xref: /dragonfly/sys/netinet/ip_input.c (revision 768af85b)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
67  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68  * $DragonFly: src/sys/netinet/ip_input.c,v 1.115 2008/10/28 07:09:26 sephe Exp $
69  */
70 
71 #define	_IP_VHL
72 
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
96 #include <sys/lock.h>
97 
98 #include <sys/mplock2.h>
99 
100 #include <machine/stdarg.h>
101 
102 #include <net/if.h>
103 #include <net/if_types.h>
104 #include <net/if_var.h>
105 #include <net/if_dl.h>
106 #include <net/pfil.h>
107 #include <net/route.h>
108 #include <net/netisr.h>
109 
110 #include <netinet/in.h>
111 #include <netinet/in_systm.h>
112 #include <netinet/in_var.h>
113 #include <netinet/ip.h>
114 #include <netinet/in_pcb.h>
115 #include <netinet/ip_var.h>
116 #include <netinet/ip_icmp.h>
117 #include <netinet/ip_divert.h>
118 #include <netinet/ip_flow.h>
119 
120 #include <sys/thread2.h>
121 #include <sys/msgport2.h>
122 #include <net/netmsg2.h>
123 
124 #include <sys/socketvar.h>
125 
126 #include <net/ipfw/ip_fw.h>
127 #include <net/dummynet/ip_dummynet.h>
128 
129 #ifdef IPSEC
130 #include <netinet6/ipsec.h>
131 #include <netproto/key/key.h>
132 #endif
133 
134 #ifdef FAST_IPSEC
135 #include <netproto/ipsec/ipsec.h>
136 #include <netproto/ipsec/key.h>
137 #endif
138 
139 int rsvp_on = 0;
140 static int ip_rsvp_on;
141 struct socket *ip_rsvpd;
142 
143 int ip_mpsafe = 1;
144 TUNABLE_INT("net.inet.ip.mpsafe", &ip_mpsafe);
145 
146 int ipforwarding = 0;
147 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
148     &ipforwarding, 0, "Enable IP forwarding between interfaces");
149 
150 static int ipsendredirects = 1; /* XXX */
151 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
152     &ipsendredirects, 0, "Enable sending IP redirects");
153 
154 int ip_defttl = IPDEFTTL;
155 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
156     &ip_defttl, 0, "Maximum TTL on IP packets");
157 
158 static int ip_dosourceroute = 0;
159 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
160     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
161 
162 static int ip_acceptsourceroute = 0;
163 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
164     CTLFLAG_RW, &ip_acceptsourceroute, 0,
165     "Enable accepting source routed IP packets");
166 
167 static int ip_keepfaith = 0;
168 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
169     &ip_keepfaith, 0,
170     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
171 
172 static int nipq = 0;	/* total # of reass queues */
173 static int maxnipq;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
175     &maxnipq, 0,
176     "Maximum number of IPv4 fragment reassembly queue entries");
177 
178 static int maxfragsperpacket;
179 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
180     &maxfragsperpacket, 0,
181     "Maximum number of IPv4 fragments allowed per packet");
182 
183 static int ip_sendsourcequench = 0;
184 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
185     &ip_sendsourcequench, 0,
186     "Enable the transmission of source quench packets");
187 
188 int ip_do_randomid = 1;
189 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
190     &ip_do_randomid, 0,
191     "Assign random ip_id values");
192 /*
193  * XXX - Setting ip_checkinterface mostly implements the receive side of
194  * the Strong ES model described in RFC 1122, but since the routing table
195  * and transmit implementation do not implement the Strong ES model,
196  * setting this to 1 results in an odd hybrid.
197  *
198  * XXX - ip_checkinterface currently must be disabled if you use ipnat
199  * to translate the destination address to another local interface.
200  *
201  * XXX - ip_checkinterface must be disabled if you add IP aliases
202  * to the loopback interface instead of the interface where the
203  * packets for those addresses are received.
204  */
205 static int ip_checkinterface = 0;
206 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
207     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
208 
209 #ifdef DIAGNOSTIC
210 static int ipprintfs = 0;
211 #endif
212 
213 extern	int udp_mpsafe_proto;
214 extern	int tcp_mpsafe_proto;
215 
216 extern	struct domain inetdomain;
217 extern	struct protosw inetsw[];
218 u_char	ip_protox[IPPROTO_MAX];
219 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
220 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
221 						/* inet addr hash table */
222 u_long	in_ifaddrhmask;				/* mask for hash table */
223 
224 struct ip_stats ipstats_percpu[MAXCPU];
225 #ifdef SMP
226 static int
227 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
228 {
229 	int cpu, error = 0;
230 
231 	for (cpu = 0; cpu < ncpus; ++cpu) {
232 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
233 					sizeof(struct ip_stats))))
234 			break;
235 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
236 				       sizeof(struct ip_stats))))
237 			break;
238 	}
239 
240 	return (error);
241 }
242 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
243     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
244 #else
245 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
246     &ipstat, ip_stats, "IP statistics");
247 #endif
248 
249 /* Packet reassembly stuff */
250 #define	IPREASS_NHASH_LOG2	6
251 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
252 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
253 #define	IPREASS_HASH(x,y)						\
254     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
255 
256 static struct ipq ipq[IPREASS_NHASH];
257 
258 #ifdef IPCTL_DEFMTU
259 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
260     &ip_mtu, 0, "Default MTU");
261 #endif
262 
263 #ifdef IPSTEALTH
264 static int ipstealth = 0;
265 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
266 #else
267 static const int ipstealth = 0;
268 #endif
269 
270 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
271 
272 struct pfil_head inet_pfil_hook;
273 
274 /*
275  * struct ip_srcrt_opt is used to store packet state while it travels
276  * through the stack.
277  *
278  * XXX Note that the code even makes assumptions on the size and
279  * alignment of fields inside struct ip_srcrt so e.g. adding some
280  * fields will break the code.  This needs to be fixed.
281  *
282  * We need to save the IP options in case a protocol wants to respond
283  * to an incoming packet over the same route if the packet got here
284  * using IP source routing.  This allows connection establishment and
285  * maintenance when the remote end is on a network that is not known
286  * to us.
287  */
288 struct ip_srcrt {
289 	struct	in_addr dst;			/* final destination */
290 	char	nop;				/* one NOP to align */
291 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
292 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
293 };
294 
295 struct ip_srcrt_opt {
296 	int		ip_nhops;
297 	struct ip_srcrt	ip_srcrt;
298 };
299 
300 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
301 static struct malloc_pipe ipq_mpipe;
302 
303 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
304 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
305 static void		ip_freef(struct ipq *);
306 static void		ip_input_handler(struct netmsg *);
307 
308 /*
309  * IP initialization: fill in IP protocol switch table.
310  * All protocols not implemented in kernel go to raw IP protocol handler.
311  */
312 void
313 ip_init(void)
314 {
315 	struct protosw *pr;
316 	uint32_t flags;
317 	int i;
318 #ifdef SMP
319 	int cpu;
320 #endif
321 
322 	/*
323 	 * Make sure we can handle a reasonable number of fragments but
324 	 * cap it at 4000 (XXX).
325 	 */
326 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
327 		    IFQ_MAXLEN, 4000, 0, NULL);
328 	for (i = 0; i < ncpus; ++i) {
329 		TAILQ_INIT(&in_ifaddrheads[i]);
330 		in_ifaddrhashtbls[i] =
331 			hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
332 	}
333 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
334 	if (pr == NULL)
335 		panic("ip_init");
336 	for (i = 0; i < IPPROTO_MAX; i++)
337 		ip_protox[i] = pr - inetsw;
338 	for (pr = inetdomain.dom_protosw;
339 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
340 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
341 			if (pr->pr_protocol != IPPROTO_RAW)
342 				ip_protox[pr->pr_protocol] = pr - inetsw;
343 
344 			/* XXX */
345 			switch (pr->pr_protocol) {
346 			case IPPROTO_TCP:
347 				if (tcp_mpsafe_proto)
348 					pr->pr_flags |= PR_MPSAFE;
349 				break;
350 
351 			case IPPROTO_UDP:
352 				if (udp_mpsafe_proto)
353 					pr->pr_flags |= PR_MPSAFE;
354 				break;
355 			}
356 		}
357 	}
358 
359 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
360 	inet_pfil_hook.ph_af = AF_INET;
361 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
362 		kprintf("%s: WARNING: unable to register pfil hook, "
363 			"error %d\n", __func__, i);
364 	}
365 
366 	for (i = 0; i < IPREASS_NHASH; i++)
367 		ipq[i].next = ipq[i].prev = &ipq[i];
368 
369 	maxnipq = nmbclusters / 32;
370 	maxfragsperpacket = 16;
371 
372 	ip_id = time_second & 0xffff;
373 
374 	/*
375 	 * Initialize IP statistics counters for each CPU.
