xref: /dragonfly/sys/netinet/ip_input.c (revision a32bc35d)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
67  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68  */
69 
70 #define	_IP_VHL
71 
72 #include "opt_bootp.h"
73 #include "opt_ipdn.h"
74 #include "opt_ipdivert.h"
75 #include "opt_ipstealth.h"
76 #include "opt_ipsec.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/mbuf.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/domain.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/time.h>
87 #include <sys/globaldata.h>
88 #include <sys/thread.h>
89 #include <sys/kernel.h>
90 #include <sys/syslog.h>
91 #include <sys/sysctl.h>
92 #include <sys/in_cksum.h>
93 #include <sys/lock.h>
94 
95 #include <sys/mplock2.h>
96 
97 #include <machine/stdarg.h>
98 
99 #include <net/if.h>
100 #include <net/if_types.h>
101 #include <net/if_var.h>
102 #include <net/if_dl.h>
103 #include <net/pfil.h>
104 #include <net/route.h>
105 #include <net/netisr.h>
106 
107 #include <netinet/in.h>
108 #include <netinet/in_systm.h>
109 #include <netinet/in_var.h>
110 #include <netinet/ip.h>
111 #include <netinet/in_pcb.h>
112 #include <netinet/ip_var.h>
113 #include <netinet/ip_icmp.h>
114 #include <netinet/ip_divert.h>
115 #include <netinet/ip_flow.h>
116 
117 #include <sys/thread2.h>
118 #include <sys/msgport2.h>
119 #include <net/netmsg2.h>
120 
121 #include <sys/socketvar.h>
122 
123 #include <net/ipfw/ip_fw.h>
124 #include <net/dummynet/ip_dummynet.h>
125 
126 #ifdef IPSEC
127 #include <netinet6/ipsec.h>
128 #include <netproto/key/key.h>
129 #endif
130 
131 #ifdef FAST_IPSEC
132 #include <netproto/ipsec/ipsec.h>
133 #include <netproto/ipsec/key.h>
134 #endif
135 
136 int rsvp_on = 0;
137 static int ip_rsvp_on;
138 struct socket *ip_rsvpd;
139 
140 int ipforwarding = 0;
141 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
142     &ipforwarding, 0, "Enable IP forwarding between interfaces");
143 
144 static int ipsendredirects = 1; /* XXX */
145 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
146     &ipsendredirects, 0, "Enable sending IP redirects");
147 
148 int ip_defttl = IPDEFTTL;
149 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
150     &ip_defttl, 0, "Maximum TTL on IP packets");
151 
152 static int ip_dosourceroute = 0;
153 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
154     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
155 
156 static int ip_acceptsourceroute = 0;
157 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
158     CTLFLAG_RW, &ip_acceptsourceroute, 0,
159     "Enable accepting source routed IP packets");
160 
161 static int ip_keepfaith = 0;
162 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
163     &ip_keepfaith, 0,
164     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
165 
166 static int nipq = 0;	/* total # of reass queues */
167 static int maxnipq;
168 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
169     &maxnipq, 0,
170     "Maximum number of IPv4 fragment reassembly queue entries");
171 
172 static int maxfragsperpacket;
173 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
174     &maxfragsperpacket, 0,
175     "Maximum number of IPv4 fragments allowed per packet");
176 
177 static int ip_sendsourcequench = 0;
178 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
179     &ip_sendsourcequench, 0,
180     "Enable the transmission of source quench packets");
181 
182 int ip_do_randomid = 1;
183 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
184     &ip_do_randomid, 0,
185     "Assign random ip_id values");
186 /*
187  * XXX - Setting ip_checkinterface mostly implements the receive side of
188  * the Strong ES model described in RFC 1122, but since the routing table
189  * and transmit implementation do not implement the Strong ES model,
190  * setting this to 1 results in an odd hybrid.
191  *
192  * XXX - ip_checkinterface currently must be disabled if you use ipnat
193  * to translate the destination address to another local interface.
194  *
195  * XXX - ip_checkinterface must be disabled if you add IP aliases
196  * to the loopback interface instead of the interface where the
197  * packets for those addresses are received.
198  */
199 static int ip_checkinterface = 0;
200 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
201     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
202 
203 static int ip_dispatch_fast = 0;
204 static int ip_dispatch_slow = 0;
205 static int ip_dispatch_recheck = 0;
206 static int ip_dispatch_software = 0;
207 SYSCTL_INT(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
208     &ip_dispatch_fast, 0,
209     "Number of IP dispatches handled on current CPU");
210 SYSCTL_INT(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
211     &ip_dispatch_slow, 0,
212     "Number of IP dispatches messaged to another CPU");
213 SYSCTL_INT(_net_inet_ip, OID_AUTO, dispatch_software_count, CTLFLAG_RD,
214     &ip_dispatch_software, 0, "");
215 SYSCTL_INT(_net_inet_ip, OID_AUTO, dispatch_recheck_count, CTLFLAG_RD,
216     &ip_dispatch_recheck, 0, "");
217 
218 static struct lwkt_token ipq_token = LWKT_TOKEN_INITIALIZER(ipq_token);
219 
220 #ifdef DIAGNOSTIC
221 static int ipprintfs = 0;
222 #endif
223 
224 extern	struct domain inetdomain;
225 extern	struct protosw inetsw[];
226 u_char	ip_protox[IPPROTO_MAX];
227 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
228 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
229 						/* inet addr hash table */
230 u_long	in_ifaddrhmask;				/* mask for hash table */
231 
232 struct ip_stats ipstats_percpu[MAXCPU];
233 #ifdef SMP
234 static int
235 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
236 {
237 	int cpu, error = 0;
238 
239 	for (cpu = 0; cpu < ncpus; ++cpu) {
240 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
241 					sizeof(struct ip_stats))))
242 			break;
243 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
244 				       sizeof(struct ip_stats))))
245 			break;
246 	}
247 
248 	return (error);
249 }
250 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
251     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
252 #else
253 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
254     &ipstat, ip_stats, "IP statistics");
255 #endif
256 
257 /* Packet reassembly stuff */
258 #define	IPREASS_NHASH_LOG2	6
259 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
260 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
261 #define	IPREASS_HASH(x,y)						\
262     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
263 
264 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
265 
266 #ifdef IPCTL_DEFMTU
267 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
268     &ip_mtu, 0, "Default MTU");
269 #endif
270 
271 #ifdef IPSTEALTH
272 static int ipstealth = 0;
273 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
274 #else
275 static const int ipstealth = 0;
276 #endif
277 
278 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
279 
280 struct pfil_head inet_pfil_hook;
281 
282 /*
283  * struct ip_srcrt_opt is used to store packet state while it travels
284  * through the stack.
285  *
286  * XXX Note that the code even makes assumptions on the size and
287  * alignment of fields inside struct ip_srcrt so e.g. adding some
288  * fields will break the code.  This needs to be fixed.
289  *
290  * We need to save the IP options in case a protocol wants to respond
291  * to an incoming packet over the same route if the packet got here
292  * using IP source routing.  This allows connection establishment and
293  * maintenance when the remote end is on a network that is not known
294  * to us.
295  */
296 struct ip_srcrt {
297 	struct	in_addr dst;			/* final destination */
298 	char	nop;				/* one NOP to align */
299 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
300 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
301 };
302 
303 struct ip_srcrt_opt {
304 	int		ip_nhops;
305 	struct ip_srcrt	ip_srcrt;
306 };
307 
308 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
309 static struct malloc_pipe ipq_mpipe;
310 
311 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
312 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
313 static void		ip_freef(struct ipqhead *, struct ipq *);
314 static void		ip_input_handler(netmsg_t);
315 
316 /*
317  * IP initialization: fill in IP protocol switch table.
318  * All protocols not implemented in kernel go to raw IP protocol handler.
319  */
320 void
321 ip_init(void)
322 {
323 	struct protosw *pr;
324 	int i;
325 #ifdef SMP
326 	int cpu;
327 #endif
328 
329 	/*
330 	 * Make sure we can handle a reasonable number of fragments but
331 	 * cap it at 4000 (XXX).
