * done.  If so, then just pass it along.  This tag gets
1033 		 * set during AH, ESP, etc. input handling, before the
1034 		 * packet is returned to the ip input queue for delivery.
1035 		 */
1036 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1037 		crit_enter();
1038 		if (mtag != NULL) {
1039 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
1040 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1041 		} else {
1042 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1043 						   IP_FORWARDING, &error);
1044 		}
1045 		if (sp != NULL) {
1046 			/*
1047 			 * Check security policy against packet attributes.
1048 			 */
1049 			error = ipsec_in_reject(sp, m);
1050 			KEY_FREESP(&sp);
1051 		} else {
1052 			/* XXX error stat??? */
1053 			error = EINVAL;
1054 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1055 			goto bad;
1056 		}
1057 		crit_exit();
1058 		if (error)
1059 			goto bad;
1060 	}
1061 #endif /* FAST_IPSEC */
1062 
1063 	ipstat.ips_delivered++;
1064 	if (needredispatch) {
1065 		struct netmsg_transport_packet *msg;
1066 		lwkt_port_t port;
1067 
1068 		ip->ip_off = htons(ip->ip_off);
1069 		ip->ip_len = htons(ip->ip_len);
1070 		port = ip_mport(&m);
1071 		if (port == NULL)
1072 			return;
1073 
1074 		msg = kmalloc(sizeof(struct netmsg_transport_packet), M_LWKTMSG,
1075 			     M_INTWAIT | M_NULLOK);
1076 		if (msg == NULL)
1077 			goto bad;
1078 
1079 		netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1080 			    transport_processing_handler);
1081 		msg->nm_hlen = hlen;
1082 		msg->nm_hasnexthop = (args.next_hop != NULL);
1083 		if (msg->nm_hasnexthop)
1084 			msg->nm_nexthop = *args.next_hop;  /* structure copy */
1085 
1086 		msg->nm_mbuf = m;
1087 		ip = mtod(m, struct ip *);
1088 		ip->ip_len = ntohs(ip->ip_len);
1089 		ip->ip_off = ntohs(ip->ip_off);
1090 		lwkt_sendmsg(port, &msg->nm_netmsg.nm_lmsg);
1091 	} else {
1092 		transport_processing_oncpu(m, hlen, ip, args.next_hop);
1093 	}
1094 	return;
1095 
1096 bad:
1097 	m_freem(m);
1098 }
1099 
1100 /*
1101  * Take incoming datagram fragment and try to reassemble it into
1102  * whole datagram.  If a chain for reassembly of this datagram already
1103  * exists, then it is given as fp; otherwise have to make a chain.
1104  *
1105  * When IPDIVERT enabled, keep additional state with each packet that
1106  * tells us if we need to divert or tee the packet we're building.
1107  * In particular, *divinfo includes the port and TEE flag.
1108  */
1109 
1110 static struct mbuf *
1111 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1112 	 u_int32_t *divinfo)
1113 {
1114 	struct ip *ip = mtod(m, struct ip *);
1115 	struct mbuf *p = NULL, *q, *nq;
1116 	struct mbuf *n;
1117 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1118 	int i, next;
1119 #ifdef IPDIVERT
1120 	struct m_tag *mtag;
1121 #endif
1122 
1123 	/*
1124 	 * If the hardware has not done csum over this fragment
1125 	 * then csum_data is not valid at all.
1126 	 */
1127 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1128 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1129 		m->m_pkthdr.csum_data = 0;
1130 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1131 	}
1132 
1133 	/*
1134 	 * Presence of header sizes in mbufs
1135 	 * would confuse code below.
1136 	 */
1137 	m->m_data += hlen;
1138 	m->m_len -= hlen;
1139 
1140 	/*
1141 	 * If first fragment to arrive, create a reassembly queue.
1142 	 */
1143 	if (fp == NULL) {
1144 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1145 			goto dropfrag;
1146 		insque(fp, where);
1147 		nipq++;
1148 		fp->ipq_nfrags = 1;
1149 		fp->ipq_ttl = IPFRAGTTL;
1150 		fp->ipq_p = ip->ip_p;
1151 		fp->ipq_id = ip->ip_id;
1152 		fp->ipq_src = ip->ip_src;
1153 		fp->ipq_dst = ip->ip_dst;
1154 		fp->ipq_frags = m;
1155 		m->m_nextpkt = NULL;
1156 #ifdef IPDIVERT
1157 		fp->ipq_div_info = 0;
1158 #endif
1159 		goto inserted;
1160 	} else {
1161 		fp->ipq_nfrags++;
1162 	}
1163 
1164 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1165 
1166 	/*
1167 	 * Find a segment which begins after this one does.
1168 	 */
1169 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1170 		if (GETIP(q)->ip_off > ip->ip_off)
1171 			break;
1172 
1173 	/*
1174 	 * If there is a preceding segment, it may provide some of
1175 	 * our data already.  If so, drop the data from the incoming
1176 	 * segment.  If it provides all of our data, drop us, otherwise
1177 	 * stick new segment in the proper place.
1178 	 *
1179 	 * If some of the data is dropped from the the preceding
1180 	 * segment, then it's checksum is invalidated.