376 	 *
377 	 */
378 #ifdef SMP
379 	for (cpu = 0; cpu < ncpus; ++cpu) {
380 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
381 	}
382 #else
383 	bzero(&ipstat, sizeof(struct ip_stats));
384 #endif
385 
386 #if defined(IPSEC) || defined(FAST_IPSEC)
387 	/* XXX IPSEC is not MPSAFE yet */
388 	flags = NETISR_FLAG_NOTMPSAFE;
389 #else
390 	if (ip_mpsafe) {
391 		kprintf("ip: MPSAFE\n");
392 		flags = NETISR_FLAG_MPSAFE;
393 	} else {
394 		flags = NETISR_FLAG_NOTMPSAFE;
395 	}
396 #endif
397 	netisr_register(NETISR_IP, ip_mport_in, ip_mport_pktinfo,
398 			ip_input_handler, flags);
399 }
400 
401 /* Do transport protocol processing. */
402 static void
403 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
404 {
405 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
406 
407 	/*
408 	 * Switch out to protocol's input routine.
409 	 */
410 	PR_GET_MPLOCK(pr);
411 	pr->pr_input(m, hlen, ip->ip_p);
412 	PR_REL_MPLOCK(pr);
413 }
414 
415 static void
416 transport_processing_handler(netmsg_t netmsg)
417 {
418 	struct netmsg_packet *pmsg = (struct netmsg_packet *)netmsg;
419 	struct ip *ip;
420 	int hlen;
421 
422 	ip = mtod(pmsg->nm_packet, struct ip *);
423 	hlen = pmsg->nm_netmsg.nm_lmsg.u.ms_result;
424 
425 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
426 	/* netmsg was embedded in the mbuf, do not reply! */
427 }
428 
429 static void
430 ip_input_handler(struct netmsg *msg0)
431 {
432 	struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
433 
434 	ip_input(m);
435 	/* msg0 was embedded in the mbuf, do not reply! */
436 }
437 
438 /*
439  * IP input routine.  Checksum and byte swap header.  If fragmented
440  * try to reassemble.  Process options.  Pass to next level.
441  */
442 void
443 ip_input(struct mbuf *m)
444 {
445 	struct ip *ip;
446 	struct in_ifaddr *ia = NULL;
447 	struct in_ifaddr_container *iac;
448 	int hlen, checkif;
449 	u_short sum;
450 	struct in_addr pkt_dst;
451 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
452 	boolean_t needredispatch = FALSE;
453 	struct in_addr odst;			/* original dst address(NAT) */
454 	struct m_tag *mtag;
455 	struct sockaddr_in *next_hop = NULL;
456 #ifdef FAST_IPSEC
457 	struct tdb_ident *tdbi;
458 	struct secpolicy *sp;
459 	int error;
460 #endif
461 
462 	M_ASSERTPKTHDR(m);
463 
464 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
465 		/* Next hop */
466 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
467 		KKASSERT(mtag != NULL);
468 		next_hop = m_tag_data(mtag);
469 	}
470 
471 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
472 		/* dummynet already filtered us */
473 		ip = mtod(m, struct ip *);
474 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
475 		goto iphack;
476 	}
477 
478 	ipstat.ips_total++;
479 
480 	/* length checks already done in ip_mport() */
481 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
482 	ip = mtod(m, struct ip *);
483 
484 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
485 		ipstat.ips_badvers++;
486 		goto bad;
487 	}
488 
489 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
490 	/* length checks already done in ip_mport() */
491 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
492 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
493 
494 	/* 127/8 must not appear on wire - RFC1122 */
495 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
496 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
497 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
498 			ipstat.ips_badaddr++;
499 			goto bad;
500 		}
501 	}
502 
503 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
504 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
505 	} else {
506 		if (hlen == sizeof(struct ip))
507 			sum = in_cksum_hdr(ip);
508 		else
509 			sum = in_cksum(m, hlen);
510 	}
511 	if (sum != 0) {
512 		ipstat.ips_badsum++;
513 		goto bad;
514 	}
515 
516 #ifdef ALTQ
517 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
518 		/* packet is dropped by traffic conditioner */
519 		return;
520 	}
521 #endif
522 	/*
523 	 * Convert fields to host representation.
524 	 */
525 	ip->ip_len = ntohs(ip->ip_len);
526 	ip->ip_off = ntohs(ip->ip_off);
527 
528 	/* length checks already done in ip_mport() */
529 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
530 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
531 
532 	/*
533 	 * Trim mbufs if longer than the IP header would have us expect.
534 	 */
535 	if (m->m_pkthdr.len > ip->ip_len) {
536 		if (m->m_len == m->m_pkthdr.len) {
537 			m->m_len = ip->ip_len;
538 			m->m_pkthdr.len = ip->ip_len;
539 		} else {
540 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
541 		}
542 	}
543 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
544 	/*
545 	 * Bypass packet filtering for packets from a tunnel (gif).
546 	 */
547 	if (ipsec_gethist(m, NULL))
548 		goto pass;
549 #endif
550 
551 	/*
552 	 * IpHack's section.
553 	 * Right now when no processing on packet has done
554 	 * and it is still fresh out of network we do our black
555 	 * deals with it.
556 	 * - Firewall: deny/allow/divert
557 	 * - Xlate: translate packet's addr/port (NAT).
558 	 * - Pipe: pass pkt through dummynet.
559 	 * - Wrap: fake packet's addr/port <unimpl.>
560 	 * - Encapsulate: put it in another IP and send out. <unimp.>
561 	 */
562 
563 iphack:
564 	/*
565 	 * If we've been forwarded from the output side, then
566 	 * skip the firewall a second time
567 	 */
568 	if (next_hop != NULL)
569 		goto ours;
570 
571 	/* No pfil hooks */
572 	if (!pfil_has_hooks(&inet_pfil_hook)) {
573 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
574 			/*
575 			 * Strip dummynet tags from stranded packets
576 			 */
577 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
578 			KKASSERT(mtag != NULL);
579 			m_tag_delete(m, mtag);
580 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
581 		}
582 		goto pass;
583 	}
584 
585 	/*
586 	 * Run through list of hooks for input packets.
587 	 *
588 	 * NB: Beware of the destination address changing (e.g.
589 	 *     by NAT rewriting). When this happens, tell
590 	 *     ip_forward to do the right thing.
591 	 */
592 	odst = ip->ip_dst;
593 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
594 		return;
595 	if (m == NULL)	/* consumed by filter */
596 		return;
597 	ip = mtod(m, struct ip *);
598 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
599 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
600 
601 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
602 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
603 		KKASSERT(mtag != NULL);
604 		next_hop = m_tag_data(mtag);
605 	}
606 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
607 		ip_dn_queue(m);
608 		return;
609 	}
610 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
611 		needredispatch = TRUE;
612 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
613 	}
614 pass:
615 	/*
616 	 * Process options and, if not destined for us,
617 	 * ship it on.  ip_dooptions returns 1 when an
618 	 * error was detected (causing an icmp message
619 	 * to be sent and the original packet to be freed).
620 	 */
621 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
622 		return;
623 
624 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
625 	 * matter if it is destined to another node, or whether it is
626 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
627 	 * anywhere else. Also checks if the rsvp daemon is running before
628 	 * grabbing the packet.
629 	 */
630 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
631 		goto ours;
632 
633 	/*
634 	 * Check our list of addresses, to see if the packet is for us.
635 	 * If we don't have any addresses, assume any unicast packet
636 	 * we receive might be for us (and let the upper layers deal
637 	 * with it).
638 	 */
639 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
640 	    !(m->m_flags & (M_MCAST | M_BCAST)))
641 		goto ours;
642 
643 	/*
644 	 * Cache the destination address of the packet; this may be
645 	 * changed by use of 'ipfw fwd'.