332 	 */
333 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
334 		    IFQ_MAXLEN, 4000, 0, NULL, NULL, NULL);
335 	for (i = 0; i < ncpus; ++i) {
336 		TAILQ_INIT(&in_ifaddrheads[i]);
337 		in_ifaddrhashtbls[i] =
338 			hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
339 	}
340 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
341 	if (pr == NULL)
342 		panic("ip_init");
343 	for (i = 0; i < IPPROTO_MAX; i++)
344 		ip_protox[i] = pr - inetsw;
345 	for (pr = inetdomain.dom_protosw;
346 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
347 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
348 			if (pr->pr_protocol != IPPROTO_RAW)
349 				ip_protox[pr->pr_protocol] = pr - inetsw;
350 		}
351 	}
352 
353 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
354 	inet_pfil_hook.ph_af = AF_INET;
355 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
356 		kprintf("%s: WARNING: unable to register pfil hook, "
357 			"error %d\n", __func__, i);
358 	}
359 
360 	for (i = 0; i < IPREASS_NHASH; i++)
361 		TAILQ_INIT(&ipq[i]);
362 
363 	maxnipq = nmbclusters / 32;
364 	maxfragsperpacket = 16;
365 
366 	ip_id = time_second & 0xffff;
367 
368 	/*
369 	 * Initialize IP statistics counters for each CPU.
370 	 *
371 	 */
372 #ifdef SMP
373 	for (cpu = 0; cpu < ncpus; ++cpu) {
374 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
375 	}
376 #else
377 	bzero(&ipstat, sizeof(struct ip_stats));
378 #endif
379 
380 	netisr_register(NETISR_IP, ip_input_handler, ip_cpufn_in);
381 	netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
382 }
383 
384 /* Do transport protocol processing. */
385 static void
386 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
387 {
388 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
389 
390 	/*
391 	 * Switch out to protocol's input routine.
392 	 */
393 	PR_GET_MPLOCK(pr);
394 	pr->pr_input(&m, &hlen, ip->ip_p);
395 	PR_REL_MPLOCK(pr);
396 }
397 
398 static void
399 transport_processing_handler(netmsg_t msg)
400 {
401 	struct netmsg_packet *pmsg = &msg->packet;
402 	struct ip *ip;
403 	int hlen;
404 
405 	ip = mtod(pmsg->nm_packet, struct ip *);
406 	hlen = pmsg->base.lmsg.u.ms_result;
407 
408 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
409 	/* msg was embedded in the mbuf, do not reply! */
410 }
411 
412 static void
413 ip_input_handler(netmsg_t msg)
414 {
415 	ip_input(msg->packet.nm_packet);
416 	/* msg was embedded in the mbuf, do not reply! */
417 }
418 
419 /*
420  * IP input routine.  Checksum and byte swap header.  If fragmented
421  * try to reassemble.  Process options.  Pass to next level.
422  */
423 void
424 ip_input(struct mbuf *m)
425 {
426 	struct ip *ip;
427 	struct in_ifaddr *ia = NULL;
428 	struct in_ifaddr_container *iac;
429 	int hlen, checkif;
430 	u_short sum;
431 	struct in_addr pkt_dst;
432 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
433 	struct in_addr odst;			/* original dst address(NAT) */
434 	struct m_tag *mtag;
435 	struct sockaddr_in *next_hop = NULL;
436 	lwkt_port_t port;
437 #ifdef FAST_IPSEC
438 	struct tdb_ident *tdbi;
439 	struct secpolicy *sp;
440 	int error;
441 #endif
442 
443 	M_ASSERTPKTHDR(m);
444 
445 	/*
446 	 * This routine is called from numerous places which may not have
447 	 * characterized the packet.
448 	 */
449 	if ((m->m_flags & M_HASH) == 0) {
450 		++ip_dispatch_software;
451 		ip_cpufn(&m, 0, IP_MPORT_IN);
452 		if (m == NULL)
453 			return;
454 		KKASSERT(m->m_flags & M_HASH);
455 	}
456 	ip = mtod(m, struct ip *);
457 
458 	/*
459 	 * Pull out certain tags
460 	 */
461 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
462 		/* Next hop */
463 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
464 		KKASSERT(mtag != NULL);
465 		next_hop = m_tag_data(mtag);
466 	}
467 
468 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
469 		/* dummynet already filtered us */
470 		ip = mtod(m, struct ip *);
471 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
472 		goto iphack;
473 	}
474 
475 	ipstat.ips_total++;
476 
477 	/* length checks already done in ip_cpufn() */
478 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
479 
480 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
481 		ipstat.ips_badvers++;
482 		goto bad;
483 	}
484 
485 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
486 	/* length checks already done in ip_cpufn() */
487 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
488 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
489 
490 	/* 127/8 must not appear on wire - RFC1122 */
491 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
492 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
493 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
494 			ipstat.ips_badaddr++;
495 			goto bad;
496 		}
497 	}
498 
499 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
500 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
501 	} else {
502 		if (hlen == sizeof(struct ip))
503 			sum = in_cksum_hdr(ip);
504 		else
505 			sum = in_cksum(m, hlen);
506 	}
507 	if (sum != 0) {
508 		ipstat.ips_badsum++;
509 		goto bad;
510 	}
511 
512 #ifdef ALTQ
513 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
514 		/* packet is dropped by traffic conditioner */
515 		return;
516 	}
517 #endif
518 	/*
519 	 * Convert fields to host representation.
520 	 */
521 	ip->ip_len = ntohs(ip->ip_len);
522 	ip->ip_off = ntohs(ip->ip_off);
523 
524 	/* length checks already done in ip_cpufn() */
525 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
526 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
527 
528 	/*
529 	 * Trim mbufs if longer than the IP header would have us expect.
530 	 */
531 	if (m->m_pkthdr.len > ip->ip_len) {
532 		if (m->m_len == m->m_pkthdr.len) {
533 			m->m_len = ip->ip_len;
534 			m->m_pkthdr.len = ip->ip_len;
535 		} else {
536 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
537 		}
538 	}
539 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
540 	/*
541 	 * Bypass packet filtering for packets from a tunnel (gif).
542 	 */
543 	if (ipsec_gethist(m, NULL))
544 		goto pass;
545 #endif
546 
547 	/*
548 	 * IpHack's section.
549 	 * Right now when no processing on packet has done
550 	 * and it is still fresh out of network we do our black
551 	 * deals with it.
552 	 * - Firewall: deny/allow/divert
553 	 * - Xlate: translate packet's addr/port (NAT).
554 	 * - Pipe: pass pkt through dummynet.
555 	 * - Wrap: fake packet's addr/port <unimpl.>
556 	 * - Encapsulate: put it in another IP and send out. <unimp.>
557 	 */
558 
559 iphack:
560 	/*
561 	 * If we've been forwarded from the output side, then
562 	 * skip the firewall a second time
563 	 */
564 	if (next_hop != NULL)
565 		goto ours;
566 
567 	/* No pfil hooks */
568 	if (!pfil_has_hooks(&inet_pfil_hook)) {
569 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
570 			/*
571 			 * Strip dummynet tags from stranded packets
572 			 */
573 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
574 			KKASSERT(mtag != NULL);
575 			m_tag_delete(m, mtag);
576 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
577 		}
578 		goto pass;
579 	}
580 
581 	/*
582 	 * Run through list of hooks for input packets.
583 	 *
584 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
585 	 *	  clear M_HASH.
586 	 */
587 	odst = ip->ip_dst;
588 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
589 		return;
590 	if (m == NULL)	/* consumed by filter */
591 		return;
592 	ip = mtod(m, struct ip *);
593 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
594 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
595 
596 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
597 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
598 		KKASSERT(mtag != NULL);
599 		next_hop = m_tag_data(mtag);
600 	}
601 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
602 		ip_dn_queue(m);
603 		return;
604 	}
605 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
606 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
607 	}
608 pass:
609 	/*
610 	 * Process options and, if not destined for us,
611 	 * ship it on.  ip_dooptions returns 1 when an
612 	 * error was detected (causing an icmp message
613 	 * to be sent and the original packet to be freed).
614 	 */
615 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
616 		return;
617 
618 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
619 	 * matter if it is destined to another node, or whether it is
620 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
621 	 * anywhere else. Also checks if the rsvp daemon is running before
622 	 * grabbing the packet.
623 	 */
624 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
625 		goto ours;
626 
627 	/*
628 	 * Check our list of addresses, to see if the packet is for us.
629 	 * If we don't have any addresses, assume any unicast packet
630 	 * we receive might be for us (and let the upper layers deal
631 	 * with it).
632 	 */
633 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
634 	    !(m->m_flags & (M_MCAST | M_BCAST)))
635 		goto ours;
636 
637 	/*
638 	 * Cache the destination address of the packet; this may be
639 	 * changed by use of 'ipfw fwd'.
640 	 */
641 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
642 
643 	/*
644 	 * Enable a consistency check between the destination address
645 	 * and the arrival interface for a unicast packet (the RFC 1122
646 	 * strong ES model) if IP forwarding is disabled and the packet
647 	 * is not locally generated and the packet is not subject to
648 	 * 'ipfw fwd'.