1181 	 */
1182 	if (p) {
1183 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1184 		if (i > 0) {
1185 			if (i >= ip->ip_len)
1186 				goto dropfrag;
1187 			m_adj(m, i);
1188 			m->m_pkthdr.csum_flags = 0;
1189 			ip->ip_off += i;
1190 			ip->ip_len -= i;
1191 		}
1192 		m->m_nextpkt = p->m_nextpkt;
1193 		p->m_nextpkt = m;
1194 	} else {
1195 		m->m_nextpkt = fp->ipq_frags;
1196 		fp->ipq_frags = m;
1197 	}
1198 
1199 	/*
1200 	 * While we overlap succeeding segments trim them or,
1201 	 * if they are completely covered, dequeue them.
1202 	 */
1203 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1204 	     q = nq) {
1205 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1206 		if (i < GETIP(q)->ip_len) {
1207 			GETIP(q)->ip_len -= i;
1208 			GETIP(q)->ip_off += i;
1209 			m_adj(q, i);
1210 			q->m_pkthdr.csum_flags = 0;
1211 			break;
1212 		}
1213 		nq = q->m_nextpkt;
1214 		m->m_nextpkt = nq;
1215 		ipstat.ips_fragdropped++;
1216 		fp->ipq_nfrags--;
1217 		q->m_nextpkt = NULL;
1218 		m_freem(q);
1219 	}
1220 
1221 inserted:
1222 
1223 #ifdef IPDIVERT
1224 	/*
1225 	 * Transfer firewall instructions to the fragment structure.
1226 	 * Only trust info in the fragment at offset 0.
1227 	 */
1228 	if (ip->ip_off == 0) {
1229 		fp->ipq_div_info = *divinfo;
1230 	} else {
1231 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1232 		if (mtag != NULL)
1233 			m_tag_delete(m, mtag);
1234 	}
1235 	*divinfo = 0;
1236 #endif
1237 
1238 	/*
1239 	 * Check for complete reassembly and perform frag per packet
1240 	 * limiting.
1241 	 *
1242 	 * Frag limiting is performed here so that the nth frag has
1243 	 * a chance to complete the packet before we drop the packet.
1244 	 * As a result, n+1 frags are actually allowed per packet, but
1245 	 * only n will ever be stored. (n = maxfragsperpacket.)
1246 	 *
1247 	 */
1248 	next = 0;
1249 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1250 		if (GETIP(q)->ip_off != next) {
1251 			if (fp->ipq_nfrags > maxfragsperpacket) {
1252 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1253 				ip_freef(fp);
1254 			}
1255 			return (NULL);
1256 		}
1257 		next += GETIP(q)->ip_len;
1258 	}
1259 	/* Make sure the last packet didn't have the IP_MF flag */
1260 	if (p->m_flags & M_FRAG) {
1261 		if (fp->ipq_nfrags > maxfragsperpacket) {
1262 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1263 			ip_freef(fp);
1264 		}
1265 		return (NULL);
1266 	}
1267 
1268 	/*
1269 	 * Reassembly is complete.  Make sure the packet is a sane size.
1270 	 */
1271 	q = fp->ipq_frags;
1272 	ip = GETIP(q);
1273 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1274 		ipstat.ips_toolong++;
1275 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1276 		ip_freef(fp);
1277 		return (NULL);
1278 	}
1279 
1280 	/*
1281 	 * Concatenate fragments.
1282 	 */
1283 	m = q;
1284 	n = m->m_next;
1285 	m->m_next = NULL;
1286 	m_cat(m, n);
1287 	nq = q->m_nextpkt;
1288 	q->m_nextpkt = NULL;
1289 	for (q = nq; q != NULL; q = nq) {
1290 		nq = q->m_nextpkt;
1291 		q->m_nextpkt = NULL;
1292 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1293 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1294 		m_cat(m, q);
1295 	}
1296 
1297 	/*
1298 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1299 	 * be added back.  This assumes no more then 65535 packet fragments
1300 	 * were reassembled.  A second carry can also occur (but not a third).
1301 	 */
1302 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1303 				(m->m_pkthdr.csum_data >> 16);
1304 	if (m->m_pkthdr.csum_data > 0xFFFF)
1305 		m->m_pkthdr.csum_data -= 0xFFFF;
1306 
1307 
1308 #ifdef IPDIVERT
1309 	/*
1310 	 * Extract firewall instructions from the fragment structure.
1311 	 */
1312 	*divinfo = fp->ipq_div_info;
1313 #endif
1314 
1315 	/*
1316 	 * Create header for new ip packet by
1317 	 * modifying header of first packet;
1318 	 * dequeue and discard fragment reassembly header.
1319 	 * Make header visible.
1320 	 */
1321 	ip->ip_len = next;
1322 	ip->ip_src = fp->ipq_src;
1323 	ip->ip_dst = fp->ipq_dst;
1324 	remque(fp);
1325 	nipq--;
1326 	mpipe_free(&ipq_mpipe, fp);
1327 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1328 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1329 	/* some debugging cruft by sklower, below, will go away soon */
1330 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1331 		int plen = 0;
1332 
1333 		for (n = m; n; n = n->m_next)
1334 			plen += n->m_len;
1335 		m->m_pkthdr.len = plen;
1336 	}
1337 	return (m);
1338 
1339 dropfrag:
1340 #ifdef IPDIVERT
1341 	*divinfo = 0;
1342 #endif
1343 	ipstat.ips_fragdropped++;
1344 	if (fp != NULL)
1345 		fp->ipq_nfrags--;
1346 	m_freem(m);
1347 	return (NULL);
1348 
1349 #undef GETIP
1350 }
1351 
1352 /*
1353  * Free a fragment reassembly header and all
1354  * associated datagrams.