646 	 */
647 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
648 
649 	/*
650 	 * Enable a consistency check between the destination address
651 	 * and the arrival interface for a unicast packet (the RFC 1122
652 	 * strong ES model) if IP forwarding is disabled and the packet
653 	 * is not locally generated and the packet is not subject to
654 	 * 'ipfw fwd'.
655 	 *
656 	 * XXX - Checking also should be disabled if the destination
657 	 * address is ipnat'ed to a different interface.
658 	 *
659 	 * XXX - Checking is incompatible with IP aliases added
660 	 * to the loopback interface instead of the interface where
661 	 * the packets are received.
662 	 */
663 	checkif = ip_checkinterface &&
664 		  !ipforwarding &&
665 		  m->m_pkthdr.rcvif != NULL &&
666 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
667 		  next_hop == NULL;
668 
669 	/*
670 	 * Check for exact addresses in the hash bucket.
671 	 */
672 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
673 		ia = iac->ia;
674 
675 		/*
676 		 * If the address matches, verify that the packet
677 		 * arrived via the correct interface if checking is
678 		 * enabled.
679 		 */
680 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
681 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
682 			goto ours;
683 	}
684 	ia = NULL;
685 
686 	/*
687 	 * Check for broadcast addresses.
688 	 *
689 	 * Only accept broadcast packets that arrive via the matching
690 	 * interface.  Reception of forwarded directed broadcasts would
691 	 * be handled via ip_forward() and ether_output() with the loopback
692 	 * into the stack for SIMPLEX interfaces handled by ether_output().
693 	 */
694 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
695 		struct ifaddr_container *ifac;
696 
697 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
698 			      ifa_link) {
699 			struct ifaddr *ifa = ifac->ifa;
700 
701 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
702 				continue;
703 			if (ifa->ifa_addr->sa_family != AF_INET)
704 				continue;
705 			ia = ifatoia(ifa);
706 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
707 								pkt_dst.s_addr)
708 				goto ours;
709 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
710 				goto ours;
711 #ifdef BOOTP_COMPAT
712 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
713 				goto ours;
714 #endif
715 		}
716 	}
717 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
718 		struct in_multi *inm;
719 
720 		/* XXX Multicast is not MPSAFE yet */
721 		get_mplock();
722 
723 		if (ip_mrouter != NULL) {
724 			/*
725 			 * If we are acting as a multicast router, all
726 			 * incoming multicast packets are passed to the
727 			 * kernel-level multicast forwarding function.
728 			 * The packet is returned (relatively) intact; if
729 			 * ip_mforward() returns a non-zero value, the packet
730 			 * must be discarded, else it may be accepted below.
731 			 */
732 			if (ip_mforward != NULL &&
733 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
734 				rel_mplock();
735 				ipstat.ips_cantforward++;
736 				m_freem(m);
737 				return;
738 			}
739 
740 			/*
741 			 * The process-level routing daemon needs to receive
742 			 * all multicast IGMP packets, whether or not this
743 			 * host belongs to their destination groups.
744 			 */
745 			if (ip->ip_p == IPPROTO_IGMP) {
746 				rel_mplock();
747 				goto ours;
748 			}
749 			ipstat.ips_forward++;
750 		}
751 		/*
752 		 * See if we belong to the destination multicast group on the
753 		 * arrival interface.
754 		 */
755 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
756 		if (inm == NULL) {
757 			rel_mplock();
758 			ipstat.ips_notmember++;
759 			m_freem(m);
760 			return;
761 		}
762 
763 		rel_mplock();
764 		goto ours;
765 	}
766 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
767 		goto ours;
768 	if (ip->ip_dst.s_addr == INADDR_ANY)
769 		goto ours;
770 
771 	/*
772 	 * FAITH(Firewall Aided Internet Translator)
773 	 */
774 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
775 		if (ip_keepfaith) {
776 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
777 				goto ours;
778 		}
779 		m_freem(m);
780 		return;
781 	}
782 
783 	/*
784 	 * Not for us; forward if possible and desirable.
785 	 */
786 	if (!ipforwarding) {
787 		ipstat.ips_cantforward++;
788 		m_freem(m);
789 	} else {
790 #ifdef IPSEC
791 		/*
792 		 * Enforce inbound IPsec SPD.
793 		 */
794 		if (ipsec4_in_reject(m, NULL)) {
795 			ipsecstat.in_polvio++;
796 			goto bad;
797 		}
798 #endif
799 #ifdef FAST_IPSEC
800 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
801 		crit_enter();
802 		if (mtag != NULL) {
803 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
804 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
805 		} else {
806 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
807 						   IP_FORWARDING, &error);
808 		}
809 		if (sp == NULL) {	/* NB: can happen if error */
810 			crit_exit();
811 			/*XXX error stat???*/
812 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
813 			goto bad;
814 		}
815 
816 		/*
817 		 * Check security policy against packet attributes.
818 		 */
819 		error = ipsec_in_reject(sp, m);
820 		KEY_FREESP(&sp);
821 		crit_exit();
822 		if (error) {
823 			ipstat.ips_cantforward++;
824 			goto bad;
825 		}
826 #endif
827 		ip_forward(m, using_srcrt, next_hop);
828 	}
829 	return;
830 
831 ours:
832 
833 	/*
834 	 * IPSTEALTH: Process non-routing options only
835 	 * if the packet is destined for us.
836 	 */
837 	if (ipstealth &&
838 	    hlen > sizeof(struct ip) &&
839 	    ip_dooptions(m, 1, next_hop))
840 		return;
841 
842 	/* Count the packet in the ip address stats */
843 	if (ia != NULL) {
844 		ia->ia_ifa.if_ipackets++;
845 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
846 	}
847 
848 	/*
849 	 * If offset or IP_MF are set, must reassemble.
850 	 * Otherwise, nothing need be done.
851 	 * (We could look in the reassembly queue to see
852 	 * if the packet was previously fragmented,
853 	 * but it's not worth the time; just let them time out.)
854 	 */
855 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
856 		/*
857 		 * Attempt reassembly; if it succeeds, proceed.
858 		 * ip_reass() will return a different mbuf.
859 		 */
860 		m = ip_reass(m);
861 		if (m == NULL)
862 			return;
863 		ip = mtod(m, struct ip *);
864 
865 		/* Get the header length of the reassembled packet */
866 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
867 
868 		needredispatch = TRUE;
869 	} else {
870 		ip->ip_len -= hlen;
871 	}
872 
873 #ifdef IPSEC
874 	/*
875 	 * enforce IPsec policy checking if we are seeing last header.
876 	 * note that we do not visit this with protocols with pcb layer
877 	 * code - like udp/tcp/raw ip.
878 	 */
879 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
880 	    ipsec4_in_reject(m, NULL)) {
881 		ipsecstat.in_polvio++;
882 		goto bad;
883 	}
884 #endif
885 #if FAST_IPSEC
886 	/*
887 	 * enforce IPsec policy checking if we are seeing last header.
888 	 * note that we do not visit this with protocols with pcb layer
889 	 * code - like udp/tcp/raw ip.
890 	 */
891 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
892 		/*
893 		 * Check if the packet has already had IPsec processing
894 		 * done.  If so, then just pass it along.  This tag gets
895 		 * set during AH, ESP, etc. input handling, before the
896 		 * packet is returned to the ip input queue for delivery.
897 		 */
898 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
899 		crit_enter();
900 		if (mtag != NULL) {
901 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
902 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
903 		} else {
904 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
905 						   IP_FORWARDING, &error);
906 		}
907 		if (sp != NULL) {
908 			/*
909 			 * Check security policy against packet attributes.
910 			 */
911 			error = ipsec_in_reject(sp, m);
912 			KEY_FREESP(&sp);
913 		} else {
914 			/* XXX error stat??? */
915 			error = EINVAL;
916 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
917 			goto bad;
918 		}
919 		crit_exit();
920 		if (error)
921 			goto bad;
922 	}
923 #endif /* FAST_IPSEC */
924 
925 	/*
926 	 * NOTE: ip_len in host form and adjusted down by hlen for
927 	 *	 protocol processing.