649 	 *
650 	 * XXX - Checking also should be disabled if the destination
651 	 * address is ipnat'ed to a different interface.
652 	 *
653 	 * XXX - Checking is incompatible with IP aliases added
654 	 * to the loopback interface instead of the interface where
655 	 * the packets are received.
656 	 */
657 	checkif = ip_checkinterface &&
658 		  !ipforwarding &&
659 		  m->m_pkthdr.rcvif != NULL &&
660 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
661 		  next_hop == NULL;
662 
663 	/*
664 	 * Check for exact addresses in the hash bucket.
665 	 */
666 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
667 		ia = iac->ia;
668 
669 		/*
670 		 * If the address matches, verify that the packet
671 		 * arrived via the correct interface if checking is
672 		 * enabled.
673 		 */
674 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
675 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
676 			goto ours;
677 	}
678 	ia = NULL;
679 
680 	/*
681 	 * Check for broadcast addresses.
682 	 *
683 	 * Only accept broadcast packets that arrive via the matching
684 	 * interface.  Reception of forwarded directed broadcasts would
685 	 * be handled via ip_forward() and ether_output() with the loopback
686 	 * into the stack for SIMPLEX interfaces handled by ether_output().
687 	 */
688 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
689 		struct ifaddr_container *ifac;
690 
691 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
692 			      ifa_link) {
693 			struct ifaddr *ifa = ifac->ifa;
694 
695 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
696 				continue;
697 			if (ifa->ifa_addr->sa_family != AF_INET)
698 				continue;
699 			ia = ifatoia(ifa);
700 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
701 								pkt_dst.s_addr)
702 				goto ours;
703 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
704 				goto ours;
705 #ifdef BOOTP_COMPAT
706 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
707 				goto ours;
708 #endif
709 		}
710 	}
711 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
712 		struct in_multi *inm;
713 
714 		/* XXX Multicast is not MPSAFE yet */
715 		get_mplock();
716 
717 		if (ip_mrouter != NULL) {
718 			/*
719 			 * If we are acting as a multicast router, all
720 			 * incoming multicast packets are passed to the
721 			 * kernel-level multicast forwarding function.
722 			 * The packet is returned (relatively) intact; if
723 			 * ip_mforward() returns a non-zero value, the packet
724 			 * must be discarded, else it may be accepted below.
725 			 */
726 			if (ip_mforward != NULL &&
727 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
728 				rel_mplock();
729 				ipstat.ips_cantforward++;
730 				m_freem(m);
731 				return;
732 			}
733 
734 			/*
735 			 * The process-level routing daemon needs to receive
736 			 * all multicast IGMP packets, whether or not this
737 			 * host belongs to their destination groups.
738 			 */
739 			if (ip->ip_p == IPPROTO_IGMP) {
740 				rel_mplock();
741 				goto ours;
742 			}
743 			ipstat.ips_forward++;
744 		}
745 		/*
746 		 * See if we belong to the destination multicast group on the
747 		 * arrival interface.
748 		 */
749 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
750 		if (inm == NULL) {
751 			rel_mplock();
752 			ipstat.ips_notmember++;
753 			m_freem(m);
754 			return;
755 		}
756 
757 		rel_mplock();
758 		goto ours;
759 	}
760 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
761 		goto ours;
762 	if (ip->ip_dst.s_addr == INADDR_ANY)
763 		goto ours;
764 
765 	/*
766 	 * FAITH(Firewall Aided Internet Translator)
767 	 */
768 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
769 		if (ip_keepfaith) {
770 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
771 				goto ours;
772 		}
773 		m_freem(m);
774 		return;
775 	}
776 
777 	/*
778 	 * Not for us; forward if possible and desirable.
779 	 */
780 	if (!ipforwarding) {
781 		ipstat.ips_cantforward++;
782 		m_freem(m);
783 	} else {
784 #ifdef IPSEC
785 		/*
786 		 * Enforce inbound IPsec SPD.
787 		 */
788 		if (ipsec4_in_reject(m, NULL)) {
789 			ipsecstat.in_polvio++;
790 			goto bad;
791 		}
792 #endif
793 #ifdef FAST_IPSEC
794 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
795 		crit_enter();
796 		if (mtag != NULL) {
797 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
798 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
799 		} else {
800 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
801 						   IP_FORWARDING, &error);
802 		}
803 		if (sp == NULL) {	/* NB: can happen if error */
804 			crit_exit();
805 			/*XXX error stat???*/
806 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
807 			goto bad;
808 		}
809 
810 		/*
811 		 * Check security policy against packet attributes.
812 		 */
813 		error = ipsec_in_reject(sp, m);
814 		KEY_FREESP(&sp);
815 		crit_exit();
816 		if (error) {
817 			ipstat.ips_cantforward++;
818 			goto bad;
819 		}
820 #endif
821 		ip_forward(m, using_srcrt, next_hop);
822 	}
823 	return;
824 
825 ours:
826 
827 	/*
828 	 * IPSTEALTH: Process non-routing options only
829 	 * if the packet is destined for us.
830 	 */
831 	if (ipstealth &&
832 	    hlen > sizeof(struct ip) &&
833 	    ip_dooptions(m, 1, next_hop))
834 		return;
835 
836 	/* Count the packet in the ip address stats */
837 	if (ia != NULL) {
838 		ia->ia_ifa.if_ipackets++;
839 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
840 	}
841 
842 	/*
843 	 * If offset or IP_MF are set, must reassemble.
844 	 * Otherwise, nothing need be done.
845 	 * (We could look in the reassembly queue to see
846 	 * if the packet was previously fragmented,
847 	 * but it's not worth the time; just let them time out.)
848 	 */
849 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
850 		/*
851 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
852 		 * will return a different mbuf.
853 		 *
854 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
855 		 *	 us to recharacterize the packet.
856 		 */
857 		m = ip_reass(m);
858 		if (m == NULL)
859 			return;
860 		ip = mtod(m, struct ip *);
861 
862 		/* Get the header length of the reassembled packet */
863 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
864 	} else {
865 		ip->ip_len -= hlen;
866 	}
867 
868 #ifdef IPSEC
869 	/*
870 	 * enforce IPsec policy checking if we are seeing last header.
871 	 * note that we do not visit this with protocols with pcb layer
872 	 * code - like udp/tcp/raw ip.
873 	 */
874 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
875 	    ipsec4_in_reject(m, NULL)) {
876 		ipsecstat.in_polvio++;
877 		goto bad;
878 	}
879 #endif
880 #if FAST_IPSEC
881 	/*
882 	 * enforce IPsec policy checking if we are seeing last header.
883 	 * note that we do not visit this with protocols with pcb layer
884 	 * code - like udp/tcp/raw ip.
885 	 */
886 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
887 		/*
888 		 * Check if the packet has already had IPsec processing
889 		 * done.  If so, then just pass it along.  This tag gets
890 		 * set during AH, ESP, etc. input handling, before the
891 		 * packet is returned to the ip input queue for delivery.
892 		 */
893 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
894 		crit_enter();
895 		if (mtag != NULL) {
896 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
897 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
898 		} else {
899 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
900 						   IP_FORWARDING, &error);
901 		}
902 		if (sp != NULL) {
903 			/*
904 			 * Check security policy against packet attributes.
905 			 */
906 			error = ipsec_in_reject(sp, m);
907 			KEY_FREESP(&sp);
908 		} else {
909 			/* XXX error stat??? */
910 			error = EINVAL;
911 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
912 			goto bad;
913 		}
914 		crit_exit();
915 		if (error)
916 			goto bad;
917 	}
918 #endif /* FAST_IPSEC */
919 
920 	/*
921 	 * We must forward the packet to the correct protocol thread if
922 	 * we are not already in it.
923 	 *
924 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
925 	 *	 further for protocol processing, instead we pass hlen
926 	 *	 to the protosw and let it deal with it.