1355  */
1356 static void
1357 ip_freef(struct ipq *fp)
1358 {
1359 	struct mbuf *q;
1360 
1361 	while (fp->ipq_frags) {
1362 		q = fp->ipq_frags;
1363 		fp->ipq_frags = q->m_nextpkt;
1364 		q->m_nextpkt = NULL;
1365 		m_freem(q);
1366 	}
1367 	remque(fp);
1368 	mpipe_free(&ipq_mpipe, fp);
1369 	nipq--;
1370 }
1371 
1372 /*
1373  * IP timer processing;
1374  * if a timer expires on a reassembly
1375  * queue, discard it.
1376  */
1377 void
1378 ip_slowtimo(void)
1379 {
1380 	struct ipq *fp;
1381 	int i;
1382 
1383 	crit_enter();
1384 	for (i = 0; i < IPREASS_NHASH; i++) {
1385 		fp = ipq[i].next;
1386 		if (fp == NULL)
1387 			continue;
1388 		while (fp != &ipq[i]) {
1389 			--fp->ipq_ttl;
1390 			fp = fp->next;
1391 			if (fp->prev->ipq_ttl == 0) {
1392 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1393 				ip_freef(fp->prev);
1394 			}
1395 		}
1396 	}
1397 	/*
1398 	 * If we are over the maximum number of fragments
1399 	 * (due to the limit being lowered), drain off
1400 	 * enough to get down to the new limit.
1401 	 */
1402 	if (maxnipq >= 0 && nipq > maxnipq) {
1403 		for (i = 0; i < IPREASS_NHASH; i++) {
1404 			while (nipq > maxnipq &&
1405 				(ipq[i].next != &ipq[i])) {
1406 				ipstat.ips_fragdropped +=
1407 				    ipq[i].next->ipq_nfrags;
1408 				ip_freef(ipq[i].next);
1409 			}
1410 		}
1411 	}
1412 	ipflow_slowtimo();
1413 	crit_exit();
1414 }
1415 
1416 /*
1417  * Drain off all datagram fragments.
1418  */
1419 void
1420 ip_drain(void)
1421 {
1422 	int i;
1423 
1424 	for (i = 0; i < IPREASS_NHASH; i++) {
1425 		while (ipq[i].next != &ipq[i]) {
1426 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1427 			ip_freef(ipq[i].next);
1428 		}
1429 	}
1430 	in_rtqdrain();
1431 }
1432 
1433 /*
1434  * Do option processing on a datagram,
1435  * possibly discarding it if bad options are encountered,
1436  * or forwarding it if source-routed.
1437  * The pass argument is used when operating in the IPSTEALTH
1438  * mode to tell what options to process:
1439  * [LS]SRR (pass 0) or the others (pass 1).
1440  * The reason for as many as two passes is that when doing IPSTEALTH,
1441  * non-routing options should be processed only if the packet is for us.
1442  * Returns 1 if packet has been forwarded/freed,
1443  * 0 if the packet should be processed further.
1444  */
1445 static int
1446 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1447 {
1448 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1449 	struct ip *ip = mtod(m, struct ip *);
1450 	u_char *cp;
1451 	struct in_ifaddr *ia;
1452 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1453 	boolean_t forward = FALSE;
1454 	struct in_addr *sin, dst;
1455 	n_time ntime;
1456 
1457 	dst = ip->ip_dst;
1458 	cp = (u_char *)(ip + 1);
1459 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1460 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1461 		opt = cp[IPOPT_OPTVAL];
1462 		if (opt == IPOPT_EOL)
1463 			break;
1464 		if (opt == IPOPT_NOP)
1465 			optlen = 1;
1466 		else {
1467 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1468 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1469 				goto bad;
1470 			}
1471 			optlen = cp[IPOPT_OLEN];
1472 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1473 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1474 				goto bad;
1475 			}
1476 		}
1477 		switch (opt) {
1478 
1479 		default:
1480 			break;
1481 
1482 		/*
1483 		 * Source routing with record.
1484 		 * Find interface with current destination address.
1485 		 * If none on this machine then drop if strictly routed,
1486 		 * or do nothing if loosely routed.
1487 		 * Record interface address and bring up next address
1488 		 * component.  If strictly routed make sure next
1489 		 * address is on directly accessible net.
1490 		 */
1491 		case IPOPT_LSRR:
1492 		case IPOPT_SSRR:
1493 			if (ipstealth && pass > 0)
1494 				break;
1495 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1496 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1497 				goto bad;
1498 			}
1499 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1500 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1501 				goto bad;
1502 			}
1503 			ipaddr.sin_addr = ip->ip_dst;
1504 			ia = (struct in_ifaddr *)
1505 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1506 			if (ia == NULL) {
1507 				if (opt == IPOPT_SSRR) {
1508 					type = ICMP_UNREACH;
1509 					code = ICMP_UNREACH_SRCFAIL;
1510 					goto bad;
1511 				}
1512 				if (!ip_dosourceroute)
1513 					goto nosourcerouting;
1514 				/*
1515 				 * Loose routing, and not at next destination
1516 				 * yet; nothing to do except forward.