928 	 */
929 	ipstat.ips_delivered++;
930 	if (needredispatch) {
931 		struct netmsg_packet *pmsg;
932 		lwkt_port_t port;
933 
934 		ip->ip_off = htons(ip->ip_off);
935 		ip->ip_len = htons(ip->ip_len + hlen);
936 		port = ip_mport_in(&m);
937 		if (port == NULL)
938 			return;
939 
940 		pmsg = &m->m_hdr.mh_netmsg;
941 		netmsg_init(&pmsg->nm_netmsg, NULL, &netisr_apanic_rport,
942 			    MSGF_MPSAFE, transport_processing_handler);
943 		pmsg->nm_packet = m;
944 		pmsg->nm_netmsg.nm_lmsg.u.ms_result = hlen;
945 
946 		ip = mtod(m, struct ip *);
947 		ip->ip_len = ntohs(ip->ip_len) - hlen;
948 		ip->ip_off = ntohs(ip->ip_off);
949 		lwkt_sendmsg(port, &pmsg->nm_netmsg.nm_lmsg);
950 	} else {
951 		transport_processing_oncpu(m, hlen, ip);
952 	}
953 	return;
954 
955 bad:
956 	m_freem(m);
957 }
958 
959 /*
960  * Take incoming datagram fragment and try to reassemble it into
961  * whole datagram.  If a chain for reassembly of this datagram already
962  * exists, then it is given as fp; otherwise have to make a chain.
963  */
964 struct mbuf *
965 ip_reass(struct mbuf *m)
966 {
967 	struct ip *ip = mtod(m, struct ip *);
968 	struct mbuf *p = NULL, *q, *nq;
969 	struct mbuf *n;
970 	struct ipq *fp = NULL;
971 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
972 	int i, next;
973 	u_short sum;
974 
975 	/* If maxnipq is 0, never accept fragments. */
976 	if (maxnipq == 0) {
977 		ipstat.ips_fragments++;
978 		ipstat.ips_fragdropped++;
979 		m_freem(m);
980 		return NULL;
981 	}
982 
983 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
984 	/*
985 	 * Look for queue of fragments of this datagram.
986 	 */
987 	for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
988 		if (ip->ip_id == fp->ipq_id &&
989 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
990 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
991 		    ip->ip_p == fp->ipq_p)
992 			goto found;
993 
994 	fp = NULL;
995 
996 	/*
997 	 * Enforce upper bound on number of fragmented packets
998 	 * for which we attempt reassembly;
999 	 * If maxnipq is -1, accept all fragments without limitation.
1000 	 */
1001 	if (nipq > maxnipq && maxnipq > 0) {
1002 		/*
1003 		 * drop something from the tail of the current queue
1004 		 * before proceeding further
1005 		 */
1006 		if (ipq[sum].prev == &ipq[sum]) {   /* gak */
1007 			for (i = 0; i < IPREASS_NHASH; i++) {
1008 				if (ipq[i].prev != &ipq[i]) {
1009 					ipstat.ips_fragtimeout +=
1010 					    ipq[i].prev->ipq_nfrags;
1011 					ip_freef(ipq[i].prev);
1012 					break;
1013 				}
1014 			}
1015 		} else {
1016 			ipstat.ips_fragtimeout +=
1017 			    ipq[sum].prev->ipq_nfrags;
1018 			ip_freef(ipq[sum].prev);
1019 		}
1020 	}
1021 found:
1022 	/*
1023 	 * Adjust ip_len to not reflect header,
1024 	 * convert offset of this to bytes.
1025 	 */
1026 	ip->ip_len -= hlen;
1027 	if (ip->ip_off & IP_MF) {
1028 		/*
1029 		 * Make sure that fragments have a data length
1030 		 * that's a non-zero multiple of 8 bytes.
1031 		 */
1032 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1033 			ipstat.ips_toosmall++; /* XXX */
1034 			m_freem(m);
1035 			return NULL;
1036 		}
1037 		m->m_flags |= M_FRAG;
1038 	} else
1039 		m->m_flags &= ~M_FRAG;
1040 	ip->ip_off <<= 3;
1041 
1042 	ipstat.ips_fragments++;
1043 	m->m_pkthdr.header = ip;
1044 
1045 	/*
1046 	 * If the hardware has not done csum over this fragment
1047 	 * then csum_data is not valid at all.
1048 	 */
1049 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1050 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1051 		m->m_pkthdr.csum_data = 0;
1052 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1053 	}
1054 
1055 	/*
1056 	 * Presence of header sizes in mbufs
1057 	 * would confuse code below.
1058 	 */
1059 	m->m_data += hlen;
1060 	m->m_len -= hlen;
1061 
1062 	/*
1063 	 * If first fragment to arrive, create a reassembly queue.
1064 	 */
1065 	if (fp == NULL) {
1066 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1067 			goto dropfrag;
1068 		insque(fp, &ipq[sum]);
1069 		nipq++;
1070 		fp->ipq_nfrags = 1;
1071 		fp->ipq_ttl = IPFRAGTTL;
1072 		fp->ipq_p = ip->ip_p;
1073 		fp->ipq_id = ip->ip_id;
1074 		fp->ipq_src = ip->ip_src;
1075 		fp->ipq_dst = ip->ip_dst;
1076 		fp->ipq_frags = m;
1077 		m->m_nextpkt = NULL;
1078 		goto inserted;
1079 	} else {
1080 		fp->ipq_nfrags++;
1081 	}
1082 
1083 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1084 
1085 	/*
1086 	 * Find a segment which begins after this one does.
1087 	 */
1088 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1089 		if (GETIP(q)->ip_off > ip->ip_off)
1090 			break;
1091 
1092 	/*
1093 	 * If there is a preceding segment, it may provide some of
1094 	 * our data already.  If so, drop the data from the incoming
1095 	 * segment.  If it provides all of our data, drop us, otherwise
1096 	 * stick new segment in the proper place.
1097 	 *
1098 	 * If some of the data is dropped from the the preceding
1099 	 * segment, then it's checksum is invalidated.
1100 	 */
1101 	if (p) {
1102 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1103 		if (i > 0) {
1104 			if (i >= ip->ip_len)
1105 				goto dropfrag;
1106 			m_adj(m, i);
1107 			m->m_pkthdr.csum_flags = 0;
1108 			ip->ip_off += i;
1109 			ip->ip_len -= i;
1110 		}
1111 		m->m_nextpkt = p->m_nextpkt;
1112 		p->m_nextpkt = m;
1113 	} else {
1114 		m->m_nextpkt = fp->ipq_frags;
1115 		fp->ipq_frags = m;
1116 	}
1117 
1118 	/*
1119 	 * While we overlap succeeding segments trim them or,
1120 	 * if they are completely covered, dequeue them.
1121 	 */
1122 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1123 	     q = nq) {
1124 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1125 		if (i < GETIP(q)->ip_len) {
1126 			GETIP(q)->ip_len -= i;
1127 			GETIP(q)->ip_off += i;
1128 			m_adj(q, i);
1129 			q->m_pkthdr.csum_flags = 0;
1130 			break;
1131 		}
1132 		nq = q->m_nextpkt;
1133 		m->m_nextpkt = nq;
1134 		ipstat.ips_fragdropped++;
1135 		fp->ipq_nfrags--;
1136 		q->m_nextpkt = NULL;
1137 		m_freem(q);
1138 	}
1139 
1140 inserted:
1141 	/*
1142 	 * Check for complete reassembly and perform frag per packet
1143 	 * limiting.
1144 	 *
1145 	 * Frag limiting is performed here so that the nth frag has
1146 	 * a chance to complete the packet before we drop the packet.
1147 	 * As a result, n+1 frags are actually allowed per packet, but
1148 	 * only n will ever be stored. (n = maxfragsperpacket.)
1149 	 *
1150 	 */
1151 	next = 0;
1152 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1153 		if (GETIP(q)->ip_off != next) {
1154 			if (fp->ipq_nfrags > maxfragsperpacket) {
1155 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1156 				ip_freef(fp);
1157 			}
1158 			return (NULL);
1159 		}
1160 		next += GETIP(q)->ip_len;
1161 	}
1162 	/* Make sure the last packet didn't have the IP_MF flag */
1163 	if (p->m_flags & M_FRAG) {
1164 		if (fp->ipq_nfrags > maxfragsperpacket) {
1165 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1166 			ip_freef(fp);
1167 		}
1168 		return (NULL);
1169 	}
1170 
1171 	/*
1172 	 * Reassembly is complete.  Make sure the packet is a sane size.
1173 	 */
1174 	q = fp->ipq_frags;
1175 	ip = GETIP(q);
1176 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1177 		ipstat.ips_toolong++;
1178 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1179 		ip_freef(fp);
1180 		return (NULL);
1181 	}
1182 
1183 	/*
1184 	 * Concatenate fragments.