927 	 */
928 	ipstat.ips_delivered++;
929 
930 	if ((m->m_flags & M_HASH) == 0) {
931 		++ip_dispatch_recheck;
932 		ip->ip_len = htons(ip->ip_len + hlen);
933 		ip->ip_off = htons(ip->ip_off);
934 
935 		ip_cpufn(&m, 0, IP_MPORT_IN);
936 		if (m == NULL)
937 			return;
938 
939 		ip = mtod(m, struct ip *);
940 		ip->ip_len = ntohs(ip->ip_len) - hlen;
941 		ip->ip_off = ntohs(ip->ip_off);
942 		KKASSERT(m->m_flags & M_HASH);
943 	}
944 	port = cpu_portfn(m->m_pkthdr.hash);
945 
946 	if (port != &curthread->td_msgport) {
947 		struct netmsg_packet *pmsg;
948 
949 		++ip_dispatch_slow;
950 
951 		pmsg = &m->m_hdr.mh_netmsg;
952 		netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
953 			    0, transport_processing_handler);
954 		pmsg->nm_packet = m;
955 		pmsg->base.lmsg.u.ms_result = hlen;
956 		lwkt_sendmsg(port, &pmsg->base.lmsg);
957 	} else {
958 		++ip_dispatch_fast;
959 		transport_processing_oncpu(m, hlen, ip);
960 	}
961 	return;
962 
963 bad:
964 	m_freem(m);
965 }
966 
967 /*
968  * Take incoming datagram fragment and try to reassemble it into
969  * whole datagram.  If a chain for reassembly of this datagram already
970  * exists, then it is given as fp; otherwise have to make a chain.
971  */
972 struct mbuf *
973 ip_reass(struct mbuf *m)
974 {
975 	struct ip *ip = mtod(m, struct ip *);
976 	struct mbuf *p = NULL, *q, *nq;
977 	struct mbuf *n;
978 	struct ipq *fp = NULL;
979 	struct ipqhead *head;
980 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
981 	int i, next;
982 	u_short sum;
983 
984 	/* If maxnipq is 0, never accept fragments. */
985 	if (maxnipq == 0) {
986 		ipstat.ips_fragments++;
987 		ipstat.ips_fragdropped++;
988 		m_freem(m);
989 		return NULL;
990 	}
991 
992 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
993 	/*
994 	 * Look for queue of fragments of this datagram.
995 	 */
996 	lwkt_gettoken(&ipq_token);
997 	head = &ipq[sum];
998 	TAILQ_FOREACH(fp, head, ipq_list) {
999 		if (ip->ip_id == fp->ipq_id &&
1000 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1001 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1002 		    ip->ip_p == fp->ipq_p)
1003 			goto found;
1004 	}
1005 
1006 	fp = NULL;
1007 
1008 	/*
1009 	 * Enforce upper bound on number of fragmented packets
1010 	 * for which we attempt reassembly;
1011 	 * If maxnipq is -1, accept all fragments without limitation.
1012 	 */
1013 	if (nipq > maxnipq && maxnipq > 0) {
1014 		/*
1015 		 * drop something from the tail of the current queue
1016 		 * before proceeding further
1017 		 */
1018 		struct ipq *q = TAILQ_LAST(head, ipqhead);
1019 		if (q == NULL) {
1020 			/*
1021 			 * The current queue is empty,
1022 			 * so drop from one of the others.
1023 			 */
1024 			for (i = 0; i < IPREASS_NHASH; i++) {
1025 				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
1026 				if (r) {
1027 					ipstat.ips_fragtimeout += r->ipq_nfrags;
1028 					ip_freef(&ipq[i], r);
1029 					break;
1030 				}
1031 			}
1032 		} else {
1033 			ipstat.ips_fragtimeout += q->ipq_nfrags;
1034 			ip_freef(head, q);
1035 		}
1036 	}
1037 found:
1038 	/*
1039 	 * Adjust ip_len to not reflect header,
1040 	 * convert offset of this to bytes.
1041 	 */
1042 	ip->ip_len -= hlen;
1043 	if (ip->ip_off & IP_MF) {
1044 		/*
1045 		 * Make sure that fragments have a data length
1046 		 * that's a non-zero multiple of 8 bytes.
1047 		 */
1048 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1049 			ipstat.ips_toosmall++; /* XXX */
1050 			m_freem(m);
1051 			goto done;
1052 		}
1053 		m->m_flags |= M_FRAG;
1054 	} else {
1055 		m->m_flags &= ~M_FRAG;
1056 	}
1057 	ip->ip_off <<= 3;
1058 
1059 	ipstat.ips_fragments++;
1060 	m->m_pkthdr.header = ip;
1061 
1062 	/*
1063 	 * If the hardware has not done csum over this fragment
1064 	 * then csum_data is not valid at all.
1065 	 */
1066 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1067 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1068 		m->m_pkthdr.csum_data = 0;
1069 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1070 	}
1071 
1072 	/*
1073 	 * Presence of header sizes in mbufs
1074 	 * would confuse code below.
1075 	 */
1076 	m->m_data += hlen;
1077 	m->m_len -= hlen;
1078 
1079 	/*
1080 	 * If first fragment to arrive, create a reassembly queue.
1081 	 */
1082 	if (fp == NULL) {
1083 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1084 			goto dropfrag;
1085 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1086 		nipq++;
1087 		fp->ipq_nfrags = 1;
1088 		fp->ipq_ttl = IPFRAGTTL;
1089 		fp->ipq_p = ip->ip_p;
1090 		fp->ipq_id = ip->ip_id;
1091 		fp->ipq_src = ip->ip_src;
1092 		fp->ipq_dst = ip->ip_dst;
1093 		fp->ipq_frags = m;
1094 		m->m_nextpkt = NULL;
1095 		goto inserted;
1096 	} else {
1097 		fp->ipq_nfrags++;
1098 	}
1099 
1100 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1101 
1102 	/*
1103 	 * Find a segment which begins after this one does.
1104 	 */
1105 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1106 		if (GETIP(q)->ip_off > ip->ip_off)
1107 			break;
1108 	}
1109 
1110 	/*
1111 	 * If there is a preceding segment, it may provide some of
1112 	 * our data already.  If so, drop the data from the incoming
1113 	 * segment.  If it provides all of our data, drop us, otherwise
1114 	 * stick new segment in the proper place.
1115 	 *
1116 	 * If some of the data is dropped from the the preceding
1117 	 * segment, then it's checksum is invalidated.
1118 	 */
1119 	if (p) {
1120 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1121 		if (i > 0) {
1122 			if (i >= ip->ip_len)
1123 				goto dropfrag;
1124 			m_adj(m, i);
1125 			m->m_pkthdr.csum_flags = 0;
1126 			ip->ip_off += i;
1127 			ip->ip_len -= i;
1128 		}
1129 		m->m_nextpkt = p->m_nextpkt;
1130 		p->m_nextpkt = m;
1131 	} else {
1132 		m->m_nextpkt = fp->ipq_frags;
1133 		fp->ipq_frags = m;
1134 	}
1135 
1136 	/*
1137 	 * While we overlap succeeding segments trim them or,
1138 	 * if they are completely covered, dequeue them.
1139 	 */
1140 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1141 	     q = nq) {
1142 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1143 		if (i < GETIP(q)->ip_len) {
1144 			GETIP(q)->ip_len -= i;
1145 			GETIP(q)->ip_off += i;
1146 			m_adj(q, i);
1147 			q->m_pkthdr.csum_flags = 0;
1148 			break;
1149 		}
1150 		nq = q->m_nextpkt;
1151 		m->m_nextpkt = nq;
1152 		ipstat.ips_fragdropped++;
1153 		fp->ipq_nfrags--;
1154 		q->m_nextpkt = NULL;
1155 		m_freem(q);
1156 	}
1157 
1158 inserted:
1159 	/*
1160 	 * Check for complete reassembly and perform frag per packet
1161 	 * limiting.
1162 	 *
1163 	 * Frag limiting is performed here so that the nth frag has
1164 	 * a chance to complete the packet before we drop the packet.
1165 	 * As a result, n+1 frags are actually allowed per packet, but
1166 	 * only n will ever be stored. (n = maxfragsperpacket.)
1167 	 *
1168 	 */
1169 	next = 0;
1170 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1171 		if (GETIP(q)->ip_off != next) {
1172 			if (fp->ipq_nfrags > maxfragsperpacket) {
1173 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1174 				ip_freef(head, fp);
1175 			}
1176 			goto done;
1177 		}
1178 		next += GETIP(q)->ip_len;
1179 	}
1180 	/* Make sure the last packet didn't have the IP_MF flag */
1181 	if (p->m_flags & M_FRAG) {
1182 		if (fp->ipq_nfrags > maxfragsperpacket) {
1183 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1184 			ip_freef(head, fp);
1185 		}
1186 		goto done;
1187 	}
1188 
1189 	/*
1190 	 * Reassembly is complete.  Make sure the packet is a sane size.
1191 	 */
1192 	q = fp->ipq_frags;
1193 	ip = GETIP(q);
1194 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1195 		ipstat.ips_toolong++;
1196 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1197 		ip_freef(head, fp);
1198 		goto done;
1199 	}
1200 
1201 	/*
1202 	 * Concatenate fragments.