1517 				 */
1518 				break;
1519 			}
1520 			off--;			/* 0 origin */
1521 			if (off > optlen - (int)sizeof(struct in_addr)) {
1522 				/*
1523 				 * End of source route.  Should be for us.
1524 				 */
1525 				if (!ip_acceptsourceroute)
1526 					goto nosourcerouting;
1527 				save_rte(cp, ip->ip_src);
1528 				break;
1529 			}
1530 			if (ipstealth)
1531 				goto dropit;
1532 			if (!ip_dosourceroute) {
1533 				if (ipforwarding) {
1534 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1535 
1536 					/*
1537 					 * Acting as a router, so generate ICMP
1538 					 */
1539 nosourcerouting:
1540 					strcpy(buf, inet_ntoa(ip->ip_dst));
1541 					log(LOG_WARNING,
1542 					    "attempted source route from %s to %s\n",
1543 					    inet_ntoa(ip->ip_src), buf);
1544 					type = ICMP_UNREACH;
1545 					code = ICMP_UNREACH_SRCFAIL;
1546 					goto bad;
1547 				} else {
1548 					/*
1549 					 * Not acting as a router,
1550 					 * so silently drop.
1551 					 */
1552 dropit:
1553 					ipstat.ips_cantforward++;
1554 					m_freem(m);
1555 					return (1);
1556 				}
1557 			}
1558 
1559 			/*
1560 			 * locate outgoing interface
1561 			 */
1562 			memcpy(&ipaddr.sin_addr, cp + off,
1563 			    sizeof ipaddr.sin_addr);
1564 
1565 			if (opt == IPOPT_SSRR) {
1566 #define	INA	struct in_ifaddr *
1567 #define	SA	struct sockaddr *
1568 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1569 									== NULL)
1570 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1571 			} else
1572 				ia = ip_rtaddr(ipaddr.sin_addr,
1573 					       &ipforward_rt[mycpuid]);
1574 			if (ia == NULL) {
1575 				type = ICMP_UNREACH;
1576 				code = ICMP_UNREACH_SRCFAIL;
1577 				goto bad;
1578 			}
1579 			ip->ip_dst = ipaddr.sin_addr;
1580 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1581 			    sizeof(struct in_addr));
1582 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1583 			/*
1584 			 * Let ip_intr's mcast routing check handle mcast pkts
1585 			 */
1586 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1587 			break;
1588 
1589 		case IPOPT_RR:
1590 			if (ipstealth && pass == 0)
1591 				break;
1592 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1593 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1594 				goto bad;
1595 			}
1596 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1597 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1598 				goto bad;
1599 			}
1600 			/*
1601 			 * If no space remains, ignore.
1602 			 */
1603 			off--;			/* 0 origin */
1604 			if (off > optlen - (int)sizeof(struct in_addr))
1605 				break;
1606 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1607 			    sizeof ipaddr.sin_addr);
1608 			/*
1609 			 * locate outgoing interface; if we're the destination,
1610 			 * use the incoming interface (should be same).
1611 			 */
1612 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1613 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1614 			    		    &ipforward_rt[mycpuid]))
1615 								     == NULL) {
1616 				type = ICMP_UNREACH;
1617 				code = ICMP_UNREACH_HOST;
1618 				goto bad;
1619 			}
1620 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1621 			    sizeof(struct in_addr));
1622 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1623 			break;
1624 
1625 		case IPOPT_TS:
1626 			if (ipstealth && pass == 0)
1627 				break;
1628 			code = cp - (u_char *)ip;
1629 			if (optlen < 4 || optlen > 40) {
1630 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1631 				goto bad;
1632 			}
1633 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1634 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1635 				goto bad;
1636 			}
1637 			if (off > optlen - (int)sizeof(int32_t)) {
1638 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1639 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1640 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1641 					goto bad;
1642 				}
1643 				break;
1644 			}
1645 			off--;				/* 0 origin */
1646 			sin = (struct in_addr *)(cp + off);
1647 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1648 
1649 			case IPOPT_TS_TSONLY:
1650 				break;
1651 
1652 			case IPOPT_TS_TSANDADDR:
1653 				if (off + sizeof(n_time) +
1654 				    sizeof(struct in_addr) > optlen) {
1655 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1656 					goto bad;
1657 				}
1658 				ipaddr.sin_addr = dst;
1659 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1660 							    m->m_pkthdr.rcvif);
1661 				if (ia == NULL)
1662 					continue;
1663 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1664 				    sizeof(struct in_addr));
1665 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1666 				off += sizeof(struct in_addr);
1667 				break;
1668 
1669 			case IPOPT_TS_PRESPEC:
1670 				if (off + sizeof(n_time) +
1671 				    sizeof(struct in_addr) > optlen) {
1672 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1673 					goto bad;
1674 				}
1675 				memcpy(&ipaddr.sin_addr, sin,
1676 				    sizeof(struct in_addr));
1677 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1678 					continue;
1679 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1680 				off += sizeof(struct in_addr);
1681 				break;
1682 
1683 			default:
1684 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1685 				goto bad;
1686 			}
1687 			ntime = iptime();
1688 			memcpy(cp + off, &ntime, sizeof(n_time));
1689 			cp[IPOPT_OFFSET] += sizeof(n_time);
1690 		}
1691 	}
1692 	if (forward && ipforwarding) {
1693 		ip_forward(m, TRUE, next_hop);
1694 		return (1);
1695 	}
1696 	return (0);
1697 bad:
1698 	icmp_error(m, type, code, 0, 0);
1699 	ipstat.ips_badoptions++;
1700 	return (1);
1701 }
1702 
1703 /*
1704  * Given address of next destination (final or next hop),
1705  * return internet address info of interface to be used to get there.