1185 	 */
1186 	m = q;
1187 	n = m->m_next;
1188 	m->m_next = NULL;
1189 	m_cat(m, n);
1190 	nq = q->m_nextpkt;
1191 	q->m_nextpkt = NULL;
1192 	for (q = nq; q != NULL; q = nq) {
1193 		nq = q->m_nextpkt;
1194 		q->m_nextpkt = NULL;
1195 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1196 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1197 		m_cat(m, q);
1198 	}
1199 
1200 	/*
1201 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1202 	 * be added back.  This assumes no more then 65535 packet fragments
1203 	 * were reassembled.  A second carry can also occur (but not a third).
1204 	 */
1205 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1206 				(m->m_pkthdr.csum_data >> 16);
1207 	if (m->m_pkthdr.csum_data > 0xFFFF)
1208 		m->m_pkthdr.csum_data -= 0xFFFF;
1209 
1210 	/*
1211 	 * Create header for new ip packet by
1212 	 * modifying header of first packet;
1213 	 * dequeue and discard fragment reassembly header.
1214 	 * Make header visible.
1215 	 */
1216 	ip->ip_len = next;
1217 	ip->ip_src = fp->ipq_src;
1218 	ip->ip_dst = fp->ipq_dst;
1219 	remque(fp);
1220 	nipq--;
1221 	mpipe_free(&ipq_mpipe, fp);
1222 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1223 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1224 	/* some debugging cruft by sklower, below, will go away soon */
1225 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1226 		int plen = 0;
1227 
1228 		for (n = m; n; n = n->m_next)
1229 			plen += n->m_len;
1230 		m->m_pkthdr.len = plen;
1231 	}
1232 
1233 	ipstat.ips_reassembled++;
1234 	return (m);
1235 
1236 dropfrag:
1237 	ipstat.ips_fragdropped++;
1238 	if (fp != NULL)
1239 		fp->ipq_nfrags--;
1240 	m_freem(m);
1241 	return (NULL);
1242 
1243 #undef GETIP
1244 }
1245 
1246 /*
1247  * Free a fragment reassembly header and all
1248  * associated datagrams.
1249  */
1250 static void
1251 ip_freef(struct ipq *fp)
1252 {
1253 	struct mbuf *q;
1254 
1255 	while (fp->ipq_frags) {
1256 		q = fp->ipq_frags;
1257 		fp->ipq_frags = q->m_nextpkt;
1258 		q->m_nextpkt = NULL;
1259 		m_freem(q);
1260 	}
1261 	remque(fp);
1262 	mpipe_free(&ipq_mpipe, fp);
1263 	nipq--;
1264 }
1265 
1266 /*
1267  * IP timer processing;
1268  * if a timer expires on a reassembly
1269  * queue, discard it.
1270  */
1271 void
1272 ip_slowtimo(void)
1273 {
1274 	struct ipq *fp;
1275 	int i;
1276 
1277 	crit_enter();
1278 	for (i = 0; i < IPREASS_NHASH; i++) {
1279 		fp = ipq[i].next;
1280 		if (fp == NULL)
1281 			continue;
1282 		while (fp != &ipq[i]) {
1283 			--fp->ipq_ttl;
1284 			fp = fp->next;
1285 			if (fp->prev->ipq_ttl == 0) {
1286 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1287 				ip_freef(fp->prev);
1288 			}
1289 		}
1290 	}
1291 	/*
1292 	 * If we are over the maximum number of fragments
1293 	 * (due to the limit being lowered), drain off
1294 	 * enough to get down to the new limit.
1295 	 */
1296 	if (maxnipq >= 0 && nipq > maxnipq) {
1297 		for (i = 0; i < IPREASS_NHASH; i++) {
1298 			while (nipq > maxnipq &&
1299 				(ipq[i].next != &ipq[i])) {
1300 				ipstat.ips_fragdropped +=
1301 				    ipq[i].next->ipq_nfrags;
1302 				ip_freef(ipq[i].next);
1303 			}
1304 		}
1305 	}
1306 	ipflow_slowtimo();
1307 	crit_exit();
1308 }
1309 
1310 /*
1311  * Drain off all datagram fragments.
1312  */
1313 void
1314 ip_drain(void)
1315 {
1316 	int i;
1317 
1318 	for (i = 0; i < IPREASS_NHASH; i++) {
1319 		while (ipq[i].next != &ipq[i]) {
1320 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1321 			ip_freef(ipq[i].next);
1322 		}
1323 	}
1324 	in_rtqdrain();
1325 }
1326 
1327 /*
1328  * Do option processing on a datagram,
1329  * possibly discarding it if bad options are encountered,
1330  * or forwarding it if source-routed.
1331  * The pass argument is used when operating in the IPSTEALTH
1332  * mode to tell what options to process:
1333  * [LS]SRR (pass 0) or the others (pass 1).
1334  * The reason for as many as two passes is that when doing IPSTEALTH,
1335  * non-routing options should be processed only if the packet is for us.
1336  * Returns 1 if packet has been forwarded/freed,
1337  * 0 if the packet should be processed further.
1338  */
1339 static int
1340 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1341 {
1342 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1343 	struct ip *ip = mtod(m, struct ip *);
1344 	u_char *cp;
1345 	struct in_ifaddr *ia;
1346 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1347 	boolean_t forward = FALSE;
1348 	struct in_addr *sin, dst;
1349 	n_time ntime;
1350 
1351 	dst = ip->ip_dst;
1352 	cp = (u_char *)(ip + 1);
1353 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1354 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1355 		opt = cp[IPOPT_OPTVAL];
1356 		if (opt == IPOPT_EOL)
1357 			break;
1358 		if (opt == IPOPT_NOP)
1359 			optlen = 1;
1360 		else {
1361 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1362 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1363 				goto bad;
1364 			}
1365 			optlen = cp[IPOPT_OLEN];
1366 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1367 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1368 				goto bad;
1369 			}
1370 		}
1371 		switch (opt) {
1372 
1373 		default:
1374 			break;
1375 
1376 		/*
1377 		 * Source routing with record.
1378 		 * Find interface with current destination address.
1379 		 * If none on this machine then drop if strictly routed,
1380 		 * or do nothing if loosely routed.
1381 		 * Record interface address and bring up next address
1382 		 * component.  If strictly routed make sure next
1383 		 * address is on directly accessible net.
1384 		 */
1385 		case IPOPT_LSRR:
1386 		case IPOPT_SSRR:
1387 			if (ipstealth && pass > 0)
1388 				break;
1389 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1390 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1391 				goto bad;
1392 			}
1393 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1394 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1395 				goto bad;
1396 			}
1397 			ipaddr.sin_addr = ip->ip_dst;
1398 			ia = (struct in_ifaddr *)
1399 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1400 			if (ia == NULL) {
1401 				if (opt == IPOPT_SSRR) {
1402 					type = ICMP_UNREACH;
1403 					code = ICMP_UNREACH_SRCFAIL;
1404 					goto bad;
1405 				}
1406 				if (!ip_dosourceroute)
1407 					goto nosourcerouting;
1408 				/*
1409 				 * Loose routing, and not at next destination
1410 				 * yet; nothing to do except forward.
1411 				 */
1412 				break;
1413 			}
1414 			off--;			/* 0 origin */
1415 			if (off > optlen - (int)sizeof(struct in_addr)) {
1416 				/*
1417 				 * End of source route.  Should be for us.
1418 				 */
1419 				if (!ip_acceptsourceroute)
1420 					goto nosourcerouting;
1421 				save_rte(m, cp, ip->ip_src);
1422 				break;
1423 			}
1424 			if (ipstealth)
1425 				goto dropit;
1426 			if (!ip_dosourceroute) {
1427 				if (ipforwarding) {
1428 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1429 
1430 					/*
1431 					 * Acting as a router, so generate ICMP
1432 					 */
1433 nosourcerouting:
1434 					strcpy(buf, inet_ntoa(ip->ip_dst));
1435 					log(LOG_WARNING,
1436 					    "attempted source route from %s to %s\n",
1437 					    inet_ntoa(ip->ip_src), buf);
1438 					type = ICMP_UNREACH;
1439 					code = ICMP_UNREACH_SRCFAIL;
1440 					goto bad;
1441 				} else {
1442 					/*
1443 					 * Not acting as a router,
1444 					 * so silently drop.