1203 	 */
1204 	m = q;
1205 	n = m->m_next;
1206 	m->m_next = NULL;
1207 	m_cat(m, n);
1208 	nq = q->m_nextpkt;
1209 	q->m_nextpkt = NULL;
1210 	for (q = nq; q != NULL; q = nq) {
1211 		nq = q->m_nextpkt;
1212 		q->m_nextpkt = NULL;
1213 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1214 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1215 		m_cat(m, q);
1216 	}
1217 
1218 	/*
1219 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1220 	 * be added back.  This assumes no more then 65535 packet fragments
1221 	 * were reassembled.  A second carry can also occur (but not a third).
1222 	 */
1223 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1224 				(m->m_pkthdr.csum_data >> 16);
1225 	if (m->m_pkthdr.csum_data > 0xFFFF)
1226 		m->m_pkthdr.csum_data -= 0xFFFF;
1227 
1228 	/*
1229 	 * Create header for new ip packet by
1230 	 * modifying header of first packet;
1231 	 * dequeue and discard fragment reassembly header.
1232 	 * Make header visible.
1233 	 */
1234 	ip->ip_len = next;
1235 	ip->ip_src = fp->ipq_src;
1236 	ip->ip_dst = fp->ipq_dst;
1237 	TAILQ_REMOVE(head, fp, ipq_list);
1238 	nipq--;
1239 	mpipe_free(&ipq_mpipe, fp);
1240 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1241 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1242 	/* some debugging cruft by sklower, below, will go away soon */
1243 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1244 		int plen = 0;
1245 
1246 		for (n = m; n; n = n->m_next)
1247 			plen += n->m_len;
1248 		m->m_pkthdr.len = plen;
1249 	}
1250 
1251 	/*
1252 	 * Reassembly complete, return the next protocol.
1253 	 *
1254 	 * Be sure to clear M_HASH to force the packet
1255 	 * to be re-characterized.
1256 	 *
1257 	 * Clear M_FRAG, we are no longer a fragment.
1258 	 */
1259 	m->m_flags &= ~(M_HASH | M_FRAG);
1260 
1261 	ipstat.ips_reassembled++;
1262 	lwkt_reltoken(&ipq_token);
1263 	return (m);
1264 
1265 dropfrag:
1266 	ipstat.ips_fragdropped++;
1267 	if (fp != NULL)
1268 		fp->ipq_nfrags--;
1269 	m_freem(m);
1270 done:
1271 	lwkt_reltoken(&ipq_token);
1272 	return (NULL);
1273 
1274 #undef GETIP
1275 }
1276 
1277 /*
1278  * Free a fragment reassembly header and all
1279  * associated datagrams.
1280  *
1281  * Called with ipq_token held.
1282  */
1283 static void
1284 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1285 {
1286 	struct mbuf *q;
1287 
1288 	/*
1289 	 * Remove first to protect against blocking
1290 	 */
1291 	TAILQ_REMOVE(fhp, fp, ipq_list);
1292 
1293 	/*
1294 	 * Clean out at our leisure
1295 	 */
1296 	while (fp->ipq_frags) {
1297 		q = fp->ipq_frags;
1298 		fp->ipq_frags = q->m_nextpkt;
1299 		q->m_nextpkt = NULL;
1300 		m_freem(q);
1301 	}
1302 	mpipe_free(&ipq_mpipe, fp);
1303 	nipq--;
1304 }
1305 
1306 /*
1307  * IP timer processing;
1308  * if a timer expires on a reassembly
1309  * queue, discard it.
1310  */
1311 void
1312 ip_slowtimo(void)
1313 {
1314 	struct ipq *fp, *fp_temp;
1315 	struct ipqhead *head;
1316 	int i;
1317 
1318 	lwkt_gettoken(&ipq_token);
1319 	for (i = 0; i < IPREASS_NHASH; i++) {
1320 		head = &ipq[i];
1321 		TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1322 			if (--fp->ipq_ttl == 0) {
1323 				ipstat.ips_fragtimeout += fp->ipq_nfrags;
1324 				ip_freef(head, fp);
1325 			}
1326 		}
1327 	}
1328 	/*
1329 	 * If we are over the maximum number of fragments
1330 	 * (due to the limit being lowered), drain off
1331 	 * enough to get down to the new limit.
1332 	 */
1333 	if (maxnipq >= 0 && nipq > maxnipq) {
1334 		for (i = 0; i < IPREASS_NHASH; i++) {
1335 			head = &ipq[i];
1336 			while (nipq > maxnipq && !TAILQ_EMPTY(head)) {
1337 				ipstat.ips_fragdropped +=
1338 				    TAILQ_FIRST(head)->ipq_nfrags;
1339 				ip_freef(head, TAILQ_FIRST(head));
1340 			}
1341 		}
1342 	}
1343 	lwkt_reltoken(&ipq_token);
1344 	ipflow_slowtimo();
1345 }
1346 
1347 /*
1348  * Drain off all datagram fragments.
1349  */
1350 void
1351 ip_drain(void)
1352 {
1353 	struct ipqhead *head;
1354 	int i;
1355 
1356 	lwkt_gettoken(&ipq_token);
1357 	for (i = 0; i < IPREASS_NHASH; i++) {
1358 		head = &ipq[i];
1359 		while (!TAILQ_EMPTY(head)) {
1360 			ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1361 			ip_freef(head, TAILQ_FIRST(head));
1362 		}
1363 	}
1364 	lwkt_reltoken(&ipq_token);
1365 	in_rtqdrain();
1366 }
1367 
1368 /*
1369  * Do option processing on a datagram,
1370  * possibly discarding it if bad options are encountered,
1371  * or forwarding it if source-routed.
1372  * The pass argument is used when operating in the IPSTEALTH
1373  * mode to tell what options to process:
1374  * [LS]SRR (pass 0) or the others (pass 1).
1375  * The reason for as many as two passes is that when doing IPSTEALTH,
1376  * non-routing options should be processed only if the packet is for us.
1377  * Returns 1 if packet has been forwarded/freed,
1378  * 0 if the packet should be processed further.
1379  */
1380 static int
1381 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1382 {
1383 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1384 	struct ip *ip = mtod(m, struct ip *);
1385 	u_char *cp;
1386 	struct in_ifaddr *ia;
1387 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1388 	boolean_t forward = FALSE;
1389 	struct in_addr *sin, dst;
1390 	n_time ntime;
1391 
1392 	dst = ip->ip_dst;
1393 	cp = (u_char *)(ip + 1);
1394 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1395 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1396 		opt = cp[IPOPT_OPTVAL];
1397 		if (opt == IPOPT_EOL)
1398 			break;
1399 		if (opt == IPOPT_NOP)
1400 			optlen = 1;
1401 		else {
1402 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1403 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1404 				goto bad;
1405 			}
1406 			optlen = cp[IPOPT_OLEN];
1407 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1408 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1409 				goto bad;
1410 			}
1411 		}
1412 		switch (opt) {
1413 
1414 		default:
1415 			break;
1416 
1417 		/*
1418 		 * Source routing with record.
1419 		 * Find interface with current destination address.
1420 		 * If none on this machine then drop if strictly routed,
1421 		 * or do nothing if loosely routed.
1422 		 * Record interface address and bring up next address
1423 		 * component.  If strictly routed make sure next
1424 		 * address is on directly accessible net.
1425 		 */
1426 		case IPOPT_LSRR:
1427 		case IPOPT_SSRR:
1428 			if (ipstealth && pass > 0)
1429 				break;
1430 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1431 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1432 				goto bad;
1433 			}
1434 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1435 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1436 				goto bad;
1437 			}
1438 			ipaddr.sin_addr = ip->ip_dst;
1439 			ia = (struct in_ifaddr *)
1440 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1441 			if (ia == NULL) {
1442 				if (opt == IPOPT_SSRR) {
1443 					type = ICMP_UNREACH;
1444 					code = ICMP_UNREACH_SRCFAIL;
1445 					goto bad;
1446 				}
1447 				if (!ip_dosourceroute)
1448 					goto nosourcerouting;
1449 				/*
1450 				 * Loose routing, and not at next destination
1451 				 * yet; nothing to do except forward.
1452 				 */
1453 				break;
1454 			}
1455 			off--;			/* 0 origin */
1456 			if (off > optlen - (int)sizeof(struct in_addr)) {
1457 				/*
1458 				 * End of source route.  Should be for us.