1706  */
1707 struct in_ifaddr *
1708 ip_rtaddr(struct in_addr dst, struct route *ro)
1709 {
1710 	struct sockaddr_in *sin;
1711 
1712 	sin = (struct sockaddr_in *)&ro->ro_dst;
1713 
1714 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1715 		if (ro->ro_rt != NULL) {
1716 			RTFREE(ro->ro_rt);
1717 			ro->ro_rt = NULL;
1718 		}
1719 		sin->sin_family = AF_INET;
1720 		sin->sin_len = sizeof *sin;
1721 		sin->sin_addr = dst;
1722 		rtalloc_ign(ro, RTF_PRCLONING);
1723 	}
1724 
1725 	if (ro->ro_rt == NULL)
1726 		return (NULL);
1727 
1728 	return (ifatoia(ro->ro_rt->rt_ifa));
1729 }
1730 
1731 /*
1732  * Save incoming source route for use in replies,
1733  * to be picked up later by ip_srcroute if the receiver is interested.
1734  */
1735 void
1736 save_rte(u_char *option, struct in_addr dst)
1737 {
1738 	unsigned olen;
1739 
1740 	olen = option[IPOPT_OLEN];
1741 #ifdef DIAGNOSTIC
1742 	if (ipprintfs)
1743 		kprintf("save_rte: olen %d\n", olen);
1744 #endif
1745 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1746 		return;
1747 	bcopy(option, ip_srcrt.srcopt, olen);
1748 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1749 	ip_srcrt.dst = dst;
1750 }
1751 
1752 /*
1753  * Retrieve incoming source route for use in replies,
1754  * in the same form used by setsockopt.
1755  * The first hop is placed before the options, will be removed later.
1756  */
1757 struct mbuf *
1758 ip_srcroute(void)
1759 {
1760 	struct in_addr *p, *q;
1761 	struct mbuf *m;
1762 
1763 	if (ip_nhops == 0)
1764 		return (NULL);
1765 	m = m_get(MB_DONTWAIT, MT_HEADER);
1766 	if (m == NULL)
1767 		return (NULL);
1768 
1769 #define	OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1770 
1771 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1772 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1773 	    OPTSIZ;
1774 #ifdef DIAGNOSTIC
1775 	if (ipprintfs)
1776 		kprintf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1777 #endif
1778 
1779 	/*
1780 	 * First save first hop for return route
1781 	 */
1782 	p = &ip_srcrt.route[ip_nhops - 1];
1783 	*(mtod(m, struct in_addr *)) = *p--;
1784 #ifdef DIAGNOSTIC
1785 	if (ipprintfs)
1786 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1787 #endif
1788 
1789 	/*
1790 	 * Copy option fields and padding (nop) to mbuf.
1791 	 */
1792 	ip_srcrt.nop = IPOPT_NOP;
1793 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1794 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1795 	    OPTSIZ);
1796 	q = (struct in_addr *)(mtod(m, caddr_t) +
1797 	    sizeof(struct in_addr) + OPTSIZ);
1798 #undef OPTSIZ
1799 	/*
1800 	 * Record return path as an IP source route,
1801 	 * reversing the path (pointers are now aligned).
1802 	 */
1803 	while (p >= ip_srcrt.route) {
1804 #ifdef DIAGNOSTIC
1805 		if (ipprintfs)
1806 			kprintf(" %x", ntohl(q->s_addr));
1807 #endif
1808 		*q++ = *p--;
1809 	}
1810 	/*
1811 	 * Last hop goes to final destination.
1812 	 */
1813 	*q = ip_srcrt.dst;
1814 #ifdef DIAGNOSTIC
1815 	if (ipprintfs)
1816 		kprintf(" %x\n", ntohl(q->s_addr));
1817 #endif
1818 	return (m);
1819 }
1820 
1821 /*
1822  * Strip out IP options.
1823  */
1824 void
1825 ip_stripoptions(struct mbuf *m)
1826 {
1827 	int datalen;
1828 	struct ip *ip = mtod(m, struct ip *);
1829 	caddr_t opts;
1830 	int optlen;
1831 
1832 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1833 	opts = (caddr_t)(ip + 1);
1834 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1835 	bcopy(opts + optlen, opts, datalen);
1836 	m->m_len -= optlen;
1837 	if (m->m_flags & M_PKTHDR)
1838 		m->m_pkthdr.len -= optlen;
1839 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1840 }
1841 
1842 u_char inetctlerrmap[PRC_NCMDS] = {
1843 	0,		0,		0,		0,
1844 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1845 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1846 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1847 	0,		0,		0,		0,
1848 	ENOPROTOOPT,	ECONNREFUSED
1849 };
1850 
1851 /*
1852  * Forward a packet.  If some error occurs return the sender
1853  * an icmp packet.  Note we can't always generate a meaningful
1854  * icmp message because icmp doesn't have a large enough repertoire
1855  * of codes and types.