1445 					 */
1446 dropit:
1447 					ipstat.ips_cantforward++;
1448 					m_freem(m);
1449 					return (1);
1450 				}
1451 			}
1452 
1453 			/*
1454 			 * locate outgoing interface
1455 			 */
1456 			memcpy(&ipaddr.sin_addr, cp + off,
1457 			    sizeof ipaddr.sin_addr);
1458 
1459 			if (opt == IPOPT_SSRR) {
1460 #define	INA	struct in_ifaddr *
1461 #define	SA	struct sockaddr *
1462 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1463 									== NULL)
1464 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1465 			} else {
1466 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1467 			}
1468 			if (ia == NULL) {
1469 				type = ICMP_UNREACH;
1470 				code = ICMP_UNREACH_SRCFAIL;
1471 				goto bad;
1472 			}
1473 			ip->ip_dst = ipaddr.sin_addr;
1474 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1475 			    sizeof(struct in_addr));
1476 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1477 			/*
1478 			 * Let ip_intr's mcast routing check handle mcast pkts
1479 			 */
1480 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1481 			break;
1482 
1483 		case IPOPT_RR:
1484 			if (ipstealth && pass == 0)
1485 				break;
1486 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1487 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1488 				goto bad;
1489 			}
1490 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1491 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1492 				goto bad;
1493 			}
1494 			/*
1495 			 * If no space remains, ignore.
1496 			 */
1497 			off--;			/* 0 origin */
1498 			if (off > optlen - (int)sizeof(struct in_addr))
1499 				break;
1500 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1501 			    sizeof ipaddr.sin_addr);
1502 			/*
1503 			 * locate outgoing interface; if we're the destination,
1504 			 * use the incoming interface (should be same).
1505 			 */
1506 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1507 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1508 				type = ICMP_UNREACH;
1509 				code = ICMP_UNREACH_HOST;
1510 				goto bad;
1511 			}
1512 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1513 			    sizeof(struct in_addr));
1514 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1515 			break;
1516 
1517 		case IPOPT_TS:
1518 			if (ipstealth && pass == 0)
1519 				break;
1520 			code = cp - (u_char *)ip;
1521 			if (optlen < 4 || optlen > 40) {
1522 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1523 				goto bad;
1524 			}
1525 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1526 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1527 				goto bad;
1528 			}
1529 			if (off > optlen - (int)sizeof(int32_t)) {
1530 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1531 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1532 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1533 					goto bad;
1534 				}
1535 				break;
1536 			}
1537 			off--;				/* 0 origin */
1538 			sin = (struct in_addr *)(cp + off);
1539 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1540 
1541 			case IPOPT_TS_TSONLY:
1542 				break;
1543 
1544 			case IPOPT_TS_TSANDADDR:
1545 				if (off + sizeof(n_time) +
1546 				    sizeof(struct in_addr) > optlen) {
1547 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1548 					goto bad;
1549 				}
1550 				ipaddr.sin_addr = dst;
1551 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1552 							    m->m_pkthdr.rcvif);
1553 				if (ia == NULL)
1554 					continue;
1555 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1556 				    sizeof(struct in_addr));
1557 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1558 				off += sizeof(struct in_addr);
1559 				break;
1560 
1561 			case IPOPT_TS_PRESPEC:
1562 				if (off + sizeof(n_time) +
1563 				    sizeof(struct in_addr) > optlen) {
1564 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1565 					goto bad;
1566 				}
1567 				memcpy(&ipaddr.sin_addr, sin,
1568 				    sizeof(struct in_addr));
1569 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1570 					continue;
1571 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1572 				off += sizeof(struct in_addr);
1573 				break;
1574 
1575 			default:
1576 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1577 				goto bad;
1578 			}
1579 			ntime = iptime();
1580 			memcpy(cp + off, &ntime, sizeof(n_time));
1581 			cp[IPOPT_OFFSET] += sizeof(n_time);
1582 		}
1583 	}
1584 	if (forward && ipforwarding) {
1585 		ip_forward(m, TRUE, next_hop);
1586 		return (1);
1587 	}
1588 	return (0);
1589 bad:
1590 	icmp_error(m, type, code, 0, 0);
1591 	ipstat.ips_badoptions++;
1592 	return (1);
1593 }
1594 
1595 /*
1596  * Given address of next destination (final or next hop),
1597  * return internet address info of interface to be used to get there.
1598  */
1599 struct in_ifaddr *
1600 ip_rtaddr(struct in_addr dst, struct route *ro0)
1601 {
1602 	struct route sro, *ro;
1603 	struct sockaddr_in *sin;
1604 	struct in_ifaddr *ia;
1605 
1606 	if (ro0 != NULL) {
1607 		ro = ro0;
1608 	} else {
1609 		bzero(&sro, sizeof(sro));
1610 		ro = &sro;
1611 	}
1612 
1613 	sin = (struct sockaddr_in *)&ro->ro_dst;
1614 
1615 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1616 		if (ro->ro_rt != NULL) {
1617 			RTFREE(ro->ro_rt);
1618 			ro->ro_rt = NULL;
1619 		}
1620 		sin->sin_family = AF_INET;
1621 		sin->sin_len = sizeof *sin;
1622 		sin->sin_addr = dst;
1623 		rtalloc_ign(ro, RTF_PRCLONING);
1624 	}
1625 
1626 	if (ro->ro_rt == NULL)
1627 		return (NULL);
1628 
1629 	ia = ifatoia(ro->ro_rt->rt_ifa);
1630 
1631 	if (ro == &sro)
1632 		RTFREE(ro->ro_rt);
1633 	return ia;
1634 }
1635 
1636 /*
1637  * Save incoming source route for use in replies,
1638  * to be picked up later by ip_srcroute if the receiver is interested.
1639  */
1640 static void
1641 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1642 {
1643 	struct m_tag *mtag;
1644 	struct ip_srcrt_opt *opt;
1645 	unsigned olen;
1646 
1647 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), MB_DONTWAIT);
1648 	if (mtag == NULL)
1649 		return;
1650 	opt = m_tag_data(mtag);
1651 
1652 	olen = option[IPOPT_OLEN];
1653 #ifdef DIAGNOSTIC
1654 	if (ipprintfs)
1655 		kprintf("save_rte: olen %d\n", olen);
1656 #endif
1657 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1658 		m_tag_free(mtag);
1659 		return;
1660 	}
1661 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1662 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1663 	opt->ip_srcrt.dst = dst;
1664 	m_tag_prepend(m, mtag);
1665 }
1666 
1667 /*
1668  * Retrieve incoming source route for use in replies,
1669  * in the same form used by setsockopt.
1670  * The first hop is placed before the options, will be removed later.
1671  */
1672 struct mbuf *
1673 ip_srcroute(struct mbuf *m0)
1674 {
1675 	struct in_addr *p, *q;
1676 	struct mbuf *m;
1677 	struct m_tag *mtag;
1678 	struct ip_srcrt_opt *opt;
1679 
1680 	if (m0 == NULL)
1681 		return NULL;
1682 
1683 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1684 	if (mtag == NULL)
1685 		return NULL;
1686 	opt = m_tag_data(mtag);
1687 
1688 	if (opt->ip_nhops == 0)
1689 		return (NULL);
1690 	m = m_get(MB_DONTWAIT, MT_HEADER);
1691 	if (m == NULL)
1692 		return (NULL);
1693 
1694 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1695 
1696 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1697 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1698 		   sizeof(struct in_addr) + OPTSIZ;
1699 #ifdef DIAGNOSTIC
1700 	if (ipprintfs) {
1701 		kprintf("ip_srcroute: nhops %d mlen %d",
1702 			opt->ip_nhops, m->m_len);
1703 	}
1704 #endif
1705 
1706 	/*
1707 	 * First save first hop for return route
1708 	 */
1709 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1710 	*(mtod(m, struct in_addr *)) = *p--;
1711 #ifdef DIAGNOSTIC
1712 	if (ipprintfs)
1713 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1714 #endif
1715 
1716 	/*
1717 	 * Copy option fields and padding (nop) to mbuf.
1718 	 */
1719 	opt->ip_srcrt.nop = IPOPT_NOP;
1720 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1721 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1722 	    OPTSIZ);
1723 	q = (struct in_addr *)(mtod(m, caddr_t) +
1724 	    sizeof(struct in_addr) + OPTSIZ);
1725 #undef OPTSIZ
1726 	/*
1727 	 * Record return path as an IP source route,
1728 	 * reversing the path (pointers are now aligned).