1459 				 */
1460 				if (!ip_acceptsourceroute)
1461 					goto nosourcerouting;
1462 				save_rte(m, cp, ip->ip_src);
1463 				break;
1464 			}
1465 			if (ipstealth)
1466 				goto dropit;
1467 			if (!ip_dosourceroute) {
1468 				if (ipforwarding) {
1469 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1470 
1471 					/*
1472 					 * Acting as a router, so generate ICMP
1473 					 */
1474 nosourcerouting:
1475 					strcpy(buf, inet_ntoa(ip->ip_dst));
1476 					log(LOG_WARNING,
1477 					    "attempted source route from %s to %s\n",
1478 					    inet_ntoa(ip->ip_src), buf);
1479 					type = ICMP_UNREACH;
1480 					code = ICMP_UNREACH_SRCFAIL;
1481 					goto bad;
1482 				} else {
1483 					/*
1484 					 * Not acting as a router,
1485 					 * so silently drop.
1486 					 */
1487 dropit:
1488 					ipstat.ips_cantforward++;
1489 					m_freem(m);
1490 					return (1);
1491 				}
1492 			}
1493 
1494 			/*
1495 			 * locate outgoing interface
1496 			 */
1497 			memcpy(&ipaddr.sin_addr, cp + off,
1498 			    sizeof ipaddr.sin_addr);
1499 
1500 			if (opt == IPOPT_SSRR) {
1501 #define	INA	struct in_ifaddr *
1502 #define	SA	struct sockaddr *
1503 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1504 									== NULL)
1505 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1506 			} else {
1507 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1508 			}
1509 			if (ia == NULL) {
1510 				type = ICMP_UNREACH;
1511 				code = ICMP_UNREACH_SRCFAIL;
1512 				goto bad;
1513 			}
1514 			ip->ip_dst = ipaddr.sin_addr;
1515 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1516 			    sizeof(struct in_addr));
1517 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1518 			/*
1519 			 * Let ip_intr's mcast routing check handle mcast pkts
1520 			 */
1521 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1522 			break;
1523 
1524 		case IPOPT_RR:
1525 			if (ipstealth && pass == 0)
1526 				break;
1527 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1528 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1529 				goto bad;
1530 			}
1531 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1532 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1533 				goto bad;
1534 			}
1535 			/*
1536 			 * If no space remains, ignore.
1537 			 */
1538 			off--;			/* 0 origin */
1539 			if (off > optlen - (int)sizeof(struct in_addr))
1540 				break;
1541 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1542 			    sizeof ipaddr.sin_addr);
1543 			/*
1544 			 * locate outgoing interface; if we're the destination,
1545 			 * use the incoming interface (should be same).
1546 			 */
1547 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1548 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1549 				type = ICMP_UNREACH;
1550 				code = ICMP_UNREACH_HOST;
1551 				goto bad;
1552 			}
1553 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1554 			    sizeof(struct in_addr));
1555 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1556 			break;
1557 
1558 		case IPOPT_TS:
1559 			if (ipstealth && pass == 0)
1560 				break;
1561 			code = cp - (u_char *)ip;
1562 			if (optlen < 4 || optlen > 40) {
1563 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1564 				goto bad;
1565 			}
1566 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1567 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1568 				goto bad;
1569 			}
1570 			if (off > optlen - (int)sizeof(int32_t)) {
1571 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1572 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1573 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1574 					goto bad;
1575 				}
1576 				break;
1577 			}
1578 			off--;				/* 0 origin */
1579 			sin = (struct in_addr *)(cp + off);
1580 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1581 
1582 			case IPOPT_TS_TSONLY:
1583 				break;
1584 
1585 			case IPOPT_TS_TSANDADDR:
1586 				if (off + sizeof(n_time) +
1587 				    sizeof(struct in_addr) > optlen) {
1588 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1589 					goto bad;
1590 				}
1591 				ipaddr.sin_addr = dst;
1592 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1593 							    m->m_pkthdr.rcvif);
1594 				if (ia == NULL)
1595 					continue;
1596 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1597 				    sizeof(struct in_addr));
1598 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1599 				off += sizeof(struct in_addr);
1600 				break;
1601 
1602 			case IPOPT_TS_PRESPEC:
1603 				if (off + sizeof(n_time) +
1604 				    sizeof(struct in_addr) > optlen) {
1605 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1606 					goto bad;
1607 				}
1608 				memcpy(&ipaddr.sin_addr, sin,
1609 				    sizeof(struct in_addr));
1610 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1611 					continue;
1612 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1613 				off += sizeof(struct in_addr);
1614 				break;
1615 
1616 			default:
1617 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1618 				goto bad;
1619 			}
1620 			ntime = iptime();
1621 			memcpy(cp + off, &ntime, sizeof(n_time));
1622 			cp[IPOPT_OFFSET] += sizeof(n_time);
1623 		}
1624 	}
1625 	if (forward && ipforwarding) {
1626 		ip_forward(m, TRUE, next_hop);
1627 		return (1);
1628 	}
1629 	return (0);
1630 bad:
1631 	icmp_error(m, type, code, 0, 0);
1632 	ipstat.ips_badoptions++;
1633 	return (1);
1634 }
1635 
1636 /*
1637  * Given address of next destination (final or next hop),
1638  * return internet address info of interface to be used to get there.
1639  */
1640 struct in_ifaddr *
1641 ip_rtaddr(struct in_addr dst, struct route *ro0)
1642 {
1643 	struct route sro, *ro;
1644 	struct sockaddr_in *sin;
1645 	struct in_ifaddr *ia;
1646 
1647 	if (ro0 != NULL) {
1648 		ro = ro0;
1649 	} else {
1650 		bzero(&sro, sizeof(sro));
1651 		ro = &sro;
1652 	}
1653 
1654 	sin = (struct sockaddr_in *)&ro->ro_dst;
1655 
1656 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1657 		if (ro->ro_rt != NULL) {
1658 			RTFREE(ro->ro_rt);
1659 			ro->ro_rt = NULL;
1660 		}
1661 		sin->sin_family = AF_INET;
1662 		sin->sin_len = sizeof *sin;
1663 		sin->sin_addr = dst;
1664 		rtalloc_ign(ro, RTF_PRCLONING);
1665 	}
1666 
1667 	if (ro->ro_rt == NULL)
1668 		return (NULL);
1669 
1670 	ia = ifatoia(ro->ro_rt->rt_ifa);
1671 
1672 	if (ro == &sro)
1673 		RTFREE(ro->ro_rt);
1674 	return ia;
1675 }
1676 
1677 /*
1678  * Save incoming source route for use in replies,
1679  * to be picked up later by ip_srcroute if the receiver is interested.
1680  */
1681 static void
1682 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1683 {
1684 	struct m_tag *mtag;
1685 	struct ip_srcrt_opt *opt;
1686 	unsigned olen;
1687 
1688 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), MB_DONTWAIT);
1689 	if (mtag == NULL)
1690 		return;
1691 	opt = m_tag_data(mtag);
1692 
1693 	olen = option[IPOPT_OLEN];
1694 #ifdef DIAGNOSTIC
1695 	if (ipprintfs)
1696 		kprintf("save_rte: olen %d\n", olen);
1697 #endif
1698 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1699 		m_tag_free(mtag);
1700 		return;
1701 	}
1702 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1703 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1704 	opt->ip_srcrt.dst = dst;
1705 	m_tag_prepend(m, mtag);
1706 }
1707 
1708 /*
1709  * Retrieve incoming source route for use in replies,
1710  * in the same form used by setsockopt.
1711  * The first hop is placed before the options, will be removed later.
1712  */
1713 struct mbuf *
1714 ip_srcroute(struct mbuf *m0)
1715 {
1716 	struct in_addr *p, *q;
1717 	struct mbuf *m;
1718 	struct m_tag *mtag;
1719 	struct ip_srcrt_opt *opt;
1720 
1721 	if (m0 == NULL)
1722 		return NULL;
1723 
1724 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1725 	if (mtag == NULL)
1726 		return NULL;
1727 	opt = m_tag_data(mtag);
1728 
1729 	if (opt->ip_nhops == 0)
1730 		return (NULL);
1731 	m = m_get(MB_DONTWAIT, MT_HEADER);
1732 	if (m == NULL)
1733 		return (NULL);
1734 
1735 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1736 
1737 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1738 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1739 		   sizeof(struct in_addr) + OPTSIZ;
1740 #ifdef DIAGNOSTIC
1741 	if (ipprintfs) {
1742 		kprintf("ip_srcroute: nhops %d mlen %d",
1743 			opt->ip_nhops, m->m_len);
1744 	}
1745 #endif
1746 
1747 	/*
1748 	 * First save first hop for return route
1749 	 */
1750 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1751 	*(mtod(m, struct in_addr *)) = *p--;
1752 #ifdef DIAGNOSTIC
1753 	if (ipprintfs)
1754 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1755 #endif
1756 
1757 	/*
1758 	 * Copy option fields and padding (nop) to mbuf.