1856  *
1857  * If not forwarding, just drop the packet.  This could be confusing
1858  * if ipforwarding was zero but some routing protocol was advancing
1859  * us as a gateway to somewhere.  However, we must let the routing
1860  * protocol deal with that.
1861  *
1862  * The using_srcrt parameter indicates whether the packet is being forwarded
1863  * via a source route.
1864  */
1865 static void
1866 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1867 {
1868 	struct ip *ip = mtod(m, struct ip *);
1869 	struct sockaddr_in *ipforward_rtaddr;
1870 	struct rtentry *rt;
1871 	int error, type = 0, code = 0, destmtu = 0;
1872 	struct mbuf *mcopy;
1873 	n_long dest;
1874 	struct in_addr pkt_dst;
1875 	struct m_hdr tag;
1876 	struct route *cache_rt = &ipforward_rt[mycpuid];
1877 
1878 	dest = INADDR_ANY;
1879 	/*
1880 	 * Cache the destination address of the packet; this may be
1881 	 * changed by use of 'ipfw fwd'.
1882 	 */
1883 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1884 
1885 #ifdef DIAGNOSTIC
1886 	if (ipprintfs)
1887 		kprintf("forward: src %x dst %x ttl %x\n",
1888 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1889 #endif
1890 
1891 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1892 		ipstat.ips_cantforward++;
1893 		m_freem(m);
1894 		return;
1895 	}
1896 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1897 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1898 		return;
1899 	}
1900 
1901 	ipforward_rtaddr = (struct sockaddr_in *) &cache_rt->ro_dst;
1902 	if (cache_rt->ro_rt == NULL ||
1903 	    ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1904 		if (cache_rt->ro_rt != NULL) {
1905 			RTFREE(cache_rt->ro_rt);
1906 			cache_rt->ro_rt = NULL;
1907 		}
1908 		ipforward_rtaddr->sin_family = AF_INET;
1909 		ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1910 		ipforward_rtaddr->sin_addr = pkt_dst;
1911 		rtalloc_ign(cache_rt, RTF_PRCLONING);
1912 		if (cache_rt->ro_rt == NULL) {
1913 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1914 			return;
1915 		}
1916 	}
1917 	rt = cache_rt->ro_rt;
1918 
1919 	/*
1920 	 * Save the IP header and at most 8 bytes of the payload,
1921 	 * in case we need to generate an ICMP message to the src.
1922 	 *
1923 	 * XXX this can be optimized a lot by saving the data in a local
1924 	 * buffer on the stack (72 bytes at most), and only allocating the
1925 	 * mbuf if really necessary. The vast majority of the packets
1926 	 * are forwarded without having to send an ICMP back (either
1927 	 * because unnecessary, or because rate limited), so we are
1928 	 * really we are wasting a lot of work here.
1929 	 *
1930 	 * We don't use m_copy() because it might return a reference
1931 	 * to a shared cluster. Both this function and ip_output()
1932 	 * assume exclusive access to the IP header in `m', so any
1933 	 * data in a cluster may change before we reach icmp_error().
1934 	 */
1935 	MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1936 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1937 		/*
1938 		 * It's probably ok if the pkthdr dup fails (because
1939 		 * the deep copy of the tag chain failed), but for now
1940 		 * be conservative and just discard the copy since
1941 		 * code below may some day want the tags.
1942 		 */
1943 		m_free(mcopy);
1944 		mcopy = NULL;
1945 	}
1946 	if (mcopy != NULL) {
1947 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1948 		    (int)ip->ip_len);
1949 		mcopy->m_pkthdr.len = mcopy->m_len;
1950 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1951 	}
1952 
1953 	if (!ipstealth)
1954 		ip->ip_ttl -= IPTTLDEC;
1955 
1956 	/*
1957 	 * If forwarding packet using same interface that it came in on,
1958 	 * perhaps should send a redirect to sender to shortcut a hop.
1959 	 * Only send redirect if source is sending directly to us,
1960 	 * and if packet was not source routed (or has any options).
1961 	 * Also, don't send redirect if forwarding using a default route
1962 	 * or a route modified by a redirect.
1963 	 */
1964 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1965 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1966 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1967 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1968 		u_long src = ntohl(ip->ip_src.s_addr);
1969 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1970 
1971 		if (rt_ifa != NULL &&
1972 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1973 			if (rt->rt_flags & RTF_GATEWAY)
1974 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1975 			else
1976 				dest = pkt_dst.s_addr;
1977 			/*
1978 			 * Router requirements says to only send
1979 			 * host redirects.
1980 			 */
1981 			type = ICMP_REDIRECT;
1982 			code = ICMP_REDIRECT_HOST;
1983 #ifdef DIAGNOSTIC
1984 			if (ipprintfs)
1985 				kprintf("redirect (%d) to %x\n", code, dest);
1986 #endif
1987 		}
1988 	}
1989 
1990 	if (next_hop != NULL) {
1991 		/* Pass IPFORWARD info if available */
1992 		tag.mh_type = MT_TAG;
1993 		tag.mh_flags = PACKET_TAG_IPFORWARD;
1994 		tag.mh_data = (caddr_t)next_hop;
1995 		tag.mh_next = m;
1996 		m = (struct mbuf *)&tag;
1997 	}
1998 
1999 	error = ip_output(m, NULL, cache_rt, IP_FORWARDING, NULL,
2000 			  NULL);
2001 	if (error == 0) {
2002 		ipstat.ips_forward++;
2003 		if (type == 0) {
2004 			if (mcopy) {
2005 				ipflow_create(cache_rt, mcopy);
2006 				m_freem(mcopy);
2007 			}
2008 			return;		/* most common case */
2009 		} else {
2010 			ipstat.ips_redirectsent++;
2011 		}
2012 	} else {
2013 		ipstat.ips_cantforward++;
2014 	}
2015 
2016 	if (mcopy == NULL)
2017 		return;
2018 
2019 	/*
2020 	 * Send ICMP message.