1729 	 */
1730 	while (p >= opt->ip_srcrt.route) {
1731 #ifdef DIAGNOSTIC
1732 		if (ipprintfs)
1733 			kprintf(" %x", ntohl(q->s_addr));
1734 #endif
1735 		*q++ = *p--;
1736 	}
1737 	/*
1738 	 * Last hop goes to final destination.
1739 	 */
1740 	*q = opt->ip_srcrt.dst;
1741 	m_tag_delete(m0, mtag);
1742 #ifdef DIAGNOSTIC
1743 	if (ipprintfs)
1744 		kprintf(" %x\n", ntohl(q->s_addr));
1745 #endif
1746 	return (m);
1747 }
1748 
1749 /*
1750  * Strip out IP options.
1751  */
1752 void
1753 ip_stripoptions(struct mbuf *m)
1754 {
1755 	int datalen;
1756 	struct ip *ip = mtod(m, struct ip *);
1757 	caddr_t opts;
1758 	int optlen;
1759 
1760 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1761 	opts = (caddr_t)(ip + 1);
1762 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1763 	bcopy(opts + optlen, opts, datalen);
1764 	m->m_len -= optlen;
1765 	if (m->m_flags & M_PKTHDR)
1766 		m->m_pkthdr.len -= optlen;
1767 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1768 }
1769 
1770 u_char inetctlerrmap[PRC_NCMDS] = {
1771 	0,		0,		0,		0,
1772 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1773 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1774 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1775 	0,		0,		0,		0,
1776 	ENOPROTOOPT,	ECONNREFUSED
1777 };
1778 
1779 /*
1780  * Forward a packet.  If some error occurs return the sender
1781  * an icmp packet.  Note we can't always generate a meaningful
1782  * icmp message because icmp doesn't have a large enough repertoire
1783  * of codes and types.
1784  *
1785  * If not forwarding, just drop the packet.  This could be confusing
1786  * if ipforwarding was zero but some routing protocol was advancing
1787  * us as a gateway to somewhere.  However, we must let the routing
1788  * protocol deal with that.
1789  *
1790  * The using_srcrt parameter indicates whether the packet is being forwarded
1791  * via a source route.
1792  */
1793 void
1794 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1795 {
1796 	struct ip *ip = mtod(m, struct ip *);
1797 	struct rtentry *rt;
1798 	struct route fwd_ro;
1799 	int error, type = 0, code = 0, destmtu = 0;
1800 	struct mbuf *mcopy;
1801 	n_long dest;
1802 	struct in_addr pkt_dst;
1803 
1804 	dest = INADDR_ANY;
1805 	/*
1806 	 * Cache the destination address of the packet; this may be
1807 	 * changed by use of 'ipfw fwd'.
1808 	 */
1809 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1810 
1811 #ifdef DIAGNOSTIC
1812 	if (ipprintfs)
1813 		kprintf("forward: src %x dst %x ttl %x\n",
1814 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1815 #endif
1816 
1817 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1818 		ipstat.ips_cantforward++;
1819 		m_freem(m);
1820 		return;
1821 	}
1822 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1823 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1824 		return;
1825 	}
1826 
1827 	bzero(&fwd_ro, sizeof(fwd_ro));
1828 	ip_rtaddr(pkt_dst, &fwd_ro);
1829 	if (fwd_ro.ro_rt == NULL) {
1830 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1831 		return;
1832 	}
1833 	rt = fwd_ro.ro_rt;
1834 
1835 	/*
1836 	 * Save the IP header and at most 8 bytes of the payload,
1837 	 * in case we need to generate an ICMP message to the src.
1838 	 *
1839 	 * XXX this can be optimized a lot by saving the data in a local
1840 	 * buffer on the stack (72 bytes at most), and only allocating the
1841 	 * mbuf if really necessary. The vast majority of the packets
1842 	 * are forwarded without having to send an ICMP back (either
1843 	 * because unnecessary, or because rate limited), so we are
1844 	 * really we are wasting a lot of work here.
1845 	 *
1846 	 * We don't use m_copy() because it might return a reference
1847 	 * to a shared cluster. Both this function and ip_output()
1848 	 * assume exclusive access to the IP header in `m', so any
1849 	 * data in a cluster may change before we reach icmp_error().
1850 	 */
1851 	MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1852 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1853 		/*
1854 		 * It's probably ok if the pkthdr dup fails (because
1855 		 * the deep copy of the tag chain failed), but for now
1856 		 * be conservative and just discard the copy since
1857 		 * code below may some day want the tags.
1858 		 */
1859 		m_free(mcopy);
1860 		mcopy = NULL;
1861 	}
1862 	if (mcopy != NULL) {
1863 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1864 		    (int)ip->ip_len);
1865 		mcopy->m_pkthdr.len = mcopy->m_len;
1866 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1867 	}
1868 
1869 	if (!ipstealth)
1870 		ip->ip_ttl -= IPTTLDEC;
1871 
1872 	/*
1873 	 * If forwarding packet using same interface that it came in on,
1874 	 * perhaps should send a redirect to sender to shortcut a hop.
1875 	 * Only send redirect if source is sending directly to us,
1876 	 * and if packet was not source routed (or has any options).
1877 	 * Also, don't send redirect if forwarding using a default route
1878 	 * or a route modified by a redirect.
1879 	 */
1880 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1881 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1882 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1883 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1884 		u_long src = ntohl(ip->ip_src.s_addr);
1885 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1886 
1887 		if (rt_ifa != NULL &&
1888 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1889 			if (rt->rt_flags & RTF_GATEWAY)
1890 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1891 			else
1892 				dest = pkt_dst.s_addr;
1893 			/*
1894 			 * Router requirements says to only send
1895 			 * host redirects.
1896 			 */
1897 			type = ICMP_REDIRECT;
1898 			code = ICMP_REDIRECT_HOST;
1899 #ifdef DIAGNOSTIC
1900 			if (ipprintfs)
1901 				kprintf("redirect (%d) to %x\n", code, dest);
1902 #endif
1903 		}
1904 	}
1905 
1906 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
1907 	if (error == 0) {
1908 		ipstat.ips_forward++;
1909 		if (type == 0) {
1910 			if (mcopy) {
1911 				ipflow_create(&fwd_ro, mcopy);
1912 				m_freem(mcopy);
1913 			}
1914 			goto done;
1915 		} else {
1916 			ipstat.ips_redirectsent++;
1917 		}
1918 	} else {
1919 		ipstat.ips_cantforward++;
1920 	}
1921 
1922 	if (mcopy == NULL)
1923 		goto done;
1924 
1925 	/*
1926 	 * Send ICMP message.
1927 	 */
1928 
1929 	switch (error) {
1930 
1931 	case 0:				/* forwarded, but need redirect */
1932 		/* type, code set above */
1933 		break;
1934 
1935 	case ENETUNREACH:		/* shouldn't happen, checked above */
1936 	case EHOSTUNREACH:
1937 	case ENETDOWN:
1938 	case EHOSTDOWN:
1939 	default:
1940 		type = ICMP_UNREACH;
1941 		code = ICMP_UNREACH_HOST;
1942 		break;
1943 
1944 	case EMSGSIZE:
1945 		type = ICMP_UNREACH;
1946 		code = ICMP_UNREACH_NEEDFRAG;
1947 #ifdef IPSEC
1948 		/*
1949 		 * If the packet is routed over IPsec tunnel, tell the
1950 		 * originator the tunnel MTU.
1951 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1952 		 * XXX quickhack!!!
1953 		 */
1954 		if (fwd_ro.ro_rt != NULL) {
1955 			struct secpolicy *sp = NULL;
1956 			int ipsecerror;
1957 			int ipsechdr;
1958 			struct route *ro;
1959 
1960 			sp = ipsec4_getpolicybyaddr(mcopy,
1961 						    IPSEC_DIR_OUTBOUND,
1962 						    IP_FORWARDING,
1963 						    &ipsecerror);
1964 
1965 			if (sp == NULL)
1966 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
1967 			else {
1968 				/* count IPsec header size */
1969 				ipsechdr = ipsec4_hdrsiz(mcopy,
1970 							 IPSEC_DIR_OUTBOUND,
1971 							 NULL);
1972 
1973 				/*
1974 				 * find the correct route for outer IPv4
1975 				 * header, compute tunnel MTU.