1759 	 */
1760 	opt->ip_srcrt.nop = IPOPT_NOP;
1761 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1762 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1763 	    OPTSIZ);
1764 	q = (struct in_addr *)(mtod(m, caddr_t) +
1765 	    sizeof(struct in_addr) + OPTSIZ);
1766 #undef OPTSIZ
1767 	/*
1768 	 * Record return path as an IP source route,
1769 	 * reversing the path (pointers are now aligned).
1770 	 */
1771 	while (p >= opt->ip_srcrt.route) {
1772 #ifdef DIAGNOSTIC
1773 		if (ipprintfs)
1774 			kprintf(" %x", ntohl(q->s_addr));
1775 #endif
1776 		*q++ = *p--;
1777 	}
1778 	/*
1779 	 * Last hop goes to final destination.
1780 	 */
1781 	*q = opt->ip_srcrt.dst;
1782 	m_tag_delete(m0, mtag);
1783 #ifdef DIAGNOSTIC
1784 	if (ipprintfs)
1785 		kprintf(" %x\n", ntohl(q->s_addr));
1786 #endif
1787 	return (m);
1788 }
1789 
1790 /*
1791  * Strip out IP options.
1792  */
1793 void
1794 ip_stripoptions(struct mbuf *m)
1795 {
1796 	int datalen;
1797 	struct ip *ip = mtod(m, struct ip *);
1798 	caddr_t opts;
1799 	int optlen;
1800 
1801 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1802 	opts = (caddr_t)(ip + 1);
1803 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1804 	bcopy(opts + optlen, opts, datalen);
1805 	m->m_len -= optlen;
1806 	if (m->m_flags & M_PKTHDR)
1807 		m->m_pkthdr.len -= optlen;
1808 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1809 }
1810 
1811 u_char inetctlerrmap[PRC_NCMDS] = {
1812 	0,		0,		0,		0,
1813 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1814 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1815 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1816 	0,		0,		0,		0,
1817 	ENOPROTOOPT,	ECONNREFUSED
1818 };
1819 
1820 /*
1821  * Forward a packet.  If some error occurs return the sender
1822  * an icmp packet.  Note we can't always generate a meaningful
1823  * icmp message because icmp doesn't have a large enough repertoire
1824  * of codes and types.
1825  *
1826  * If not forwarding, just drop the packet.  This could be confusing
1827  * if ipforwarding was zero but some routing protocol was advancing
1828  * us as a gateway to somewhere.  However, we must let the routing
1829  * protocol deal with that.
1830  *
1831  * The using_srcrt parameter indicates whether the packet is being forwarded
1832  * via a source route.
1833  */
1834 void
1835 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1836 {
1837 	struct ip *ip = mtod(m, struct ip *);
1838 	struct rtentry *rt;
1839 	struct route fwd_ro;
1840 	int error, type = 0, code = 0, destmtu = 0;
1841 	struct mbuf *mcopy;
1842 	n_long dest;
1843 	struct in_addr pkt_dst;
1844 
1845 	dest = INADDR_ANY;
1846 	/*
1847 	 * Cache the destination address of the packet; this may be
1848 	 * changed by use of 'ipfw fwd'.
1849 	 */
1850 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1851 
1852 #ifdef DIAGNOSTIC
1853 	if (ipprintfs)
1854 		kprintf("forward: src %x dst %x ttl %x\n",
1855 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1856 #endif
1857 
1858 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1859 		ipstat.ips_cantforward++;
1860 		m_freem(m);
1861 		return;
1862 	}
1863 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1864 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1865 		return;
1866 	}
1867 
1868 	bzero(&fwd_ro, sizeof(fwd_ro));
1869 	ip_rtaddr(pkt_dst, &fwd_ro);
1870 	if (fwd_ro.ro_rt == NULL) {
1871 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1872 		return;
1873 	}
1874 	rt = fwd_ro.ro_rt;
1875 
1876 	/*
1877 	 * Save the IP header and at most 8 bytes of the payload,
1878 	 * in case we need to generate an ICMP message to the src.
1879 	 *
1880 	 * XXX this can be optimized a lot by saving the data in a local
1881 	 * buffer on the stack (72 bytes at most), and only allocating the
1882 	 * mbuf if really necessary. The vast majority of the packets
1883 	 * are forwarded without having to send an ICMP back (either
1884 	 * because unnecessary, or because rate limited), so we are
1885 	 * really we are wasting a lot of work here.
1886 	 *
1887 	 * We don't use m_copy() because it might return a reference
1888 	 * to a shared cluster. Both this function and ip_output()
1889 	 * assume exclusive access to the IP header in `m', so any
1890 	 * data in a cluster may change before we reach icmp_error().
1891 	 */
1892 	MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1893 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1894 		/*
1895 		 * It's probably ok if the pkthdr dup fails (because
1896 		 * the deep copy of the tag chain failed), but for now
1897 		 * be conservative and just discard the copy since
1898 		 * code below may some day want the tags.
1899 		 */
1900 		m_free(mcopy);
1901 		mcopy = NULL;
1902 	}
1903 	if (mcopy != NULL) {
1904 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1905 		    (int)ip->ip_len);
1906 		mcopy->m_pkthdr.len = mcopy->m_len;
1907 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1908 	}
1909 
1910 	if (!ipstealth)
1911 		ip->ip_ttl -= IPTTLDEC;
1912 
1913 	/*
1914 	 * If forwarding packet using same interface that it came in on,
1915 	 * perhaps should send a redirect to sender to shortcut a hop.
1916 	 * Only send redirect if source is sending directly to us,
1917 	 * and if packet was not source routed (or has any options).
1918 	 * Also, don't send redirect if forwarding using a default route
1919 	 * or a route modified by a redirect.
1920 	 */
1921 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1922 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1923 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1924 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1925 		u_long src = ntohl(ip->ip_src.s_addr);
1926 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1927 
1928 		if (rt_ifa != NULL &&
1929 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1930 			if (rt->rt_flags & RTF_GATEWAY)
1931 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1932 			else
1933 				dest = pkt_dst.s_addr;
1934 			/*
1935 			 * Router requirements says to only send
1936 			 * host redirects.
1937 			 */
1938 			type = ICMP_REDIRECT;
1939 			code = ICMP_REDIRECT_HOST;
1940 #ifdef DIAGNOSTIC
1941 			if (ipprintfs)
1942 				kprintf("redirect (%d) to %x\n", code, dest);
1943 #endif
1944 		}
1945 	}
1946 
1947 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
1948 	if (error == 0) {
1949 		ipstat.ips_forward++;
1950 		if (type == 0) {
1951 			if (mcopy) {
1952 				ipflow_create(&fwd_ro, mcopy);
1953 				m_freem(mcopy);
1954 			}
1955 			goto done;
1956 		} else {
1957 			ipstat.ips_redirectsent++;
1958 		}
1959 	} else {
1960 		ipstat.ips_cantforward++;
1961 	}
1962 
1963 	if (mcopy == NULL)
1964 		goto done;
1965 
1966 	/*
1967 	 * Send ICMP message.
1968 	 */
1969 
1970 	switch (error) {
1971 
1972 	case 0:				/* forwarded, but need redirect */
1973 		/* type, code set above */
1974 		break;
1975 
1976 	case ENETUNREACH:		/* shouldn't happen, checked above */
1977 	case EHOSTUNREACH:
1978 	case ENETDOWN:
1979 	case EHOSTDOWN:
1980 	default:
1981 		type = ICMP_UNREACH;
1982 		code = ICMP_UNREACH_HOST;
1983 		break;
1984 
1985 	case EMSGSIZE:
1986 		type = ICMP_UNREACH;
1987 		code = ICMP_UNREACH_NEEDFRAG;
1988 #ifdef IPSEC
1989 		/*
1990 		 * If the packet is routed over IPsec tunnel, tell the
1991 		 * originator the tunnel MTU.
1992 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1993 		 * XXX quickhack!!!
1994 		 */
1995 		if (fwd_ro.ro_rt != NULL) {
1996 			struct secpolicy *sp = NULL;
1997 			int ipsecerror;
1998 			int ipsechdr;
1999 			struct route *ro;
2000 
2001 			sp = ipsec4_getpolicybyaddr(mcopy,
2002 						    IPSEC_DIR_OUTBOUND,
2003 						    IP_FORWARDING,
2004 						    &ipsecerror);
2005 
2006 			if (sp == NULL)
2007 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2008 			else {
2009 				/* count IPsec header size */
2010 				ipsechdr = ipsec4_hdrsiz(mcopy,
2011 							 IPSEC_DIR_OUTBOUND,
2012 							 NULL);
2013 
2014 				/*
2015 				 * find the correct route for outer IPv4
2016 				 * header, compute tunnel MTU.