2021 	 */
2022 
2023 	switch (error) {
2024 
2025 	case 0:				/* forwarded, but need redirect */
2026 		/* type, code set above */
2027 		break;
2028 
2029 	case ENETUNREACH:		/* shouldn't happen, checked above */
2030 	case EHOSTUNREACH:
2031 	case ENETDOWN:
2032 	case EHOSTDOWN:
2033 	default:
2034 		type = ICMP_UNREACH;
2035 		code = ICMP_UNREACH_HOST;
2036 		break;
2037 
2038 	case EMSGSIZE:
2039 		type = ICMP_UNREACH;
2040 		code = ICMP_UNREACH_NEEDFRAG;
2041 #ifdef IPSEC
2042 		/*
2043 		 * If the packet is routed over IPsec tunnel, tell the
2044 		 * originator the tunnel MTU.
2045 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2046 		 * XXX quickhack!!!
2047 		 */
2048 		if (cache_rt->ro_rt != NULL) {
2049 			struct secpolicy *sp = NULL;
2050 			int ipsecerror;
2051 			int ipsechdr;
2052 			struct route *ro;
2053 
2054 			sp = ipsec4_getpolicybyaddr(mcopy,
2055 						    IPSEC_DIR_OUTBOUND,
2056 						    IP_FORWARDING,
2057 						    &ipsecerror);
2058 
2059 			if (sp == NULL)
2060 				destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2061 			else {
2062 				/* count IPsec header size */
2063 				ipsechdr = ipsec4_hdrsiz(mcopy,
2064 							 IPSEC_DIR_OUTBOUND,
2065 							 NULL);
2066 
2067 				/*
2068 				 * find the correct route for outer IPv4
2069 				 * header, compute tunnel MTU.
2070 				 *
2071 				 */
2072 				if (sp->req != NULL && sp->req->sav != NULL &&
2073 				    sp->req->sav->sah != NULL) {
2074 					ro = &sp->req->sav->sah->sa_route;
2075 					if (ro->ro_rt != NULL &&
2076 					    ro->ro_rt->rt_ifp != NULL) {
2077 						destmtu =
2078 						    ro->ro_rt->rt_ifp->if_mtu;
2079 						destmtu -= ipsechdr;
2080 					}
2081 				}
2082 
2083 				key_freesp(sp);
2084 			}
2085 		}
2086 #elif FAST_IPSEC
2087 		/*
2088 		 * If the packet is routed over IPsec tunnel, tell the
2089 		 * originator the tunnel MTU.
2090 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2091 		 * XXX quickhack!!!
2092 		 */
2093 		if (cache_rt->ro_rt != NULL) {
2094 			struct secpolicy *sp = NULL;
2095 			int ipsecerror;
2096 			int ipsechdr;
2097 			struct route *ro;
2098 
2099 			sp = ipsec_getpolicybyaddr(mcopy,
2100 						   IPSEC_DIR_OUTBOUND,
2101 						   IP_FORWARDING,
2102 						   &ipsecerror);
2103 
2104 			if (sp == NULL)
2105 				destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2106 			else {
2107 				/* count IPsec header size */
2108 				ipsechdr = ipsec4_hdrsiz(mcopy,
2109 							 IPSEC_DIR_OUTBOUND,
2110 							 NULL);
2111 
2112 				/*
2113 				 * find the correct route for outer IPv4
2114 				 * header, compute tunnel MTU.
2115 				 */
2116 
2117 				if (sp->req != NULL &&
2118 				    sp->req->sav != NULL &&
2119 				    sp->req->sav->sah != NULL) {
2120 					ro = &sp->req->sav->sah->sa_route;
2121 					if (ro->ro_rt != NULL &&
2122 					    ro->ro_rt->rt_ifp != NULL) {
2123 						destmtu =
2124 						    ro->ro_rt->rt_ifp->if_mtu;
2125 						destmtu -= ipsechdr;
2126 					}
2127 				}
2128 
2129 				KEY_FREESP(&sp);
2130 			}
2131 		}
2132 #else /* !IPSEC && !FAST_IPSEC */
2133 		if (cache_rt->ro_rt != NULL)
2134 			destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2135 #endif /*IPSEC*/
2136 		ipstat.ips_cantfrag++;
2137 		break;
2138 
2139 	case ENOBUFS:
2140 		/*
2141 		 * A router should not generate ICMP_SOURCEQUENCH as
2142 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2143 		 * Source quench could be a big problem under DoS attacks,
2144 		 * or if the underlying interface is rate-limited.
2145 		 * Those who need source quench packets may re-enable them
2146 		 * via the net.inet.ip.sendsourcequench sysctl.