1976 				 *
1977 				 */
1978 				if (sp->req != NULL && sp->req->sav != NULL &&
1979 				    sp->req->sav->sah != NULL) {
1980 					ro = &sp->req->sav->sah->sa_route;
1981 					if (ro->ro_rt != NULL &&
1982 					    ro->ro_rt->rt_ifp != NULL) {
1983 						destmtu =
1984 						    ro->ro_rt->rt_ifp->if_mtu;
1985 						destmtu -= ipsechdr;
1986 					}
1987 				}
1988 
1989 				key_freesp(sp);
1990 			}
1991 		}
1992 #elif FAST_IPSEC
1993 		/*
1994 		 * If the packet is routed over IPsec tunnel, tell the
1995 		 * originator the tunnel MTU.
1996 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1997 		 * XXX quickhack!!!
1998 		 */
1999 		if (fwd_ro.ro_rt != NULL) {
2000 			struct secpolicy *sp = NULL;
2001 			int ipsecerror;
2002 			int ipsechdr;
2003 			struct route *ro;
2004 
2005 			sp = ipsec_getpolicybyaddr(mcopy,
2006 						   IPSEC_DIR_OUTBOUND,
2007 						   IP_FORWARDING,
2008 						   &ipsecerror);
2009 
2010 			if (sp == NULL)
2011 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2012 			else {
2013 				/* count IPsec header size */
2014 				ipsechdr = ipsec4_hdrsiz(mcopy,
2015 							 IPSEC_DIR_OUTBOUND,
2016 							 NULL);
2017 
2018 				/*
2019 				 * find the correct route for outer IPv4
2020 				 * header, compute tunnel MTU.
2021 				 */
2022 
2023 				if (sp->req != NULL &&
2024 				    sp->req->sav != NULL &&
2025 				    sp->req->sav->sah != NULL) {
2026 					ro = &sp->req->sav->sah->sa_route;
2027 					if (ro->ro_rt != NULL &&
2028 					    ro->ro_rt->rt_ifp != NULL) {
2029 						destmtu =
2030 						    ro->ro_rt->rt_ifp->if_mtu;
2031 						destmtu -= ipsechdr;
2032 					}
2033 				}
2034 
2035 				KEY_FREESP(&sp);
2036 			}
2037 		}
2038 #else /* !IPSEC && !FAST_IPSEC */
2039 		if (fwd_ro.ro_rt != NULL)
2040 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2041 #endif /*IPSEC*/
2042 		ipstat.ips_cantfrag++;
2043 		break;
2044 
2045 	case ENOBUFS:
2046 		/*
2047 		 * A router should not generate ICMP_SOURCEQUENCH as
2048 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2049 		 * Source quench could be a big problem under DoS attacks,
2050 		 * or if the underlying interface is rate-limited.
2051 		 * Those who need source quench packets may re-enable them
2052 		 * via the net.inet.ip.sendsourcequench sysctl.
2053 		 */
2054 		if (!ip_sendsourcequench) {
2055 			m_freem(mcopy);
2056 			goto done;
2057 		} else {
2058 			type = ICMP_SOURCEQUENCH;
2059 			code = 0;
2060 		}
2061 		break;
2062 
2063 	case EACCES:			/* ipfw denied packet */
2064 		m_freem(mcopy);
2065 		goto done;
2066 	}
2067 	icmp_error(mcopy, type, code, dest, destmtu);
2068 done:
2069 	if (fwd_ro.ro_rt != NULL)
2070 		RTFREE(fwd_ro.ro_rt);
2071 }
2072 
2073 void
2074 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2075 	       struct mbuf *m)
2076 {
2077 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2078 		struct timeval tv;
2079 
2080 		microtime(&tv);
2081 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2082 		    SCM_TIMESTAMP, SOL_SOCKET);
2083 		if (*mp)
2084 			mp = &(*mp)->m_next;
2085 	}
2086 	if (inp->inp_flags & INP_RECVDSTADDR) {
2087 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2088 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2089 		if (*mp)
2090 			mp = &(*mp)->m_next;
2091 	}
2092 	if (inp->inp_flags & INP_RECVTTL) {
2093 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2094 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2095 		if (*mp)
2096 			mp = &(*mp)->m_next;
2097 	}
2098 #ifdef notyet
2099 	/* XXX
2100 	 * Moving these out of udp_input() made them even more broken
2101 	 * than they already were.
2102 	 */
2103 	/* options were tossed already */
2104 	if (inp->inp_flags & INP_RECVOPTS) {
2105 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2106 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2107 		if (*mp)
2108 			mp = &(*mp)->m_next;
2109 	}
2110 	/* ip_srcroute doesn't do what we want here, need to fix */
2111 	if (inp->inp_flags & INP_RECVRETOPTS) {
2112 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2113 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2114 		if (*mp)
2115 			mp = &(*mp)->m_next;
2116 	}
2117 #endif
2118 	if (inp->inp_flags & INP_RECVIF) {
2119 		struct ifnet *ifp;
2120 		struct sdlbuf {
2121 			struct sockaddr_dl sdl;
2122 			u_char	pad[32];
2123 		} sdlbuf;
2124 		struct sockaddr_dl *sdp;
2125 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2126 
2127 		if (((ifp = m->m_pkthdr.rcvif)) &&
2128 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2129 			sdp = IF_LLSOCKADDR(ifp);
2130 			/*
2131 			 * Change our mind and don't try copy.
2132 			 */
2133 			if ((sdp->sdl_family != AF_LINK) ||
2134 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2135 				goto makedummy;
2136 			}
2137 			bcopy(sdp, sdl2, sdp->sdl_len);
2138 		} else {
2139 makedummy:
2140 			sdl2->sdl_len =
2141 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2142 			sdl2->sdl_family = AF_LINK;
2143 			sdl2->sdl_index = 0;
2144 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2145 		}
2146 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2147 			IP_RECVIF, IPPROTO_IP);
2148 		if (*mp)
2149 			mp = &(*mp)->m_next;
2150 	}
2151 }
2152 
2153 /*
2154  * XXX these routines are called from the upper part of the kernel.
2155  *
2156  * They could also be moved to ip_mroute.c, since all the RSVP
2157  *  handling is done there already.
2158  */
2159 int
2160 ip_rsvp_init(struct socket *so)
2161 {
2162 	if (so->so_type != SOCK_RAW ||
2163 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2164 		return EOPNOTSUPP;
2165 
2166 	if (ip_rsvpd != NULL)
2167 		return EADDRINUSE;
2168 
2169 	ip_rsvpd = so;
2170 	/*
2171 	 * This may seem silly, but we need to be sure we don't over-increment
2172 	 * the RSVP counter, in case something slips up.
2173 	 */
2174 	if (!ip_rsvp_on) {
2175 		ip_rsvp_on = 1;
2176 		rsvp_on++;
2177 	}
2178 
2179 	return 0;
2180 }
2181 
2182 int
2183 ip_rsvp_done(void)
2184 {
2185 	ip_rsvpd = NULL;
2186 	/*
2187 	 * This may seem silly, but we need to be sure we don't over-decrement
2188 	 * the RSVP counter, in case something slips up.
2189 	 */
2190 	if (ip_rsvp_on) {
2191 		ip_rsvp_on = 0;
2192 		rsvp_on--;
2193 	}
2194 	return 0;
2195 }
2196 
2197 void
2198 rsvp_input(struct mbuf *m, ...)	/* XXX must fixup manually */
2199 {
2200 	int off, proto;
2201 	__va_list ap;
2202 
2203 	__va_start(ap, m);
2204 	off = __va_arg(ap, int);
2205 	proto = __va_arg(ap, int);
2206 	__va_end(ap);
2207 
2208 	if (rsvp_input_p) { /* call the real one if loaded */
2209 		rsvp_input_p(m, off, proto);
2210 		return;
2211 	}
2212 
2213 	/* Can still get packets with rsvp_on = 0 if there is a local member
2214 	 * of the group to which the RSVP packet is addressed.  But in this
2215 	 * case we want to throw the packet away.
2216 	 */
2217 
2218 	if (!rsvp_on) {
2219 		m_freem(m);
2220 		return;
2221 	}
2222 
2223 	if (ip_rsvpd != NULL) {
2224 		rip_input(m, off, proto);
2225 		return;
2226 	}
2227 	/* Drop the packet */
2228 	m_freem(m);
2229 }
2230