2017 				 *
2018 				 */
2019 				if (sp->req != NULL && sp->req->sav != NULL &&
2020 				    sp->req->sav->sah != NULL) {
2021 					ro = &sp->req->sav->sah->sa_route;
2022 					if (ro->ro_rt != NULL &&
2023 					    ro->ro_rt->rt_ifp != NULL) {
2024 						destmtu =
2025 						    ro->ro_rt->rt_ifp->if_mtu;
2026 						destmtu -= ipsechdr;
2027 					}
2028 				}
2029 
2030 				key_freesp(sp);
2031 			}
2032 		}
2033 #elif FAST_IPSEC
2034 		/*
2035 		 * If the packet is routed over IPsec tunnel, tell the
2036 		 * originator the tunnel MTU.
2037 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2038 		 * XXX quickhack!!!
2039 		 */
2040 		if (fwd_ro.ro_rt != NULL) {
2041 			struct secpolicy *sp = NULL;
2042 			int ipsecerror;
2043 			int ipsechdr;
2044 			struct route *ro;
2045 
2046 			sp = ipsec_getpolicybyaddr(mcopy,
2047 						   IPSEC_DIR_OUTBOUND,
2048 						   IP_FORWARDING,
2049 						   &ipsecerror);
2050 
2051 			if (sp == NULL)
2052 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2053 			else {
2054 				/* count IPsec header size */
2055 				ipsechdr = ipsec4_hdrsiz(mcopy,
2056 							 IPSEC_DIR_OUTBOUND,
2057 							 NULL);
2058 
2059 				/*
2060 				 * find the correct route for outer IPv4
2061 				 * header, compute tunnel MTU.
2062 				 */
2063 
2064 				if (sp->req != NULL &&
2065 				    sp->req->sav != NULL &&
2066 				    sp->req->sav->sah != NULL) {
2067 					ro = &sp->req->sav->sah->sa_route;
2068 					if (ro->ro_rt != NULL &&
2069 					    ro->ro_rt->rt_ifp != NULL) {
2070 						destmtu =
2071 						    ro->ro_rt->rt_ifp->if_mtu;
2072 						destmtu -= ipsechdr;
2073 					}
2074 				}
2075 
2076 				KEY_FREESP(&sp);
2077 			}
2078 		}
2079 #else /* !IPSEC && !FAST_IPSEC */
2080 		if (fwd_ro.ro_rt != NULL)
2081 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2082 #endif /*IPSEC*/
2083 		ipstat.ips_cantfrag++;
2084 		break;
2085 
2086 	case ENOBUFS:
2087 		/*
2088 		 * A router should not generate ICMP_SOURCEQUENCH as
2089 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2090 		 * Source quench could be a big problem under DoS attacks,
2091 		 * or if the underlying interface is rate-limited.
2092 		 * Those who need source quench packets may re-enable them
2093 		 * via the net.inet.ip.sendsourcequench sysctl.
2094 		 */
2095 		if (!ip_sendsourcequench) {
2096 			m_freem(mcopy);
2097 			goto done;
2098 		} else {
2099 			type = ICMP_SOURCEQUENCH;
2100 			code = 0;
2101 		}
2102 		break;
2103 
2104 	case EACCES:			/* ipfw denied packet */
2105 		m_freem(mcopy);
2106 		goto done;
2107 	}
2108 	icmp_error(mcopy, type, code, dest, destmtu);
2109 done:
2110 	if (fwd_ro.ro_rt != NULL)
2111 		RTFREE(fwd_ro.ro_rt);
2112 }
2113 
2114 void
2115 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2116 	       struct mbuf *m)
2117 {
2118 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2119 		struct timeval tv;
2120 
2121 		microtime(&tv);
2122 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2123 		    SCM_TIMESTAMP, SOL_SOCKET);
2124 		if (*mp)
2125 			mp = &(*mp)->m_next;
2126 	}
2127 	if (inp->inp_flags & INP_RECVDSTADDR) {
2128 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2129 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2130 		if (*mp)
2131 			mp = &(*mp)->m_next;
2132 	}
2133 	if (inp->inp_flags & INP_RECVTTL) {
2134 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2135 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2136 		if (*mp)
2137 			mp = &(*mp)->m_next;
2138 	}
2139 #ifdef notyet
2140 	/* XXX
2141 	 * Moving these out of udp_input() made them even more broken
2142 	 * than they already were.
2143 	 */
2144 	/* options were tossed already */
2145 	if (inp->inp_flags & INP_RECVOPTS) {
2146 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2147 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2148 		if (*mp)
2149 			mp = &(*mp)->m_next;
2150 	}
2151 	/* ip_srcroute doesn't do what we want here, need to fix */
2152 	if (inp->inp_flags & INP_RECVRETOPTS) {
2153 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2154 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2155 		if (*mp)
2156 			mp = &(*mp)->m_next;
2157 	}
2158 #endif
2159 	if (inp->inp_flags & INP_RECVIF) {
2160 		struct ifnet *ifp;
2161 		struct sdlbuf {
2162 			struct sockaddr_dl sdl;
2163 			u_char	pad[32];
2164 		} sdlbuf;
2165 		struct sockaddr_dl *sdp;
2166 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2167 
2168 		if (((ifp = m->m_pkthdr.rcvif)) &&
2169 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2170 			sdp = IF_LLSOCKADDR(ifp);
2171 			/*
2172 			 * Change our mind and don't try copy.
2173 			 */
2174 			if ((sdp->sdl_family != AF_LINK) ||
2175 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2176 				goto makedummy;
2177 			}
2178 			bcopy(sdp, sdl2, sdp->sdl_len);
2179 		} else {
2180 makedummy:
2181 			sdl2->sdl_len =
2182 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2183 			sdl2->sdl_family = AF_LINK;
2184 			sdl2->sdl_index = 0;
2185 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2186 		}
2187 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2188 			IP_RECVIF, IPPROTO_IP);
2189 		if (*mp)
2190 			mp = &(*mp)->m_next;
2191 	}
2192 }
2193 
2194 /*
2195  * XXX these routines are called from the upper part of the kernel.
2196  *
2197  * They could also be moved to ip_mroute.c, since all the RSVP
2198  *  handling is done there already.
2199  */
2200 int
2201 ip_rsvp_init(struct socket *so)
2202 {
2203 	if (so->so_type != SOCK_RAW ||
2204 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2205 		return EOPNOTSUPP;
2206 
2207 	if (ip_rsvpd != NULL)
2208 		return EADDRINUSE;
2209 
2210 	ip_rsvpd = so;
2211 	/*
2212 	 * This may seem silly, but we need to be sure we don't over-increment
2213 	 * the RSVP counter, in case something slips up.
2214 	 */
2215 	if (!ip_rsvp_on) {
2216 		ip_rsvp_on = 1;
2217 		rsvp_on++;
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 int
2224 ip_rsvp_done(void)
2225 {
2226 	ip_rsvpd = NULL;
2227 	/*
2228 	 * This may seem silly, but we need to be sure we don't over-decrement
2229 	 * the RSVP counter, in case something slips up.
2230 	 */
2231 	if (ip_rsvp_on) {
2232 		ip_rsvp_on = 0;
2233 		rsvp_on--;
2234 	}
2235 	return 0;
2236 }
2237 
2238 int
2239 rsvp_input(struct mbuf **mp, int *offp, int proto)
2240 {
2241 	struct mbuf *m = *mp;
2242 	int off;
2243 
2244 	off = *offp;
2245 	*mp = NULL;
2246 
2247 	if (rsvp_input_p) { /* call the real one if loaded */
2248 		*mp = m;
2249 		rsvp_input_p(mp, offp, proto);
2250 		return(IPPROTO_DONE);
2251 	}
2252 
2253 	/* Can still get packets with rsvp_on = 0 if there is a local member
2254 	 * of the group to which the RSVP packet is addressed.  But in this
2255 	 * case we want to throw the packet away.
2256 	 */
2257 
2258 	if (!rsvp_on) {
2259 		m_freem(m);
2260 		return(IPPROTO_DONE);
2261 	}
2262 
2263 	if (ip_rsvpd != NULL) {
2264 		*mp = m;
2265 		rip_input(mp, offp, proto);
2266 		return(IPPROTO_DONE);
2267 	}
2268 	/* Drop the packet */
2269 	m_freem(m);
2270 	return(IPPROTO_DONE);
2271 }
2272