2147 		 */
2148 		if (!ip_sendsourcequench) {
2149 			m_freem(mcopy);
2150 			return;
2151 		} else {
2152 			type = ICMP_SOURCEQUENCH;
2153 			code = 0;
2154 		}
2155 		break;
2156 
2157 	case EACCES:			/* ipfw denied packet */
2158 		m_freem(mcopy);
2159 		return;
2160 	}
2161 	icmp_error(mcopy, type, code, dest, destmtu);
2162 }
2163 
2164 void
2165 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2166 	       struct mbuf *m)
2167 {
2168 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2169 		struct timeval tv;
2170 
2171 		microtime(&tv);
2172 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2173 		    SCM_TIMESTAMP, SOL_SOCKET);
2174 		if (*mp)
2175 			mp = &(*mp)->m_next;
2176 	}
2177 	if (inp->inp_flags & INP_RECVDSTADDR) {
2178 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2179 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2180 		if (*mp)
2181 			mp = &(*mp)->m_next;
2182 	}
2183 	if (inp->inp_flags & INP_RECVTTL) {
2184 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2185 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2186 		if (*mp)
2187 			mp = &(*mp)->m_next;
2188 	}
2189 #ifdef notyet
2190 	/* XXX
2191 	 * Moving these out of udp_input() made them even more broken
2192 	 * than they already were.
2193 	 */
2194 	/* options were tossed already */
2195 	if (inp->inp_flags & INP_RECVOPTS) {
2196 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2197 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2198 		if (*mp)
2199 			mp = &(*mp)->m_next;
2200 	}
2201 	/* ip_srcroute doesn't do what we want here, need to fix */
2202 	if (inp->inp_flags & INP_RECVRETOPTS) {
2203 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2204 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2205 		if (*mp)
2206 			mp = &(*mp)->m_next;
2207 	}
2208 #endif
2209 	if (inp->inp_flags & INP_RECVIF) {
2210 		struct ifnet *ifp;
2211 		struct sdlbuf {
2212 			struct sockaddr_dl sdl;
2213 			u_char	pad[32];
2214 		} sdlbuf;
2215 		struct sockaddr_dl *sdp;
2216 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2217 
2218 		if (((ifp = m->m_pkthdr.rcvif)) &&
2219 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2220 			sdp = IF_LLSOCKADDR(ifp);
2221 			/*
2222 			 * Change our mind and don't try copy.
2223 			 */
2224 			if ((sdp->sdl_family != AF_LINK) ||
2225 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2226 				goto makedummy;
2227 			}
2228 			bcopy(sdp, sdl2, sdp->sdl_len);
2229 		} else {
2230 makedummy:
2231 			sdl2->sdl_len =
2232 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2233 			sdl2->sdl_family = AF_LINK;
2234 			sdl2->sdl_index = 0;
2235 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2236 		}
2237 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2238 			IP_RECVIF, IPPROTO_IP);
2239 		if (*mp)
2240 			mp = &(*mp)->m_next;
2241 	}
2242 }
2243 
2244 /*
2245  * XXX these routines are called from the upper part of the kernel.
2246  *
2247  * They could also be moved to ip_mroute.c, since all the RSVP
2248  *  handling is done there already.
2249  */
2250 int
2251 ip_rsvp_init(struct socket *so)
2252 {
2253 	if (so->so_type != SOCK_RAW ||
2254 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2255 		return EOPNOTSUPP;
2256 
2257 	if (ip_rsvpd != NULL)
2258 		return EADDRINUSE;
2259 
2260 	ip_rsvpd = so;
2261 	/*
2262 	 * This may seem silly, but we need to be sure we don't over-increment
2263 	 * the RSVP counter, in case something slips up.
2264 	 */
2265 	if (!ip_rsvp_on) {
2266 		ip_rsvp_on = 1;
2267 		rsvp_on++;
2268 	}
2269 
2270 	return 0;
2271 }
2272 
2273 int
2274 ip_rsvp_done(void)
2275 {
2276 	ip_rsvpd = NULL;
2277 	/*
2278 	 * This may seem silly, but we need to be sure we don't over-decrement
2279 	 * the RSVP counter, in case something slips up.
2280 	 */
2281 	if (ip_rsvp_on) {
2282 		ip_rsvp_on = 0;
2283 		rsvp_on--;
2284 	}
2285 	return 0;
2286 }
2287 
2288 void
2289 rsvp_input(struct mbuf *m, ...)	/* XXX must fixup manually */
2290 {
2291 	int off, proto;
2292 	__va_list ap;
2293 
2294 	__va_start(ap, m);
2295 	off = __va_arg(ap, int);
2296 	proto = __va_arg(ap, int);
2297 	__va_end(ap);
2298 
2299 	if (rsvp_input_p) { /* call the real one if loaded */
2300 		rsvp_input_p(m, off, proto);
2301 		return;
2302 	}
2303 
2304 	/* Can still get packets with rsvp_on = 0 if there is a local member
2305 	 * of the group to which the RSVP packet is addressed.  But in this
2306 	 * case we want to throw the packet away.
2307 	 */
2308 
2309 	if (!rsvp_on) {
2310 		m_freem(m);
2311 		return;
2312 	}
2313 
2314 	if (ip_rsvpd != NULL) {
2315 		rip_input(m, off, proto);
2316 		return;
2317 	}
2318 	/* Drop the packet */
2319 	m_freem(m);
2320 }
2321